

TEST REPORT

Report No.:	BCTC2404619065-1E					
Applicant:	Acer India PVT Limited					
Product Name:	Laptop					
Test Model:	Aspire Lite AL15-52H					
Tested Date:	2024-05-16 to 2024-05-30					
Issued Date:	2024-05-31					
She	enzhen BCTC Testing Co., Ltd.					
No.: BCTC/RF-EMC-005	Page: 1 of 88					

FCC ID: 2A94K-AL15-52H

Product Name:	Laptop
Trademark:	acer
Model/Type Reference:	Aspire Lite AL15-52H
Prepared For:	Acer India PVT Limited
Address:	Acer India PVT Limited, 6th Floor, Embassy Heights, No.13, Magrath Road, Bangalore, 560025, India
Manufacturer:	Acer India PVT Limited
Address:	RS No.38/2, Sedarapet Village Villianur Commune, Pondicherry-605111
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2024-04-25
Sample tested Date:	2024-05-16 to 2024-05-30
Issue Date:	2024-05-31
Report No.:	BCTC2404619065-1E
Test Standards	FCC Part15.247 ANSI C63.10-2013
Test Results	PASS
Remark:	This is Bluetooth Classic radio test report.

Tested by: Shanshan . Zhang

Shanshan. Zhang / Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

No.: BCTC/RF-EMC-005

Page: 2 of 88

Table Of Content

Test	Report Declaration F	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	
4.	Product Information And Test Setup	8
4.1	Product Information	
4.2	Test Setup Configuration	9
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	11
4.6	Table Of Parameters Of Text Software Setting	11
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	12
6.	Conducted Emissions	14
6.1	Block Diagram Of Test Setup	14
6.2	Limit	
6.3	Test procedure	
6.4	EUT operating Conditions	14
6.5	Test Result	
7.	Radiated emissions	21
7.1	Block Diagram Of Test Setup	21
7.2	Limit	22
7.3	Test procedure	
7.4	EUT operating Conditions	24
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of Operati	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test procedure	
8.4	EUT operating Conditions	32
8.5	Test Result	
9.	Spurious RF Conducted Emissions	
9.1	Block Diagram Of Test Setup	35
9.2	Limit Test procedure Test Result	35
9.3	Test procedure	35
9.4	Test Result	36
10.	20 dB Bandwidth	57
10.1	Block Diagram Of Test Setup	57
10.2	Limit	57
10.3	· · · · · · · · · · · · · · · · · · ·	57
10.4	Test Result	57
11.	Maximum Peak Output Power	63
11.1	Block Diagram Of Test Setup	63
11.2	Limit	63

Page: 3 of 88

,TC 3C

PR

еро

11.3 Test procedure	63
11.4 Test Result	63
12. Hopping Channel Separation	69
12.1 Block Diagram Of Test Setup	69
12.2 Limit	
12.3 Test procedure	69
12.4 Test Result	69
13. Number Of Hopping Frequency	75
13.1 Block Diagram Of Test Setup	75
13.2 Limit	75
13.3 Test procedure	75
13.4 Test Result	75
14. Dwell Time	78
14.1 Block Diagram Of Test Setup	78
14.2 Limit	78
14.3 Test procedure	78
14.4 Test Result	78
15. Antenna Requirement	84
15.1 Limit	
15.2 Test Result	84
16. EUT Photographs	85
17. EUT Test Setup Photographs	

(Note: N/A Means Not Applicable)

Page: 4 of 88

1. Version

Report No.	Issue Date	Description	Approved
BCTC2404619065-1E	2024-05-31	Original	Valid

No.: BCTC/RF-EMC-005

Page: 5 of 88

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No.	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Hopping channel separation	§15.247(a)(1)	PASS
5	Number of hopping frequencies	§15.247(a)(1)(iii)	PASS
6	Dwell Time	§15.247(a)(1)(iii)	PASS
7	Spurious RF conducted emissions	§15.247(d)	PASS
8	Band edge	§15.247(d)	PASS
9	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
10	Antenna Requirement	15.203	PASS

Page: 6 of 88

3. Measurement Uncertainty

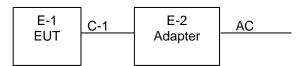
Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59°C

4. Product Information And Test Setup

4.1 Product Information

Model/Type reference:	Aspire Lite AL15-52H
Model differences:	N/A
Bluetooth Version:	5.0
Hardware Version:	TU141AL VER: 1.2
Software Version:	Windows 11 Home 22H2
Operation Frequency:	2402-2480MHz
Type of Modulation:	GFSK, π/ 4 DQPSK, 8DPSK
Number Of Channel	79CH
Antenna installation:	Internal antenna
	2.53 dBi
Antenna Gain:	Remark: The antenna gain of the product comes from the antenna report provided by the customer, and the test data is affected by the customer information. The antenna gain of the product is provided by the customer, and the test data is affected by the customer information.
Ratings:	DC 19V/DC 20V from adapter or DC 11.55V from battery or DC 11.4V from battery
Adapter 1 Information:	Model: AD1002-2005000D6 Input: 100-240V~ 50-60Hz 1.5A Max. Output: DC 20.0V 5.0A 100.0W Max. MODEL: HKA09019047-6U
Adapter 2 Information:	INPUT: 100-240V~50/60Hz, 1.5A OUTPUT: DC 19.0V 4.74A, 90.06W MODEL: HKA10020050-0A6
Adapter 3 Information:	INPUT: 100-240V~60/50Hz, 1.8A OUTPUT: DC 20.0V 5.0A, 100.0W Model Name: T1561U-575983 31CP6/59/83
Battery 1:	Rating: DC 11.55V 4780mAh 55.21Wh Limited Charge Voltage: 13.2V Model: U609963PV-3S1P 31CP6/99/63
Battery 2:	Rated Voltage: 11.4V Limited Charging: 13.05V
	//////////////////


Page: 8 of 88

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Laptop	acer	Aspire Lite AL15-52H	N/A	EUT
E-2	ADAPTER 1	N/A	AD1002-2005 000D6	N/A	Auxiliary
E-3	ADAPTER 2	N/A	HKA09019047 -6U	N/A	Auxiliary
E-4	ADAPTER 3	N/A a	HKA10020050 -0A6	N/A	Auxiliary
					1777

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	ЗM	DC cable unshielded
N. 1. 4				

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page: 9 of 88

Por

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	1

No.: BCTC/RF-EMC-005

Page: 10 of 88

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel		
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz		
2	Transmitting(π/ 4 DQPSK)	2402MHz	2441MHz	2480MHz		
3	Transmitting(8DPSK)	2402MHz	2441MHz	2480MHz		
4	Link mode (Conducted emission & Radiated emission)					

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	bluetooth_debug_tools				
Frequency	2402 MHz 2441 MHz 2480 MH				
Parameters	DEF	DEF	. DEF /		

Page: 11 of 88

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850

A2LA certificate registration number is: CN1212

ISED Registered No.: 23583

ISED CAB identifier: CN0017

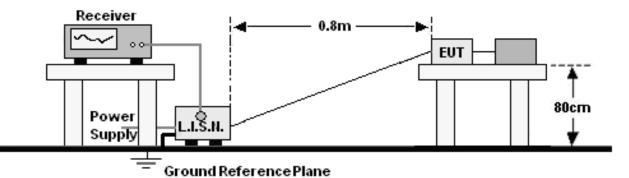
Conducted Emissions Test								
Equipment	Manufacturer	Manufacturer Model# Serial# Last Cal. N						
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025			
LISN	R&S	ENV216	101375	May 16, 2024	May 15, 2025			
Software	Frad	EZ-EMC	EMC-CON 3A1	\	\			
Pulse limiter	Schwarzbeck	VTSD9561-F	01323	May 16, 2024	May 15, 2025			

5.2 Test Instrument Used

RF Conducted Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Power meter	Keysight	E4419	1	May 16, 2024	May 15, 2025			
Power Sensor (AV)	Keysight	E9300A		May 16, 2024	May 15, 2025			
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 16, 2024	May 15, 2025			
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025			
Radio frequency control box	MAIWEI	MW100-RFC B	an a		X			
Software	MAIWEI	MTS 8310	· · · · · · · · · · · · · · · · · · ·		V			

