

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

TEST REPORT

Report Reference No...... CTA24041700513

FCC ID 2A8ZB-G232

Compiled by

File administrators Zoey Cao (position+printed name+signature)..:

Supervised by

Project Engineer Amy Wen (position+printed name+signature)...

Approved by

RF Manager Eric Wang (position+printed name+signature)..:

Date of issue...... May. 13, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Address Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen Weiwo Intelligent Electronics Co., Ltd

Address Floor 2, building A7, No. 416, Xuegang North Road, Qinghu

community, Longhua street, Longhua District, Shenzhen, China

Test specification:

IEC 62209-2:2010; IEEE 1528:2013; FCC 47 CFR Part 2.1093;

Standard ANSI/IEEE C95.1:2005; Reference FCC KDB 447498; KDB 248227;

KDB 616217; KDB 941225; KDB 865664

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description...... 4G smartwatch

Trade Mark N/A

Manufacturer Shenzhen Weiwo Intelligent Electronics Co., Ltd

Model/Type reference...... G232

Listed Models Refer to page 2

Rating DC 3.85V From battery and DC 5.0V From external circuit

Result PASS

Report No.: CTA24041700513 Page 2 of 123

TEST REPORT

Equipment under Test : 4G smartwatch

Model /Type : G232

Listed Models

CTATESTING

: G130, G131, G132, G133, G134, G135, G136, G137, G138,

G139, G140, G141, G142, G143, G144, G145, G146, G147,

G148, G149, G150, G230, G231, G233, G234, G235, G236,

G237, G238, G239, G240, G241, G242, G243, G245, G246,

G247, G248, G249, G250, G251, G252, G253, G254, G255,

G256, G257, G258, G259, G260

Applicant : Shenzhen Weiwo Intelligent Electronics Co., Ltd

: Floor 2, building A7, No. 416, Xuegang North Road, Qinghu Address

community, Longhua street, Longhua District, Shenzhen, China

Manufacturer : Shenzhen Weiwo Intelligent Electronics Co., Ltd

: Floor 2, building A7, No. 416, Xuegang North Road, Qinghu Address

community, Longhua street, Longhua District, Shenzhen, China

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

	Statem Genera 2.1	ent of Compliance	UT)			7 7 8 8 9 9 10 11 11 11 13
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Statem Genera 2.1	ent of Compliance	UT)			7 7 8 8 9 9 10 11 11 11 13
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	General 2.1 (2.2	General Remarks Description of Equipment Under Test (El Device Category and SAR Limits Applied Standard Fest Facility Environment of Test Site Fest Configuration C Absorption Rate (SAR) Introduction EAR Definition E-Field Probe Data Acquisition Electronics (DAE) Robot Measurement Server Phantom Device Holder	UT)			7 7 8 8 9 9 10 11 11 11 13
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.2 [2.3 [2.4	Description of Equipment Under Test (El Device Category and SAR Limits	UT)			7 8 9 9 10 10 11 12 13
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.3 [2.4 / 2.5] 2.6 E 2.7] Specific 3.1 [3.2 S SAR M 4.1 E 4.2 [4.3 F 4.4 M 4.5 F 4.6 [Device Category and SAR Limits				8 9 9 10 10 11 11 13
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.4	Applied Standard Test Facility Environment of Test Site Test Configuration C Absorption Rate (SAR) Introduction SAR Definition easurement System E-Field Probe Data Acquisition Electronics (DAE) Robot Measurement Server Phantom Device Holder				8 9 9 10 10 11 11 13 13
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.5 T 2.6 E 2.7 T Specific 3.1 I 3.2 S SAR M 4.1 E 4.2 [4.3 F 4.4 M 4.5 F 4.6 [Fest Facility				9 9 10 10 11 11 13
3 3 3 3 4 5 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.6 E 2.7 T Specific 3.1 I 3.2 S SAR M 4.1 E 4.2 [4.3 F 4.4 M	Environment of Test Site				9 10 10 11 11 12 13
3 3 3 4 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.7 TSpecific Specific Specific State M 4.1 E 4.2 E 4.3 F 4.4 M 4.5 F 4.6 E	Test Configuration				9 10 10 11 12 13
3 \$ 3 4 \$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Specific 33.1 1 33.2 5 5 5 5 5 6 6 6 6 6	c Absorption Rate (SAR) ntroduction SAR Definition easurement System E-Field Probe Data Acquisition Electronics (DAE) Robot Measurement Server Phantom Device Holder				10 10 11 11 13 13
4 \$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33.1 I 33.2 S SAR M 4.1 E 4.2 [4.3 F 4.4.4 M 4.5 F	ntroduction SAR Definition easurement System E-Field Probe Data Acquisition Electronics (DAE) Robot Measurement Server Phantom Device Holder				10 11 11 12 13
4 \$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.2 SSAR M 4.1 E 4.2 [4.3 F 4.4.4 M 4.5 F	SAR Definition				10 11 12 13
4 \$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SAR M 4.1 E 4.2 [4.3 F 4.4 M 4.5 F 4.6 [easurement System				11 11 12 13
	4.1 E 4.2 C 4.3 F 4.4 M 4.5 F	E-Field Probe				11 12 13 13
	4.2	Data Acquisition Electronics (DAE) Robot Measurement Server Phantom Device Holder				12 13 13
	4.3 F 4.4 N 4.5 F 4.6 E	Robot Measurement Server Phantom Device Holder				13 13
2	4.4 N 4.5 F 4.6 [Measurement Server Phantom Device Holder				13
	4.5 F 4.6 [Phantom Device Holder				
	4.6 E	Device Holder				11
		Data Storage and Evaluation				
5	Test Ed	quipment List			63	18
6	Tissue	Simulating Liquids		C		19
7 5	System	Verification Procedures		C.		21
8 E	EUT Te	esting Position				23
3/17	8.1 F	ront-of-face and Limbs				23
9 N		rement Procedures				
ç	9.1	Spatial Peak SAR Evaluation				24
ç		Power Reference Measurement				
9	9.3 <i>A</i>	Area Scan Procedures				25
ç	9.4 2	Zoom Scan Procedures	A			25
g	9.5 \	Volume Scan Procedures			(ES)	27
ç	9.6 F	Power Drift Monitoring			CTP	27
10	TEST (CONDITIONS AND RESULTS				28
1	10.1	Conducted Power				28
1	10.2	SAR Test Exclusion and Estimated SAR				48
1	10.3	SAR Test Results Summary				49
contid	10.4	SAR Measurement Variability	TING			54
		Simultaneous Transmission Analysis				
		rement Uncertainty				
	endix A		Photos			E 0
	endix B		<	(E1)	0	50

Report No.: CTA24041700513	Page 4 of 123
Appendix C. Plots of SAR Test Data	65
Appendix D. DASY System Calibration Certificate	76
Appendix D. DASY System Calibration Certificate	CTA TESTING
ESTING	
GTA CTATESTING	TESTING CTATESTING
CTATESTING CTATESTING	CTATESTING
ESTING CTATESTING	
	TEST. CTATESTING
CTATESTING CTATESTING	CTATESTING CTATESTING
	CIA CTA

Page 5 of 123 Report No.: CTA24041700513

Version

	ESTING	Version		
	Version No.	Date	Description	
	R00	May. 13, 2024	Original	
		9	CTATES	
		(c)		CTA
, NG				CV
ATESTIN		. C.		
	TES	STAR		
	CTA.	-EST	MG	
		CTATEST		

CTA TESTING

Report No.: CTA24041700513 Page 6 of 123

1 Statement of Compliance

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

<Highest SAR Summary>

Frequency Band	North to month OAD		
	Next to mouth SAR _{1g}	Wrist-Worn SAR _{10g}	Reported SAR
	(W/Kg) (10mm)	(W/Kg) (0mm)	(W/Kg)
GSM850	0.095	0.521	- 1
PCS1900	0.203	1.616	ESTIN
WCDMA Band II	0.280	1.833	CTATL
WCDMA Band V	0.241	1.603	Next to mouth:
LTE Band 2	0.203	1.415	0.435
LTE Band 4	0.180	1.180	
LTE Band 5	0.204	1.287	Wrist-Worn:
LTE Band 7	0.340	1.142	2.054
LTE Band 17	0.184	1.088	JG
LTE Band 41/ LTE Band 38	0.147	1.679	
WLAN2.4G	0.095	0.221	
SAR Test Limit (W/Kg)	Next to mouth:	W/Kg	
Test Result		PASS	
UNG			To your testing
Llia			
	PCS1900 WCDMA Band II WCDMA Band V LTE Band 2 LTE Band 4 LTE Band 5 LTE Band 7 LTE Band 17 LTE Band 41/ LTE Band 38 WLAN2.4G SAR Test Limit (W/Kg) Test Result	PCS1900 0.203 WCDMA Band II 0.280 WCDMA Band V 0.241 LTE Band 2 0.203 LTE Band 4 0.180 LTE Band 5 0.204 LTE Band 7 0.340 LTE Band 17 0.184 LTE Band 41/ LTE Band 38 0.147 WLAN2.4G 0.095 SAR Test Limit (W/Kg) Next to mouth: Test Result	PCS1900 0.203 1.616 WCDMA Band II 0.280 1.833 WCDMA Band V 0.241 1.603 LTE Band 2 0.203 1.415 LTE Band 4 0.180 1.180 LTE Band 5 0.204 1.287 LTE Band 7 0.340 1.142 LTE Band 17 0.184 1.088 LTE Band 41/ LTE Band 38 0.147 1.679 WLAN2.4G 0.095 0.221 SAR Test Limit (W/Kg) Next to mouth:1.60W/Kg Wrist-Worn: 4 Test Result PASS

