

Report No.: EED32Q81965001 Page 1 of 48

TEST REPORT

Product : Bicycle Headlight

Trade mark : mentech

Model/Type reference : Spark 1200

Serial Number : N/A

Report Number : EED32Q81965001 **FCC ID** : 2A95D-SPARK1200

Date of Issue : Jan. 10, 2025

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Guangdong Mentech Technology Co., Ltd
504, Building D1, TCL Science Park, No.1001 Zhongshan Garden Road,
Shuguang Community, Xili Street, Nanshan District, Shenzhen,
Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Approved by:

Report Seal

EVENT PUN.

Reviewed by:

Frazer Li

Date:

Jan. 10, 2025

Aaron Ma

Keven Tan

avon Ma

Check No.::8851281124

Report No.: EED32Q81965001

Content

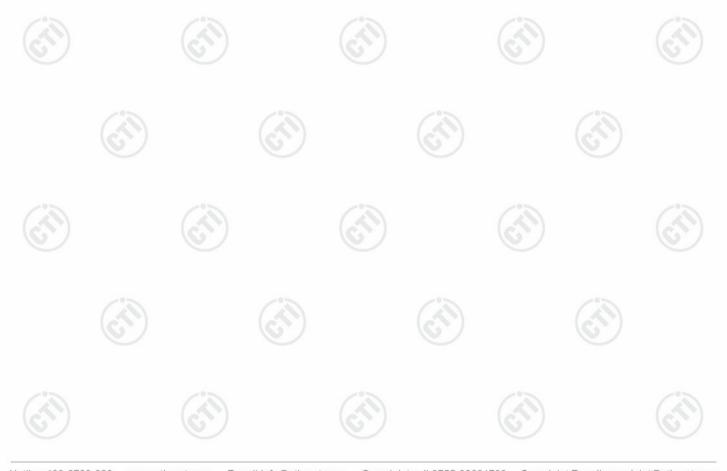
1 CONTENT	2
2 VERSION	3
3 TEST SUMMARY	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	
5 EQUIPMENT LIST	9
6 TEST RESULTS AND MEASUREMENT DATA	12
6.1 ANTENNA REQUIREMENT	
7 APPENDIX A	36
8 PHOTOGRAPHS OF TEST SETUP	37
9 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	39

Report No.: EED32Q81965001

Page 3 of 48

2 Version

Version No.	Date	Description)	
00	Jan. 10, 2025	Original	Original	
		6.7	/3	
((3,50)	(2)	(67)	



Report No. : EED32Q81965001 Page 4 of 48

3 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

4 General Information

4.1 Client Information

Applicant:	Guangdong Mentech Technology Co., Ltd
Address of Applicant:	504, Building D1, TCL Science Park, No.1001 Zhongshan Garden Road, Shuguang Community, Xili Street, Nanshan District, Shenzhen, Guangdong, China
Manufacturer:	Guangdong Mentech Technology Co., Ltd
Address of Manufacturer:	504, Building D1, TCL Science Park, No.1001 Zhongshan Garden Road, Shuguang Community, Xili Street, Nanshan District, Shenzhen, Guangdong, China
Factory:	Dongguan Light Up Your Way Technology Co., Ltd.
Address of Factory:	201, 2nd Floor, Building 1, Glorious Intelligent Valley, No. 136, Yongjun Road, Dalingshan, Dongguan, Guangdong, China

4.2 General Description of EUT

Product Name:	Bicycle Headlight
Model No.:	Spark 1200
Trade mark:	mentech
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location
Operation Frequency:	2402MHz~2480MHz
Modulation Type:	GFSK
Transfer Rate:	⊠1Mbps ⊠2Mbps
Number of Channel:	40
Antenna Type:	Chip Antenna
Antenna Gain:	0.9 dBi
Power Supply:	Battery: DC 3.6V
Test Voltage:	DC 3.6V
Sample Received Date:	Nov. 28, 2024
Sample tested Date:	Dec. 11, 2024 to Dec. 20, 2024

Report No. : EED32Q81965001 Page 6 of 48

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Test Configuration

EUT Test Software	Settings:					
Test Software:	e)					
EUT Power Grade:	Default (F selected)	Default (Power level is built-in set parameters and cannot be changed an selected)				
Use test software to transmitting of the E	set the lowest frequen UT.	cy, the middle freque	ncy and the highest	frequency keep		
Test Mode	Modulation	Rate	Channel	Frequency(MHz)		
Mode a	GFSK	1Mbps	CH0	2402		
Mode b	Mode b GFSK		CH19	2440		
Mode c	GFSK	1Mbps	CH39	2480		
Mode d	GFSK	2Mbps	CH0	2402		
Mode e	GFSK	2Mbps	CH19	2440		
Mode f GFSK		2Mbps	CH39	2480		

Report No. : EED32Q81965001 Page 7 of 48

4.4 Test Environment

O	perating Environment	:					
Ra	adiated Spurious Emis	ssions:					
Te	emperature:	22~25.0 °C	(2)		(41)		(21)
/ Hu	umidity:	50~55 % RH	0		(0)		6
At	mospheric Pressure:	1010mbar					
C	onducted Emissions:						
Te	emperature:	22~25.0 °C		(2)		(20)	
Hu	umidity:	50~55 % RH		(0,)		(0,	
At	mospheric Pressure:	1010mbar					
RI	F Conducted:						
Te	emperature:	22~25.0 °C	(3)				
Hu	umidity:	50~55 % RH	(6,2,2)		(6,7,2)		(6,7)
At	mospheric Pressure:	1010mbar					

