

TEST REPORT

Radiofrequency

Petitioner's Reference: Verisure Sàrl

Company Address: Chemin Jean-Baptiste Vandelle 3, Versoix, Geneva, Switzerland

Represented by: James Barnett

PMN: Wi-Fi Extender

Brand: Verisure HMN: GWL-WXTND 489937

Sample #2: 3N75 UKDZ Applus Id: 25556-0002

Result: complies

It has been tested and complies with the applicable standard. See test result summary section.

Applicable Standard:

FCC 47 CFR Part 15 Subpart C ¹
EMC standard/s: FCC 47 CFR Part 15 Subpart E ¹

ANSI C63.10 (2013)

v1The latest modifications of the standard, published at the date of the tests reported in this document, have been considered.

Dates and Test Site: Applus Barcelona, Bellaterra

Equipment Reception Date December 12, 2023

Test Initial Date: February 9, 2024

Test Final Date: February 26, 2024

Modification Description: M1

This report replaces and supersedes the report 24/36403479 dated on October 2, 2024.

Modifications performed: File number from section 3.3 is updated. Page 8.

Modifications performed: Version of ANSI C63.10:2013 is specified in applicable standard. Page 1.

It is responsibility of the petitioner to replace the previous version with this one.

Test Manager: Javier Miguel Nadales Lisbona **Date of issue:** Bellaterra, October 20, 2024

EMC & Wireless Technical Manager Electrical and Electronics LGAI Technological Center S.A.

The results refer only and exclusively to the sample, product or material delivered for testing, and tested under conditions stipulated in this document. The equipment has been tested under conditions stipulated by standard(s) quoted in this document. This document will not be reproduced otherwise than in full.

This is the first page of the document, which consists of 37 pages.

Page Number 2/37

TEST RESULTS SUMMARY

Test Description	Sample #	DUT Test Modes	Results	Criteria Note
ANTENNA REQUIEREMENTS FCC Part 15.203	#1	Mode 1	PASS	CN4
RADIOFREQUENCY RADIATED EMISSIONS FCC Part 15,247 (d)	#1	Mode 1	PASS	CN4

Table 1: Test description

The test results are shown in detail on the following pages.

The criteria to give conformity in those cases where it is not implicit in the standard or specification will be, for EMC emissions tests, a non-simple binary decision rule will be followed with a safety zone equal to the value of the uncertainty (w = U).

In this case, the upper limit of the value of the probability of false acceptance, according to ILAC G8, is 2.5 % and the criteria notes are:

CN1: The measured results are above the upper limit, even considering the uncertainty interval.

CN2: The measured results are above the specified limits, but within the uncertainty interval. It is therefore not possible to state compliance based on the 95% level of confidence. However, the results indicate that non-compliance is more probable than compliance.

CN3: The measured results are below the specified limits, but within the uncertainty interval. It is therefore not possible to state compliance based on the 95% level of

confidence. However, the results indicate that compliance is more probable than non-compliance. CN4: The measured results are within the limits, including the uncertainty interval.

Service Quality Assurance

Applus+, guarantees that this work has been made in accordance with our Quality and Sustainability System, fulfilling the contractual conditions and legal norms.

Within our improvement program we would be grateful if you would send us any commentary that you consider opportune, to the person in charge who signs this document, or to the Quality Manager of Applus+, in the following e-mail address: satisfaccion.cliente@applus.com

Page Number 3/37

2 INDEX

1	TEST RESULTS SUMMARY	2
2	INDEX	3
3	GENERAL DESCRIPTION OF TEST ITEMS	4
	3.1 EQUIPMENT DESCRIPTION	4
	3.2 TEST CONFIGURATION	
	3.3 PHOTOGRAPHS	
	3.4 TEST FACILITIES ID	8
	3.5 COMPETENCES AND GUARANTEES	8
4	TEST RESULTS	9
	4.1 ANTENNA REQUIREMENT	9
	4.1.1 Requirements	
	4.1.2 Summary Test Results	g
	4.2 RADIO-FREQUENCY RADIATED EMISSIONS	10
	4.2.1 Test Setup Required	
	4.2.2 Requirements	
	4.2.3 Test Environmental Conditions	
	4.2.4 Summary Test Results	
	4.2.5 Test Results	14
	4.2.6 Test Equipment Used	36
	4.2.7 Uncertainty	

Page Number 4/37

3 GENERAL DESCRIPTION OF TEST ITEMS

3.1 EQUIPMENT DESCRIPTION

This information has been provided by the customer and it is not covered by the accreditation. LGAI does not assume any responsibility from it.

EQUIPMENT DESCRIPTION				
Description	Wi-Fi Extender which can also be controlled and monitored over our proprietary radio protocol over Sub-GHz ISM (SRD).			
EUT Version	FVIN		HVIN	
	1.0.6		A1	
Power supply	1 PH + N	12	0 V	60 Hz
Equipment Size	Length	Width		Height
	17.5 cm	10.5	5 cm	2 cm

Table 2: Equipment description

Technology #1	ISM
Modulation	GFSK
Operating Frequency Band	902 – 928 MHz
Maximum RF Output Power [dBm]	14
Operating Channel(s) Width(s) [MHz]	1
Equipment Type	DTS
Number of Hopping Channels	N/A
Emission Designator	
FCC ID	2A93W-GWL-WXTND

Table 3: Technology #1 description

Page Number 5/37

Technology #2	WiFi2G4
Modulation	B, G & N20
Operating Frequency Band	2400 MHz – 2483.5 MHz
Maximum RF Output Power [dBm]	30
Operating Channel(s) Width(s) [MHz]	20
Equipment Type	DTS
Number of Hopping Channels	N/A
Emission Designator	
FCC ID	2A93W-GWL-WXTND