No.: BCTC/RF-EMC-005

	Radiated Emissions Test (966 Chamber01)								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.				
966 chamber	ChengYu	966 Room	966	May 16, 2024	May 15, 2025				
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025				
Receiver	R&S	ESRP	101154	May 16, 2024	May 15, 2025				
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 16, 2024	May 15, 2025				
TRILOG Broadband Antenna	TRILOG Broadband Schwarzbeck		942	May 21, 2024	May 20, 2025				
Loop Antenna(9KHz -30MHz)	Antenna 9KHz Schwarzbeck		00014	May 21, 2024	May 20, 2025				
Amplifier	SKET	LAPA_01G18 G-45dB	SK202104090 1	May 16, 2024	May 15, 2025				
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 21, 2024	May 20, 2025				
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 16, 2024	May 15, 2025				
Horn Antenna(18G Schwarzbeck Hz-40GHz)		BBHA9170	00822	May 21, 2024	May 20, 2025				
Spectrum Analyzer9kHz- R&S 40GHz		FSP40	100363	May 16, 2024	May 15, 2025				
Software	Frad	EZ-EMC	FA-03A2 RE	\	\				



Page: 13 of 88

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

Frequency (MHz)	Limit (dBuV)			
	Quas-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 -30.0	60.00	50.00		

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

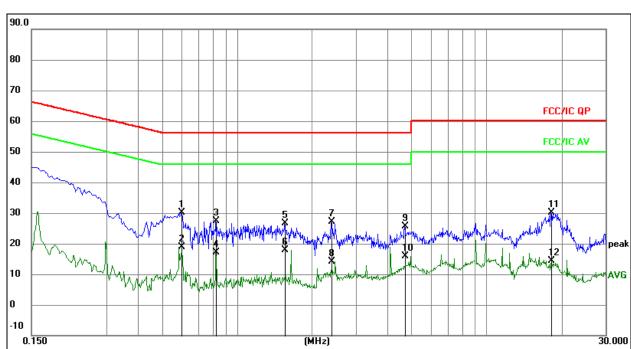
6.3 Test procedure

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT operating Conditions

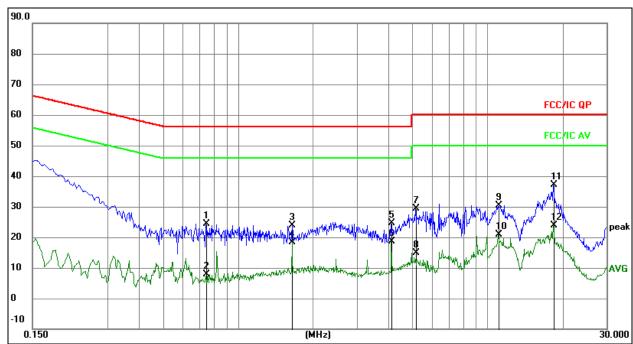
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 3(Adapter 1)	Test Voltage :	AC120V/60Hz

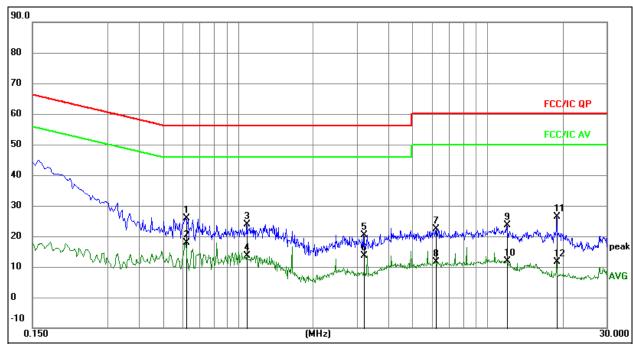
Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit


			Reading	Correct	Measure-			
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz		dB	dBu∨	dBuV	dB	Detecto
1	*	0.6000	10.39	19.84	30.23	56.00	-25.77	QP
2		0.6000	-1.01	19.84	18.83	46.00	-27.17	AVG
3		0.8250	7.48	19.89	27.37	56.00	-28.63	QP
4		0.8250	-2.66	19.89	17.23	46.00	-28.77	AVG
5		1.5540	6.62	19.95	26.57	56.00	-29.43	QP
6		1.5540	-2.00	19.95	17.95	46.00	-28.05	AVG
7		2.3955	7.00	20.09	27.09	56.00	-28.91	QP
8		2.3955	-5.94	20.09	14.15	46.00	-31.85	AVG
9		4.7130	5.26	20.49	25.75	56.00	-30.25	QP
10		4.7130	-4.66	20.49	15.83	46.00	-30.17	AVG
11		18.1995	10.06	19.95	30.01	60.00	-29.99	QP
12		18.1995	-5.55	19.95	14.40	50.00	-35.60	AVG

JC JC JC

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Ν
Test Mode:	Mode 3(Adapter 1)	Test Voltage :	AC120V/60Hz

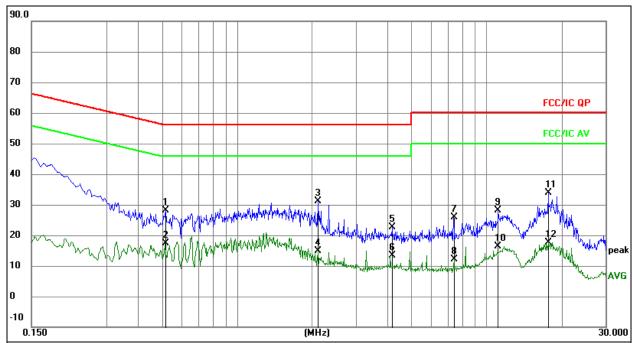

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

3. Measu	urement =	on Loss + C = Reading L ement - Lim	evel + Correct	Factor				
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBu∨	dBuV	dB	Detector
1		0.7440	4.42	19.86	24.28	56.00	-31.72	QP
2		0.7440	-11.91	19.86	7.95	46.00	-38.05	AVG
3		1.6530	4.03	19.95	23.98	56.00	-32.02	QP
4		1.6530	-1.67	19.95	18.28	46.00	-27.72	AVG
5		4.1325	3.91	20.63	24.54	56.00	-31.46	QP
6		4.1325	-1.88	20.63	18.75	46.00	-27.25	AVG
7		5.1495	8.96	20.39	29.35	60.00	-30.65	QP
8		5.1495	-5.58	20.39	14.81	50.00	-35.19	AVG
9		11.0400	10.56	19.88	30.44	60.00	-29.56	QP
10		11.0400	0.89	19.88	20.77	50.00	-29.23	AVG
11	*	18.3389	17.28	19.95	37.23	60.00	-22.77	QP
12		18.3389	4.01	19.95	23.96	50.00	-26.04	AVG

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 2(Adapter 2)	Test Voltage :	AC120V/60Hz

Remark:


All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit

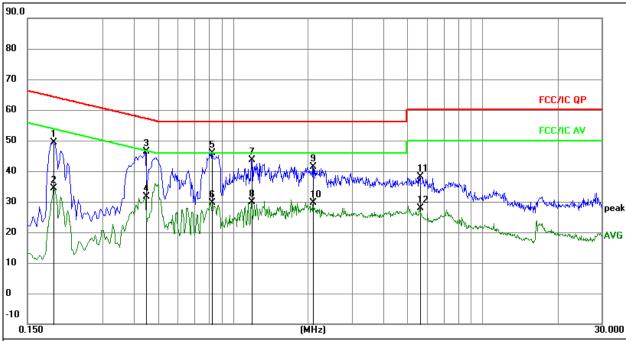
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.6173	6.00	19.84	25.84	56.00	-30.16	QP
2	*	0.6173	-2.00	19.84	17.84	46.00	-28.16	AVG
3		1.0824	3.99	19.95	23.94	56.00	-32.06	QP
4		1.0824	-6.23	19.95	13.72	46.00	-32.28	AVG
5		3.1900	0.08	20.37	20.45	56.00	-35.55	QP
6		3.1900	-6.75	20.37	13.62	46.00	-32.38	AVG
7		6.2189	2.36	20.14	22.50	60.00	-37.50	QP
8		6.2189	-8.55	20.14	11.59	50.00	-38.41	AVG
9		11.9328	3.67	19.88	23.55	60.00	-36.45	QP
10		11.9328	-8.02	19.88	11.86	50.00	-38.14	AVG
11		18.9205	6.39	19.97	26.36	60.00	-33.64	QP
12		18.9205	-8.23	19.97	11.74	50.00	-38.26	AVG