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	Netbook HP		FCC&CE	СТІ
		H31GDCQ		

4.6 Test Location

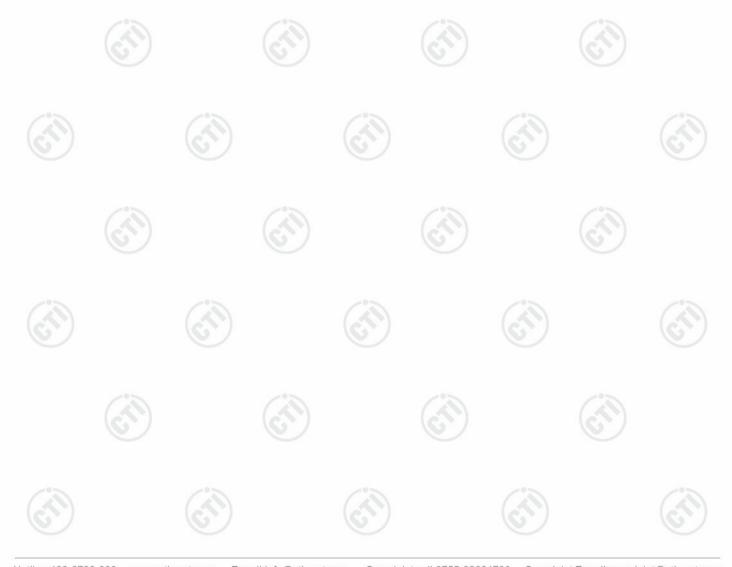
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DC newer conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-40GHz)	
	(0)	3.3dB (9kHz-30MHz)	
2	Dedicted Courieus emission test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)	
(P)		3.4dB (18GHz-40GHz)	
	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Report No. : EED32Q81965001 Page 9 of 48

5 Equipment List

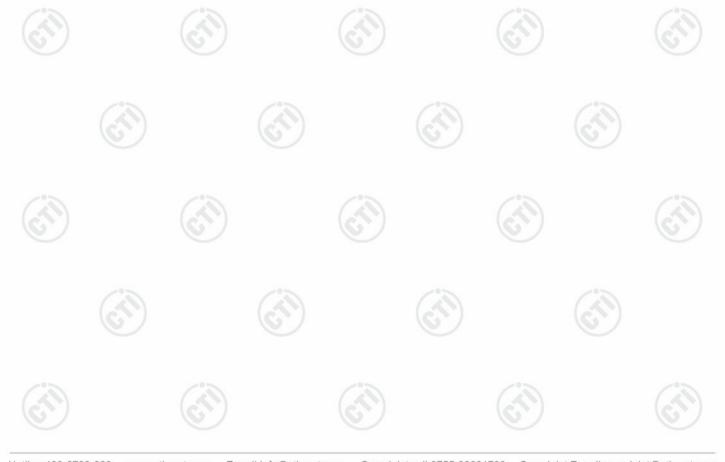
Conducted Emissions Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025
ISN	TESEQ	ISN T800	30297	12-14-2023 12-05-2024	12-13-2024 12-04-2025
Barometer	Changchun	DYM3	1188		
Temperature/ Humidity Indicator	Defu	TH128		04-25-2024	04-24-2025
Test software	Fara	EZ-EMC	EMC-CON 3A1.1		

	3M S	emi/full-anechoid	Chamber(2#	‡)		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05-22-2022	05-21-2025	
Receiver	R&S	ESCI7	100938- 003	09-07-2024	09-06-2025	
Spectrum Analyzer	R&S	FSV40	101200	07-18-2024	07-17-2025	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-16-2024	04-15-2025	
TRILOG Broadband Antenna	Broadband Schwarzbeck		9163-618	05-18-2024	05-17-2025	
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-16-2024	04-15-2025	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07-02-2023	07-01-2026	
Preamplifier	Agilent	11909A	12-1	03-22-2024	03-21-2025	
Preamplifier	EMCI	EMC051845SE	980380	12-14-2023 12-05-2024	12-13-2024 12-04-2025	
Preamplifier	CD	PAP-1840-60	6041.6042	06-19-2024	06-18-2025	
Cable line	Fulai(7M)	SF106	5219/6A	05-22-2022	05-21-2025	
Cable line	Fulai(6M)	SF106	5220/6A	05-22-2022	05-21-2025	
Cable line	Fulai(3M)	SF106	5216/6A	05-22-2022	05-21-2025	
Cable line	Fulai(3M)	SF106	5217/6A	05-22-2022	05-21-2025	
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre			

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No.: EED32Q81965001 Page 10 of 48

3M full-anechoic Chamber								
Equipment	Manufacturer Model N		Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027			
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025			
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025			
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024	01-22-2025			
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025			
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025			
Horn Antenna	ETS- LINDGREN	3117	57407	07-03-2024	07-02-2025			
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025			
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025			
Preamplifier	Tonscend	EMC051845SE	980380	12-14-2023 12-05-2024	12-13-2024 12-04-2025			
Communication test set	RAS		104466	12-05-2024	12-04-2025			
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631 04-07-2024		04-06-2025			
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0	(<u> </u>			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2024	01-08-2027			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2024	01-08-2027			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2024	01-08-2027			
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2024	01-08-2027			
Cable line	Times	EMC104-NMNM- 1000	SN160710	01-09-2024	01-08-2027			
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2024	01-08-2027			
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	01-09-2024	01-08-2027			
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2024	01-08-2027			
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2024	01-08-2027			