Report No.: CTA24041700513 Page 7 of 123

General Information

2.1 General Remarks

2.1 General Remarks				
Date of receipt of test sample		April 17, 2024		
				TES
Testing commenced on		April 21, 2024	and a	
			The Designation of the Parket	
Testing concluded on	:	April 28, 2024		

2.2 Description of Equipment Under Test (EUT)

Product Name:	4G smartwatch	
Model/Type reference:	G232	
Power supply:	DC 3.85V From battery and DC 5.0V From external circuit	
Testing completing	CTA240417005-1# (Engineer sample)	N
Testing sample ID:	CTA240417005-2# (Normal sample)	
Hardware version:	C16_V1.5	
Software version:	G232_32_EN_V2.5_20240403	
	SRD:	
	BT:2402~2480MHz	
	2.4G WIFI: 2412~2462MHz	
	GSM:	
	GSM: GSM850 TX: 824.2~848.8MHz PCS1900 TX: 1850.2~1909.8MHz WCDMA: Band 2: TX: 1852.4~1907.6MHz	
	PCS1900 TX: 1850.2~1909.8MHz	
	WCDMA:	
	Band 2: TX: 1852.4~1907.6MHz	- (
Tx Frequency:	Band 5: TX: 826.40~846.60MHz	
2	LTE:	
	FDD Band 2: TX: 1850~1910MHz	
	FDD Band 4: TX: 1710~1755MHz	
	FDD Band 5: TX: 824~849MHz	
	FDD Band 7: TX: 2500~2570MHz	
	FDD Band 17 TX: 704~716MHz	110
	TDD Band 38: TX: 2570~2620 MHz	
	FDD Band 17 TX: 704~716MHz TDD Band 38: TX: 2570~2620 MHz TDD Band 41: TX: 2535-2655MHz	
	BT: GFSK, Π/4DQPSK, 8DPSK	
	2.4G WIFI: BPSK, QPSK,16QAM,64QAM	
Type of Modulation:	GSM: GMSK	
	WCDMA: QPSK,16QAM	
	LTE: QPSK,16QAM	
Category of device:	Portable device	
Remark:		

Remark:

CTATESTING

The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Report No.: CTA24041700513 Page 8 of 123

2.3 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.4 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093:2013)
- ANSI/IEEE C95.1:2005
- IEEE Std 1528:2013
- KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- KDB 865664 D02 RF Exposure Reporting v01r02
- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02
- KDB 941225 D01 3G SAR Procedures v03r01
- KDB 648474 D04 Handset SAR v01r03

Report No.: CTA24041700513 Page 9 of 123

2.5 Test Facility

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

2.6 Environment of Test Site

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65

2.7 Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal.

Page 10 of 123 Report No.: CTA24041700513

Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density CTATESTING (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

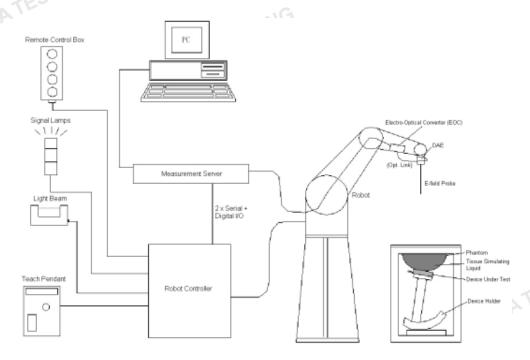
SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However, for evaluating SAR of low power transmitter, electrical field measurement is typically CTATES applied.

Page 11 of 123 Report No.: CTA24041700513

SAR Measurement System

DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- CTATESTING A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
 - A probe alignment unit which improves the accuracy of the probe positioning
 - A computer operating Windows XP
 - DASY software
 - Remove control with teach pendant and additional circuitry for robot safety such as warming CTATE! lamps, etc.
 - The SAM twin phantom
 - A device holder
 - Tissue simulating liquid
 - Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

4.1 **E-Field Probe**

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface

Report No.: CTA24041700513 Page 12 of 123

detection system to prevent from collision with phantom.

E-Field Probe Specification <EX3DV4 Probe>

Construction	Symmetrical design with triangular core		
	Built-in shielding against static charges		
	PEEK enclosure material (resistant to	C	
	organic solvents, e.g., DGBE)		
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB		
Directivity	± 0.3 dB in HSL (rotation around probe		
	axis)		
	± 0.5 dB in tissue material (rotation		
	normal to probe axis)	ΔG	
Dynamic Range	10 μW/g to 100 W/kg; Linearity: ± 0.2		
	dB (noise: typically< 1 μW/g)		
Dimensions	Overall length: 330 mm (Tip: 20 mm)		Pho
	Tip diameter: 2.5 mm (Body: 12 mm)		
	Typical distance from probe tip to dipole		
	centers: 1 mm		

E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ± 10%. The spherical isotropy shall be evaluated and within ± 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Photo of DAE

Report No.: CTA24041700513 Page 13 of 123

4.3 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controllersystem, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäublirobot series have many features that are important for our application: CTATES

- ➤ High precision (repeatability ±0.035 mm)
- > High reliability (industrial design)
- Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

4.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

Report No.: CTA24041700513 Page 14 of 123

4.5 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm		
Filling Volume	Approx. 25 liters		CTATES
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet		
Measurement Areas	Left Hand, Right Hand, Flat Phantom	Photo of SAM Phantom	

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis:400 mm	Photo of ELI4 Phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

4.6 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point

STING

Report No.: CTA24041700513 Page 15 of 123

(ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

4.7 Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Report No.: CTA24041700513 Page 16 of 123

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

Conversion factor ConvF_i
 Diode compression point dcp_i

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

$$\text{E-field Probes: } E_i = \sqrt{\frac{v_i}{{}^{Norm_i \cdot ConvF}}}$$

H-field Probes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i,(i= x, y, z)

Norm_i= sensor sensitivity of channel i, (i= x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF= sensitivity enhancement in solution

a_{ii}= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i= electric field strength of channel iin V/m

H_i= magnetic field strength of channel iin A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

Report No.: CTA24041700513 Page 17 of 123

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$
 fic absorption rate in W/kg ength in V/m

with SAR = local specific absorption rate in W/kg

E_{tot}= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density CTA TESTING of the tissue simulating liquid.

Report No.: CTA24041700513 Page 18 of 123

5 Test Equipment List

Manufactures	Name of Environment	Tours /Marshall	Carial Namelan	Calibration		
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	750MHz System Validation Kit	D750V3	1194	Feb. 17,2023	Feb. 16,2026	
SPEAG	835MHz System Validation Kit	D835V2	484	Aug. 25,2023	Aug. 24,2026	
SPEAG	1800MHz System Validation Kit	D1800V2	2d158	Dec. 17,2021	Dec. 16,2024	
SPEAG	1900MHz System Validation Kit	D1900V2	5d002	Aug. 25,2023	Aug. 24,2026	
SPEAG	2450MHz System Validation Kit	D2450V2	745	Aug. 28,2023	Aug. 27,2026	
SPEAG	2600MHz System Validation Kit	D2600V2	1073	Feb. 17,2023	Feb. 16,2026	
Rohde & Schwarz	UNIVERSAL RADIO COMMUNICATION TESTER	CMW500	1201.0002K50- 104209-JC	Nov.05, 2023	Nov.04, 2024	
SPEAG	Data Acquisition Electronics	DAE3	428	Aug.30,2023	Aug.29,2024	
SPEAG	Dosimetric E-Field Probe	EX3DV4	7380	June 21,2023	June 20,2024	
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Oct.25, 2023	Oct.24, 2024	
SPEAG	DAK	DAK-3.5	1226	NCR	NCR	
SPEAG	SAM Twin Phantom	QD000P40CD	1802	NCR	NCR	
SPEAG	ELI Phantom	QDOVA004AA	2058	NCR	NCR	
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR	
Agilent	Power Meter	N1914A	MY50001102	Oct.25, 2023	Oct.24, 2024	
Agilent	Power Sensor	N8481H	MY51240001	Oct.25, 2023	Oct.24, 2024	
R&S	Spectrum Analyzer	N9020A	MY51170037	Oct.25, 2023	Oct.24, 2024	
Agilent	Signal Generation	N5182A	MY48180656	Oct.25, 2023	Oct.24, 2024	
Worken	Directional Coupler	0110A05601O-10	COM5BNW1A2	Oct.25, 2023	Oct.24, 2024	