) ED

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Ν
Test Mode:	Mode 2(Adapter 2)	Test Voltage :	AC120V/60Hz

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor


|--|

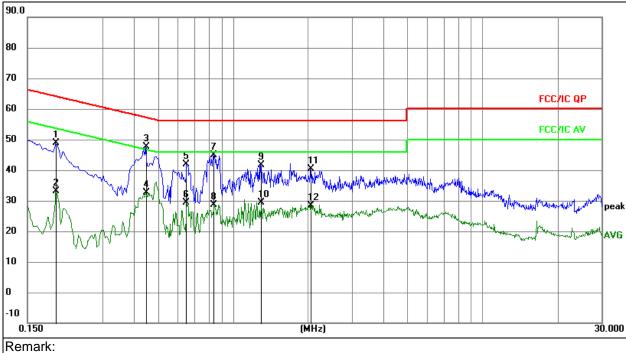
			Reading	Correct	Measure-			
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.5181	8.21	19.84	28.05	56.00	-27.95	QP
2		0.5181	-2.49	19.84	17.35	46.00	-28.65	AVG
3	*	2.1101	11.19	19.99	31.18	56.00	-24.82	QP
4		2.1101	-5.05	19.99	14.94	46.00	-31.06	AVG
5		4.1796	2.05	20.62	22.67	56.00	-33.33	QP
6		4.1796	-7.35	20.62	13.27	46.00	-32.73	AVG
7		7.3680	5.89	19.95	25.84	60.00	-34.16	QP
8		7.3680	-7.77	19.95	12.18	50.00	-37.82	AVG
9		11.1385	8.14	19.88	28.02	60.00	-31.98	QP
10		11.1385	-3.62	19.88	16.26	50.00	-33.74	AVG
11		17.6611	13.87	19.94	33.81	60.00	-26.19	QP
12		17.6611	-2.29	19.94	17.65	50.00	-32.35	AVG

Page: 18 of 88

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 1(Adapter 3)	Test Voltage :	AC120V/60Hz

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.


3.	Measurement =	Reading Level + Correct Factor

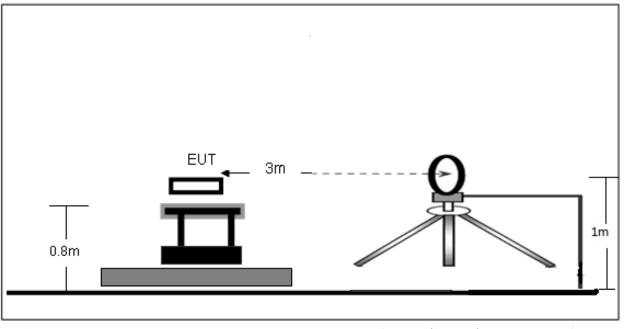
			0
4.	Over =	Measurement -	Limit

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1905	29.63	19.81	49.44	64.01	-14.57	QP
2	0.1905	14.57	19.81	34.38	54.01	-19.63	AVG
3	0.4470	26.46	19.84	46.30	56.93	-10.63	QP
4	0.4470	11.79	19.84	31.63	46.93	-15.30	AVG
5 *	0.8250	25.99	19.89	45.88	56.00	-10.12	QP
6	0.8250	9.72	19.89	29.61	46.00	-16.39	AVG
7	1.1849	23.58	19.95	43.53	56.00	-12.47	QP
8	1.1849	10.01	19.95	29.96	46.00	-16.04	AVG
9	2.0985	21.37	19.98	41.35	56.00	-14.65	QP
10	2.0985	9.69	19.98	29.67	46.00	-16.33	AVG
11	5.6085	17.73	20.28	38.01	60.00	-21.99	QP
12	5.6085	7.72	20.28	28.00	50.00	-22.00	AVG

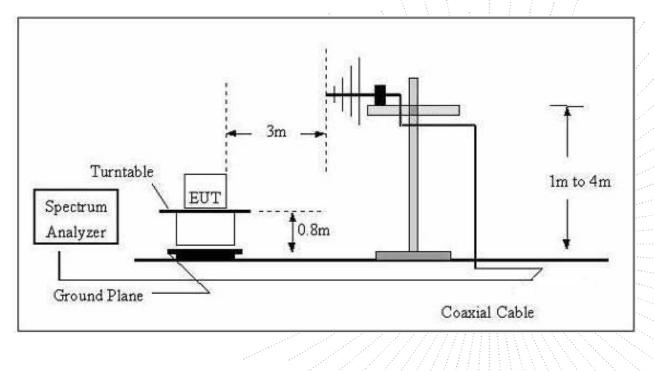
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Ν
Test Mode:	Mode 1(Adapter 3)	Test Voltage :	AC120V/60Hz

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit

	- modoui							1
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1945	29.00	19.82	48.82	63.84	-15.02	QP
2		0.1945	13.29	19.82	33.11	53.84	-20.73	AVG
3	*	0.4468	27.67	19.84	47.51	56.93	-9.42	QP
4		0.4468	12.67	19.84	32.51	46.93	-14.42	AVG
5		0.6508	21.98	19.84	41.82	56.00	-14.18	QP
6		0.6508	9.54	19.84	29.38	46.00	-16.62	AVG
7		0.8305	25.08	19.89	44.97	56.00	-11.03	QP
8		0.8305	8.79	19.89	28.68	46.00	-17.32	AVG
9		1.2892	21.65	19.95	41.60	56.00	-14.40	QP
10		1.2892	9.31	19.95	29.26	46.00	-16.74	AVG
11		2.0441	20.43	19.97	40.40	56.00	-15.60	QP
12		2.0441	8.43	19.97	28.40	46.00	-17.60	AVG


Edition: B

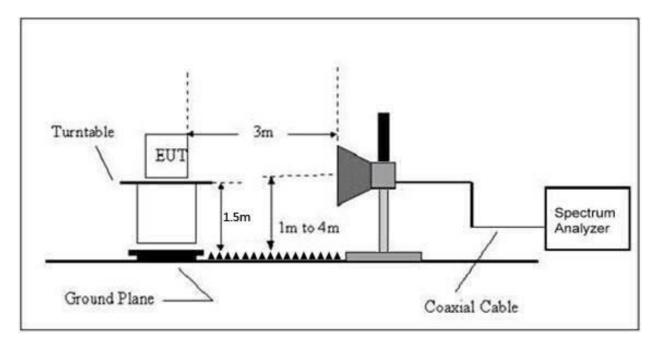



7. Radiated emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz

No.: BCTC/RF-EMC-005


,TC

<u> 3C</u>

^epoi

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Field Strength	Distance	Field Strength Limit at 3m Distance		
uV/m	(m)	uV/m	dBuV/m	
2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
30	30	100 * 30	20log ⁽³⁰⁾ + 40	
100	3	100	20log ⁽¹⁰⁰⁾	
150	3	150	20log ⁽¹⁵⁰⁾	
200	3	200	20log ⁽²⁰⁰⁾	
500	3	500	20log ⁽⁵⁰⁰⁾	
	uV/m 2400/F(kHz) 24000/F(kHz) 30 100 150 200	uV/m (m) 2400/F(kHz) 300 24000/F(kHz) 30 30 30 100 3 150 3 200 3	uV/m(m)uV/m2400/F(kHz)30010000 * 2400/F(kHz)24000/F(kHz)30100 * 24000/F(kHz)3030100 * 30100310015031502003200	

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (dBuV/m) (at 3M)	
Frequency (MHz)	Peak	Average
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

TE. TC

OV

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting				
Attenuation	Auto				
9kHz~150kHz	RBW 200Hz for QP				
150kHz~30MHz	RBW 9kHz for QP				
30MHz~1000MHz	RBW 120kHz for QP				

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

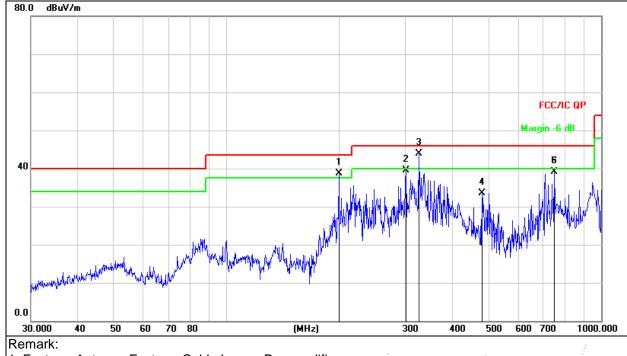
Belov	v 30IV	IHZ

Temperature:	26 ℃	·.	Relative Humidity:	54%
Pressure:	101KPa		Test Voltage :	DC 11.4V/DC 11.55V
Test Mode:	Mode 6		Polarization :	
				aahh <i>i / / / / / / / / / /</i> /

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
		<u> </u>		PASS
		<u></u>		PASS
NI. (.				