Report No. : EED32Q81965001 Page 11 of 48

		BT/WIFI/SRD	RF test system	/ / /		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Communication test set	R&S	CMW500	107929	06-26-2024	06-25-2025	
Signal Generator			1407.6004K02- 262149-CV	09-02-2024	09-01-2025	
Spectrum Analyzer	R&S	FSV40	101200	07-18-2024	07-17-2025	
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI- 42	06-25-2024	06-24-2025	
High-low temperature test chamber	Dong Guang Qin Zhuo LK-80GA QZ20150611879		11/12/2023	12/10/2024		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025	
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	V2.0.0.0			
Spectrum Analyzer	R&S	FSV3044	101509	01/17/2024	01/16/2025	

Report No. : EED32Q81965001 Page 12 of 48

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

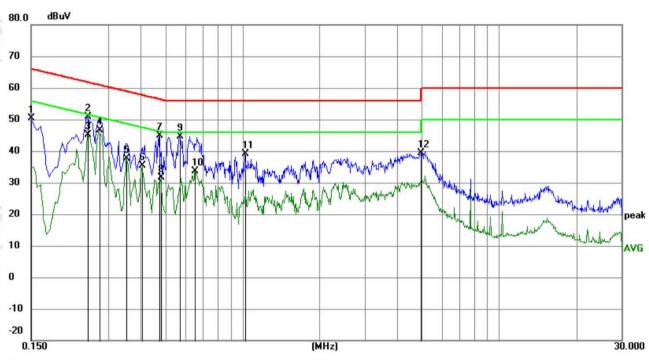
The antenna is chip antenna. The best case gain of the antenna is 0.9dBi.

Report No. : EED32Q81965001 Page 13 of 48

6.2 Conducted Emissions

6.2	Conducted Emis	sions						
	Test Requirement:	47 CFR Part 15C Section 15.	207	(0,)				
	Test Method:	ANSI C63.10: 2013						
	Test Frequency Range:	150kHz to 30MHz						
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto					
	Limit:	5 (0.01)	Limit (d	BuV)				
		Frequency range (MHz)	Quasi-peak	Average				
		0.15-0.5	66 to 56*	56 to 46*				
		0.5-5	56	46				
		5-30	60	50				
		* Decreases with the logarith	n of the frequency.					
	Test Setup:	8		8				
		AC Mains	Ground Reference Plane	Test Receiver				
	Test Procedure:	The mains terminal disturbance voltage test was conducted in a shielded room.						
		 The EUT was connected to AC power source through a LISN 1 (Lin Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω lines impedance. The power cables of all other units of the EUT wer connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. In multiple socket outlet strip was used to connect multiple power cables to single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. 						
		 4) The test was performed we the EUT shall be 0.4 me vertical ground reference reference plane. The LIS unit under test and both mounted on top of the ground associated equipments. 5) In order to find the maximand all of the interface can all of the int	from the vertical group of plane was bonded to N 1 was placed 0.8 m anded to a ground refund reference plane. The LISN 1 and the EUT. At was at least 0.8 m from the must be changed at the changed at the plane of t	nd reference plane. The to the horizontal ground from the boundary of the erence plane for LISNs his distance was between All other units of the EUT in the LISN 2.				
	Test Mode:	All modes were tested, only t	160	vas recorded in the				

report.



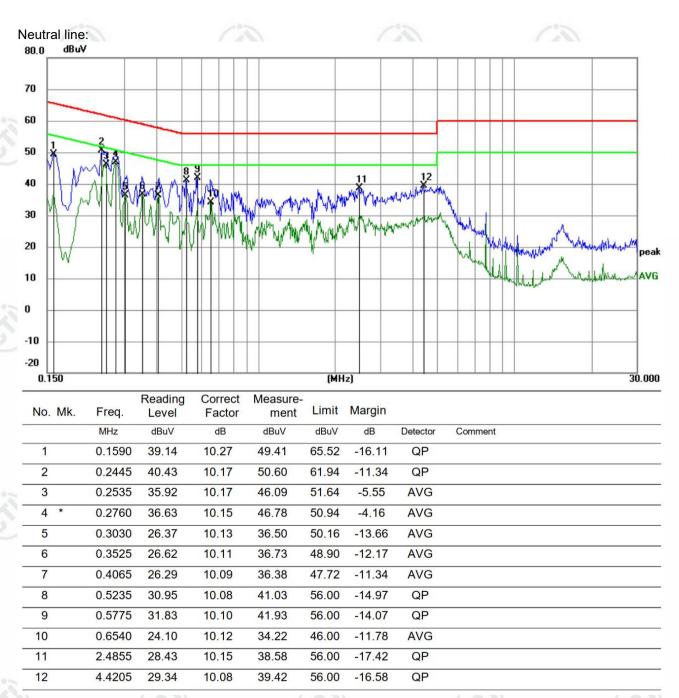
Report No. : EED32Q81965001 Page 14 of 48

Test Results: Pass

Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	40.05	10.28	50.33	66.00	-15.67	QP	
2		0.2490	40.74	10.17	50.91	61.79	-10.88	QP	
3		0.2490	34.85	10.17	45.02	51.79	-6.77	AVG	
4	*	0.2760	36.51	10.15	46.66	50.94	-4.28	AVG	
5		0.3525	27.55	10.11	37.66	48.90	-11.24	AVG	
6		0.4065	25.34	10.09	35.43	47.72	-12.29	AVG	
7		0.4740	34.91	10.08	44.99	56.44	-11.45	QP	
8		0.4830	21.46	10.08	31.54	46.29	-14.75	AVG	
9		0.5685	34.65	10.09	44.74	56.00	-11.26	QP	
10		0.6540	23.57	10.12	33.69	46.00	-12.31	AVG	
11		1.0230	28.90	10.18	39.08	56.00	-16.92	QP	
12		4.9650	29.34	10.06	39.40	56.00	-16.60	QP	