Note:

- 1. The calibration certificate of DASY can be referred to appendix D of this report.
- 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- 5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

Report No.: CTA24041700513 Page 19 of 123

6 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

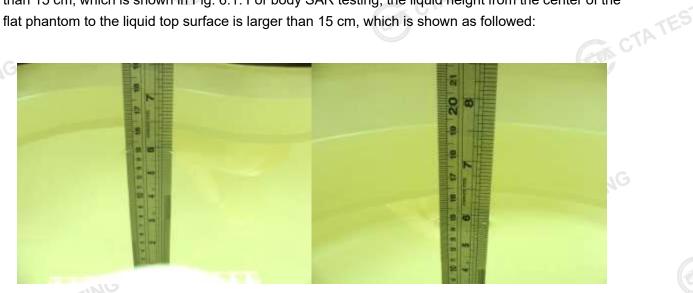


Photo of Liquid Height for Head SAR

Photo of Liquid Height for Body SAR

The following table gives the recipes for tissue simulating liquid.

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(εr)
				For Hea	ıd			
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
1800,1900,2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	3 0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0
				For Boo	ly			
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1800,1900,2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7
2600	65.5	0	0	0	0	31.5	2.16	52.5
CTATESTIN			CTATEST					

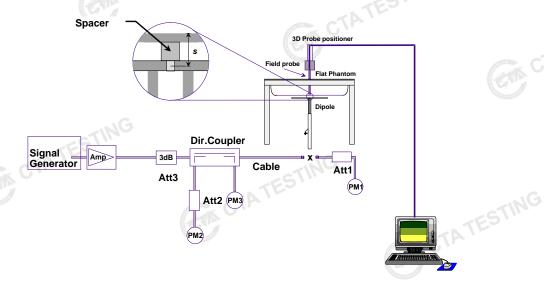
Report No.: CTA24041700513 Page 20 of 123

The following table shows the measuring results for simulating liquid.

		-1810				<u> </u>				_
	Measured	Target	Tissue		Measure	ed Tissue		Liquid		
	Frequency (MHz)	εr	σ	εr	Dev. (%)	σ	Dev. (%)	Liquid Temp.	Test Data	
Ì	750	41.9	0.89	41.209	-1.65%	0.909	2.14%	22.4	04/21/2024	
	835	41.5	0.90	41.068	-1.04%	0.883	-1.88%	22.8	04/22/2024	-55
	1750	40.1	1.37	38.981	-2.79%	1.369	-0.09%	22.3	04/23/2024	CTATES
	1900	40.0	1.40	39.944	-0.14%	1.398	-0.12%	22.5	04/24/2024	
CTATES	2450	39.2	1.80	38.087	-2.84%	1.833	1.84%	22.7	04/28/2024	
	2600	39.0	1.96	37.935	-2.73%	1.919	-2.08%	22.4	04/25/2024	
		C.M.			Cin C	ATES	Ulla		TATESTIN	G
									211	

Report No.: CTA24041700513 Page 21 of 123

7 System Verification Procedures


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

> System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

System Setup for System Evaluation

ESTING

Report No.: CTA24041700513 Page 22 of 123

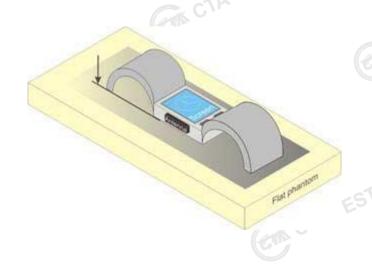
Photo of Dipole Setup

Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix B of this report.

(-	Date	Frequency (MHz)	Power fed onto reference dipole (mW)	Targeted SAR 1g (W/kg)	Measured SAR1g (W/kg)	Normalized SAR (W/kg)	Deviation (%)	
	04/21/2024	750	250	8.57	2.20	8.81	2.80%	
	04/22/2024	835	250	9.68	2.51	10.04	3.72%	TATES
	04/23/2024	1750	250	39.2	9.34	37.36	-4.69%	SIL
.0	04/24/2024	1900	250	40.1	10.53	42.10	4.99%	
CTATES	04/28/2024	2450	250	52.7	13.56	54.22	2.88%	
CA	04/25/2024	2600	250	56.8	14.33	57.32	0.92%	

Date	Frequency (MHz)	Power fed onto reference dipole (mW)	Targeted SAR 10g (W/kg)	Measured SAR10g (W/kg)	Normalized SAR (W/kg)	Deviation (%)
04/21/2024	750	250	5.61	1.44	5.77	2.85%
04/22/2024	835	250	6.24	1.59	6.36	1.92%
04/23/2024	1750	250	20.1	4.80	19.18	-4.58%
04/24/2024	1900	250	20.8	5.33	21.32	2.50%
04/28/2024	2450	250	24.5	6.26	25.02	2.12%
04/25/2024	2600	250	25.5	6.15	24.58	-3.61%
ING				GW CI		(ETF)


ESTING

Report No.: CTA24041700513 Page 23 of 123

8 EUT Testing Position

8.1 Front-of-face and Limbs

Transmitters that are built-in within a wrist watch or similar wrist-worn devices typically operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. Next to the mouth exposure requires 1-g SAR and the wrist-worn condition requires 10-g extremity SAR. The 10-g extremity and 1-g SAR test exclusions may be applied to the wrist and face exposure conditions. When SAR evaluation is required, next to the mouth use is evaluated with the front of the device positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium. The wrist bands should be strapped together to represent normal use conditions. SAR for wrist exposure is evaluated with the back of the device positioned in direct contact against a flat phantom filled with body tissue-equivalent medium. The wrist bands should be unstrapped and touching the phantom.

CTA TESTING

CTA TESTING

CTA TESTING

Report No.: CTA24041700513 Page 24 of 123

Measurement Procedures 9

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- Measure SAR transmitting at the middle channel for all applicable exposure positions. (f)
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels at the worst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average CTATE! SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller

Page 25 of 123 Report No.: CTA24041700513

than the distance of sensor calibration points to probe tip as defined in the probe properties.

Area Scan Procedures 9.3

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz: } \le 12 \text{ mm}$ $4 - 6 \text{ GHz: } \le 10 \text{ mm}$
Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$	When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be ≤ the corresponding device with at least one
Zoom Scan Procedures	(CO)	CACT

Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 CTATES. GHz.

Report No.: CTA24041700513 Page 26 of 123

			≤3 GHz	> 3 GHz	
Maximum distance fro (geometric center of pr		measurement point ors) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle surface normal at the r			30° ± 1°	20° ± 1°	
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan sp	patial reso	lution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orientat above, the measurement rescorresponding x or y dimen at least one measurement po	ion, is smaller than the colution must be ≤ the sion of the test device with	CTA
Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$	
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$	3
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz}$: $\leq 3 \text{ mm}$ $4 - 5 \text{ GHz}$: $\leq 2.5 \text{ mm}$ $5 - 6 \text{ GHz}$: $\leq 2 \text{ mm}$	
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoo}$	_{om} (n-1) mm	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	
1528-2013 for de	etails.		al incidence to the tissue mediant the area scan based 1-g S.		TA

When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is $\leq 1.4 \text{ W/kg}, \leq 8 \text{ mm}, \leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. CTATES

Report No.: CTA24041700513 Page 27 of 123

9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Report No.: CTA24041700513 Page 28 of 123

10 TEST CONDITIONS AND RESULTS

10.1 Conducted Power

<GSM Conducted power>

GSM Conducted power>	To the	TATES			_0	TING	
Band GSM850	В	urst Averaç	je Power (dE	3m)	Frame-A	verage Pow	er (dBm)
TX Channel	Tune-up	128	190	251	128	190	251
Frequency (MHz)	(dBm)	824.2	836.6	848.8	824.2	836.6	848.6
GSM	33.00	32.31	32.35	32.62	23.28	23.32	23.59
GPRS (GMSK, 1 Tx slot)	33.00	32.54	32.63	32.56	23.51	23.60	23.53
GPRS (GMSK, 2 Tx slots)	30.00	29.48	29.58	28.82	23.46	23.56	22.80
GPRS (GMSK, 3 Tx slots)	28.00	27.24	26.91	27.64	22.98	22.65	23.38
GPRS (GMSK, 4 Tx slots)	27.00	26.68	25.75	26.77	23.67	22.74	23.76
Band PCS1900	В	urst Averaç	je Power (dE	3m)	Frame-A	verage Pow	er (dBm)
TX Channel	Tune-up	512	661	810	512	661	810
Frequency (MHz)	(dBm)	1850.2	1880.0	1909.8	1850.2	1880.0	1909.8
GSM	31.00	30.65	29.87	29.82	21.62	20.84	20.79
GPRS (GMSK, 1 Tx slot)	31.00	30.55	30.21	29.81	21.52	21.18	20.78
GPRS (GMSK, 2 Tx slots)	28.00	27.24	27.27	26.75	21.22	21.25	20.73
GPRS (GMSK, 3 Tx slots)	26.00	25.83	25.52	25.78	21.57	21.26	21.52
GPRS (GMSK, 4 Tx slots)	25.00	24.31	23.99	23.87	21.30	20.98	20.86

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9.03 dB

Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6.02 dB

Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB

Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3.01 dB

Note:

- Per KDB 447498 D01, the maximum output power channel is used for SAR testing and for further SAR test reduction
- 2. For Data mode SAR testing, GPRS should be evaluated, therefore the EUT was set in corresponding TX slots due to its highest frame-average power.

