

File Number 24/36403473M2

TEST REPORT

Electromagnetic Compatibility							
Petitioner's Refer	ence:	Verisure Sàrl					
Company Address:	Chemin Jean-Ba	aptiste Vandelle	3, Versoix, Geneva	a, Switzerland			
Represented by:	James Barnett						
PMN: Wi-Fi Extender							
Brand:	Verisure		HMN:	GWL-WXTND 489937			
Sample #1:	3N75 UKDZ		Applus Id:	25556-0002			
Result:		complies					
It has been tested and	d complies with the	applicable stan	dard. See test resu	It summary section.			
Applicable Standa	ard:						
EMC standard/s:	1	FCC 47 CFR P ANSI C63.4 (2 ANSI C63.4a	•	L			
¹ The latest modifications	of the standard, publi	ished at the date	of the tests reported	in this document, have been considered			
Dates and Test Si	te:	Applus Barcel	ona, Bellaterra				
Equipment Reception I	Date	December 12, 2023					
Test Initial Date: February 23, 2024							
Test Final Date: March 8, 2024							
Modification Description: M2							
This report replaces ar	nd supersedes the r	report 24/36403	3473M1 dated on S	eptember 25, 2024.			

I his report replaces and supersedes the report 24/364034/3M1 dated on September 25, 2024. Modifications performed: ANSI C63.4 (2014) and ANSI C63.4a (2017) are included in applicable standard. Page 1. It is responsibility of the petitioner to replace the previous version with this one.

Test Manager: Javier Miguel Nadales Lisbona **Date of issue:** Bellaterra, October 20, 2024

EMC & Wireless Technical Manager Electrical and Electronics LGAI Technological Center S.A.

The results refer only and exclusively to the sample, product or material delivered for testing, and tested under conditions stipulated in this document. The equipment has been tested under conditions stipulated by standard(s) quoted in this document. This document will not be reproduced otherwise than in full. This is the first page of the document, which consists of 30 pages.

1 TEST RESULTS SUMMARY

Test Description	Sample #	DUT Test Modes	Req. Criteria	Results	Criteria Note
RADIO-FREQUENCY RADIATED EMISSIONS (FCC Part 15.109, ICES-003 Issue 7 (3.2.2))	#1	Mode 1	CLASS B	PASS	CN3
POWER LINE CONDUCTED EMISSIONS (FCC Part 15.107, ICES-003 Issue 7 (3.2.1))	#1	Mode 1	CLASS B	PASS	CN4

Table 1: Equipment description

The test results are shown in detail on the following pages.

The criteria to give conformity in those cases where it is not implicit in the standard or specification will be, for EMC emissions tests, a non-simple binary decision rule will be followed with a safety zone equal to the value of the uncertainty (w = U).

In this case, the upper limit of the value of the probability of false acceptance, according to ILAC G8, is 2.5 % and the criteria notes are:

CN1: The measured results are above the upper limit, even considering the uncertainty interval. CN2: The measured results are above the specified limits, but within the uncertainty interval. It is therefore not possible to state compliance based on the 95% level of confidence. However, the results indicate that non-compliance is more probable than compliance.

CN3: The measured results are below the specified limits, but within the uncertainty interval. It is therefore not possible to state compliance based on the 95% level of confidence. However, the results indicate that compliance is more probable than non-compliance. CN4: The measured results are within the limits, including the uncertainty interval.

Service Quality Assurance

Applus+, guarantees that this work has been made in accordance with our Quality and Sustainability System, fulfilling the contractual conditions and legal norms.

Within our improvement program we would be grateful if you would send us any commentary that you consider opportune, to the person in charge who signs this document, or to the Quality Manager of Applus+, in the following e-mail address: satisfaccion.cliente@applus.com

2 INDEX

1	TEST RESULTS SUMMARY	2
2	INDEX	3
3	GENERAL DESCRIPTION OF TEST ITEMS	4
	3.1 EQUIPMENT DESCRIPTION	4
	3.2 DUT TEST MODES	5
	3.3 CONTROL AND MONITORING	5
	3.4 ACCEPTANCE CRITERIA	6
	3.5 TEST FACILITIES ID	7
	3.6 COMPETENCES AND GUARANTEES	7
4	TEST RESULTS	8
	4.1 RADIO-FREQUENCY RADIATED EMISSIONS	8
	4.1.1 Test Setup Required	8
	4.1.2 Test Procedure	
	4.1.3 Test Parameters	
	4.1.4 Test Environmental Conditions 4.1.5 Summary Test Results	
	4.1.5 Summary rest Results	
	4.1.7 Test Equipment Used	
	4.1.8 Uncertainty	
	4.2 POWER LINE CONDUCTED EMISSIONS.	. 22
	4.2.1 Test Setup Required	22
	4.2.1 Test Setup Required 4.2.2 Test Procedure	. 22 22 24
	 4.2.1 Test Setup Required	. 22 22 24 24 25
	 4.2.1 Test Setup Required	22 22 24 24 25 25
	 4.2.1 Test Setup Required	. 22 22 24 24 25 25 26
	 4.2.1 Test Setup Required	22 22 24 24 25 25 26 29

3 GENERAL DESCRIPTION OF TEST ITEMS

3.1 EQUIPMENT DESCRIPTION

This information has been provided by the customer and it is not covered by the accreditation. LGAI does not assume any responsibility from it.

	EQUIPMENT DESCRIPTION							
Description	Wi-Fi Extender which can also be controlled and monitored over our proprietary radio protocol over Sub-GHz ISM (SRD).							
·	FV	FVIN			HVIN			
EUT Version	1.0.6			A1				
Power supply	AC	AC 1 PH + N		100~240 V		50~60 Hz		
Faultane at Cias	Length		Width		Height			
Equipment Size	17.5 cm		10.5 cm		2 cm			
Maximum internal frequency		5825 MHz						

 Table 2: Equipment description

I/O CABLES									
	Port #	Name	Туре	Cable length	Cable Shielded	Comments			
Description	1	Mains	AC	< 3 m	Yes	Provided by customer			
	2	Communications	ETH	< 3 m	Yes	Provided by customer			

Table 3: Input/output ports description

		RF FEATURES		
	Communication Technology	Radio Chipset	Brand	Antenna Peak Gain
Description	ISM	Si4463-C2A-GM	Silicon Labs	-1 dBi
	Wi-Fi 2.4 GHz	SYN4375B4XKFFBG/ BCM4375B4XKFFBG ¹	Synaptics / Broadcom	SISO_1: +2.1 dBi SISO_2: +3.0 dBi
	Wi-Fi 5 GHz	SYN4375B4XKFFBG/ BCM4375B4XKFFBG ¹	Synaptics / Broadcom	SISO_1: +2.3 dBi SISO_2: +3.1 dBi
		Table 4: RF Features		

Note ¹: This is not dual source, just that Synaptics purchased this business line from Broadcom and the PN is renamed, some documentation may refer to those 2 PN.