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

6.3 Maximum Conducted Output Power

10.0	1047	
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Computer Power Supply Table RF test System System Instrument	
	Remark: Offset=Cable loss+ attenuation factor.	
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	
Limit:	30dBm	/°>
Test Mode:	Refer to clause 5.3	
Test Results:	Refer to Appendix A	

Report No. : EED32Q81965001 Page 17 of 48

6.4 DTS Bandwidth

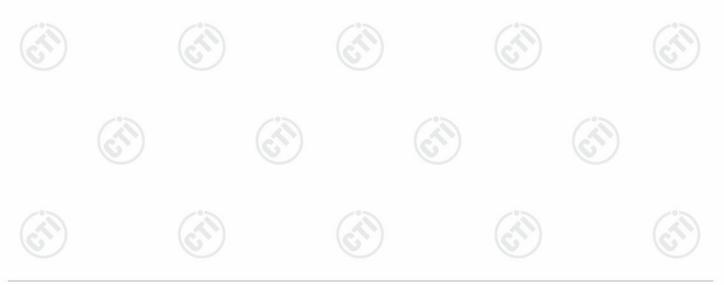
10.0	
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Control Computer Power ports) Power pot Attenuator Table RF test System Instrument Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A

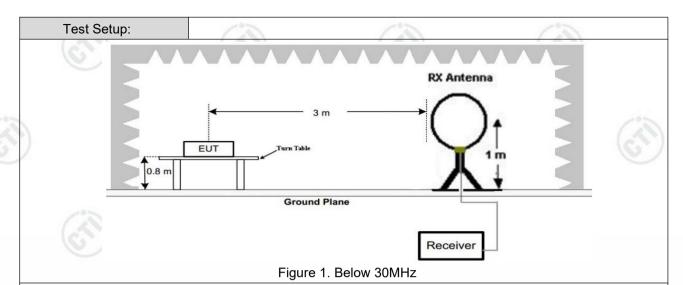
6.5 Maximum Power Spectral Density

47 CFR Part 15C Section 15.247 (e)	
ANSI C63.10 2013	
- 10 m	
Control Computer Power Supply Power Table EUT Control Control Power Poots TEMPERATURE CABRIET Table	RF test - System Instrument
Remark: Offset=Cable loss+ attenua	ation factor.
within the RBW.	S bandwidth.
≤8.00dBm/3kHz	
Refer to clause 5.3	-05
Refer to Appendix A	
	ANSI C63.10 2013 Control Power Power Poot Poot Poot Poot Poot Poot Poot Poo

6.6 Band Edge measurements and Conducted Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.247 (d)						
Test Method:	ANSI C63.10 2013						
Test Setup:	RF test System Power port Table RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.						
Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test Mode:	Refer to clause 5.3						
Test Results:	Refer to Appendix A						




6.7 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Sec	tion 1	15.209 and 1	15.205		160	/			
Test Method:	ANSI C63.10 2013									
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency	(0)	Detector	r RB	W	VBW	Remark			
	0.009MHz-0.090M	Hz	Peak	10k	Hz	30kHz	Peak			
	0.009MHz-0.090M	Hz	Average	10k	Hz	30kHz	Average			
	0.090MHz-0.110M	Hz	Quasi-pea	ak 10k	Hz	30kHz	Quasi-peak			
	0.110MHz-0.490M	Hz	Peak	10k	Hz	30kHz	Peak			
	0.110MHz-0.490M	Hz	Average	e 10k	Hz	30kHz	Average			
	0.490MHz -30MH	lz	Quasi-pea	ak 10k	Hz	30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-pea	ak 100	kHz	300kHz	Quasi-peak			
	Above 1CHz		Peak	1M	Hz	3MHz	Peak			
	Above 1GHz		Peak	1M	Hz	10kHz	Average			
Limit:	Frequency		d strength ovolt/meter)	Limit (dBuV/m)	Remark		Measurement distance (m)			
	0.009MHz-0.490MHz	•		-			300			
	0.490MHz-1.705MHz	90MHz-1.705MHz 240		-	- (3		30			
	1.705MHz-30MHz	30		-	- 6		30			
	30MHz-88MHz		100	40.0	Quasi-peak		3			
	88MHz-216MHz		150	43.5	Qua	asi-peak	3			
	216MHz-960MHz	10)	200	46.0	Qua	asi-peak	3			
	960MHz-1GHz		500	54.0	Qua	asi-peak	3			
	Above 1GHz		500	54.0	A۱	/erage	3			
	Note: 15.35(b), frequency emissions limit applicable to the peak emission level ra	is 20d equip	dB above the oment under	e maximu r test. This	m pe	rmitted av	erage emissio			