Report No.: CTA24041700513 Page 29 of 123

<WCDMA Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings is illustrated below:

HSDPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements. b.
- A call was established between EUT and Base Station with following setting:
 - Set Gain Factors (βc and βd) and parameters were set according to each
 - Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121 ii.
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK) ٧.
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - Set CQI Repetition Factor to 2 Χ.
 - Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βο	βd	βd (SF)	βс/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
	(Note 4)	(Note 4)		(Note 4)			
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

- Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_{c} .
- For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Note 2: Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle_{ACK} and \triangle_{NACK} = 30/15 with β_{hs} = 30/15 * β_c , and \triangle_{CQI} = 24/15 with $\beta_{hs} = 24/15 * \beta_c$.
- CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-Note 3: DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- CTA ESTING For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is Note 4: achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and β_d

Setup Configuration

Report No.: CTA24041700513 Page 30 of 123

HSUPA Setup Configuration:

The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.

- b. The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting *:
 - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific CTATES sub-test in the following table, C11.1.3, quoted from the TS 34.121
 - iii. Set Cell Power = -86 dBm
 - iv. Set Channel Type = 12.2k + HSPA
 - v. Set UE Target Power
 - vi. Power Ctrl Mode= Alternating bits
 - vii. Set and observe the E-TFCI
 - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βα	βa	β _d (SF)	βε/βα	βнs (Note1)	βес	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: $\Delta_{\rm ACK}, \Delta_{\rm NACK}$ and $\Delta_{\rm CQI}$ = 30/15 with $~\beta_{hs}$ = 30/15 * β_c .

CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH Note 2: and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.

In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to Note 5: TS25,306 Table 5.1g.

Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value. CTATES

Setup Configuration CTATESTING

Report No.: CTA24041700513 Page 31 of 123

<WCDMA Conducted Power>

	WCDMA		Band I	l (dBm)			Band V	/ (dBm)	
(.	TX Channel	Tune-up	9262	9400	9538	Tune-up	4132	4183	4233
	Frequency (MHz)	limit (dBm)	1852.4	1880.0	1907.6	limit (dBm)	826.4	836.6	846.6
	RMC 12.2Kbps	24.00	22.85	23.60	22.78	24.00	23.54	23.61	23.35
	RMC AMR	24.00	23.09	23.53	23.27	24.00	23.12	23.78	22.70
	HSDPA Subtest-1	23.00	22.16	22.39	22.33	23.00	22.39	22.27	22.13
	HSDPA Subtest-2	22.00	21.43	21.44	20.71	22.00	21.16	21.58	21.12
CTATES	HSDPA Subtest-3	22.00	21.46	21.05	21.76	22.00	21.79	21.59	21.20
	HSDPA Subtest-4	21.00	20.78	20.37	20.78	21.00	20.11	20.34	19.91
	HSUPA Subtest-1	23.00	22.29	22.29	21.95	23.00	21.89	22.44	22.48
	HSUPA Subtest-2	22.00	21.59	21.80	21.71	22.00	20.85	21.39	20.81
	HSUPA Subtest-3	22.00	21.29	21.19	21.35	22.00	21.59	21.01	21.62
	HSUPA Subtest-4	21.00	19.81	20.73	19.91	21.00	20.59	19.74	20.49
Ca	HSUPA Subtest-5	21.50	20.59	20.24	19.98	21.50	20.30	20.33	20.57

General Note

- 1. Per KDB 941225 D01 v02, RMC 12.2kbps setting is used to evaluate SAR as primary mode. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.
- It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

<LTE Conducted Power>

	1		L	TE Band 2			1
BW				Cha	nnel/Frequency(M	1Hz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	18700	18900	19100	(dBm)
				1860	1880	1900	
20	QPSK	1	0	23.60	23.70	23.67	
20	QPSK	1	49	23.39	23.80	23.69	24
20	QPSK	1	99	23.34	23.62	23.68	(-11×
20	QPSK	50	0	22.33	22.36	22.33	22 1045
20	QPSK	50	24	22.20	22.10	22.05	23
20	QPSK	50	50	22.08	22.25	22.35	
20	QPSK	100	0	22.40	22.38	22.21	23
20	16QAM	1	0	22.01	22.10	22.13	
20	16QAM	1	49	22.26	22.11	22.38	23
20	16QAM	1	99	22.39	22.45	22.04	TATES
20	16QAM	50	0	21.40	21.44	21.47	7,
20	16QAM	50	24	21.51	21.48	21.25	22
20	16QAM	50	50	21.40	21.40	21.42	
20	16QAM	100	0	21.48	21.23	21.41	22
				Cha	nnel/Frequency(M	1Hz)	
l BW						•	Tune-up limit
BW (MHz)	Modulation	RB Size	RB Offset	18675	18900	19125	Tune-up limit (dBm)
BW (MHz)	Modulation	RB Size	RB Offset	18675 1857.5	18900 1880		Tune-up limit (dBm)
	Modulation QPSK	RB Size	RB Offset		+	19125	_
(MHz)				1857.5	1880	19125 1902.5	_
(MHz)	QPSK	1	0	1857.5 23.39	1880 23.84	19125 1902.5 23.03	(dBm)
(MHz) 15 15 15	QPSK QPSK	1	0 37	1857.5 23.39 23.66	1880 23.84 23.93	19125 1902.5 23.03 23.63	(dBm)
(MHz) 15 15 15	QPSK QPSK QPSK	1 1 1	0 37 74	1857.5 23.39 23.66 23.33	1880 23.84 23.93 23.64	19125 1902.5 23.03 23.63 23.15	(dBm)
(MHz) 15 15 15	QPSK QPSK QPSK QPSK	1 1 1 36	0 37 74 0	1857.5 23.39 23.66 23.33 22.42	1880 23.84 23.93 23.64 22.26	19125 1902.5 23.03 23.63 23.15 22.33	(dBm)
(MHz) 15 15 15 15	QPSK QPSK QPSK QPSK QPSK	1 1 1 36 36	0 37 74 0 20	1857.5 23.39 23.66 23.33 22.42 22.26	1880 23.84 23.93 23.64 22.26 22.16	19125 1902.5 23.03 23.63 23.15 22.33 22.13	(dBm)
(MHz) 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK	1 1 1 36 36 36	0 37 74 0 20 39	1857.5 23.39 23.66 23.33 22.42 22.26 22.06	1880 23.84 23.93 23.64 22.26 22.16 22.10	19125 1902.5 23.03 23.63 23.15 22.33 22.13 22.43	(dBm) 24 23
(MHz) 15 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 1 1 36 36 36 36	0 37 74 0 20 39	1857.5 23.39 23.66 23.33 22.42 22.26 22.06 22.17	1880 23.84 23.93 23.64 22.26 22.16 22.10 22.39	19125 1902.5 23.03 23.63 23.15 22.33 22.13 22.43 22.06	(dBm) 24 23 23
(MHz) 15 15 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 1 1 36 36 36 75 1	0 37 74 0 20 39 0	1857.5 23.39 23.66 23.33 22.42 22.26 22.06 22.17 22.20	1880 23.84 23.93 23.64 22.26 22.16 22.10 22.39 22.11	19125 1902.5 23.03 23.63 23.15 22.33 22.13 22.43 22.06 22.22	(dBm) 24 23
(MHz) 15 15 15 15 15 15 15 15 15 1	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 1 1 36 36 36 75 1	0 37 74 0 20 39 0 0 37	1857.5 23.39 23.66 23.33 22.42 22.26 22.06 22.17 22.20 22.41	1880 23.84 23.93 23.64 22.26 22.16 22.10 22.39 22.11 22.07	19125 1902.5 23.03 23.63 23.15 22.33 22.13 22.43 22.06 22.22 22.14	(dBm) 24 23 23
15 15 15 15 15 15 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM	1 1 1 36 36 36 75 1 1	0 37 74 0 20 39 0 0 37 74	1857.5 23.39 23.66 23.33 22.42 22.26 22.06 22.17 22.20 22.41 22.23	1880 23.84 23.93 23.64 22.26 22.16 22.10 22.39 22.11 22.07 22.42	19125 1902.5 23.03 23.63 23.15 22.33 22.13 22.43 22.06 22.22 22.14 22.12	(dBm) 24 23 23
(MHz) 15 15 15 15 15 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM	1 1 1 36 36 36 75 1 1 1 36	0 37 74 0 20 39 0 0 0 37 74	1857.5 23.39 23.66 23.33 22.42 22.26 22.06 22.17 22.20 22.41 22.23 21.17	1880 23.84 23.93 23.64 22.26 22.16 22.10 22.39 22.11 22.07 22.42 21.35	19125 1902.5 23.03 23.63 23.15 22.33 22.13 22.43 22.06 22.22 22.14 22.12 21.40	24 23 23 23