3.2 DUT TEST MODES

DUT Operation Modes						
Mode #	Description	Set-up				
1	The equipment is configured in a commercial operation mode, making use of a dual link modem and establishing a connection to it for WiFi technology for both the 2.4 GHz and 5 GHz bands. In the case of ISM, the client provides instructions to emulate this mode of operation with periodic transmission every 3 seconds.	Table top				

3.3 CONTROL AND MONITORING

nscheme: login @ ch 2 NCTX 0x89	^
NOTXE 6x89 -1	
nscheme: login @ ch 3	
NCTX 0X89	
NCTXE 0x89 -1	
nscheme: login @ ch 4	
NCTX 0X89	
NCTXE 0x89 -1	
nscheme: login @ ch 5	
NCTX 0x89 NCTXE 0x89 -1	
NG TAL 0X09 -1	
.1149.14.0400000000000000000000000000000	
lbt ok	
ZORKMON\$	
lbt ok	
lbt ok	
nscheme: next login attempt	
nscheme: login @ ch 1	
NCTX 0x89	
NCTXE 0x89 -1 nscheme: login @ ch 2	
NCTX 0x89	
NOTXE 0x89 -1	
nscheme: login @ ch 3	
NCTX 0X89	
NCTXE 0x89 -1	
nscheme: login @ ch 4	
NCTX 0X89	
NCTXE 0x89 -1	
nscheme: login @ ch 5	
NCTX 0x89 NCTXE 0x89 -1	
Note Coole - 1	
bt ok	
ubt ok	
lbt ok	
lbt ok	

Fig. 1: SW of control and monitoring - ISM

3.4 PHOTOGRAPHS

Photographs identifying the equipment under test and its auxiliaries, as well as assembly photographs for radiated and conducted tests, can be found in the document with ID: 24/36403478M2

3.5 ACCEPTANCE CRITERIA

According to standard FCC 47 CFR Part 15 Subpart B.

3.6 TEST FACILITIES ID

TEST FACILITIES ID							
FCC Test Firm Registration Number:	507478						
ISED Assigned Code:	5766A						
CABID	ES0001						

Table 6: Test facilities ID

3.7 COMPETENCES AND GUARANTEES

LGAI Technological Center, S.A. is a testing laboratory accredited by the National Accreditation Body (ENAC -Entidad Nacional de Acreditación), to perform the tests indicated in the Certificate No. 9/LE894.

In order to assure the traceability to other national and international laboratories, Applus+ Laboratories has a calibration and maintenance program for its measurement equipment.

Applus+ Laboratories guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at Applus+ Laboratories at the time of performance of the test.

Applus+ Laboratories is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test. The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of Applus+ Laboratories.

General conditions:

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of Applus+ Laboratories.

This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of Applus+ Laboratories and the Accreditation Bodies.

4 TEST RESULTS

4.1 RADIO-FREQUENCY RADIATED EMISSIONS

4.1.1 Test Setup Required

According to standard ANSI C63.4:2014

4.1.1.1 Tabletop equipment

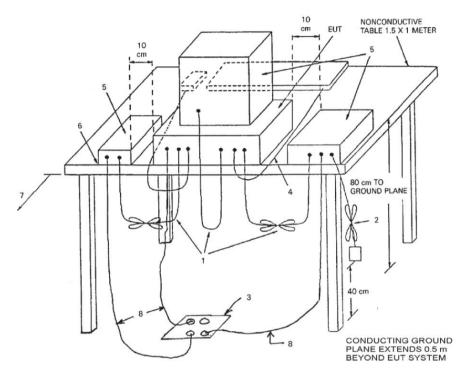


Fig. 2: Radio-frequency radiated emissions setup of table top equipment.

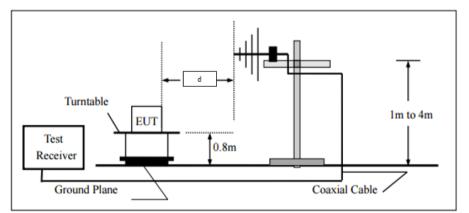


Fig. 3: Radio-frequency radiated emissions of table top equipment from 30 MHz to 1000 MHz

Distance "d" depends on test chamber.

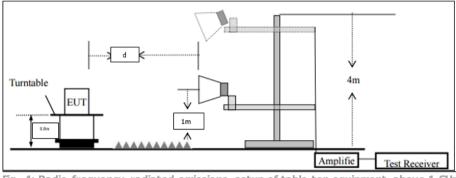


Fig. 4: Radio-frequency radiated emissions setup of table top equipment above 1 GHz

Distance "d" depends on test chamber.

4.1.2 Test Procedure

The test site, 3 or 10 m semi-anechoic chamber, has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.4-2014

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semianechoic chambers. The receiving antennas are conforming to specifications ANSI C63. These antennas can be moved over the height range between 1 m and 4 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received.