Report No.: EED32Q81965001 Page 21 of 48

Antenna Tower

Antenna Tower

Ground Reference Plane

Test Receiver

Test Receiver

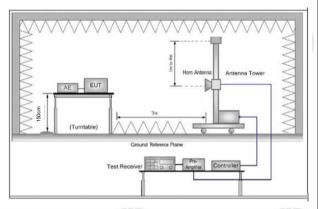


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

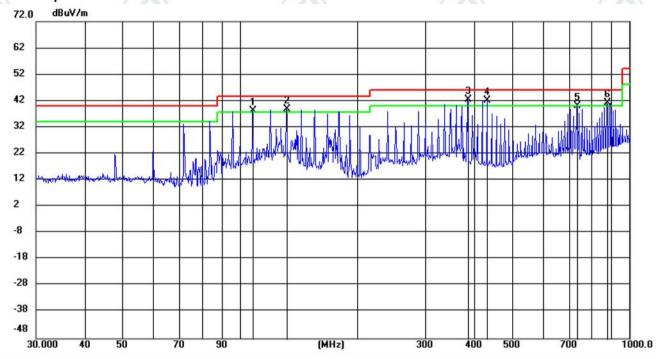
Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Report No. : EED32Q81965001 Page 22 of 48

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channe (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dE margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.



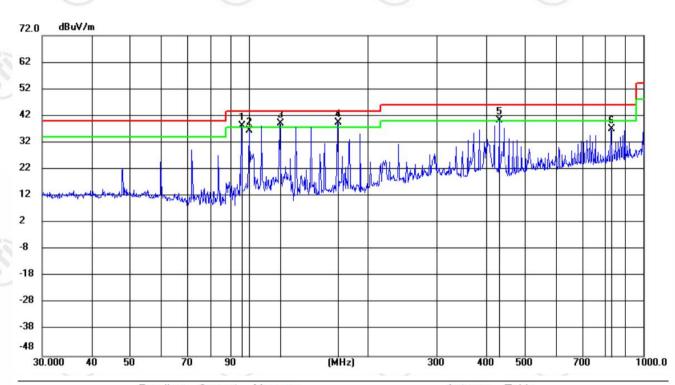
Report No.: EED32Q81965001 Page 23 of 48

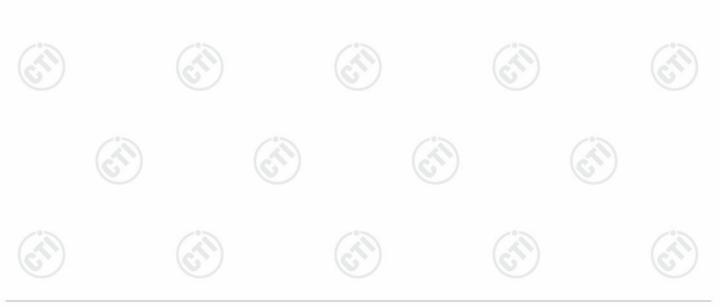
Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case mode a was recorded in the report.

Test Graph of Horizontal:

No.	Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Margin		Antenna Height	Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	!	108.0012	25.34	12.97	38.31	43.50	-5.19	QP	200	162	
2	ļ.	132.0120	28.98	9.75	38.73	43.50	-4.77	QP	200	352	
3	*	384.0663	24.65	17.74	42.39	46.00	-3.61	QP	200	352	
4	!	432.0151	23.51	18.62	42.13	46.00	-3.87	QP	100	49	
5	!	732.0485	16.64	23.48	40.12	46.00	-5.88	QP	100	153	
6	!	876.1681	15.80	25.58	41.38	46.00	-4.62	QP	100	290	





Report No.: EED32Q81965001 Page 24 of 48

Test Graph of Vertical:

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
_			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	1	!	95.9975	25.61	12.57	38.18	43.50	-5.32	QP	100	78	
	2		100.4925	23.16	13.16	36.32	43.50	-7.18	QP	100	99	
	3	ļ	120.0027	27.44	11.66	39.10	43.50	-4.40	QP	100	110	
	4	*	168.0008	28.39	10.99	39.38	43.50	-4.12	QP	200	268	
	5	!	432.0908	21.69	18.62	40.31	46.00	-5.69	QP	100	68	
	6		828.0739	12.27	24.90	37.17	46.00	-8.83	QP	100	89	
_												

Radiated Spurious Emission above 1GHz:

Mode	e:		Bluetooth LE 1	Mbps GFSK T	ransmitting	Channel:		2402 MHz	
NO	Freq. [MHz]	Factor	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1119.4746	9.40	37.55	46.95	74.00	27.05	PASS	Horizontal	PK
2	1673.7783	12.45	37.48	49.93	74.00	24.07	PASS	Horizontal	PK
3	3360.024	-12.74	53.52	40.78	74.00	33.22	PASS	Horizontal	PK
4	4803.1202	-10.45	61.20	50.75	74.00	23.25	PASS	Horizontal	PK
5	7205.2804	-5.19	62.29	57.10	74.00	16.90	PASS	Horizontal	PK
6	10022.4682	2.66	42.42	45.08	74.00	28.92	PASS	Horizontal	PK
7	7207.2805	-5.15	54.85	49.70	54.00	4.30	PASS	Horizontal	AV
8	1206.9471	8.74	37.47	46.21	74.00	27.79	PASS	Vertical	PK
9	1766.9845	13.44	36.73	50.17	74.00	23.83	PASS	Vertical	PK
10	3321.0214	-13.01	53.73	40.72	74.00	33.28	PASS	Vertical	PK
11	4803.1202	-10.45	61.54	51.09	74.00	22.91	PASS	Vertical	PK
12	7206.2804	-5.17	61.87	56.70	74.00	17.30	PASS	Vertical	PK
13	9612.4408	2.51	43.64	46.15	74.00	27.85	PASS	Vertical	PK
14	7207.2805	-5.15	55.27	50.12	54.00	3.88	PASS	Vertical	AV