BW				Cha	nnel/Frequency(N	ИHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	18650	18900	19150	(dBm)
()				1855	1880	1905	(,
10	QPSK	1	0	23.92	23.55	23.14	
10	QPSK	1	25	23.10	23.74	23.21	24
10	QPSK	1	49	23.81	23.91	23.87	
10	QPSK	25	0	22.04	22.14	22.35	
10	QPSK	25	12	22.12	22.08	22.06	23
10	QPSK	25	25	22.22	22.27	22.24	
10	QPSK	50	0	22.37	22.39	22.35	23
10	16QAM	1	0	22.07	22.43	22.45	
10	16QAM	1	25	22.04	22.31	22.34	23
10	16QAM	1	49	22.31	22.19	22.37	
10	16QAM	25	0	21.49	21.40	21.30	CTI
10	16QAM	25	12	21.40	21.52	21.48	22
10	16QAM	25	25	21.51	21.43	21.39	
10	16QAM	50	0	21.46	21.42	21.21	22
BW				Cha	nnel/Frequency(N	ИНz)	Tune-up limi
(MHz)	Modulation	RB Size	RB Offset	18625	18900	19175	(dBm)
				1852.5	1880	1907.5	, ,
5	QPSK	1	0	23.64	23.51	23.53	
5	QPSK	1	12	23.14	23.15	23.37	24
	QPSK	1	24	23.35	23.08	23.67	
5					00.00	22.17	
5	QPSK	12	0	22.05	22.38	22.17	
		12 12	7	22.05	22.45	22.17	23
5 5	QPSK						23
5 5	QPSK QPSK	12	7	22.32	22.45	22.04	23
5 5	QPSK QPSK QPSK	12 12	7 13	22.32 22.36	22.45 22.12	22.04 22.06	CA
5 5 5	QPSK QPSK QPSK QPSK	12 12 25	7 13 0	22.32 22.36 22.11	22.45 22.12 22.24	22.04 22.06 22.16	CA
5 5 5 5 5	QPSK QPSK QPSK QPSK 16QAM	12 12 25 1	7 13 0 0	22.32 22.36 22.11 22.20	22.45 22.12 22.24 22.27	22.04 22.06 22.16 22.24	23
5 5 5 5 5 5	QPSK QPSK QPSK QPSK 16QAM	12 12 25 1	7 13 0 0 12	22.32 22.36 22.11 22.20 22.14	22.45 22.12 22.24 22.27 22.03	22.04 22.06 22.16 22.24 22.05	23
5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK 16QAM 16QAM	12 12 25 1 1	7 13 0 0 12 24	22.32 22.36 22.11 22.20 22.14 22.26	22.45 22.12 22.24 22.27 22.03 22.19	22.04 22.06 22.16 22.24 22.05 22.43	23
5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	12 12 25 1 1 1 1	7 13 0 0 12 24 0	22.32 22.36 22.11 22.20 22.14 22.26 21.45	22.45 22.12 22.24 22.27 22.03 22.19 21.38	22.04 22.06 22.16 22.24 22.05 22.43 21.40	23

STING

BW				Cha	nnel/Frequency(N	ИHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	18615	18900	19185	(dBm)
(-	1851.5	1880	1908.5	(32)
3	QPSK	1	0	23.47	23.58	23.12	
3	QPSK	1	8	23.79	23.78	23.22	24
3	QPSK	1	14	23.89	23.84	23.95	
3	QPSK	8	0	22.28	22.43	22.42	23
3	QPSK	8	4	22.30	22.09	22.31	(21)
3	QPSK	8	7	22.43	22.24	22.43	
3 3	QPSK	15	0	22.07	22.15	22.40	23
3	16QAM	1	0	22.10	22.02	22.06	
3	16QAM	1	8	22.38	22.24	22.10	23
3	16QAM	1	14	22.19	22.39	22.20	
3	16QAM	8	0	21.30	21.28	21.18	CTI
3	16QAM	8	4	21.16	21.29	21.44	22
3	16QAM	8	7	21.20	21.42	21.31	
3	16QAM	15	0	21.42	21.49	21.30	22
BW				Cha	nnel/Frequency(N	ИНz)	Tune-up limi
(MHz)	Modulation	RB Size	RB Offset	18607	18900	19193	(dBm)
				1850.7	1880	1909.3	` ,
1.4	QPSK	1	0	23.53	23.73	23.47	
1.4	QPSK	1	3	23.92	23.61	23.32	24
1.4	QPSK	1	5	23.69	23.74	23.50	
1.4	QPSK	3	0	22.05	22.07	22.42	
1.4	QPSK	3	1	22.08	22.04	22.13	23
1.4	QPSK	3	3	22.33	22.23	22.24	
1.4	QPSK	6	0	22.04	22.25	22.41	23
1.4	16QAM	1	0	22.30	22.33	22.05	
1				22.12		22.44	23
1.4	16QAM	1	3	22.12	22.45	22.14	
	16QAM 16QAM	1	3 5	22.12	22.45	22.14	
1.4							711
1.4	16QAM	1	5	22.13	22.23	22.21	22
1.4 1.4 1.4	16QAM 16QAM	1 3	5	22.13 21.19	22.23 21.39	22.21 21.44	22

STING

			LT	E Band 4			
BW				Channel/Frequency(MHz)			Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	20050	20175	20300	(dBm)
()				1720	1747.5	1775	(5-11)
20	QPSK	1	0	23.41	23.52	23.25	
20	QPSK	1	49	23.03	23.87	23.16	24
20	QPSK	1	99	23.03	23.63	23.29	
20	QPSK	50	0	22.29	22.36	22.16	
20	QPSK	50	24	22.39	22.41	22.04	23
20	QPSK	50	50	22.05	22.36	22.21	
20	QPSK	100	0	22.18	22.31	22.01	23
20	16QAM	1	0	22.09	22.39	22.18	
20	16QAM	1	49	22.20	22.32	22.39	23
20	16QAM	1	99	22.40	22.26	22.31	
20	16QAM	50	0	21.46	21.37	21.53	TATES
20	16QAM	50	24	21.50	21.54	21.29	22
20	16QAM	50	50	21.31	21.38	21.38	
20	16QAM	100	0	21.25	21.37	21.24	22
BW		RB Size	RB Offset	Channel/Frequency(MHz)			Tune-up lim
(MHz)	Modulation			20025	20175	20325	(dBm)
\ \ \ \ \				1717.5	1747.5	1777.5	
15	QPSK	1	0	23.51	23.96	23.89	
15	QPSK	1	37	23.53	23.02	23.84	24
15	QPSK	1	74	23.01	23.39	23.21	
15	QPSK	36	0	22.03	22.02	22.21	Silte ud
15	QPSK	36	20	22.28	22.36	22.26	23
15	QPSK	36	39	22.28	22.04	22.39	
15 15	QPSK	75	0	22.43	22.36	22.38	23
15	16QAM	1	0	22.25	22.22	22.28	
15	16QAM	1	37	22.22	22.11	22.03	23
4.5	16QAM	1	74	22.40	22.01	22.15	CT1
15	16QAM	36	0	21.43	21.50	21.50	TES
15	100,111			15.014		1110	22
	16QAM	36	20	21.55	21.27	21.26	22
15		36 36	20 39	21.55 21.53	21.27	21.26	22