Pre-measurement

- The turntable rotates from 0° to 315° using 45° steps
- The antenna is polarized vertical and horizontal
- The antenna height changes from 1 m to 4 m
- At each turntable position, antenna polarization and height the receiver finds the maximum of all emissions

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position 360 ° and antenna height between 1 m and 4 m
- The final measurement is done with quasi-peak detector (as described in ANSI C63.4) for 30 MHz to 1 GHz emissions test
- The final measurement is done in the position (azimuth, height and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C63.4) for 1 GHz to 18 GHz test
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factors, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is shown

Correction Factor:

Emission Level = Read Level +Corrections (Antenna Factor + Cable Loss - Amplifier Gain (if applies) + Attenuator (if applies))

4.1.3 Test Parameters

4.1.3.1 Requirements

Class A Equipment's							
Fromuoner	Quasi-peak d [dBµ	letector (QP) V/m]		ector (PK) V/m]	Average detector (AVG) [dBµV/m]		
Frequency Range [MHz]	10 m measuring distance	3 m measuring distance ¹	8.5 m measuring distance ²	3 m measuring distance ³	8.5 m measuring distance ²	3 m measuring distance ³	
30 – 288	39.0	49.5	N/A	N/A	N/A	N/A	
88 – 216	43.5	54	N/A	N/A	N/A	N/A	
216 - 960	46.4	56.9	N/A	N/A	N/A	N/A	
960 - 1000	49.5	60	N/A	N/A	N/A	N/A	
Above 1000	N/A	N/A	70.95	80	50.95	60	
	Table 7: Radio-f	requency radiate	ed emissions req	iuirements – Clas	s A equipment's		

Note 1: The limits has been modified according to the applicable standard applying the formula: $L_2 = L_1 - 20 \log (d_2/d_1)$, where:

L₂: New Limit.

L₁: Limit at 10 meters.

d₁: 10 meters (standard distance).

d2: 3 meters (new measurement distance).

Note 2: The limits have been modified according to the applicable standard applying the formula: $L_2 = L_1 - 20\log(d_2/d_1)$, where: L_2 : New Limit.

L₁: Limit at 10 meters.

d1: 10 meters (standard distance).

d₂: 8.5 meters (new measurement distance).

Note 3: The limits have been modified according to the applicable standard applying the formula: $L_2 = L_1 - 20 \log (d_2/d_1)$, where:

L₂: New Limit.

L₁: Limit at 10 meters.

d1: 10 meters (standard distance).

d₂: 3 meters (new measurement distance).

Class B Equipment's								
F	Quasi-peak detector (QP) [dBµV/m]			ector (PK) V/m]	Average detector (AVG) [dBµV/m]			
Frequency Range [MHz]	10 m measuring distance ¹	3 m measuring distance	8.5 m measuring distance ²	3 m measuring distance	8.5 m measuring distance ²	3 m measuring distance		
30 – 288	29.5	40	N/A	N/A	N/A	N/A		
88 – 216	33.0	43.5	N/A	N/A	N/A	N/A		
216 - 960	35.5	46	N/A	N/A	N/A	N/A		
960 - 1000	43.5	54	N/A	N/A	N/A	N/A		
Above 1000	N/A	N/A	65	74	45	54		

Table 8: Radio-frequency radiated emissions requirements - Class B equipment's

Note 1: The limits has been modified according to the applicable standard applying the formula: $L_2 = L_1 - 20 \log (d_2/d_1)$, where:

L₂: New Limit.

L₁: Limit at 3 meters.

d1: 3 meters (standard distance).

d₂: 10 meters (new measurement distance).

Note 2: The limits has been modified according to the applicable standard applying the formula: $L_2 = L_1 - 20 \log (d_2/d_1)$, where: L_2 : New Limit.

L₁: Limit at 3 meters.

d1: 3 meters (standard distance).

d₂: 8.5 meters (new measurement distance).

According to ICES-003 Issue 7 (3.2.2):

	Class A Equipment's										
Frequency Range [MHz]	Quasi-peak detector (QP) [dBµV/m]			ector (PK) V/m]	Average detector (AVG) [dBµV/m]						
	10 m measuring distance	3 m measuring distance ¹	8.5 m measuring distance ¹	3 m measuring distance	8.5 m measuring distance ¹	3 m measuring distance					
30 – 288	40.0	50.0	N/A	N/A	N/A	N/A					
88 – 216	43.5	54.0	N/A	N/A	N/A	N/A					
216 – 230	46.4	56.9	N/A	N/A	N/A	N/A					
230 – 960	47.0	57.0	N/A	N/A	N/A	N/A					
960 - 1000	49.5	60.0	N/A	N/A	N/A	N/A					
Above 1000	N/A	N/A	71	80	51	60					

Table 9: Radio-frequency radiated emissions requirements - Class A equipment's

		C	ass B Equipment	t's			
Frequency Range [MHz]	Quasi-peak detector (QP) [dBµV/m]			ector (PK) V/m]	Average detector (AVG) [dBuV/m]		
	10 m measuring distance	3 m measuring distance	8.5 m measuring distance ¹	3 m measuring distance	8.5 m measuring distance ¹	3 m measuring distance	
30 – 288	30.0	40.0	N/A	N/A	N/A	N/A	
88 – 216	33.1	43.5	N/A	N/A	N/A	N/A	
216 – 230	35.6	46.0	N/A	N/A	N/A	N/A	
230 – 960	37.0	47.0	N/A	N/A	N/A	N/A	
960 - 1000	43.5	54.0	N/A	N/A	N/A	N/A	
Above 1000	N/A	N/A	65	74	45	54	

Table 10: Radio-frequency radiated emissions requirements - Class B equipment's

Note 1: The limits has been modified according to the applicable standard applying the formula: $L_2 = L_1 - 20 \log (d_2/d_1)$, where: L_2 : New Limit.

 L_1 : Limit at 3 meters.

d₁: 3 meters (standard distance).

d₂: 8.5 meters (new measurement distance).