Table 4: Technology #2 description

Technology #3	WiFi5G
Modulation	A, N & AC
Operating Frequency Band U-NII-1	5150 MHz – 5250 MHz
Operating Frequency Band U-NII-2A	5250MHz — 5350 MHz
Operating Frequency Band U-NII-2C	5470 MHz – 7250 MHz
Operating Frequency Band U-NII-3	5725 MHz – 5850 MHz
Maximum RF Output Power [dBm]	30
Operating Channel(s) Width(s) [MHz]	20, 40 & 80
Equipment Type	DTS
Number of Hopping Channels	N/A
Emission Designator	
FCC ID	2A93W-GWL-WXTND

Table 5: Technology #3 description

Page Number 6/37

RF FEATURES							
	Communication Technology	Radio Chipset	Brand	Module Model	Antenna Gain [dBi]		
	ISM	Si4463-C2A-GM	Silicon Labs	N/A	-1		
Description	WiFi 2G4	SYN4375B4XKFFBG/ BCM4375B4XKFFBG ²	Synaptics / Broadcom ²	N/A	+2.57 ¹		
	WiFi 5G	SYN4375B4XKFFBG/ BCM4375B4XKFFBG ²	Synaptics / Broadcom ²	N/A	+2.72 ¹		

Table 6: RF Features

 $Note1^{1}$: For MIMO transmission mode, antenna gain calculations are based on KDB 662911 D01 Multiple Transmitter Output v02r01. Considering that the customer has declared Cyclic Delay Diversity mode.

Note2: This is not dual source, just that Synaptics purchased this business line from Broadcom and the PN is renamed, some documentation may refer to those 2 PN

File Number: **24/36403479M1** Page Number 7/37

3.2 TEST CONFIGURATION

			DUT Op	peration Modes			
Mode #	Description						
		•	est guidance. Equipme on individual channel	ent under test is connected to a Rpi. Use the Rpi to set up continu s on the EUT.	uous		
		Modulation	Frequency [MHz]	Script			
1		GFSK	925.5	:rf:channel: 5; // :rf:carrier:modulated;			
		Mode G	2462	python wltx.py Ch 11 Rate 6 Bw 20			
		Mode A20	5180	python wltx.py Ch 36 – Rate 54 Bw 20DualTx			
		•		ent under test is connected to a Rpi. Use the Rpi to set up lual channels on the EUT.			
	N	Modulation	Frequency [MHz]	Script			
2		GFSK	925.5	:rf:channel: 5; // :rf:carrier:modulated;			
		Mode G	2462	python wltx.py Ch 11 Rate 6 Bw 20			
		Mode A20	5745	python wltx.py Ch 149 – Rate 54 Bw 20DualTx			

Table 7: Test Configuration

Page Number 8/37

3.3 PHOTOGRAPHS

Photographs identifying the equipment under test and its auxiliaries, as well as assembly photographs for radiated and conducted tests, can be found in the document with ID: 24/36403478M2

3.4 TEST FACILITIES ID

TEST FACILITIES ID				
FCC Test Firm Registration Number:	507478			
ISED Assigned Code:	5766A			
CABID	ES0001			
Table 8: Test facilities ID				

3.5 COMPETENCES AND GUARANTEES

LGAI Technological Center, S.A. is a testing laboratory accredited by the National Accreditation Body (ENAC -Entidad Nacional de Acreditación), to perform the tests indicated in the Certificate No. 9/LE894.

In order to assure the traceability to other national and international laboratories, Applus+ Laboratories has a calibration and maintenance program for its measurement equipment.

Applus+ Laboratories guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at Applus+ Laboratories at the time of performance of the test.

Applus+ Laboratories is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test. The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of Applus+ Laboratories.

General conditions:

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of Applus+ Laboratories.

This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of Applus+ Laboratories and the Accreditation Bodies.

Page Number 9/37

4 TEST RESULTS

4.1 ANTENNA REQUIREMENT

4.1.1 Requirements

For intentional device, according to FCC 47 CFR, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to RSS-Gen, the applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

4.1.2 Summary Test Results

The laboratory checks that the sample has an internal antenna, so that no hardware modifications are possible. Complying with the requirements of this section.

Page Number 10/37

4.2 RADIO-FREQUENCY RADIATED EMISSIONS

4.2.1 Test Setup Required

4.2.1.1 Tabletop equipment

Fig. 1: Radio-frequency radiated emissions setup of table top equipment.

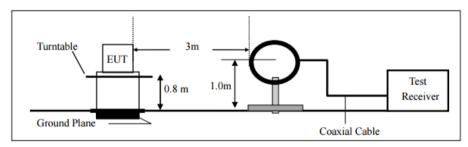


Fig. 2: Radio-frequency radiated emissions of table top equipment from 9 kHz to 30 MHz

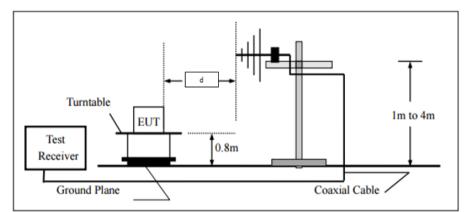


Fig. $\overline{\bf 3}$: Radio-frequency radiated emissions of table top equipment from 30 MHz to 1000 MHz Distance "d" depends on test chamber.

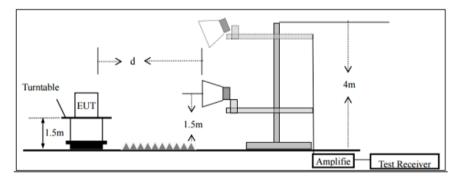


Fig. 4: Radio-frequency radiated emissions setup of table top equipment above 1 GHz

Distance "d" depends on test chamber.

Page Number 11/37

4.2.2 Requirements

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.

The provisions of § 15.205 apply to intentional radiators operating under this section.