ESTING

BW	Modulation	RB Size		Cha	Tune-up limit		
(MHz)			RB Offset	20000	20175	20350	(dBm)
				1715	1747.5	1780	
10	QPSK	1	0	23.20	23.18	23.71	
10	QPSK	1	25	23.50	23.12	23.44	24
10	QPSK	1	49	23.58	23.20	23.65	
10	QPSK	25	0	22.21	22.11	22.18	
10	QPSK	25	12	22.18	22.23	22.41	23
10	QPSK	25	25	22.42	22.11	22.22	
10	QPSK	50	0	22.22	22.20	22.01	23
10	16QAM	1	0	22.20	22.32	22.19	
10	16QAM	1	25	22.29	22.11	22.33	23
10	16QAM	1	49	22.11	22.11	22.14	
10	16QAM	25	0	21.29	21.39	21.38	CTI
10	16QAM	25	12	21.55	21.38	21.34	22
10	16QAM	25	25	21.45	21.26	21.45	
10	16QAM	50	0	21.23	21.27	21.33	22
BW	Modulation	RB Size	RB Offset	Channel/Frequency(MHz)			Tune-up limit
(MHz)				19975	20175	20375	(dBm)
()				1712.5	1747.5	1782.5	, ,
5	QPSK	1	0	23.87	23.54	23.07	
5	QPSK	1	12	23.70	23.19	23.85	24
5	QPSK	1	24	23.72	23.15	23.34	
5	QPSK	12	0	22.41	22.02	22.35	
~					(10.11.11)		23
5	QPSK	12	7	22.45	22.35	22.19	23
5	QPSK QPSK	12 12	7 13	22.45 22.14	22.35 22.31	22.19	23
5					+		23
5	QPSK	12	13	22.14	22.31	22.10	CAN
5	QPSK QPSK	12 25	13	22.14 22.01	22.31 22.12	22.10 22.33	CAL
5 5 5 5	QPSK QPSK 16QAM	12 25 1	13 0 0	22.14 22.01 22.17	22.31 22.12 22.28	22.10 22.33 22.32	23
5 5 5 5 5	QPSK QPSK 16QAM 16QAM	12 25 1 1	13 0 0 12	22.14 22.01 22.17 22.28	22.31 22.12 22.28 22.21	22.10 22.33 22.32 22.45	23
5 5 5 5 5 5	QPSK QPSK 16QAM 16QAM 16QAM	12 25 1 1 1	13 0 0 12 24	22.14 22.01 22.17 22.28 22.35	22.31 22.12 22.28 22.21 22.29	22.10 22.33 22.32 22.45 22.25	23
5 5 5 5 5 5 5	QPSK QPSK 16QAM 16QAM 16QAM	12 25 1 1 1 1	13 0 0 12 24 0	22.14 22.01 22.17 22.28 22.35 21.21	22.31 22.12 22.28 22.21 22.29 21.16	22.10 22.33 22.32 22.45 22.25 21.47	23

STING

				Cha	nnel/Frequency(MHz)	
BW	Modulation	RB Size	RB Offset	19665	20175	20385	Tune-up limit
(MHz)			_	1711.5	1747.5	1783.5	(dBm)
3	QPSK	1	0	23.46	23.61	23.66	
3	QPSK	1	8	23.71	23.17	23.21	24
3	QPSK	1	14	23.52	23.67	23.09	27
3	QPSK	8	0	22.28	22.31	22.41	
3	QPSK	8	4	22.32	22.17	22.33	23
	QPSK	8	7	22.41	22.07	22.04	25
3	QPSK	15	0	22.18	22.30	22.21	23
3 3	16QAM	1	0	22.23	22.21	22.21	
3	16QAM	1	8	22.05	22.31	22.17	23
3	16QAM	1	14	22.08	22.41	22.36	20
3	16QAM	8	0	21.41	21.33	21.48	-IN
3	16QAM	8	4	21.55	21.47	21.44	22
3	16QAM	8	7	21.35	21.45	21.53	
3	16QAM	15	0	21.52	21.43	21.43	22
	TOQAW	10	0				
BW				Cha	nnel/Frequency(MHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	19957	20175	20393	(dBm)
				1710.7	1747.5	1784.3	
1.4	QPSK	1	0	23.80	23.42	23.08	
1.4	QPSK	1	3	23.29	23.74	23.16	24
1.4	QPSK	1	5	23.72	23.59	23.10	
1.4	QPSK	3	0	22.38	22.16	22.41	
1.4	QPSK	3	1	22.39	22.07	22.23	23
1.4	QPSK	3	3	22.18	22.07	22.21	The same of the sa
1.4	QPSK	6	0	22.20	22.18	22.35	23
1.4	16QAM	1	0	22.30	22.28	22.12	
1.4	16QAM	1	3	22.21	22.26	22.14	23
1.4	16QAM	1	5	22.18	22.23	22.33	
1.4	16QAM	3	0	21.17	21.46	21.33	CTIN
1.4	16QAM	3	1	21.42	21.32	21.31	22
	16QAM	3	3	21.34	21.53	21.55	
1.4		6	0	21.24	21.25	21.55	22

STING

ĺ		<u>.NG</u>		1.	TE Band 5			
				L				
	BW	Modulation	RB Size	RB Offset	20450	nnel/Frequency(M 20525	1Hz) 20600	Tune-up limit
	(MHz)				829	836.5	844	(dBm)
	10	QPSK	1	0	23.24	23.50	23.80	
	10	QPSK	1	25	23.55	23.48	23.51	24
	10	QPSK	1	49	23.51	23.02	23.79	15 110
		QPSK	25	0	22.41	22.40	22.31	22000
TATES	10	QPSK	25	12	22.20	22.09	22.03	23
TA.	10	QPSK	25	25	22.18	22.03	22.34	
	10	QPSK	50	0	22.40	22.45	22.30	23
	10	16QAM	1	0	22.41	22.29	22.32	
	10	16QAM	1	25	22.31	22.21	22.37	23
	10	16QAM	1	49	22.45	22.12	22.12	TESI
	10	16QAM	25	0	21.51	21.53	21.31	KIA .
>	10	16QAM	25	12	21.45	21.44	21.27	22
	10	16QAM	25	25	21.49	21.23	21.55	
	10	16QAM	50	0	21.34	21.42	21.24	22
0	BW		DD 0:	DD 0" 1	Cha	nnel/Frequency(M	IHZ)	Tune-up limit
	(MHz)	Modulation	RB Size	RB Offset	20425	20525	20625	(dBm)
					826.5	836.5	846.5	
	5	QPSK	1	0	23.76	23.40	23.55	
	5	QPSK	1	12	23.71	23.80	23.30	24
	5	QPSK	1	24	23.12	23.68	23.12	11.00 LEG
	5	QPSK	12	0	22.02	22.30	22.05	The same of the same
TATES	5	QPSK	12	7	22.11	22.01	22.04	23
	5	QPSK	12	13	22.09	22.45	22.08	
	5	QPSK	25	0	22.34	22.07	22.44	23
	5	16QAM	1	0	22.23	22.40	22.05	
	5	16QAM	1	12	22.05	22.03	22.37	23
	5	16QAM	1	24	22.18	22.25	22.32	TESI
	5	16QAM	12	0	21.52	21.36	21.54	, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
)	5	16QAM	12	7	21.18	21.19	21.27	22
	5	16QAM	12	13	21.24	21.53	21.31	
	5	16QAM	25	0	21.16	21.54	21.15	22
	GTA	120		CTATES	TING	CTA CTA	TESTING	

ESTING

BW				Cha	nnel/Frequency(l	MHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	20415	20525	20635	(dBm)
()				825.5	836.5	844	(==)
3	QPSK	1	0	23.51	23.68	23.65	
3	QPSK	1	8	23.80	23.97	23.90	24
3	QPSK	1	14	23.71	23.28	23.72	
3	QPSK	8	0	22.34	22.26	22.40	
3	QPSK	8	4	22.36	22.15	22.33	23
3	QPSK	8	7	22.45	22.23	22.31	
3	QPSK	15	0	22.22	22.15	22.34	23
3	16QAM	1	0	22.09	22.32	22.03	
3	16QAM	1	8	22.12	22.42	22.42	23
3	16QAM	1	14	22.43	22.07	22.07	
3	16QAM	8	0	21.28	21.15	21.20	TETI
3	16QAM	8	4	21.34	21.33	21.37	22
3	16QAM	8	7	21.23	21.46	21.25	
3	16QAM	15	0	21.40	21.49	21.16	22
BW				Cha	nnel/Frequency(I	MHz)	Tune-up limi
(MHz)	Modulation	RB Size	RB Offset	20407	20525	20643	(dBm)
				824.7	836.5	848.3	` ,
1.4	QPSK	1	0	23.01	23.77	23.48	
1.4	QPSK	1	3	23.14	23.18	23.30	24
1.4	QPSK	1	5	23.52	23.26	23.68	
1.4	QPSK	3	0	22.25	22.03	22.39	
1.4	QPSK	3	1	22.41	22.17	22.22	23
1.4	QPSK	3	3	22.28	22.25	22.03	
1.4	QPSK	6	0	22.27	22.27	22.25	23
1.4	16QAM	1	0	22.18	22.38	22.30	
		4	_	22.44	22.38	22.29	23
1.4	16QAM	1	3	22.44	22.00		
	16QAM 16QAM	1	5	22.02	22.13	22.01	
1.4							7117
1.4	16QAM	1	5	22.02	22.13	22.01	T 22
1.4 1.4 1.4	16QAM 16QAM	1	5 0	22.02 21.35	22.13 21.33	22.01 21.24	AT22