4.1.3.2 Receiver Parameters

According to standard ANSI C63.4:2014:

Frequency Range [MHz]	Detector	Resolution Bandwidth [MHz]	Video Bandwidth [MHz]	
30 - 1000	Quasi-peak (QP)	0.12	0.30	
Al 1000	Peak (PK)	1	3	
Above 1000	Average (AVG)	1	10·10 ⁻⁶	
Table	11: Peceiver parameters - P	adio-frequency, radiated emis	scions	

Table 11: Receiver parameters – Radio-frequency radiated emissions

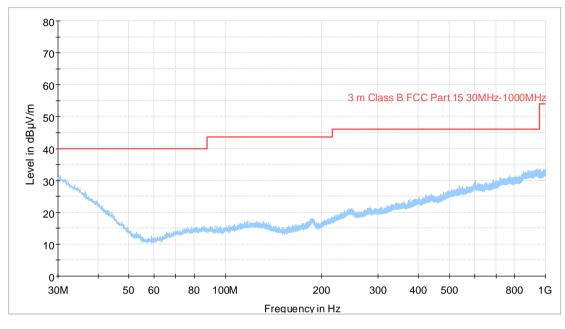
4.1.4 Test Environmental Conditions

Test Date	Technician	Supervisor	Temperature [ºC]	Humidity [%]	Atm. Pressure [mbar]
23/02/2024	J.M. Llauradó	-	21.3	51	1012.2
23/02/2024	O. Merchán	-	23.5	45	994.4
26/02/2024	J.M Llauradó	-	22.1	45	1023.3

Table 12: Test environmental conditions - Radio-frequency radiated emissions

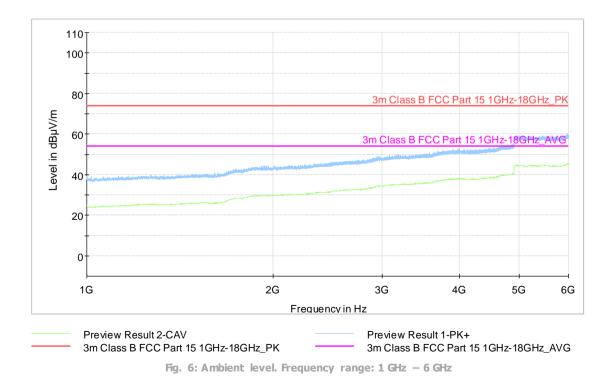
4.1.5 Summary Test Results

Frequency Range ¹ [MHz]	Equipment Class	Test Area	Distance [m]	Emissions	Results
30 - 1000	В	SAC 1	3	QP < Limit - I	PASS
1000 - 6000	В	SAC 1	3	PK < Limit - I AVG < Limit - I	PASS
6000 - 18000	В	SAC 1	3	PK < Limit - I Limit - I <= AVG < Limit	PASS
18000 - 260000	В	SAC 1	1	PK < Limit - I AVG < Limit - I	PASS
26000 - 30000	В	SAC 1	1	PK < Limit - I AVG < Limit - I	PASS

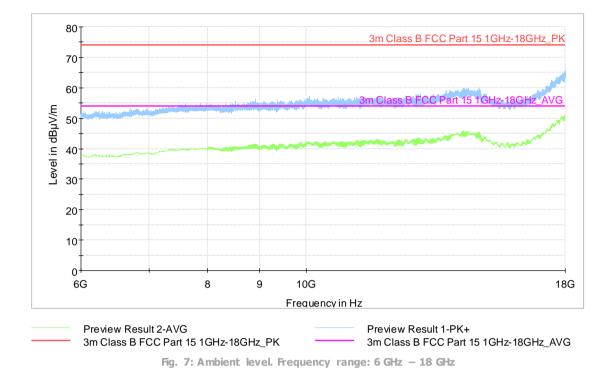

Table 13: Summary test results – Radio-frequency radiated emissions

Note 1: Upper limit according to the fifth harmonic of the maximum internal frequency declared by the manufacturer or to 40 GHz, whichever is lower.

4.1.6 Test Results


4.1.6.1 Ambient Levels. Frequency range: 30 MHz – 1 GHz

Preview Result 1-PK+ 3 m Class B FCC Part 15 30MHz-1000MHz


Fig. 5: Ambient level. Frequency range: 30 MHz – 1 GHz

4.1.6.2 Ambient Levels. Frequency range: 1 GHz – 6 GHz

4.1.6.3 Ambient Levels. Frequency range: 6 GHz - 18 GHz

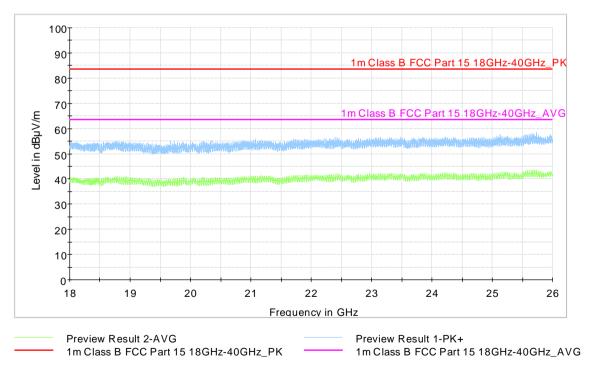


Fig. 8: Ambient level. Frequency range: 18 GHz - 26 GHz

4.1.6.5 Ambient Levels. Frequency range: 26 GHz – 30 GHz

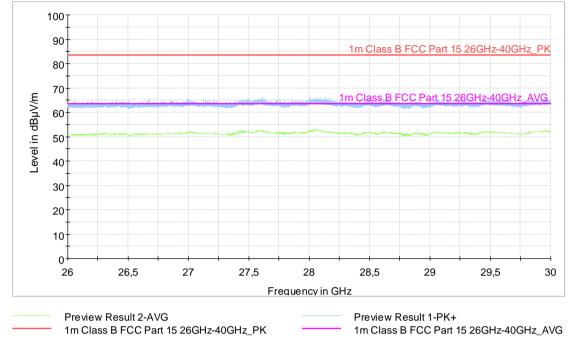


Fig. 9: Ambient level. Frequency range: 26 GHz - 30 GHz

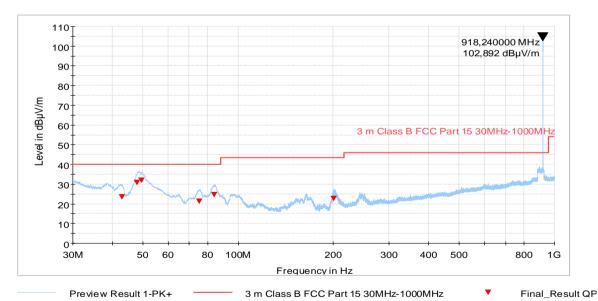


Fig. 10: Sample #1. Mode 1. Frequency range: 30 MHz – 1 GHz

FINAL MEASUREMENTS

Frequency [MHz]	QuasiPeak [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]
42.990	23.6	40.0	16.4	100.0	٧	31.0	17.3
47.880	30.7	40.0	9.4	100.0	V	0.0	13.5
49.620	32.1	40.0	8.0	100.0	V	225.0	12.2
75.570	21.5	40.0	18.6	105.0	V	162.0	12.2
84.000	24.7	40.0	15.4	100.0	V	140.0	12.8
200.460	22.6	43.5	20.9	100.0	V	39.0	14.6