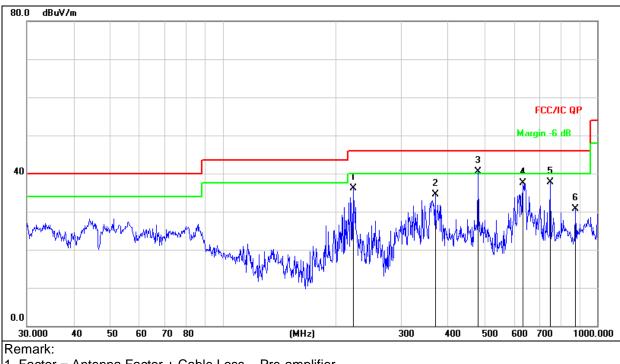
Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

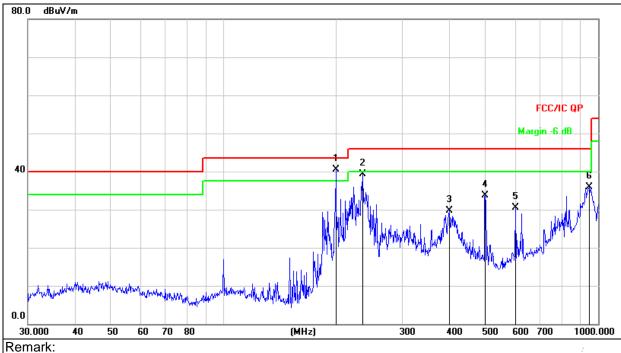
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 5	Test Voltage :	DC 11.4V(battery 1)



Factor = Antenna Factor + Cable Loss – Pre-amplifier. Measurement = Reading Level + Correct Factor Over = Measurement - Limit

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	İ	199.2855	54.49	-15.77	38.72	43.50	-4.78	QP
2		301.4224	52.69	-13.19	39.50	46.00	-6.50	QP
3	*	325.5958	56.17	-12.34	43.83	46.00	-2.17	QP
4		480.5276	42.57	-9.10	33.47	46.00	-12.53	QP
5		750.1083	44.04	-4.99	39.05	46.00	-6.95	QP
6		750.1083	44.04	-4.99	39.05	46.00	-6.95	QP

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 5	Test Voltage :	DC 11.4V(battery 1)


1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit

	•		: Factor				
Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
222	2.9502	51.12	-15.06	36.06	46.00	-9.94	QP
369	9.4047	45.75	-11.23	34.52	46.00	-11.48	QP
* 480	0.5276	49.67	-9.10	40.57	46.00	-5.43	QP
633	3.9073	43.91	-6.44	37.47	46.00	-8.53	QP
750	0.1083	42.69	-4.99	37.70	46.00	-8.30	QP
87	5.2470	34.27	-3.55	30.72	46.00	-15.28	QP
	Mk. 222 369 * 480 633	<u>Mk.</u> Freq. Mk. Freq. MHz 222.9502 369.4047	Measurement - Limit Mk. Freq. Reading Level MHz dBuV 222.9502 51.12 369.4047 45.75 * 480.5276 49.67 633.9073 43.91 750.1083 42.69	Mk. Freq. Reading Level Correct Factor MHz dBuV dB 222.9502 51.12 -15.06 369.4047 45.75 -11.23 * 480.5276 49.67 -9.10 633.9073 43.91 -6.44 750.1083 42.69 -4.99	Measurement - Limit Reading Level Correct Factor Measure- ment Mk. Freq. dBuV dB dBuV/m 222.9502 51.12 -15.06 36.06 369.4047 45.75 -11.23 34.52 * 480.5276 49.67 -9.10 40.57 633.9073 43.91 -6.44 37.47 750.1083 42.69 -4.99 37.70	Measurement - Limit Reading Level Correct Factor Measure- ment Limit Mk. Freq. dBuV dB dBuV/m dB/m MHz dBuV dB dBuV/m dB/m 222.9502 51.12 -15.06 36.06 46.00 369.4047 45.75 -11.23 34.52 46.00 * 480.5276 49.67 -9.10 40.57 46.00 633.9073 43.91 -6.44 37.47 46.00 750.1083 42.69 -4.99 37.70 46.00	Measurement - Limit Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV/m dB/m dB 222.9502 51.12 -15.06 36.06 46.00 -9.94 369.4047 45.75 -11.23 34.52 46.00 -11.48 * 480.5276 49.67 -9.10 40.57 46.00 -5.43 633.9073 43.91 -6.44 37.47 46.00 -8.53 750.1083 42.69 -4.99 37.70 46.00 -8.30

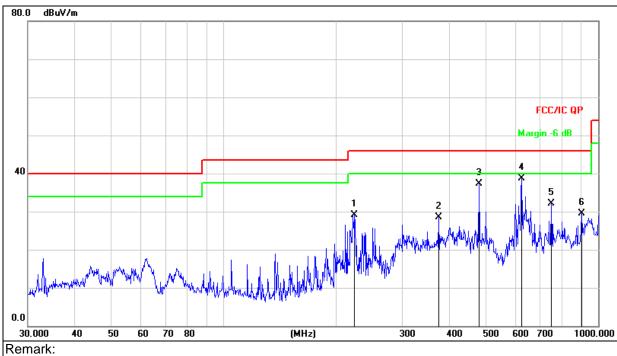
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 6	Test Voltage :	DC 11.4V(battery 2)

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Measurement = Reading Level + Correct Factor

3. Over = Measurement - Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	* ,	199.2855	56.25	-15.77	40.48	43.50	-3.02	QP
2	2	234.9909	53.93	-14.72	39.21	46.00	-6.79	QP
3	4	400.4319	40.63	-10.83	29.80	46.00	-16.20	QP
4	4	499.4247	42.36	-8.62	33.74	46.00	-12.26	QP
5	(601.4265	37.51	-7.00	30.51	46.00	-15.49	QP
6	Ç	948.7610	38.87	-2.94	35.93	46.00	-10.07	QP


Page: 27 of 88

JC JC JC

Pol

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 6	Test Voltage :	DC 11.4V(battery 2)

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Measurement = Reading Level + Correct Factor

3. Over = Measurement - Limit

			Reading	Correct	Measure-			
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	22	22.9502	44.12	-15.06	29.06	46.00	-16.94	QP
2	3	74.6225	39.66	-11.16	28.50	46.00	-17.50	QP
3	48	30.5276	46.49	-9.10	37.39	46.00	-8.61	QP
4	* 62	25.0780	45.26	-6.59	38.67	46.00	-7.33	QP
5	7	50.1083	37.16	-4.99	32.17	46.00	-13.83	QP
6	90	03.3094	32.60	-3.11	29.49	46.00	-16.51	QP

t sea

Between 1GHz – 25GHz

Battery 1

Polar	Fre- quency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			GFSK Lo	w channel			
V	4804.00	75.39	-19.99	55.40	74.00	-18.60	PK
V	4804.00	65.71	-19.99	45.72	54.00	-8.28	AV
V	7206.00	66.55	-14.22	52.33	74.00	-21.67	PK
V	7206.00	56.79	-14.22	42.57	54.00	-11.43	AV
Н	4804.00	71.76	-19.99	51.77	74.00	-22.23	PK
Н	4804.00	62.16	-19.99	42.17	54.00	-11.83	AV
Н	7206.00	64.23	-14.22	50.01	74.00	-23.99	PK
Н	7206.00	56.54	-14.22	42.32	54.00	-11.68	AV
			GFSK Mide	dle channel			
V	4882.00	71.75	-19.84	51.91	74.00	-22.09	PK
V	4882.00	64.99	-19.84	45.15	54.00	-8.85	AV
V	7323.00	60.76	-13.90	46.86	74.00	-27.14	PK
V	7323.00	52.46	-13.90	38.56	54.00	-15.44	AV
Н	4882.00	68.51	-19.84	48.67	74.00	-25.33	PK
Н	4882.00	58.27	-19.84	38.43	54.00	-15.57	AV
Н	7323.00	59.63	-13.90	45.73	74.00	-28.27	PK
Н	7323.00	51.77	-13.90	37.87	54.00	-16.13	AV
			GFSK Hig	h channel			/
V	4960.00	73.46	-19.68	53.78	74.00	-20.22	PK
V	4960.00	63.49	-19.68	43.81	54.00	-10.19	AV
V	7440.00	66.08	-13.57	52.51	74.00	-21.49	PK
V	7440.00	55.76	-13.57	42.19	54.00	-11.81	AV
Н	4960.00	71.24	-19.68	51.56	74.00	-22.44	PK
Н	4960.00	62.22	-19.68	42.54	54.00	-11.46	AV
Н	7440.00	64.63	-13.57	51.06	74.00	-22.94	PK
Н	7440.00	56.59	-13.57	43.02	54.00	-10.98	AV