Only spurious emissions are permitted in any of the frequency bands listed below:

Frequency [MHz]	Frequency [MHz]	Frequency [MHz]	Frequency [GHz)]
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
⁽¹⁾ 0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	(2)
13.36–13.41			

Table 9. Restricted bands of operation

Note 1: Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Note 2: Above 38.6

According to § 15.209(a) and RSS-Gen section 8.9, the radiated emission limits for restricted bands are:

Frequency	Quasi-peak detector (QP) [dBµV/m]	Peak detector (PK) [dBµV/m]		Average detector (AVG) [dBµV/m] 3 m measuring distance distance distance distance	
Range [MHz]	3 m measuring 3 m measuring distance distance		1 m measuring distance ¹		
0.009 - 0.490	20log(2400/F[kHz]) + 80	N/A	N/A	N/A	N/A
0.490 - 1.705	20log(24000/F[kHz]) + 40	N/A	N/A	N/A	N/A
1.705 - 30	20log(24000/F[kHz]) + 40	N/A	N/A	N/A	N/A
30 – 88	40.0	N/A	N/A	N/A	N/A
88 – 216	43.5	N/A	N/A	N/A	N/A
216 – 960	46.0	N/A	N/A	N/A	N/A
960 – 1000	54.0	N/A	N/A	N/A	N/A
1000 - 18000	N/A	74	N/A	54	N/A
18000 - 40000	N/A	N/A	83.54	N/A	63.54

Table 10: Radio-frequency radiated emissions requirements

Note 1: The limits has been modified according to the applicable standard applying the formula: $L_2 = L_1 - 20 log (d_2/d_1)$, where:

L₂: New Limit.

*L*₁: Limit at 3 meters.

d₁: 3 meters (standard distance).

d₂: 1 meter (new measurement distance).

Page Number 12/37

According to FCC Part 15 Subpart C FCC 15.247, the limits for unrestricted bands are:

Frequency Range [MHz]	Test Mode	Field strength [μV/m]	Measurement distance [m]
30 – 88			
88 – 216	QPK	-20 dBc	
216 – 960		1	3
Above 960	Peak power / RMS averaging	-30 dBc	

Table 11. Radiated Emission limits. Unrestricted bands

4.2.2.1 Receiver Parameters

According to standard ANSI C63.4:2014:

Frequency Range [MHz]	Detector	Resolution Bandwidth [MHz]	Video Bandwidth [MHz]
0.009 - 0.15	Quasi-peak (QP)	200·10 ⁻⁶	1·10 ⁻³
0.15 – 30	Quasi-peak (QP)	9·10 ⁻³	30·10 ⁻³
30 – 1000	Quasi-peak (QP)	0.12	0.30
Al 1000	Peak (PK)	1	3
Above 1000	Average (AVG)	1	10

Average (AVG) 1
Table 12: Receiver parameters – Radio-frequency radiated emissions

4.2.3 Test Environmental Conditions

Test Date	Technician	Supervisor	Temperature [°C]	Humidity [%]	Atm. Pressure [mbar]	
09/02/2024	J.M LLauradó		20.9	47.2	1011	
23/02/2024	J.M LLauradó		21.7	49.1	1019	
25/02/2024	J.M LLauradó		19.5	51.4	1014	
26/02/2024	J.M LLauradó		18.1	52.1	1019	

Table 13: Test environmental conditions – Radio-frequency radiated emissions

Page Number 13/37

4.2.4 Summary Test Results

Frequency Range [MHz]	Test Area	Distance [m]	Emissions	Results
9 kHz – 30 MHz	SAC 1	3 m	QP < Limit - I	PASS
30 MHz – 1 GHz	SAC 1	3 m	Limit - I <= QP < Limit	PASS
1 GHz – 3.5 GHz	SAC 1	3 m	PK < Limit - I AVG < Limit - I	PASS
3.5 GHz – 8 GHz	SAC 1	3 m	PK < Limit - I AVG < Limit - I	PASS
8 GHz – 18 GHz	SAC 1	3 m	PK < Limit - I AVG < Limit - I	PASS
18 GHz – 26 GHz	SAC 1	1 m	PK < Limit - I AVG < Limit - I	PASS
18 GHz – 40 GHz	SAC 1	1 m	PK < Limit - I AVG < Limit - I	PASS