Table 14: Sample #1. Mode 1. Frequency range: 30 MHz - 1 GHz

4.1.6.7 Sample #1. Mode 1. Frequency range: 1 GHz - 6 GHz

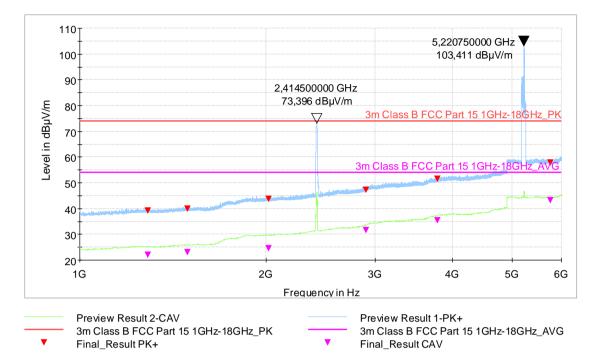
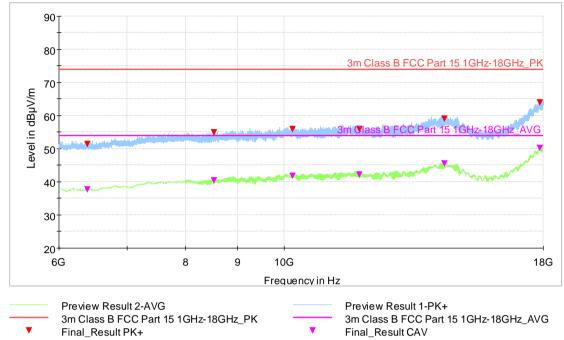


Fig. 11: Sample #1. Mode 1. Frequency range: 1 GHz - 6 GHz

FINAL MEASUREMENTS

Frequency [MHz]	Peak [dBµV/m]	Peak Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]
1290.000	39.3	74.0	34.7	100	Н	161	27.4
1492.250	40.0	74.0	34.0	330	Н	285	27.6
2017.000	43.8	74.0	30.2	100	Н	324	30.6
2903.000	47.3	74.0	26.7	100	V	55	33.1
3787.000	51.6	74.0	22.3	325	Н	88	36.6
5755.500	57.8	74.0	16.2	106	H	0	38.9


Table 15: Sample #1. Mode 1. Frequency range: 1 GHz - 6 GHz - Peak Details

Frequency [MHz]	CAverage [dBµV/m]	CA verage Limit	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]
1290.000	22.0	54.0	32.0	100	Н	161	27.4
1492.250	23.0	54.0	31.0	330	Н	285	27.6
2017.000	24.6	54.0	29.4	100	Н	324	30.6
2903.000	31.5	54.0	22.5	100	V	55	33.1
3787.000	35.4	54.0	18.6	325	Н	88	36.6
5755.500	43.2	54.0	10.8	106	Н	0	38.9

Table 16: Sample #1. Mode 1. Frequency range: 1 GHz – 6 GHz – CAverage Details

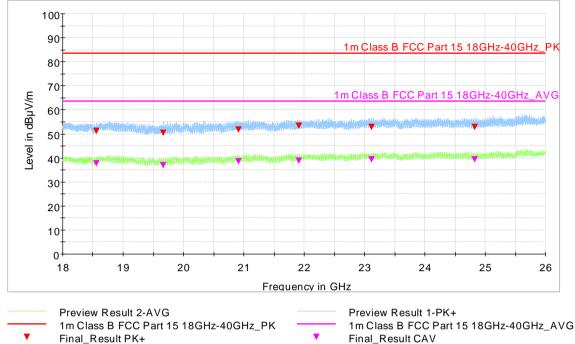
4.1.6.8 Sample #1. Mode 1. Frequency range: 6 GHz - 18 GHz

V

Fig. 12: Sample #1. Mode 1. Frequency range: 6 GHz - 18 GHz

FINAL MEASUREMENTS

Frequency [MHz]	Peak [dBµV/m]	Peak Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]
6401.750	51.4	74.0	22.6	400	V	202	-1.7
8537.250	55.0	74.0	19.0	400	V	267	2.0
10199.000	56.0	74.0	18.0	400	V	267	3.9
11857.000	55.8	74.0	18.2	400	V	283	6.6
14395.000	59.1	74.0	14.9	400	V	350	9.7
17867.750	64.0	74.0	10.0	400	V	338	17.0


Table 17: Sample #1. Mode 1. Frequency range: 6 GHz – 18 GHz – Peak Details

Frequency [MHz]	CAverage [dBµV/m]	CAverage Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]
6401.750	37.7	54.0	16.3	400	V	202	-1.7
8537.250	40.4	54.0	13.6	400	V	267	2.0
10199.000	41.7	54.0	12.3	400	V	267	3.9
11857.000	42.1	54.0	11.9	400	V	283	6.6
14395.000	45.5	54.0	8.5	400	V	350	9.7
17867.750	50.3	54.0	3.7	400	V	338 orago Dotailo	17.0

Table 18: Sample #1. Mode 1. Frequency range: 6 GHz – 18 GHz – CAverage Details

4.1.6.9 Sample #1. Mode 1. Frequency range: 18 GHz - 26 GHz

Final_Result PK+

Fig. 13: Sample #1. Mode 1. Frequency range: 18 GHz - 26 GHz

FINAL MEASUREMENTS

Frequency [MHz]	Peak [dBµV/m]	Peak Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]
21620.000	61.1	83.54	22.4	150	V	0	16.1
22400.000	59.7	83.54	23.8	150	V	222	16.9
23259.500	51.7	83.54	31.8	150	Н	153	17.9
23810.250	62.4	83.54	21.1	150	Н	241	18.0
24832.000	62.9	83.54	20.6	150	V	0	18.0
25760.250	66.0	83.54	17.5	150	Н	66	18.2