Mode	Mode:		Bluetooth LE 1	Mbps GFSK T	ransmitting	Channel:		2440 MHz	
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1238.5492	8.61	37.74	46.35	74.00	27.65	PASS	Horizontal	PK
2	1740.9827	13.03	37.39	50.42	74.00	23.58	PASS	Horizontal	PK
3	3673.0449	-12.89	51.62	38.73	74.00	35.27	PASS	Horizontal	PK
4	4879.1253	-9.84	64.17	54.33	74.00	19.67	PASS	Horizontal	PK
5	7319.288	-4.44	61.89	57.45	74.00	16.55	PASS	Horizontal	PK
6	9603.4402	2.63	43.68	46.31	74.00	27.69	PASS	Horizontal	PK
7	4881.1254	-9.81	59.74	49.93	54.00	4.07	PASS	Horizontal	AV
8	7321.2881	-4.43	55.69	51.26	54.00	2.74	PASS	Horizontal	AV
9	1171.2114	9.71	36.84	46.55	74.00	27.45	PASS	Vertical	PK
10	1705.9137	12.94	37.08	50.02	74.00	23.98	PASS	Vertical	PK
11	3591.0394	-13.97	52.75	38.78	74.00	35.22	PASS	Vertical	PK
12	4879.1253	-9.84	64.48	54.64	74.00	19.36	PASS	Vertical	PK
13	7320.288	-4.43	62.11	57.68	74.00	16.32	PASS	Vertical	PK
14	10061.4708	3.23	42.87	46.10	74.00	27.90	PASS	Vertical	PK
15	4881.1254	-9.81	59.16	49.35	54.00	4.65	PASS	Vertical	AV
16	7320.288	-4.43	55.32	50.89	54.00	3.11	PASS	Vertical	AV

Report No.: EED32Q81965001

	200			20%					200	
M	ode	:		Bluetooth LE	1Mbps GFSK T	Channel:		2480 MHz		
N	0	Freq. [MHz]	Factor	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1175.4784	9.57	37.77	47.34	74.00	26.66	PASS	Horizontal	PK
2	2	1671.6448	12.41	37.23	49.64	74.00	24.36	PASS	Horizontal	PK
3	3	3483.0322	-14.02	53.05	39.03	74.00	34.97	PASS	Horizontal	PK
4	4	4960.1307	-13.19	66.27	53.08	74.00	20.92	PASS	Horizontal	PK
	5	7439.296	-4.55	60.62	56.07	74.00	17.93	PASS	Horizontal	PK
(6	9800.4534	3.39	43.83	47.22	74.00	26.78	PASS	Horizontal	PK
7	7	7441.2961	-4.56	54.17	49.61	54.00	4.39	PASS	Horizontal	AV
8	8	1162.9442	9.98	37.05	47.03	74.00	26.97	PASS	Vertical	PK
(9	1645.3764	11.99	37.25	49.24	74.00	24.76	PASS	Vertical	PK
1	0	3517.0345	-14.13	53.63	39.50	74.00	34.50	PASS	Vertical	PK
1	1	4960.1307	-13.19	66.11	52.92	74.00	21.08	PASS	Vertical	PK
1	2	7439.296	-4.55	60.85	56.30	74.00	17.70	PASS	Vertical	PK
1	3	10064.471	3.06	42.29	45.35	74.00	28.65	PASS	Vertical	PK
1	4	7441.2961	-4.56	53.87	49.31	54.00	4.69	PASS	Vertical	AV

Mode	Mode:		Bluetooth LE 2	Mbps GFSK T	ransmitting	Channel:		2402 MHz	
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1223.6149	8.66	37.80	46.46	74.00	27.54	PASS	Horizontal	PK
2	1765.3844	13.40	37.21	50.61	74.00	23.39	PASS	Horizontal	PK
3	3566.0377	-13.35	52.62	39.27	74.00	34.73	PASS	Horizontal	PK
4	4805.1203	-10.45	61.61	51.16	74.00	22.84	PASS	Horizontal	PK
5	7204.2803	-5.22	61.68	56.46	74.00	17.54	PASS	Horizontal	PK
6	9834.4556	2.92	43.95	46.87	74.00	27.13	PASS	Horizontal	PK
7	7208.2806	-5.13	52.86	47.73	54.00	6.27	PASS	Horizontal	AV
8	1209.614	8.72	37.18	45.90	74.00	28.10	PASS	Vertical	PK
9	1655.6437	12.12	36.87	48.99	74.00	25.01	PASS	Vertical	PK
10	3558.0372	-13.15	52.43	39.28	74.00	34.72	PASS	Vertical	PK
11	4805.1203	-10.45	61.69	51.24	74.00	22.76	PASS	Vertical	PK
12	7204.2803	-5.22	61.56	56.34	74.00	17.66	PASS	Vertical	PK
13	9802.4535	3.37	43.36	46.73	74.00	27.27	PASS	Vertical	PK
14	7205.2804	-5.19	53.03	47.84	54.00	6.16	PASS	Vertical	AV

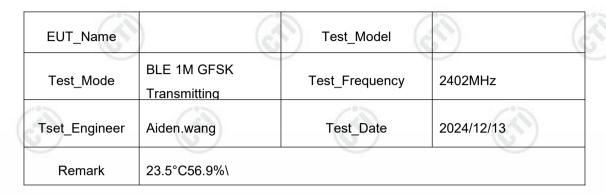
Report No.: EED32Q81965001 Page 27 of 48