Table 14: Summary test results – Radio-frequency radiated emissions

Page Number 14/37

4.2.5 Test Results

4.2.5.1 Ambient Levels.Frequency range: 9 kHz - 30 MHz

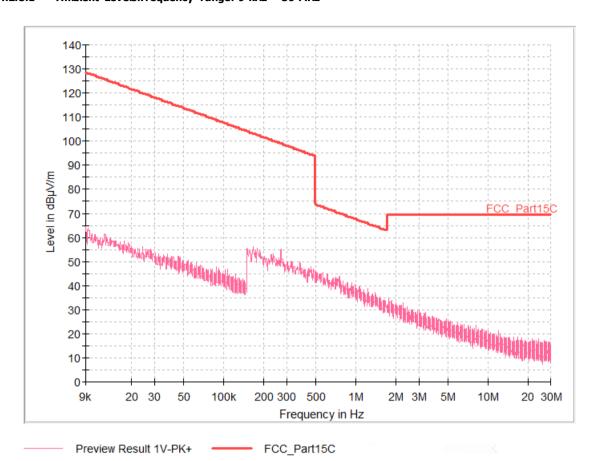


Fig. 5: Ambient level. All Mode. Frequency range: 9 kHz - 30 MHz - Axis X

Page Number 15/37

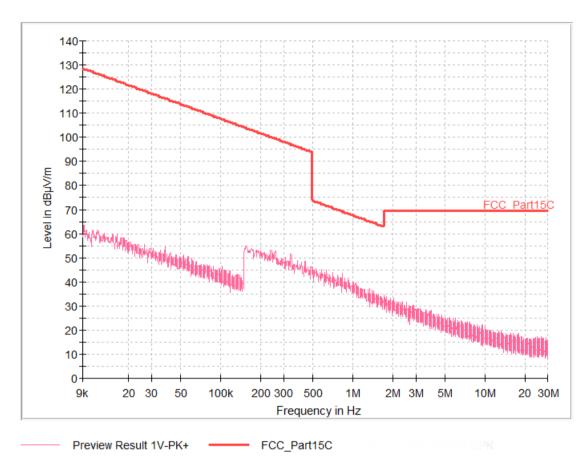


Fig. 6: Ambient level. All Mode. Frequency range: 9 kHz - 30 MHz - Axis Y

Page Number 16/37

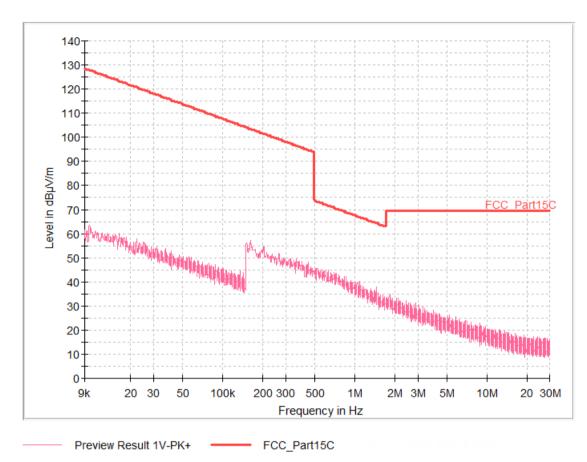


Fig. 7: Ambient level. All Mode. Frequency range: 9 kHz - 30 MHz - Axis Z

Page Number 17/37

4.2.5.2 Ambient Levels. Frequency range: 30 MHz - 1 GHz

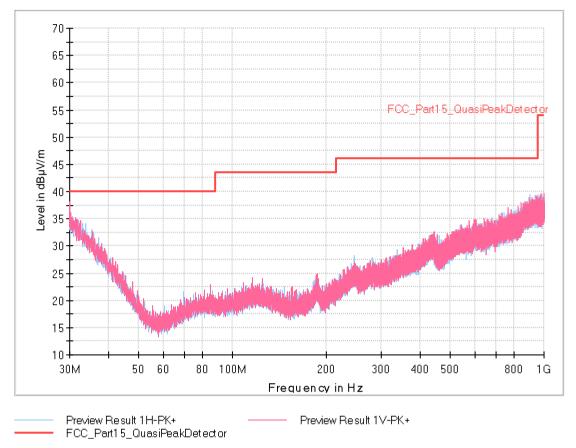


Fig. 8: Ambient level. All Mode. Frequency range: 30 MHz - 1 GHz

Page Number 18/37

4.2.5.3 Ambient Levels. Frequency range: 1 GHz - 3.5 GHz

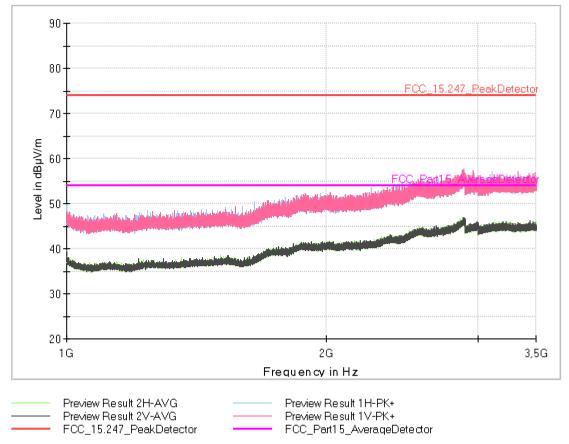


Fig. 9: Ambient level. All Mode. Frequency range: 1 GHz - 3.5 GHz

Page Number 19/37

4.2.5.4 Ambient Levels.Frequency range: 3.5 GHz - 8 GHz

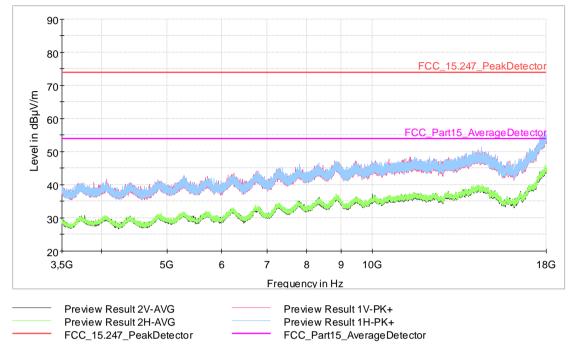


Fig. 10: Ambient level. All Mode. Frequency range: 3.5 GHz - 8 GHz

Page Number 20/37

4.2.5.5 Ambient Levels. Frequency range: 8 GHz - 18 GHz

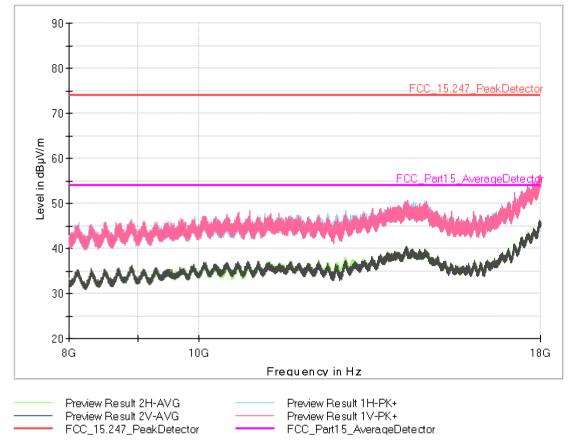


Fig. 11: Ambient level. Mode 2. Frequency range: 8 GHz - 18 GHz

Page Number 21/37

4.2.5.6 Ambient Levels. Frequency range: 18 GHz - 26 GHz

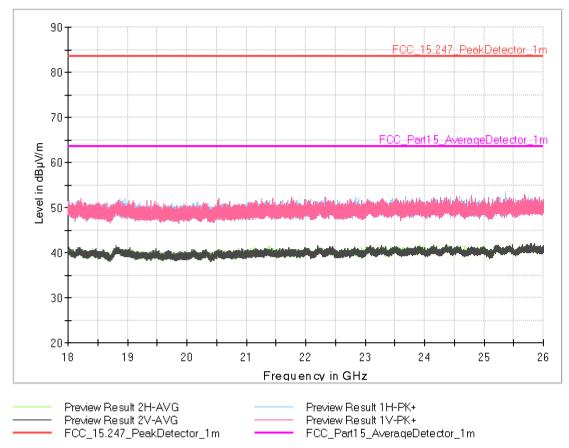


Fig. 12: Ambient level. All Mode. Frequency range: 18 GHz - 26 GHz

Page Number 22/37

4.2.5.7 Ambient Levels. Frequency range: 26 GHz - 40 GHz