Table 19: Sample #1. Mode 1. Frequency range: 18 GHz - 26 GHz - Peak Details

Frequency [MHz]	CAverage [dBµV/m]	CAverage Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]
21620.000	45.6	63.54	18.0	150	V	0	16.1
22400.000	46.8	63.54	16.8	150	V	222	16.9
23259.500	46.9	63.54	16.7	150	Н	153	17.9
23810.250	47.2	63.54	16.4	150	Н	241	18.0
24832.000	48.4	63.54	15.2	150	V	0	18.0
25760.250	51.8	63.54	11.8	150	Н	66	18.2

Table 20: Sample #1. Mode 1. Frequency range: 18 GHz - 26 GHz - CAverage Details

4.1.6.10 Sample #1. Mode 1. Frequency range: 26 GHz - 30 GHz

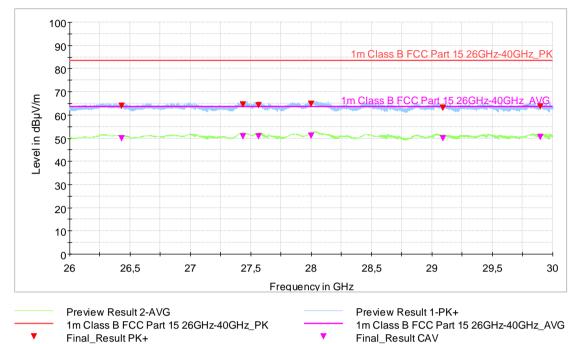


Fig. 14: Sample #1. Mode 1. Frequency range: 26 GHz - 30 GHz

FINAL MEASUREMENTS

Frequency [MHz]	Peak [dBµV/m]	Peak Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]
26430.750	63.8	83.54	19.8	100	Н	0	47.5
27435.750	64.3	83.54	19.3	100	V	0	47.4
27562.000	64.1	83.54	19.5	100	Н	315	47.4
28002.250	64.8	83.54	18.8	100	Н	270	47.5
29092.000	62.9	83.54	20.7	100	Н	270	47.4
29897.500	63.7	83.54	19.9	100	V	0	47.3

Table 21: Sample #1. Mode 1. Frequency range: 26 GHz – 30 GHz – Peak Details

Frequency [MHz]	CAverage [dBµV/m]	CAverage Limit [dBµV/m]	Margin [dB]	Height [cm]	Pol	Azimuth [deg]	Corr. [dB/m]
26430.750	49.7	63.54	13.9	100	Н	0	47.5
27435.750	50.6	63.54	13.0	100	V	0	47.4
27562.000	50.8	63.54	12.8	100	Н	315	47.4
28002.250	51.1	63.54	12.5	100	Н	270	47.5
29092.000	49.9	63.54	13.7	100	Н	270	47.4
29897.500	50.4	63.54	13.2	100	V	0	47.3

Table 22: Sample #1. Mode 1. Frequency range: 26 GHz – 30 GHz – CAverage Details

4.1.7 Test Equipment Used

Equipment	Brand	Model	Applus Ref.	Last Calibration	Next Calibration
BILOG ANTENNA	SCHWARZBECK	VULB 9162	1042740	08/11/2023	08/11/2024
HORN ANTENNA	EMCO	3115	05-ER-017	06/12/2023	06/12/2024
HORN ANTENNA	MVG	EH 1840	1042685	14/04/2022	14/04/2024
RF CABLE	HUBER+SUHNER	SF126E	1042728	21/08/2023	21/08/2024
3 DB ATTENUATOR	HUBER+SUHNER	6803.17.B	1042021	25/05/2023	25/05/2024
RF CABLE	RHODE & SCHWARZ	NA	1041502	09/10/2023	09/10/2024
RF CABLE	HUBER+SUHNER	SF104	1041964	22/06/2023	22/06/2024
HIGHPASS FILTER	WAINWRIGHT INSTRUMENTS	WHNX6-2765- 3500-26500-40CC	1042511	12/05/2023	12/05/2024
RF CABLE	HUBER+SUHNER	SF104/11N/11N	1042585	12/05/2023	12/05/2024
RF AMPLIFIER	BONN ELEKTRONIK	BLMA 0118-M	1041733	12/05/2023	12/05/2024
RF CABLE	HUBER+SUHNER	SF102	1042546	18/05/2023	18/05/2024
RF CABLE	ASTROLAB	32026-29094- 29094-24TC	1041565	16/05/2023	16/05/2024
EMI RECEIVER	R&S	ESW 26	1041791	14/11/2023	14/11/2024
THERMOHIGROMETER	PCE IBERICA	THB 40	1042022	07/11/2023	07/11/2024
TEST SOFTWARE	ROHDE & SCHWARZ	EMC32 v.10.50.00	104624		
MAST-TABLE CONTROLLER	MATURO	NCD	1042758		

Table 23: Test Instruments - Radio-frequency radiated emissions

4.1.8 Uncertainty

Test Type	Test Description	Uncertainty
Emissions	RADIO-FREQUENCY RADIATED EMISSIONS 30 MHz – 1 GHz	± 5.3 dB
Emissions	RADIO-FREQUENCY RADIATED EMISSIONS 1 GHz - 6 GHz	± 5.3 dB
Emissions	RADIO-FREQUENCY RADIATED EMISSIONS 6 GHz - 18 GHz	± 5.5 dB
Emissions	RADIO-FREQUENCY RADIATED EMISSIONS 18 GHz - 26 GHz	± 5.1 dB
Emissions	RADIO-FREQUENCY RADIATED EMISSIONS 26 GHz - 40 GHz	± 5.6 dB

Table 24: Radio-frequency radiated emissions measuring Uncertainties

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by a coverage factor k=2, which for normal distribution corresponds to a coverage probability of approximately 95%.