STING

BW (MHz)	Modulation		L1	TE Band 7			
	Modulation					\	
(MHz)		RB Size	RB Offset		innel/Frequency(M		Tune-up limit
			-	20850	21100	21350	(dBm)
20	QPSK	1	0	2510	2535 23.41	2560	
20							24
					Vision		24
					+		
							22
							23
							23
				- A D			
							23
				The same of the sa			TATI
20		50					
20	16QAM	50	24	21.53	21.23	21.47	22
20	16QAM	50	50	21.43	21.54	21.55	
20	16QAM	100	0	21.29	21.25	21.40	22
BW				Cha	innel/Frequency(M	1Hz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	20825	21100	21375	(dBm)
·····-/				2507.5	2535	2562.5	()
15	QPSK	1	0	23.00	23.47	23.39	
15	QPSK	1	37	23.39	23.52	23.74	24
15	QPSK	1	74	23.71	23.75	23.50	Hann Comment
15	QPSK	36	0	22.18	22.34	22.38	O WATER
15	QPSK	36	20	22.18	22.12	22.29	23
15	QPSK	36	39	22.16	22.21	22.07	
15	QPSK	75	0	22.32	22.34	22.35	23
15	16QAM	1	0	22.16	22.20	22.19	
15	16QAM	1	37	22.25	22.31	22.23	23
15	16QAM	1	74	22.35	22.28	22.42	TESI"
15		36	0	No use	21.18		(P.
			20				22
15	16QAM	36	39	21.42	21.19	21.38	
	16QAM	75	0	21.23	21.39	21.17	22
	20 20 BW MHz) 15 15 15 15 15 15 15 15	20 QPSK 20 QPSK 20 QPSK 20 QPSK 20 QPSK 20 16QAM 30 16QAM 40 16QAM 40 16QAM 40 16QAM 40 15 40 4 40 4 40 4 40 4 40 4 40 4 40 4 40 4 40 4 40 4 40 4 40 4 40 4 40 4 40 4 40 4 40 4	20 QPSK 50 20 QPSK 50 20 QPSK 50 20 QPSK 50 20 QPSK 100 20 16QAM 1 20 16QAM 1 20 16QAM 50 20 16QAM 50 20 16QAM 50 20 16QAM 50 20 16QAM 100 BW MHz) Modulation RB Size 15 QPSK 1 15 QPSK 1 15 QPSK 1 15 QPSK 1 15 QPSK 36 15 QPSK 36 15 QPSK 75 15 16QAM 1 15 16QAM 1 15 16QAM 1 15 16QAM 1 15 16QAM 1 </td <td>20 QPSK 50 0 20 QPSK 50 0 20 QPSK 50 24 20 QPSK 50 50 20 QPSK 100 0 20 16QAM 1 0 20 16QAM 1 49 20 16QAM 1 99 20 16QAM 50 0 20 16QAM 50 24 20 16QAM 50 50 20 16QAM 100 0 BW MHz) Modulation RB Size RB Offset 15 QPSK 1 0 15 QPSK 1 37 15 QPSK 1 74 15 QPSK 36 20 15 QPSK 36 39 15 QPSK 75 0 15 16QAM 1 0</td> <td>20 QPSK 1 99 23.56 20 QPSK 50 0 22.07 20 QPSK 50 24 22.42 20 QPSK 50 50 22.28 20 QPSK 100 0 22.06 20 16QAM 1 0 22.34 20 16QAM 1 49 22.38 20 16QAM 1 99 22.33 20 16QAM 50 0 21.18 20 16QAM 50 24 21.53 20 16QAM 50 50 21.43 20 16QAM 50 50 21.43 20 16QAM 100 0 21.29 BW MMHz) RB Offset 20825 2507.5 1 QPSK 1 0 23.00 15 QPSK 1 37 23.39 15 QPSK</td> <td>20 QPSK 1 99 23.56 23.93 20 QPSK 50 0 22.07 22.03 20 QPSK 50 24 22.42 22.13 20 QPSK 50 50 22.28 22.18 20 QPSK 100 0 22.06 22.19 20 16QAM 1 0 22.34 22.45 20 16QAM 1 49 22.38 22.31 20 16QAM 1 99 22.33 22.38 20 16QAM 50 0 21.18 21.54 20 16QAM 50 24 21.53 21.23 20 16QAM 50 24 21.53 21.23 20 16QAM 100 0 21.29 21.25 BW MHz) RB Size RB Offset Channel/Frequency(N BW MHz) 0 23.00 23.47</td> <td>20 QPSK 1 99 23.56 23.93 23.24 20 QPSK 50 0 22.07 22.03 22.44 20 QPSK 50 24 22.42 22.13 22.34 20 QPSK 100 0 22.06 22.19 22.43 20 16QAM 1 0 22.34 22.45 22.21 20 16QAM 1 49 22.38 22.31 22.30 20 16QAM 1 49 22.38 22.31 22.30 20 16QAM 1 99 22.33 22.38 22.29 20 16QAM 50 0 21.18 21.54 21.48 20 16QAM 50 24 21.53 21.23 21.47 20 16QAM 100 0 21.29 21.25 21.40 BW MHz) RB Size RB Offset 20825 21100 21375</td>	20 QPSK 50 0 20 QPSK 50 0 20 QPSK 50 24 20 QPSK 50 50 20 QPSK 100 0 20 16QAM 1 0 20 16QAM 1 49 20 16QAM 1 99 20 16QAM 50 0 20 16QAM 50 24 20 16QAM 50 50 20 16QAM 100 0 BW MHz) Modulation RB Size RB Offset 15 QPSK 1 0 15 QPSK 1 37 15 QPSK 1 74 15 QPSK 36 20 15 QPSK 36 39 15 QPSK 75 0 15 16QAM 1 0	20 QPSK 1 99 23.56 20 QPSK 50 0 22.07 20 QPSK 50 24 22.42 20 QPSK 50 50 22.28 20 QPSK 100 0 22.06 20 16QAM 1 0 22.34 20 16QAM 1 49 22.38 20 16QAM 1 99 22.33 20 16QAM 50 0 21.18 20 16QAM 50 24 21.53 20 16QAM 50 50 21.43 20 16QAM 50 50 21.43 20 16QAM 100 0 21.29 BW MMHz) RB Offset 20825 2507.5 1 QPSK 1 0 23.00 15 QPSK 1 37 23.39 15 QPSK	20 QPSK 1 99 23.56 23.93 20 QPSK 50 0 22.07 22.03 20 QPSK 50 24 22.42 22.13 20 QPSK 50 50 22.28 22.18 20 QPSK 100 0 22.06 22.19 20 16QAM 1 0 22.34 22.45 20 16QAM 1 49 22.38 22.31 20 16QAM 1 99 22.33 22.38 20 16QAM 50 0 21.18 21.54 20 16QAM 50 24 21.53 21.23 20 16QAM 50 24 21.53 21.23 20 16QAM 100 0 21.29 21.25 BW MHz) RB Size RB Offset Channel/Frequency(N BW MHz) 0 23.00 23.47	20 QPSK 1 99 23.56 23.93 23.24 20 QPSK 50 0 22.07 22.03 22.44 20 QPSK 50 24 22.42 22.13 22.34 20 QPSK 100 0 22.06 22.19 22.43 20 16QAM 1 0 22.34 22.45 22.21 20 16QAM 1 49 22.38 22.31 22.30 20 16QAM 1 49 22.38 22.31 22.30 20 16QAM 1 99 22.33 22.38 22.29 20 16QAM 50 0 21.18 21.54 21.48 20 16QAM 50 24 21.53 21.23 21.47 20 16QAM 100 0 21.29 21.25 21.40 BW MHz) RB Size RB Offset 20825 21100 21375