								100	
Mode	:		Bluetooth LE 2N	Mbps GFSK T	ransmitting	Channel:		2440 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1228.6819	8.65	36.96	45.61	74.00	28.39	PASS	Horizontal	PK
2	1767.3845	13.45	37.12	50.57	74.00	23.43	PASS	Horizontal	PK
3	3587.0391	-13.87	52.39	38.52	74.00	35.48	PASS	Horizontal	PK
4	4881.1254	-9.81	64.32	54.51	74.00	19.49	PASS	Horizontal	PK
5	7321.2881	-4.43	62.39	57.96	74.00	16.04	PASS	Horizontal	PK
6	9787.4525	3.01	44.01	47.02	74.00	26.98	PASS	Horizontal	PK
7	4880.1253	-9.82	57.13	47.31	54.00	6.69	PASS	Horizontal	AV
8	7322.2882	-4.42	55.28	50.86	54.00	3.14	PASS	Horizontal	AV
9	1215.2143	8.70	37.40	46.10	74.00	27.90	PASS	Vertical	PK
10	1761.9175	13.33	37.23	50.56	74.00	23.44	PASS	Vertical	PK
11	3588.0392	-13.89	53.75	39.86	74.00	34.14	PASS	Vertical	PK
12	4879.1253	-9.84	63.26	53.42	74.00	20.58	PASS	Vertical	PK
13	7321.2881	-4.43	59.64	55.21	74.00	18.79	PASS	Vertical	PK
14	9768.4512	2.43	44.23	46.66	74.00	27.34	PASS	Vertical	PK
15	7322.2882	-4.42	52.74	48.32	54.00	5.68	PASS	Vertical	AV

Mode	:		Bluetooth LE 2	Channel:		2480 MHz			
NO	Freq. [MHz]	Facto	Reading [dBμV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1193.0795	8.99	37.96	46.95	74.00	27.05	PASS	Horizontal	PK
2	1723.3816	12.98	38.05	51.03	74.00	22.97	PASS	Horizontal	PK
3	3555.037	-13.08	52.65	39.57	74.00	34.43	PASS	Horizontal	PK
4	4961.1307	-13.17	66.37	53.20	74.00	20.80	PASS	Horizontal	PK
5	7438.2959	-4.55	60.60	56.05	74.00	17.95	PASS	Horizontal	PK
6	9783.4522	2.89	44.14	47.03	74.00	26.97	PASS	Horizontal	PK
7	7442.2962	-4.56	52.89	48.33	54.00	5.67	PASS	Horizontal	AV
8	1190.4127	9.08	37.89	46.97	74.00	27.03	PASS	Vertical	PK
9	1668.1779	12.35	37.60	49.95	74.00	24.05	PASS	Vertical	PK
10	3476.0317	-13.72	52.61	38.89	74.00	35.11	PASS	Vertical	PK
11	4959.1306	-13.22	66.09	52.87	74.00	21.13	PASS	Vertical	PK
12	7438.2959	-4.55	60.56	56.01	74.00	17.99	PASS	Vertical	PK
13	9795.453	3.26	43.87	47.13	74.00	26.87	PASS	Vertical	PK
14	7442.2962	-4.56	52.95	48.39	54.00	5.61	PASS	Vertical	AV

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

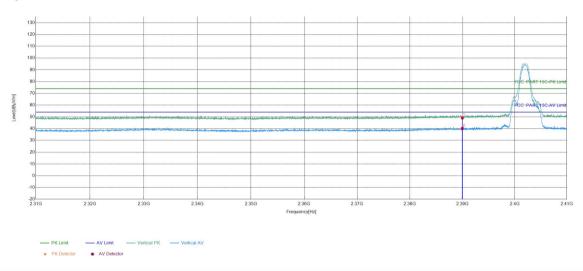


Page 28 of 48 Report No.: EED32Q81965001

Restricted bands:

Test plot as follows:

	Suspected List												
-	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark			
3	110	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	rtoodit	rolarity	rtomant			
	1	2390	15.31	34.37	49.68	74.00	24.32	PASS	Horizontal	PK			
	2	2390	15.31	24.57	39.88	54.00	14.12	PASS	Horizontal	AV			

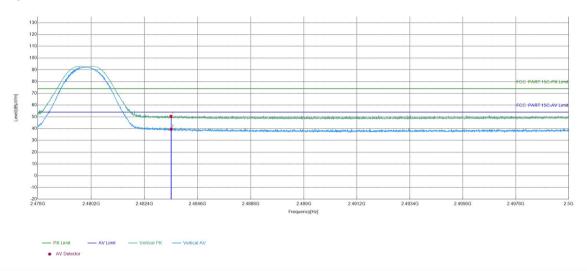


EUT_Name		Test_Model	
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/13
Remark	23.5°C56.9%\	(1)	(1)

	Suspected List											
ı	NO	Freq.	Factor	Reading	Level	Limit	Margin	Dogult	Dolority	Domork		
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark		
	1	2390	15.31	33.77	49.08	54.00	4.92	PASS	Vertical	PK		
3	2	2390	15.31	24.86	40.17	54.00	13.83	PASS	Vertical	AV		