4.2 POWER LINE CONDUCTED EMISSIONS

4.2.1 Test Setup Required

According to standard ANSI C63.4:2014

4.2.1.1 Tabletop equipment

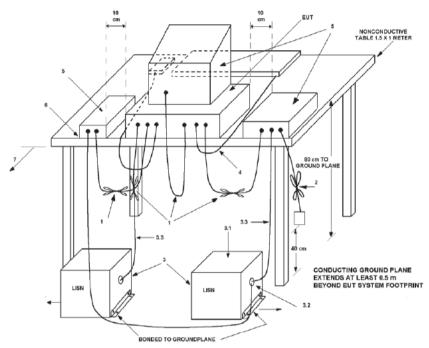


Fig. 15: Power line conducted emissions of table top equipment setup in shielded room

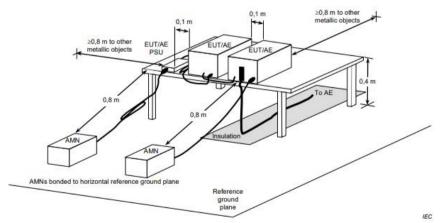


Fig. 16: Power line conducted emissions of table top equipment setup in semi anechoic chamber

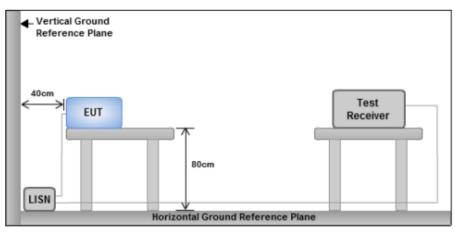


Fig. 17: Power line conducted emissions of table top equipment in shielded room

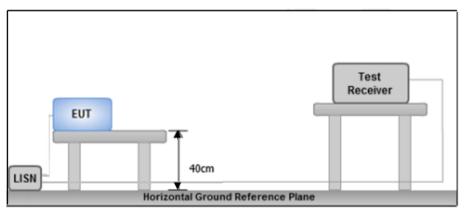


Fig. 18: Power line conducted emissions of table top equipment in in semi anechoic chamber

4.2.2 Test Procedure

The device under test is arranged in table-top or floor-standing position depending on the kind of equipment and keeping the distance from the vertical or horizontal conducting plane located 40 cm to the rear or below of the device, in respective on the test chamber which is evaluated.

The device is connected to line impedance stabilization network (LISN), placed 80 cm far from the device under test and other accessories are connected to other LISN too. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.

AC conducted emission measurements are made over frequency range from 150 kHz to 30 MHz.

Pre-measurement:

- Pre-scan measurement using a peak and average detector is performed in order to show the emissions of the device under test
- Each line of the power cord is evaluated to find the maximum emissions

Final measurement:

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4
- The final measurement is done with quasi-peak and average detector (as described in ANSI C63.4)
- Final levels, frequency, measuring time, bandwidth, correction factors, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is shown

Correction Factor:

Emission Level = Read Level + Corrections (LISN factor + Cable Loss + Attenuator)

4.2.3 Test Parameters

4.2.3.1 Requirements

According to standard ANSI C63.4:2014

The conducted emissions shall not exceed the following levels:

AC main power ports of Class A Equipment's							
Frequency Range [MHz]	Quasi-peak detector (QP) [dBµV]	Average detector (AVG) [dBµV]					
0.15 – 0.5	79	66					
0.5 – 30	73	60					

Table 25: Power line conducted emissions requirements - AC main power ports of Class A equipment's

AC main power ports of Class B Equipment's							
Frequency Range [MHz]	Quasi-peak detector (QP) [dBµV]	Average detector (AVG) [dBμV]					
0.15 – 0.5	66 to 56 ¹	56 to 46 ¹					
0.5 – 5	56	46					
5 – 30	60	50					

Table 26: Power line conducted emissions requirements - AC main power ports of Class B equipment's

Note 1: Decreases with the logarithm of the frequency.

4.2.3.2 Receiver Parameters

According to standard ANSI C63.4:2014

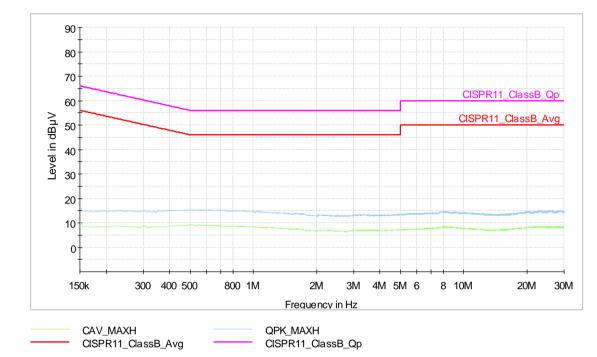
Frequency Range [MHz]	Detector	Resolution Bandwidth [kHz]
0.15 – 30		
0.5 – 5	Peak (PK)	9
5 – 30	Average (AV)	

Table 27: Receiver parameters – Power line conducted emissions

4.2.4 Test Environmental Conditions

Test Date	Technician	Supervisor	Temperature [ºC]	Humid ity [%]	Atm. Pressure [mbar]
08/03/2024	P. Redondo	J. M Nadales	23.1	51	1017.6
	Table 28: Test env	ironmental condition	ons – Power line co	nducted emissions	

Table 26: Test environmental conditions – Power line cond


4.2.5 Summary Test Results

Frequency Range [MHz]	Ports	Equipment Class	Test Area	Results	
0.15 – 30 MHz	AC Mains	В	SR-2	PASS	
	Table 20, Summary to	oct requite - Bower line	and under a series in the		