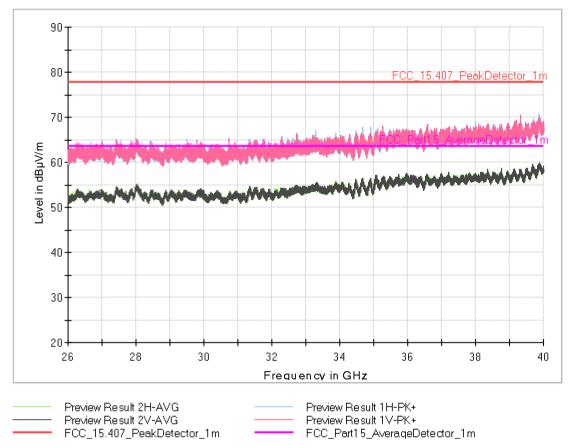


Fig. 13: Ambient level. Mode 1. Frequency range: 26 GHz - 40 GHz

Page Number 23/37

4.2.5.8 Sample #1. All mode¹. Frequency range: 9 kHz - 30 MHz

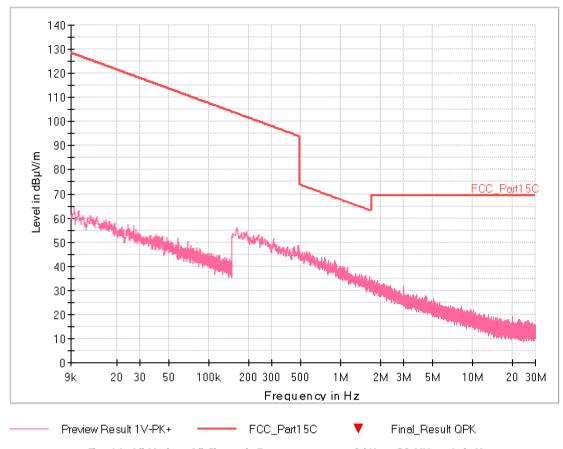


Fig. 14: All Mode – All Channel. Frequency range: 9 kHz - 30 MHz – Axis X

FINAL MEASUREMENTS

No spurious detected. All emissions are below of the QPK limit

Note I : This frequency range has been measured for mode 1 and mode 2 and the results obtained are very similar between them. Therefore, the radiated emissions in this frequency range do not depend on the operation mode what the EUT is configured. The above graph is taken as the most representative result.

Page Number 24/37

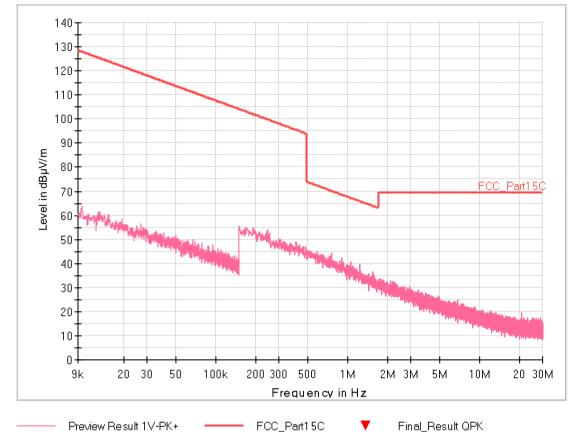


Fig. 15: All Mode. Frequency range: 9 kHz - 30 MHz - Axis Y

FINAL MEASUREMENTS

No spurious detected. All emissions are below of the QPK limit

Page Number 25/37

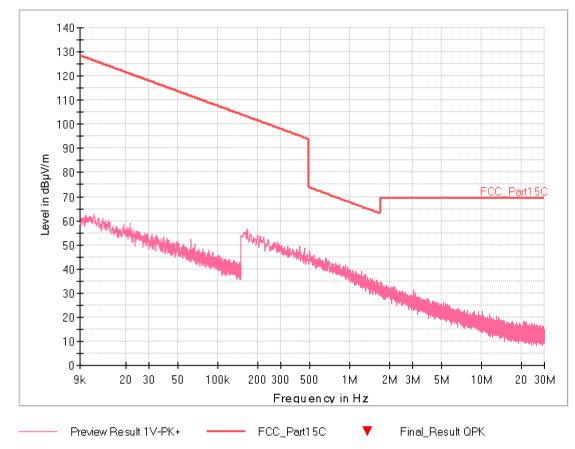


Fig. 16: All Mode. Frequency range: 9 kHz - 30 MHz - Axis Z

FINAL MEASUREMENTS

No spurious detected. All emissions are below of the QPK limit

Page Number 26/37

4.2.5.9 Sample #1. Mode 1. Frequency range: 30 MHz - 1 GHz

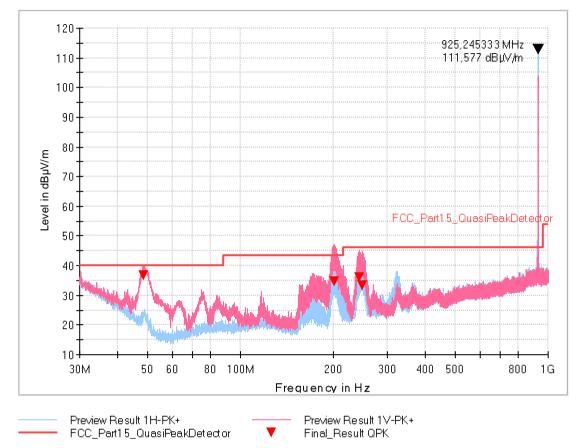


Fig. 17: Mode 1. Frequency range: 30 MHz - 1GHz

FINAL MEASUREMENTS

Frequency [MHz]	QuasiPeak [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]
 48.370	36.6	40.0	3.4	100.0	V	0.0	13.1
 201.950	34.6	43.5	8.9	105.0	V	11.0	14.9
242.920	36.0	46.0	10.0	103.0	V	280.0	18.5
 249.060	33.3	46.0	12.7	162.0	V	312.0	18.6