Remark:

1.Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier,

Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5.All the Modulation are test, the worst mode is GFSK, the data recording in the report.

Battery 2

Polar	Fre- quency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			GFSK Lo	w channel			·
V	4804.00	74.95	-19.99	54.96	74.00	-19.04	PK
V	4804.00	65.56	-19.99	45.57	54.00	-8.43	AV
V	7206.00	67.81	-14.22	53.59	74.00	-20.41	PK
V	7206.00	58.24	-14.22	44.02	54.00	-9.98	AV
Н	4804.00	70.36	-19.99	50.37	74.00	-23.63	PK
Н	4804.00	60.27	-19.99	40.28	54.00	-13.72	AV
Н	7206.00	65.56	-14.22	51.34	74.00	-22.66	PK
Н	7206.00	58.07	-14.22	43.85	54.00	-10.15	AV
			GFSK Mid	dle channel			
V	4882.00	73.61	-19.84	53.77	74.00	-20.23	PK
V	4882.00	64.74	-19.84	44.90	54.00	-9.10	AV
V	7323.00	66.31	-13.90	52.41	74.00	-21.59	PK
V	7323.00	56.83	-13.90	42.93	54.00	-11.07	AV
Н	4882.00	68.90	-19.84	49.06	74.00	-24.94	PK
Н	4882.00	58.20	-19.84	38.36	54.00	-15.64	AV
Н	7323.00	63.83	-13.90	49.93	74.00	-24.07	PK
Н	7323.00	56.09	-13.90	42.19	54.00	-11.81	AV
	-		GFSK Hig	h channel			
V	4960.00	76.29	-19.68	56.61	74.00	-17.39	PK
V	4960.00	67.35	-19.68	47.67	54.00	-6.33	AV
V	7440.00	69.91	-13.57	56.34	74.00	-17.66	PK
V	7440.00	60.03	-13.57	46.46	54.00	-7.54	AV
Н	4960.00	74.57	-19.68	54.89	74.00	-19.11	PK
Н	4960.00	65.40	-19.68	45.72	54.00	-8.28	AV
Н	7440.00	67.37	-13.57	53.80	74.00	-20.20	PK
Н	7440.00	58.88	-13.57	45.31	54.00	-8.69	AV

Remark:

1.Measurement = Reading Level + Correct Factor,

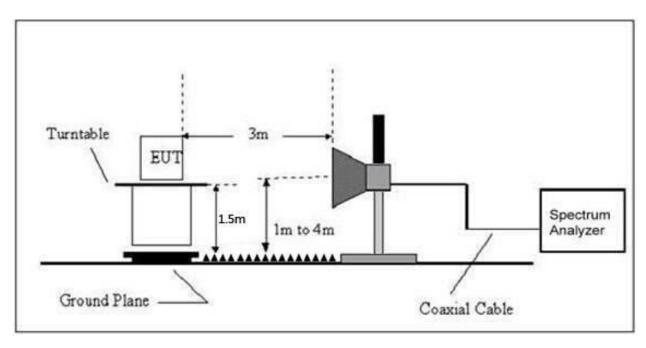
Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier,

Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


5.All the Modulation are test, the worst mode is GFSK, the data recording in the report.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (dBu\	//m) (at 3M)
Frequency (MHz)	Peak	Average
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (Emission In Restricted Band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

E

8.5 Test Result

Battery 1

Test mode	Polar (H/V)	Frequency (MHz)	Reading Level	Correct Factor	Measure- ment (dBuV/m)		nits ıV/m)	Result
	()	()	(dBuV/m)	(dB)	PK	PK	AV	
		1	Lc	w Channel	2402MHz		•	
	Н	2390.00	72.78	-25.43	47.35	74.00	54.00	PASS
	Н	2400.00	76.96	-25.40	51.56	74.00	54.00	PASS
	V	2390.00	72.38	-25.43	46.95	74.00	54.00	PASS
GFSK	V	2400.00	76.17	-25.40	50.77	74.00	54.00	PASS
GFSK			Hig	gh Channel	2480MHz			
	Н	2483.50	76.07	-25.15	50.92	74.00	54.00	PASS
	Н	2500.00	69.97	-25.10	44.87	74.00	54.00	PASS
	V	2483.50	75.22	-25.15	50.07	74.00	54.00	PASS
	V	2500.00	71.17	-25.10	46.07	74.00	54.00	PASS
			Lc	w Channel	2402MHz			
	Н	2390.00	72.76	-25.43	47.33	74.00	54.00	PASS
	Н	2400.00	76.11	-25.40	50.71	74.00	54.00	PASS
	V	2390.00	73.22	-25.43	47.79	74.00	54.00	PASS
π/4DQPSK	V	2400.00	77.39	-25.40	51.99	74.00	54.00	PASS
			Hig	gh Channel	2480MHz			
	Н	2483.50	74.80	-25.15	49.65	74.00	54.00	PASS
	Н	2500.00	72.14	-25.10	47.04	74.00	54.00	PASS
	V	2483.50	76.22	-25.15	51.07	74.00	54.00	PASS
	V	2500.00	71.98	-25.10	46.88	74.00	54.00	PASS
			Lc	w Channel	2402MHz			
	Н	2390.00	72.21	-25.43	46.78	74.00	54.00	PASS
	Н	2400.00	76.72	-25.40	51.32	74.00	54.00	PASS
	V	2390.00	73.07	-25.43	47.64	74.00	54.00	PASS
8DPSK	V	2400.00	76.44	-25.40	51.04	74.00	54.00	PASS
OUPSK			Hig	gh Channel	2480MHz			
	Н	2483.50	76.19	-25.15	51.04	74.00	54.00	PASS
	Н	2500.00	71.12	-25.10	46.02	74.00	54.00	PASS
	V	2483.50	76.90	-25.15	51.75	74.00	54.00	PASS
	V	2500.00	74.07	-25.10	48.97	74.00	54.00	PASS
Remark:								