Table 29: Summary test results – Power line conducted emissions

4.2.6 Test Results

4.2.6.1 Ambient Levels. AC Mains: Neutral. Frequency range: 0.15 MHz – 30 MHz

Fig. 19: Ambient level. AC Mains: Neutral. Frequency range: 0.15 MHz - 30 MHz

4.2.6.2 Ambient Levels. AC Mains: Line 1. Frequency range: 0.15 MHz – 30 MHz

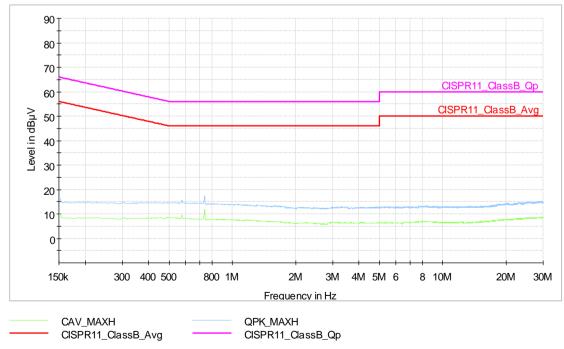


Fig. 20: Ambient level. AC Mains: Line 1. Frequency range: 0.15 MHz - 30 MHz

4.2.6.3 Sample #1. AC Mains: N. Frequency range: 0.15 MHz - 30 MHz

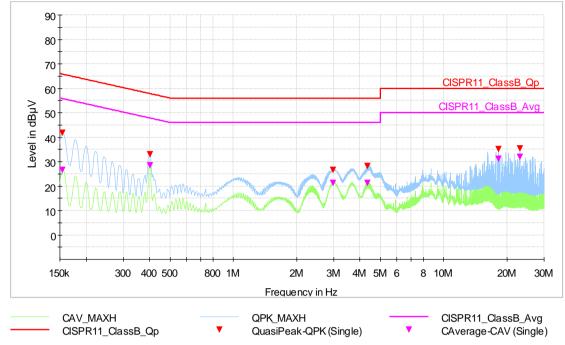


Fig. 21: Sample #1. AC Mains: N. Frequency range: 0.15 MHz - 30 MHz

FINAL MEASUREMENTS

Frequency [MHz]	QuasiPeak [dBµV]	QuasiPeak Limit [dBµV]	Margin [dB]	Line	Corr. [dB]
0.154	41.8	83.8	41.9	N	10.7
0.402	32.8	75.8	43.0	N	10.7
2.987	26.5	74.0	47.5	N	10.9
4.355	28.0	74.0	46.0	Ν	11.0
18.242	35.0	74.0	39.0	N	11.8
23.129	35.2	74.0	38.8	N	12.1

Table 30: Sample	#1. AC Mains:	N	Frequency	range: 0.15	MHz	- 30	MHz -	- QuasiPeak	Details

Frequency [MHz]	CA verage [dBµV]	CAverage Limit [dBµV]	Margin [dB]	Line	Corr. [dB]
0.154	26.6	73.8	47.1	N	10.7
0.402	28.4	65.8	37.5	N	10.7
2.987	21.2	64.0	42.8	N	10.9
4.355	21.3	64.0	42.7	N	11.0
18.242	31.0	64.0	33.0	N	11.8
23.129	31.9	64.0	32.1	N	12.1

Table 9: Sample #1. AC Mains: N. Frequency range: 0.15 MHz - 30 MHz - CAverage Details

4.2.6.4 Sample #1. AC Mains: Line 1. Frequency range: 0.15 MHz – 30 MHz



Fig. 22: Sample #1. AC Mains: Line 1. Frequency range: 0.15 MHz - 30 MHz

FINAL MEASUREMENTS

Frequency [MHz]	QuasiPeak [dBµV]	QuasiPeak Limit [dBµV]	Margin [dB]	Line	Corr. [dB]
0.154	43.0	65.8	22.7	L	10.7
0.399	32.0	57.9	25.8	L	10.7
2.942	25.7	56.0	30.3	L	10.9
4.380	26.4	56.0	29.6	L	11.0
18.242	34.7	60.0	25.3	L	12.1
23.129	34.8	60.0	25.3	L	12.5
	[MHz] 0.154 0.399 2.942 4.380 18.242	[MHz] [dB _µ V] 0.154 43.0 0.399 32.0 2.942 25.7 4.380 26.4 18.242 34.7	[MHz] [dBµV] [dBµV] 0.154 43.0 65.8 0.399 32.0 57.9 2.942 25.7 56.0 4.380 26.4 56.0 18.242 34.7 60.0	[MHz] [dBµV] [dBµV] [dB] 0.154 43.0 65.8 22.7 0.399 32.0 57.9 25.8 2.942 25.7 56.0 30.3 4.380 26.4 56.0 29.6 18.242 34.7 60.0 25.3	[MHz] [dBµV] [dBµV] [dB] Line 0.154 43.0 65.8 22.7 L 0.399 32.0 57.9 25.8 L 2.942 25.7 56.0 30.3 L 4.380 26.4 56.0 29.6 L 18.242 34.7 60.0 25.3 L

Table 31: Sample #1. AC Mai	s: Line. Frequency	range: 0.15 MHz	– 30 MHz – QuasiPeak	Details
-----------------------------	--------------------	-----------------	----------------------	---------

Frequency [MHz]	CA verage [dBµV]	CAverage Limit [dBµV]	Margin [dB]	Line	Corr. [dB]
0.154	29.5	55.8	26.2	L	10.7
0.399	27.5	47.9	20.4	L	10.7
2.942	20.4	46.0	25.6	L	10.9
4.380	19.9	46.0	26.2	L	11.0
18.242	30.5	50.0	19.5	L	12.1
23.129	31.5	50.0	18.5	L	12.5

Table 9: Sample #1. AC Mains: Line. Frequency range: 0.15 MHz - 30 MHz - CAverage Details

4.2.7 Test Equipment Used

Equipment	Brand	Model	Applus Ref.	Last Calibration	Next Calibration
EMI RECEIVER	R&S	ESW26	1042124	15/11/2023	15/11/2024
TRANSIENT LIMITER	R&S	ESH3.Z2	1041267	09/05/2024	09/05/2025
CABLE SR2	HUBER/SUHNER	RG-223	1042154	19/12/2023	19/12/2024
CABLE SR2	HUBER/SUHNER	RG-223	1042155	19/12/2023	19/12/2024
LISN	R&S	ESH3-Z5	05-ER-236	15/03/2024	15/03/2025
TEST SOFTWARE	ROHDE & SCHWARZ	EMC32 v.10.50.00	104624		
SHIELDED ROOM	ALBATROSS	SR-2	1042269		

Table 32: Test Instruments – Power line conducted emissions

4.2.8 Uncertainty

Test Type	Test Description	Uncertainty
Emissions	POWER LINE CONDUCTED EMISSIONS	± 3.4 dB
	Table 33: Radio-frequency radiated emissions measuring Uncertainties	1

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by a coverage factor k=2, which for normal distribution corresponds to a coverage probability of approximately 95%.