Table 15: Mode 1. Frequency range: 30 MHz - 1 GHz

Page Number 27/37

4.2.5.10 Sample #1. Mode 1. Frequency range: 1 GHz - 3.5 GHz

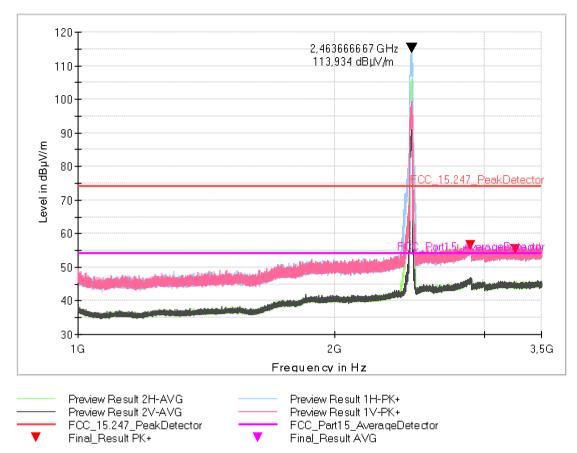


Fig. 18: Mode 1. Frequency range: 1 GHz - 3.5 GHz

FINAL MEASUREMENTS

Frequency [MHz]	MaxPeak [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]	
2892.420 ¹	56.4	74.0	17.6	221.0	Н	35.0	35.5	
 3262.830 ¹	55.4	74.0	18.6	151.0	V	351.0	35.2	

Table 16: Mode 1. Frequency range: 1 GHz - 3.5 GHz

Note ¹: The final frequency measurements within the restricted band correspond to the ambient level as can be seen in the graphs above. Therefore, a maximization with peak detector as worst case is performed.

Page Number 28/37

4.2.5.11 Sample #1. Mode 1. Frequency range: 3.5 GHz - 8 GHz

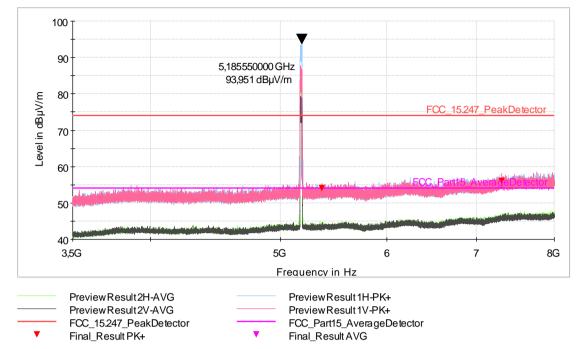


Fig. 19: Mode 1. Frequency range: 3.5 GHz - 8 GHz

FINAL MEASUREMENTS

Frequency [MHz]	MaxPeak [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]
5368.400 ¹	54.1	74.0	19.9	330.0	V	0.0	6.7
7310 300 ¹	56 1	74 N	17 9	350.0	V	178 N	10 1

56.1 | 74.0 | 17.9 | 350.0 | V Table 17: Mode 1. Frequency range: 3.5 GHz - 8 GHz

Note I : The final frequency measurements within the restricted band correspond to the ambient level as can be seen in the graphs above. Therefore, a maximization with peak detector as worst case is performed.

Page Number 29/37

4.2.5.12 Sample #1. Mode 1. Frequency range: 8 GHz - 18 GHz

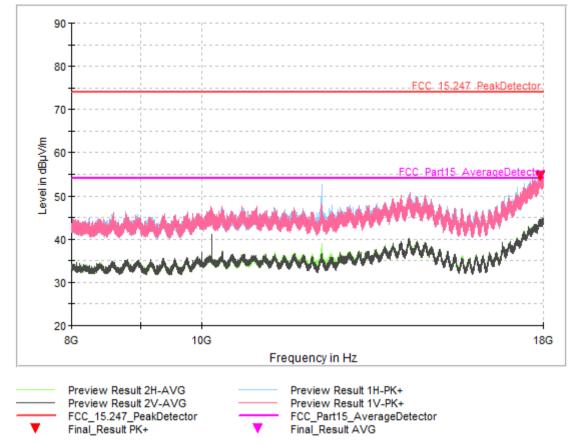


Fig. 20: Mode 1. Frequency range: 8 GHz - 18 GHz

FINAL MEASUREMENTS Azimuth Frequency **MaxPeak** Limit Margin Height Corr. Pol [deg] [MHz] [dBµV/m] [dBµV/m] [dB] [cm] [dB/m] 17900.670¹ 54.5 74.0 19.5 330.0 Н 6.7 Table 18: Mode 1. Frequency range: 8 GHz - 18 GHz

Note ¹: The final frequency measurements within the restricted band correspond to the ambient level as can be seen in the graphs above. Therefore, a maximization with peak detector as worst case is performed.