1.Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier,

Over= Measurement - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

,TC 3C PR

Batterv 2

Report No.: BCTC2404619065-1E

Test mode	Polar (H/V)	Frequency (MHz)	Reading Level	Correct Factor	Measure- ment (dBuV/m)		nits IV/m)	Result
	()	()	(dBuV/m)	(dB)	PK	PK	AV	
			Lo	w Channel	2402MHz		•	
	Н	2390.00	72.13	-25.43	46.70	74.00	54.00	PASS
	Н	2400.00	76.40	-25.40	51.00	74.00	54.00	PASS
	V	2390.00	72.95	-25.43	47.52	74.00	54.00	PASS
GFSK	V	2400.00	77.80	-25.40	52.40	74.00	54.00	PASS
GFSK			Hig	gh Channel	2480MHz			
	Н	2483.50	74.90	-25.15	49.75	74.00	54.00	PASS
	Н	2500.00	70.48	-25.10	45.38	74.00	54.00	PASS
	V	2483.50	75.43	-25.15	50.28	74.00	54.00	PASS
	V	2500.00	70.49	-25.10	45.39	74.00	54.00	PASS
			Lo	w Channel	2402MHz			
	Н	2390.00	71.50	-25.43	46.07	74.00	54.00	PASS
	Н	2400.00	75.71	-25.40	50.31	74.00	54.00	PASS
	V	2390.00	70.56	-25.43	45.13	74.00	54.00	PASS
π/4DQPSK	V	2400.00	74.77	-25.40	49.37	74.00	54.00	PASS
II/4DQF3N			Hig	gh Channel	2480MHz			
	Н	2483.50	74.37	-25.15	49.22	74.00	54.00	PASS
	Н	2500.00	68.76	-25.10	43.66	74.00	54.00	PASS
	V	2483.50	74.93	-25.15	49.78	74.00	54.00	PASS
	V	2500.00	71.64	-25.10	46.54	74.00	54.00	PASS
			Lo	w Channel	2402MHz		9 	
	Н	2390.00	72.67	-25.43	47.24	74.00	54.00	PASS
	Н	2400.00	76.79	-25.40	51.39	74.00	54.00	PASS
	V	2390.00	73.15	-25.43	47.72	74.00	54.00	PASS
8DPSK	V	2400.00	76.21	-25.40	50.81	74.00	54.00	PASS
ODPSK			Hig	gh Channel	2480MHz			
	Н	2483.50	76.68	-25.15	51.53	74.00	54.00	PASS
	Н	2500.00	71.89	-25.10	46.79	74.00	54.00	PASS
	V	2483.50	77.37	-25.15	52.22	74.00	54.00	PASS
	V	2500.00	72.79	-25.10	47.69	74.00	54.00	PASS

Remark:

1.Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier,

Over= Measurement - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

TE,

T(

OV

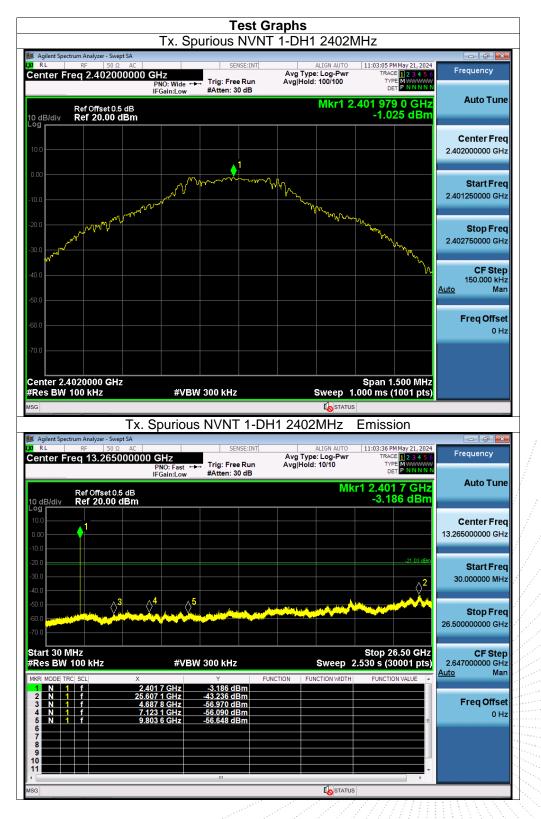
9. Spurious RF Conducted Emissions

9.1 Block Diagram Of Test Setup

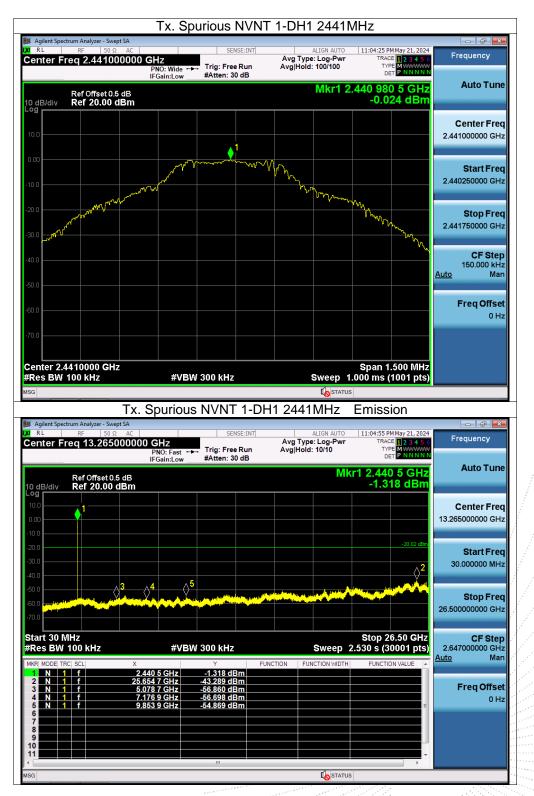
9.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

9.3 Test procedure

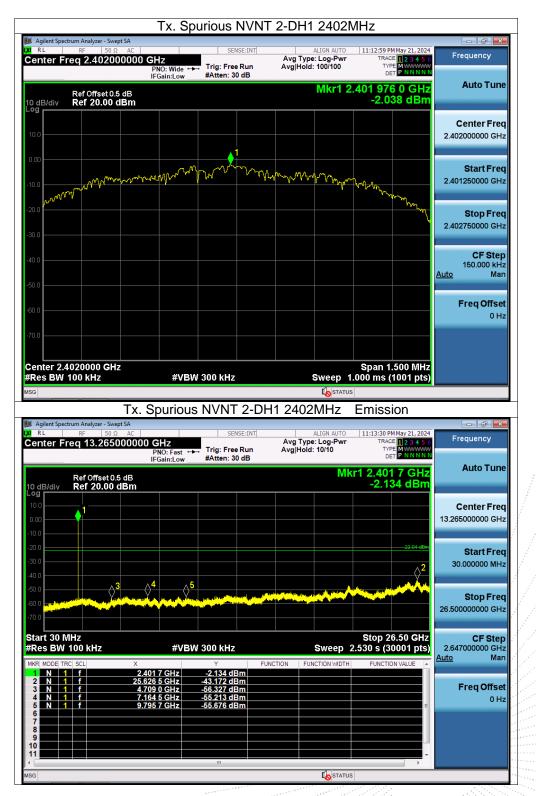

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

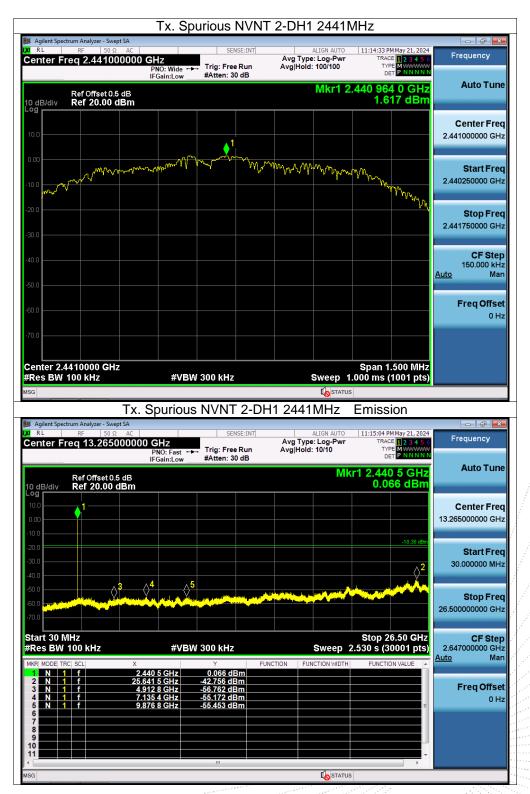
2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