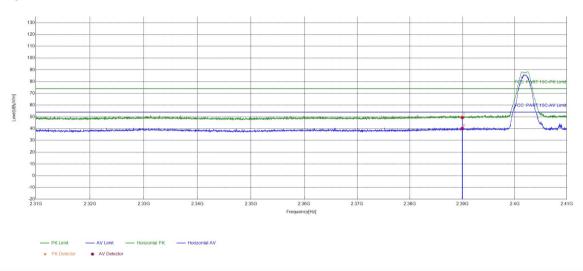
EUT_Name		Test_Model	
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/13
Remark	23.5°C56.9%\	(4)	(4)

	Suspected List											
ı	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark		
	INO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Nesuit	Folanty	Remark		
	1	2483.5	15.16	34.51	49.67	74.00	24.33	PASS	Horizontal	PK		
3	2	2483.5	15.16	24.40	39.56	54.00	14.44	PASS	Horizontal	AV		



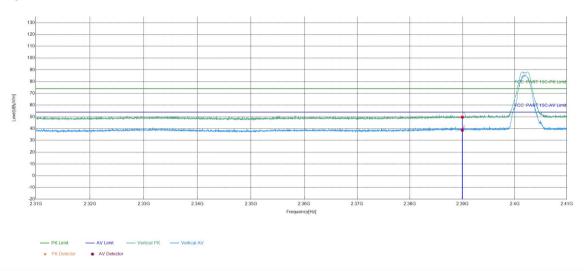
EUT_Name		Test_Model		
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024/12/13	
Remark	23.5°C56.9%\		(40)	

	Suspected List												
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Dogult	Dolority	Domork			
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark			
	1	2483.5	15.16	35.35	50.51	54.00	3.49	PASS	Vertical	PK			
3	2	2483.5	15.16	24.34	39.50	54.00	14.50	PASS	Vertical	AV			



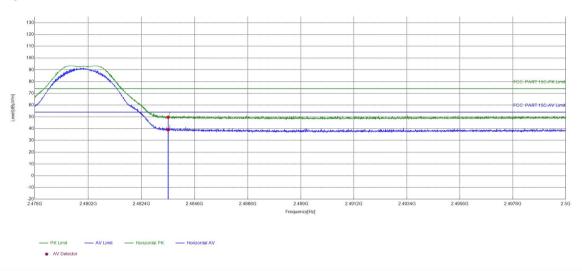
EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/13
Remark	23.5°C56.9%\		(45)

	Suspected List												
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark			
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Nesuit	Polarity	Remark			
	1	2390	15.31	34.10	49.41	74.00	24.59	PASS	Horizontal	PK			
1	2	2390	15.31	24.84	40.15	54.00	13.85	PASS	Horizontal	AV			



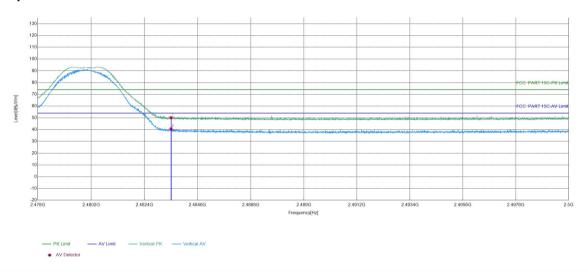
EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/13
Remark	23.5°C56.9%\	(4)	(1)

	Suspected List												
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Dolority	Domark			
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark			
	1	2390	15.31	34.45	49.76	54.00	4.24	PASS	Vertical	PK			
9	2	2390	15.31	23.40	38.71	54.00	15.29	PASS	Vertical	AV			



EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/13
Remark	23.5°C56.9%\	(4)	(49)

Suspecte	Suspected List												
NO	Freq.	Factor	Reading	Level	Limit	Margin	D 14	Dalasiis	D				
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark				
1	2483.5	15.16	34.51	49.67	54.00	4.33	PASS	Horizontal	PK				
2	2483.5	15.16	23.84	39.00	54.00	15.00	PASS	Horizontal	AV				



EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/13
Remark	23.5°C56.9%\	(3)	(4)

	Suspected List												
ı	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark			
	INO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Mesuit	Folality	Remain			
	1	2483.5	15.16	35.04	50.20	74.00	23.80	PASS	Vertical	PK			
3	2	2483.5	15.16	25.48	40.64	54.00	13.36	PASS	Vertical	AV			

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor



Appendix A

Refer to Appendix: Bluetooth LE of EED32Q81965001

CTI华测检测

Report No. : EED32Q81965001 Page 48 of 48

声明

Statement

1. 检测报告无批准人签字、"专用章"及报告骑缝章无效;

This report is considered invalid without approved signature, special seal and the seal on the perforation;

2. 报告中公司名称及地址、样品及样品信息由申请者提供,申请者应对其真实性负责,CTI不负责验证其真实性;

The Company Name shown on Report and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified;

3. 本报告检测结果仅对受测样品负责;

The result(s) shown in this report refer(s) only to the sample(s) tested;

4. 除非另有说明,报告参照 ILAC-G8:09/2019/CNAS-GL015: 2022 使用简单接受判定规则进行符合性判定;

Unless otherwise stated, the decision rule for conformity reporting is based on Binary Statement for Simple Acceptance Rule stated in ILAC-G8:09/2019/CNAS-GL015:2022;

5. 未经 CTI 书面同意,不得部分复制本报告;

Hotline:400-6788-333

www.cti-cert.com

Without written approval of CTI, this report can't be reproduced except in full;

6. 如检测报告中的英文内容与中文内容有差异,以中文为准。

In case of any discrepancy between the English version and Chinese version of the testing reports (if generated), the Chinese version shall prevail.