Page Number 30/37

4.2.5.13 Sample #1. Mode 2. Frequency range: 30 MHz - 1 GHz

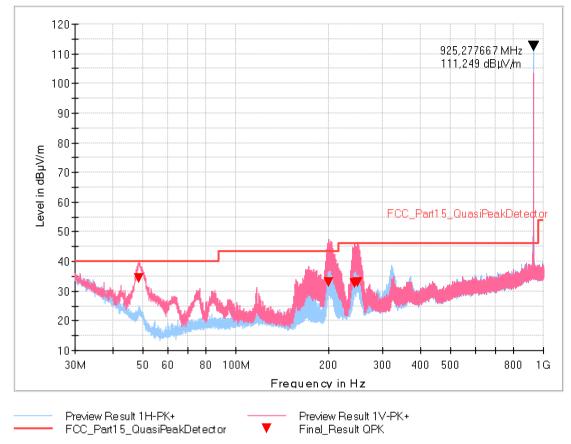


Fig. 21: Mode 2. Frequency range: 30 MHz - 1GHz

FINAL MEASUREMENTS

Frequency [MHz]	QuasiPeak [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]
48.400	34.2	40.0	5.8	102.0	V	46.0	13.1
200.780	33.1	43.5	10.4	105.0	V	0.0	14.7
242.500	32.5	46.0	13.5	112.0	V	0.0	18.5
248.960	33.0	46.0	13.0	105.0	V	288.0	18.6

Table 19: Mode 2. Frequency range: 30 MHz - 1 GHz

Page Number 31/37

4.2.5.14 Sample #1. Mode 2. Frequency range: 1 GHz - 3.5 GHz

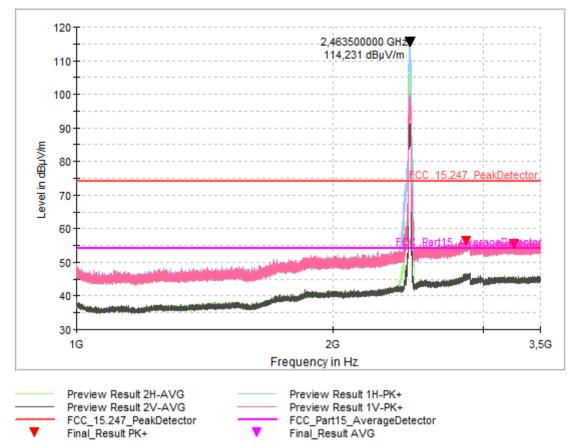


Fig. 22: Mode 2. Frequency range: 1 GHz - 3.5 GHz

FINAL MEASUREMENTS

Frequency [MHz]	MaxPeak [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]
2865.080 ¹	56.2	74.0	17.8	329.0	V	321.0	33.4
3261.250 ¹	55.4	74.0	18.6	210.0	V	0.0	35.2

Table 20: Mode 2. Frequency range: 1 GHz - 3.5 GHz

Note I : The final frequency measurements within the restricted band correspond to the ambient level as can be seen in the graphs above. Therefore, a maximization with peak detector as worst case is performed.

Page Number 32/37

4.2.5.15 Sample #1. Mode 2. Frequency range: 3.5 GHz - 8 GHz

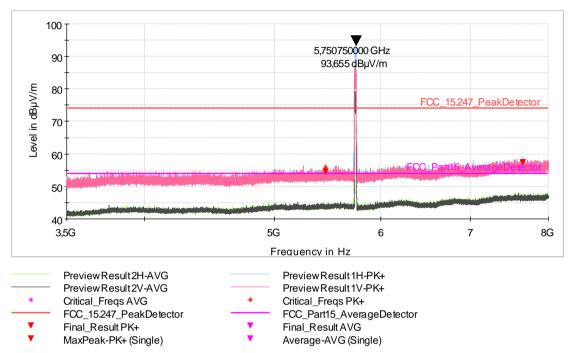


Fig. 23: Mode 2. Frequency range: 3.5 GHz - 8 GHz

FINAL MEASUREMENTS

Frequency [MHz]	MaxPeak [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]		
5458.550 ¹	54.5	74.0	19.5	329.0	Н	47.0	6.7		
7660.550 ¹	57.4	74.0	16.6	284.0	Н	153.0	10.3		
	Table 21: Mode 2. Frequency range: 3.5 GHz - 8 GHz								

Note I : The final frequency measurements within the restricted band correspond to the ambient level as can be seen in the graphs above. Therefore, a maximization with peak detector as worst case is performed.

Page Number 33/37

4.2.5.16 Sample #1. Mode 2. Frequency range: 8 GHz - 18 GHz

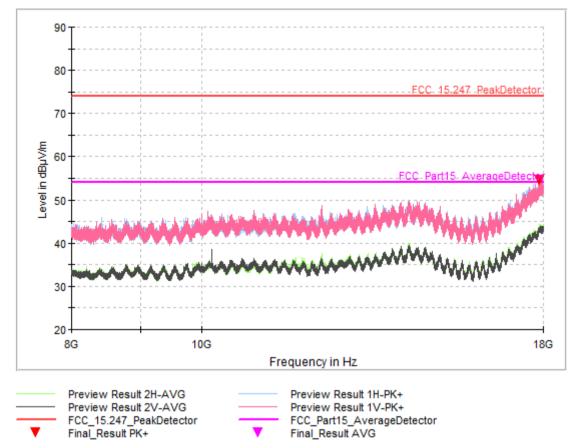


Fig. 24: Mode 2. Frequency range: 8 GHz - 18 GHz

FINAL MEASUREMENTS

Frequency [MHz]	MaxPeak [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]
17872.670 ¹	54.5	74.0	19.5	123.0	Н	83.0	6.5
	Table 22	2: Mode 2. Frequ	iency range:	8 GHz -	18 GHz		

Note ¹: The final frequency measurements within the restricted band correspond to the ambient level as can be seen in the graphs above. Therefore, a maximization with peak detector as worst case is performed.