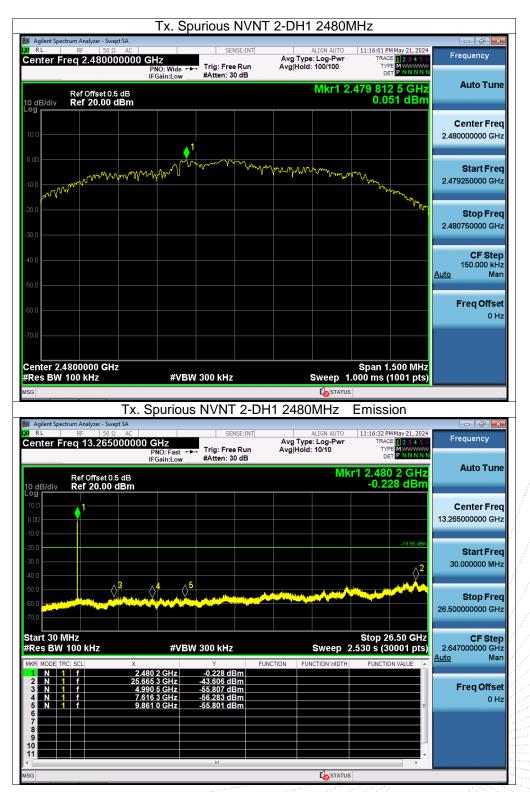

Page: 35 of 88

9.4 Test Result



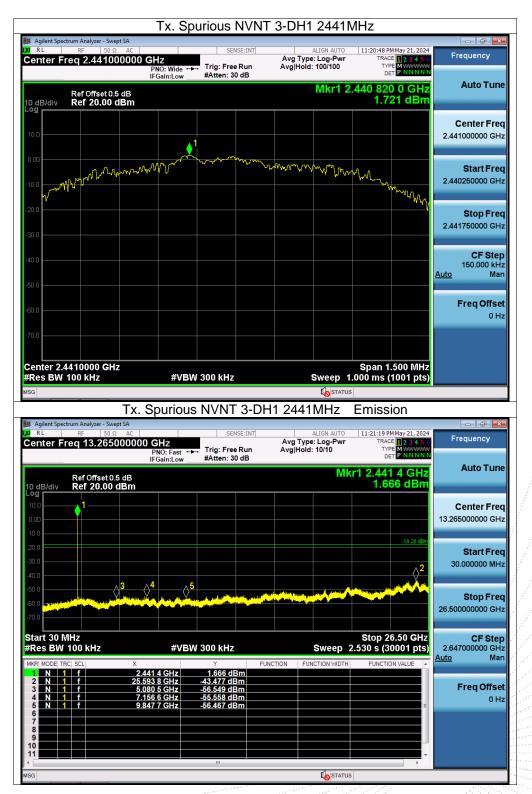


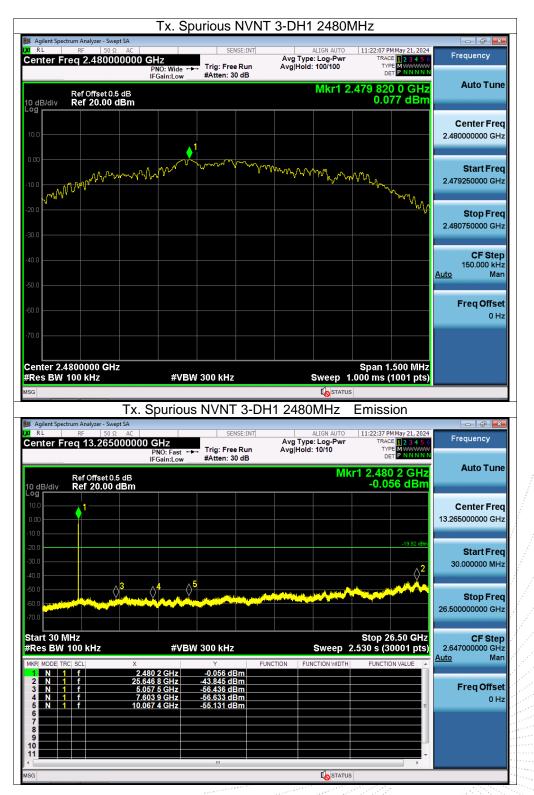

SHEINEN



E







A silent Case A	<u> </u>	e NVNT 1-DH1	2402MHZ No	o-Hopping	
Agilent Spectrum Analyz R L RF	50 Ω AC	SENSE:INT	ALIGN AUTO	11:02:57 PM May 21, 2024	Frequency
enter Freq 2.4	02000000 GHz PNO: Wid	e 🛶 Trig: Free Run	Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N	rrequency
	IFGain:Lo	w #Atten: 30 dB			Auto Tur
Ref Off dB/div Ref 2	fset 0.5 dB 0.00 dBm		IVIKI''	2.401 984 GHz -0.993 dBm	
dB/div Ref 20					
1.0					2.402000000 GH
		1			2.402000000 01
		- An			Start Fre
					2.398000000 GH
.0					Stop Fre
0.0					2.406000000 GH
			N		
.0		N			CF Ste 800.000 ki
.0					<u>Auto</u> Ma
	In A who		W m to my		Error Off
10 Arman and a	man		W/	Wymyny White	Freq Offs
.0					
enter 2.402000	CH7			Span 8.000 MHz	
les BW 100 kH		/BW 300 kHz		epan o ooo minz	
		BW JOO KHZ	Sweep 1.	.000 ms (1001 pts)	
à		BW JOO KHZ	Sweep 1.		
		NT 1-DH1 2402			
Agilent Spectrum Analyz	and Edge NV			pping Emissic	- ē
Agilent Spectrum Analyz R L RF	Band Edge NV	NT 1-DH1 2402	MHz No-Hop	pping Emissic 11:03:00 PM May 21, 2024 TRACE 234 5 6 TYPE	
Agilent Spectrum Analyz R L RF	Sand Edge NV	NT 1-DH1 2402	Avg Type: Log-Pwr Avglioid: 100/100	Deter Physics Determine the second s	Frequency
Agilent Spectrum Analyz RL RF enter Freq 2.3 Ref Off	Band Edge NV ser - Swept SA 50 Ω AC S56000000 GHz PNO: Fas IFGain:Lo fset 0.5 dB	NT 1-DH1 2402	Avg Type: Log-Pwr Avglioid: 100/100	pping Emissic 11:03:00 PMMay 21, 2024 TRACE 12 24 5 6 TRACE 12 5 7 TRACE 12 5 7 TR	Frequency
Agilent Spectrum Analyz RL RF enter Freq 2.3 Ref Off dB/div Ref 2	Band Edge NV ser - Swept SA 50 Ω AC 55 G000000 GHz PNO: Fas IFGain:Lo	NT 1-DH1 2402	Avg Type: Log-Pwr Avglioid: 100/100	Determing Emission	Frequency Auto Tur
Agilent Spectrum Analyza RL RF enter Freq 2.3 Ref Off dB/div Ref 2	Band Edge NV ser - Swept SA 50 Ω AC S56000000 GHz PNO: Fas IFGain:Lo fset 0.5 dB	NT 1-DH1 2402	Avg Type: Log-Pwr Avglioid: 100/100	pping Emissic 11:03:00 PMMay 21, 2024 TRACE 12 24 5 6 TRACE 12 5 7 TRACE 12 5 7 TR	Frequency Auto Tur Center Fre
Agilent Spectrum Analyz RL RF enter Freq 2.3 Ref Off dB/div Ref 2	Band Edge NV ser - Swept SA 50 Ω AC S56000000 GHz PNO: Fas IFGain:Lo fset 0.5 dB	NT 1-DH1 2402	Avg Type: Log-Pwr Avglioid: 100/100	pping Emissic 11:03:00 PMMay 21, 2024 TRACE 12 24 5 6 TRACE 12 5 7 TRACE 12 5 7 TR	Frequency Auto Tur Center Fre
Agilent Spectrum Analyz RL RF enter Freq 2.3 Ref Off dB/div Ref 2	Band Edge NV ser - Swept SA 50 Ω AC S56000000 GHz PNO: Fas IFGain:Lo fset 0.5 dB	NT 1-DH1 2402	Avg Type: Log-Pwr Avglioid: 100/100	pping Emissic 11:03:00 PMMay 21, 2024 TRACE 12 24 5 6 TRACE 12 5 7 TRACE 12 5 7 TR	Frequency Auto Tur Center Fre 2.35600000 GH
Agilent Spectrum Analyz RL RF enter Freq 2.3 Ref Off dB/div Ref 2 0 0 0 0 0 0 0 0	Band Edge NV ser - Swept SA 50 Ω AC S56000000 GHz PNO: Fas IFGain:Lo fset 0.5 dB	NT 1-DH1 2402	Avg Type: Log-Pwr Avglioid: 100/100	pping Emissic 11:03:00 PMMay 21, 2024 TRACE 12 24 5 6 TRACE 12 5 7 TRACE 12 5 7 TR	Frequency Auto Tur Center Fre 2.35600000 GH Start Fre
Agilent Spectrum Analyze RL RF enter Freq 2.3 Ref Off dB/div Ref 2: 9 0 0 0 0 0 0 0 0 0	Band Edge NV ser - Swept SA 50 Ω AC S56000000 GHz PNO: Fas IFGain:Lo fset 0.5 dB	NT 1-DH1 2402	Avg Type: Log-Pwr Avglioid: 100/100	pping Emissic 11:03:00 PMMay 21, 2024 TRACE 12 24 5 6 TRACE 12 5 7 TRACE 12 5 7 TR	Frequency Auto Tur Center Fre 2.35600000 GH Start Fre
Agilent Spectrum Analyz RL RF enter Freq 2.3 Ref Off dB/div Ref 2/ 00 00 00 00 00 00 00 00 00 00 00 00 00	Band Edge NVI ar - Swept SA 50 Ω AC B 50 Ω AC PNO: Fas IFGain:Lo fset 0.5 dB 0.00 dBm	NT 1-DH1 2402	Arg Type: Log-Pwr Avg Type: Log-Pwr Avg Hold: 100/100	Deping Emissic 11:03:00 PMMay 21, 2024 TRACE 12 2 4 5 6 TYPE WINNIN r1 2.402 0 GHz -1.125 dBm	Frequency Auto Tur Center Fre