Page Number 34/37

4.2.5.17 Sample #1. All mode¹. Frequency range: 18 GHz - 26 GHz

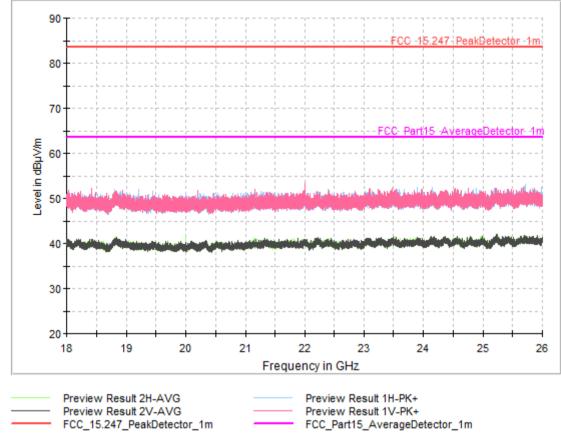


Fig. 25: All mode. Frequency range: 18 GHz - 26 GHz

FINAL MEASUREMENTS

No spurious detected. All emissions are below of the AVG limit

Note ¹: This frequency range has been measured for mode 1 and mode 2 and the results obtained are very similar between them. Therefore, the radiated emissions in this frequency range do not depend on the operation mode what the EUT is configured. The above graph is taken as the most representative result.

Page Number 35/37

4.2.5.18 Sample #1. All mode1. Frequency range: 26 GHz - 40 GHz

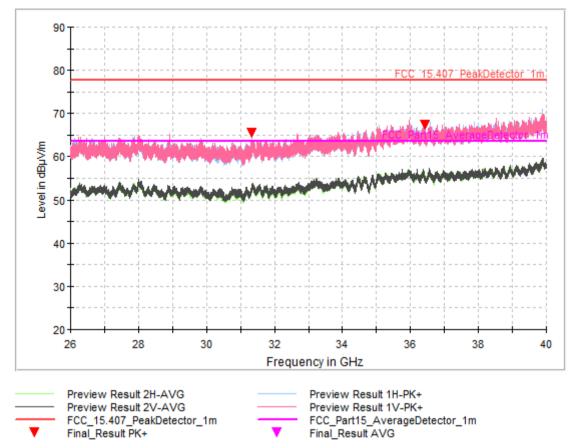


Fig. 26: All mode. Frequency range: 26 GHz - 40 GHz

FINAL MEASUREMENTS

Frequency [MHz]	MaxPeak [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]
31316.730 ²	65.4	77.77	12.34	150.0	Н	168.0	47.4
36441.200 ²	67.3	77.77	10.50	150.0	Н	39.0	47.7

Table 23: All mode. Frequency range: 26 GHz - 40 GHz

Note ¹: This frequency range has been measured for mode 1 and mode 2 and the results obtained are very similar between them. Therefore, the radiated emissions in this frequency range do not depend on the operation mode what the EUT is configured. The above graph is taken as the most representative result.

Note ²: The final frequency measurements within the restricted band correspond to the ambient level as can be seen in the graphs above. Therefore, a maximization with peak detector as worst case is performed.

Page Number 36/37

4.2.6 Test Equipment Used

Equipment	Brand	Model	Applus Ref.	Last Calibration	Next Calibration
ACTIVE LOOP ANTENNA	EMCO	6502	05-ER-019	04/10/2023	04/10/2024
BILOG ANTENNA	SCHWARZBECK	VULB 9162	1042740	08/11/2023	08/11/2024
HORN ANTENNA	EMCO	3115	05-ER-017	06/12/2023	06/12/2024
HORN ANTENNA	MVG	EH 1840	1042685	14/04/2022	14/04/2024
RF CABLE	HUBER+SUHNER	SF126E	1042728	21/08/2023	21/08/2024
3 DB ATTENUATOR	HUBER+SUHNER	6803.17.B	1042021	25/05/2023	25/05/2024
RF CABLE	RHODE & SCHWARZ	NA	1041502	09/10/2023	09/10/2024
RF CABLE	HUBER+SUHNER	SF104	1041964	22/06/2023	22/06/2024
HIGHPASS FILTER	WAINWRIGHT INSTRUMENTS	WHNX6-2765- 3500-26500-40CC	1042511	12/05/2023	12/05/2024
RF CABLE	HUBER+SUHNER	SF104/11N/11N	1042585	12/05/2023	12/05/2024
RF AMPLIFIER	BONN ELEKTRONIK	BLMA 0118-M	1041733	12/05/2023	12/05/2024
RF CABLE	HUBER+SUHNER	SF102	1042546	18/05/2023	18/05/2024
RF CABLE	ASTROLAB	32026-29094- 29094-24TC	1041565	16/05/2023	16/05/2024
EMI RECEIVER	R&S	ESW 26	1041791	14/11/2023	14/11/2024
EMI RECEIVER	R&S	ESU 40	1041155	04/08/2023	04/08/2025
THERMOHIGROMETER	PCE IBERICA	THB 40	1042022	07/11/2023	07/11/2024
TEST SOFTWARE	ROHDE & SCHWARZ	EMC32 v.10.50.00	104624		
MAST-TABLE CONTROLLER	MATURO	NCD	1042758		

Table 24: Test Instruments – Radio-frequency radiated emissions

Page Number 37/37

4.2.7 Uncertainty

Test Type	Test Description	Uncertainty
Emissions	RADIO-FREQUENCY RADIATED EMISSIONS 9 kHz - 30 MHz	± 3.9 dB
Emissions	RADIO-FREQUENCY RADIATED EMISSIONS 30 MHz — 1 GHz	± 5.3 dB
Emissions	RADIO-FREQUENCY RADIATED EMISSIONS 1 GHz — 6 GHz	± 5.3 dB
Emissions	RADIO-FREQUENCY RADIATED EMISSIONS 6 GHz — 18 GHz	± 5.5 dB
Emissions	RADIO-FREQUENCY RADIATED EMISSIONS 18 GHz — 26 GHz	± 5.1 dB
Emissions	RADIO-FREQUENCY RADIATED EMISSIONS 26 GHz — 40 GHz	± 5.6 dB

Table 25: Radio-frequency radiated emissions measuring Uncertainties

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by a coverage factor k=2, which for normal distribution corresponds to a coverage probability of approximately 95%.