Agilent Spectrum Analyze Agilent Spectrum Analyze enter Freq 2.3 Ref Off dB/div Ref 2: 0 0 0 0 0 0 0 0 0 0 0 0 0	Band Edge NVI ar - Swept SA 50 Ω AC B 50 Ω AC PNO: Fas IFGain:Lo fset 0.5 dB 0.00 dBm	NT 1-DH1 2402	Arg Type: Log-Pwr Avg Type: Log-Pwr Avg Hold: 100/100	pping Emissic 11:03:00 PMMay 21, 2024 TRACE 12 24 5 6 TRACE 12 5 7 TRACE 12 5 7 TR	Frequency Auto Tur Center Fre 2.356000000 GH Start Fre 2.306000000 GH
Agilent Spectrum Analysis RL RF enter Freq 2.3 Ref Off dB/div Ref 2/ 00 00 00 00 00 00 00 00 00 0	Band Edge NV	NT 1-DH1 2402	Aug Type: Log-Pwr Avg Type: Log-Pwr Avg Hold: 100/100 MK	Deping Emissic	Frequency Auto Tur Center Fre 2.356000000 Gi Start Fre 2.306000000 Gi Stop Fre 2.406000000 Gi
Agilent Spectrum Analyz RL RF enter Freq 2.3 Ref Off dB/div Ref 2/ 0 0 0 0 0 0 0 0 0 0 0 0 0	Band Edge NV	NT 1-DH1 2402 SENSE:INT t → Trig: Free Run #Atten: 30 dB	Arg Type: Log-Pwr Avg Type: Log-Pwr Avg Hold: 100/100 MK	pping Emissic	Frequency Auto Tur Center Fre 2.356000000 Gl Start Fre 2.306000000 Gl Stop Fre 2.406000000 Gl
Agilent Spectrum Analyz RL RF enter Freq 2.3 Ref Off dB/div Ref 2: 0 0 0 0 0 0 0 0 0 0 0 0 0	Band Edge NV	NT 1-DH1 2402	Arg Type: Log-Pwr Avg Type: Log-Pwr Avg Hold: 100/100 MK	Deping Emissic	Frequency Auto Tur Center Fre 2.356000000 Gl Start Fre 2.306000000 Gl Stop Fre 2.406000000 Gl CF Ste 10.000000 MI
Agilent Spectrum Analyz RL RF enter Freq 2.3 Ref Off dB/div Ref 2: 9 0 0 0 0 0 0 0 0 0 0 0 0 0	Band Edge NVI ar - Swept SA 50 Ω AC 356000000 GHz PNO: Fas IFGain:Lo fset 0.5 dB 0.00 dBm 4 4 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	NT 1-DH1 2402	Aug Type: Log-Pwr Avg Type: Log-Pwr Avg Hold: 100/100 MK	pping Emissic 11:03:00 PMMay 21, 2024 TRACE 12 24 5 6 TYPE WINNIN r1 2.4002 0 GHz -1.125 dBm -1.125 dBm -1.	Frequency Auto Tur Center Fre 2.356000000 GH Start Fre 2.306000000 GH Stop Fre 2.406000000 GH CF Ste 10.000000 MH Auto Auto Tur
Ref Off dB/div Ref Off dB/div<	Band Edge NVI 2er - Swept SA 50 Ω AC 356000000 GHz PNO: Fas IFGain:Lo fset 0.5 dB 0.00 dBm 12 12 12 2.402 0 GHz 2.400 0 GHz 2.400 0 GHz 2.400 0 GHz	NT 1-DH1 2402	Aug Type: Log-Pwr Avg Type: Log-Pwr Avg Hold: 100/100 MK	pping Emissic 11:03:00 PMMay 21, 2024 TRACE 12 24 5 6 TYPE WINNIN r1 2.4002 0 GHz -1.125 dBm -1.125 dBm -1.	Frequency Auto Tur Center Fre 2.356000000 Gi Start Fre 2.306000000 Gi Stop Fre 2.406000000 Gi CF Ste 10.000000 Mi Auto Auto Freq Offs
Agilent Spectrum Analyz Ref Off dB/div Ref 2: Ref Off dB/div Ref 2: 00 00 00 00 00 00 00 00 00 0	Band Edge NVI 2er - Swept SA 50 Ω AC 356000000 GHz PNO: Fas IFGain:Lo fset 0.5 dB 0.00 dBm 444-No. 4404, 444 A 12 12 2 # X 2.402 0 GHz 2.400 0 GHz	NT 1-DH1 2402	Aug Type: Log-Pwr Avg Type: Log-Pwr Avg Hold: 100/100 MK	pping Emissic 11:03:00 PMMay 21, 2024 TRACE 12 24 5 6 TYPE WINNIN r1 2.4002 0 GHz -1.125 dBm -1.125 dBm -1.	Frequency Auto Tur Center Fre 2.356000000 GH Start Fre 2.306000000 GH Stop Fre 2.406000000 GH CF Ste 10.000000 MH Auto Auto Freq Offs
Agilent Spectrum Analyz RL RF enter Freq 2.3 Ref Off dB/div Ref 2: 9 9 9 9 9 9 9 9 9 9 9 9 9	Band Edge NVI 2er - Swept SA 50 Ω AC 356000000 GHz PNO: Fas IFGain:Lo fset 0.5 dB 0.00 dBm 12 12 12 2.402 0 GHz 2.400 0 GHz 2.400 0 GHz 2.400 0 GHz	NT 1-DH1 2402	Aug Type: Log-Pwr Avg Type: Log-Pwr Avg Hold: 100/100 MK	Deping Emissic 11:03:00 PMMay 21, 2024 TRACE 12 24 5 6 Type WWWWW PET WWWWWW 12:4402 0 GHz -1.125 dBm -20 4 den 50 p 2.40600 GHz 50 p 2.40600 GHz 600 ms (1001 pts)	Frequency Auto Tur Center Fre 2.356000000 Gi Start Fre 2.306000000 Gi Stop Fre 2.406000000 Gi CF Ste 10.000000 Mi Auto Auto Freq Offs
Agilent Spectrum Analyze RL RF enter Freq 2.3 Ref Off dB/div Ref 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0	Band Edge NVI 2er - Swept SA 50 Ω AC 356000000 GHz PNO: Fas IFGain:Lo fset 0.5 dB 0.00 dBm 12 12 12 2.402 0 GHz 2.400 0 GHz 2.400 0 GHz 2.400 0 GHz	NT 1-DH1 2402	Aug Type: Log-Pwr Avg Type: Log-Pwr Avg Hold: 100/100 MK	Deping Emissic 11:03:00 PMMay 21, 2024 TRACE 12 24 5 6 Type WWWWW PET WWWWWW 12:4402 0 GHz -1.125 dBm -20 4 den 50 p 2.40600 GHz 50 p 2.40600 GHz 600 ms (1001 pts)	Frequency Auto Tur Center Fre 2.356000000 GH Start Fre 2.306000000 GH Stop Fre 2.406000000 GH CF Ste 10.000000 MH