ESTING

BW				Cha	nnel/Frequency(N	ИHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	20800	21100	21400	(dBm)
(=)				2505	2535	2565	(32)
10	QPSK	1	0	23.96	23.80	23.50	
10	QPSK	1	25	23.88	23.53	23.10	23.0
10	QPSK	1	49	23.24	23.44	23.51	
10	QPSK	25	0	22.28	22.21	22.33	
10	QPSK	25	12	22.08	22.44	22.02	22.0
10	QPSK	25	25	22.40	22.15	22.20	
10	QPSK	50	0	22.01	22.21	22.43	22.0
10	16QAM	1	0	22.07	22.15	22.39	
10	16QAM	1	25	22.11	22.05	22.10	22.0
10	16QAM	1	49	22.39	22.45	22.02	
10	16QAM	25	0	21.38	21.50	21.54	-711
10	16QAM	25	12	21.52	21.21	21.44	21.0
10	16QAM	25	25	21.22	21.44	21.18	
10	16QAM	50	0	21.33	21.47	21.17	21.0
BW				Cha	nnel/Frequency(N	ИНz)	Tune-up limi
(MHz)	Modulation	RB Size	RB Offset	20775	21100	21425	(dBm)
				2502.5	2535	2567.5	` '
5	QPSK	1	0	23.98	23.53	23.15	
5	QPSK	1	12	23.05	23.89	23.57	23.0
5	QPSK	1	24	23.26	23.63	23.56	
5	QPSK	12	0	22.26	22.26	22.30	
5	QPSK	12	7	22.40	22.19	22.27	22.0
5	QPSK	12	13	22.16	22.06	22.37	
5 5	QPSK QPSK	12 25	13	22.16 22.11	22.06 22.20	22.37 22.02	22.0
5 5 5					1		22.0
5 5 5 5	QPSK	25	0	22.11	22.20	22.02	22.0
5	QPSK 16QAM	25 1	0	22.11 22.05	22.20 22.44	22.02 22.06	
5 5 5	QPSK 16QAM 16QAM	25 1 1	0 0 12	22.11 22.05 22.06	22.20 22.44 22.42	22.02 22.06 22.36	
5 5 5 5	QPSK 16QAM 16QAM 16QAM	25 1 1 1	0 0 12 24	22.11 22.05 22.06 22.34	22.20 22.44 22.42 22.19	22.02 22.06 22.36 22.27	
5 5 5 5 5	QPSK 16QAM 16QAM 16QAM 16QAM	25 1 1 1 1 12	0 0 12 24 0	22.11 22.05 22.06 22.34 21.51	22.20 22.44 22.42 22.19 21.17	22.02 22.06 22.36 22.27 21.31	22.0

STING

	1			ΓE Band 17			T
BW				Cha	nnel/Frequency	(MHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	23780	23790	23800	(dBm)
				709	710	711	
10	QPSK	1	0	23.62	23.71	23.13	
10	QPSK	1	25	23.50	23.76	23.82	26.0
10	QPSK	1	49	23.72	23.06	23.55	
10	QPSK	25	0	22.27	22.43	22.45	(FIN
10	QPSK	25	12	22.30	22.41	22.24	25.0
10	QPSK	25	25	22.35	22.22	22.41	
10	QPSK	50	0	22.25	22.34	22.09	25.0
10	16QAM	1	0	22.02	22.27	22.38	
10	16QAM	1	25	22.34	22.11	22.11	25.0
10	16QAM	1	49	22.11	22.10	22.33	ETIN
10	16QAM	25	0	21.25	21.32	21.16	TATES
10	16QAM	25	12	21.46	21.17	21.42	24.0
10	16QAM	25	25	21.23	21.22	21.37	
10	16QAM	50	0	21.46	21.48	21.54	24.0
BW				Cha	nnel/Frequency	(MHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	23755	23790	23825	(dBm)
` '				706.5	710	713.5	
5	QPSK	1	0	23.11	23.66	23.15	
5	QPSK	1	12	23.11	23.45	23.13	26.0
5	QPSK	1	24	23.06	23.49	23.96	
5	QPSK	12	0	22.31	22.33	22.43	To the
5	QPSK	12	7	22.44	22.07	22.33	25.0
5	QPSK	12	13	22.40	22.44	22.16	
5	QPSK	25	0	22.01	22.41	22.43	25.0
5	16QAM	1	0	22.43	22.37	22.15	
5	16QAM	1	12	22.01	22.38	22.06	25.0
5	16QAM	1	24	22.05	22.03	22.26	TIN
5	16QAM	12	0	21.54	21.21	21.36	CATES
5	16QAM	12	7	21.42	21.33	21.55	24.0
5	16QAM	12	13	21.20	21.42	21.19	
5	16QAM	25	0	21.21	21.30	21.43	24.0
	ESTING			_	•	-	•
GTA	72		CTATE!				
				2,1			
			CALL			TESTING	

ESTING

			L	TE Band 38			
BW		0:		Cha	annel/Frequency	(MHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	37850	38000	38150	(dBm)
				2580	2595	2610	
20	QPSK	1	0	23.27	23.84	23.33	
20	QPSK	1	49	23.05	23.63	23.04	23.0
20	QPSK	1	99	23.19	23.71	23.54	
20	QPSK	50	0	22.39	22.09	22.29	(TIN
20	QPSK	50	24	22.32	22.09	22.03	22.0
20	QPSK	50	50	22.20	22.02	22.39	
20	QPSK	100	0	22.26	22.03	22.03	22.0
20	16QAM	1	0	22.23	22.23	22.19	
20	16QAM	1	49	22.34	22.36	22.10	22.0
20	16QAM	1	99	22.42	22.21	22.31	STIN
20	16QAM	50	0	21.32	21.42	21.19	TATES
20	16QAM	50	24	21.35	21.17	21.27	21.0
20	16QAM	50	50	21.47	21.34	21.55	
20	16QAM	100	0	21.44	21.38	21.51	21.0
BW				Cha	annel/Frequency	(MHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	37825	38000	38175	(dBm)
				2577.5	2595	2612.5	
15	QPSK	1	0	23.20	23.15	23.37	
15	QPSK	1	37	23.12	23.48	23.16	23.0
15	QPSK	1	74	23.61	23.35	23.88	
15	QPSK	36	0	22.22	22.15	22.33	
15	QPSK	36	20	22.40	22.41	22.35	22.0
15 15	QPSK	36	39	22.31	22.34	22.31	
15	QPSK	75	0	22.03	22.30	22.20	22.0
15	16QAM	1	0	22.20	22.38	22.16	
15	16QAM	1	37	22.08	22.08	22.34	22.0
15	16QAM	1	74	22.36	22.06	22.28	STIN
15	16QAM	36	0	21.44	21.16	21.19	TES
15	16QAM	36	20	21.39	21.31	21.20	22.0
15	16QAM	36	39	21.45	21.50	21.27	
15	16QAM	75	0	21.51	21.18	21.47	21.0
	CTING						•
CT CT	ATES		CTATE	STING			
						TESTING	

ESTING

BW				Cha	innel/Frequency(N	ИHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	37800	38000	38200	(dBm)
				2575	2595	2615	, ,
10	QPSK	1	0	23.33	23.18	23.32	
10	QPSK	1	25	23.00	23.57	23.77	23.0
10	QPSK	1	49	23.61	23.74	23.13	
10	QPSK	25	0	22.40	22.06	22.37	
10	QPSK	25	12	22.25	22.29	22.37	22.0
10	QPSK	25	25	22.26	22.09	22.20	
10	QPSK	50	0	22.27	22.32	22.30	22.0
10	16QAM	1	0	22.45	22.07	22.31	
10	16QAM	1	25	22.44	22.17	22.20	22.0
10	16QAM	1	49	22.07	22.44	22.17	
10	16QAM	25	0	21.55	21.53	21.31	CTI
10	16QAM	25	12	21.24	21.15	21.25	21.0
10	16QAM	25	25	21.48	21.47	21.24	
10	16QAM	50	0	21.31	21.16	21.36	21.0
BW				Cha	nnel/Frequency(N	ИНz)	Tune-up limi
(MHz)	Modulation	RB Size	RB Offset	37775	38000	38225	(dBm)
				2572.5	2595	2617.5	
5	QPSK	1	0	23.16	23.56	23.02	
5	QPSK	1	12	23.37	23.74	23.88	23.0
5	QPSK	1	24	23.91	23.62	23.84	
			0	00.00	22.42	22.19	
5	QPSK	12	U	22.06	22.13		
	QPSK QPSK	12	7	22.10	22.13	22.18	22.0
5 5 5							22.0
5 5 5	QPSK	12	7	22.10	22.19	22.18	22.0
5 5 5	QPSK QPSK	12 12	7 13	22.10 22.13	22.19 22.38	22.18 22.02	-Car
5 5 5	QPSK QPSK QPSK	12 12 25	7 13 0	22.10 22.13 22.12	22.19 22.38 22.16	22.18 22.02 22.10	-Can
5 5 5 5 5	QPSK QPSK QPSK 16QAM	12 12 25 1	7 13 0 0	22.10 22.13 22.12 22.36	22.19 22.38 22.16 22.41	22.18 22.02 22.10 22.01	22.0
5 5 5 5 5 5	QPSK QPSK QPSK 16QAM	12 12 25 1	7 13 0 0 12	22.10 22.13 22.12 22.36 22.01	22.19 22.38 22.16 22.41 22.12	22.18 22.02 22.10 22.01 22.34	22.0
5 5 5 5 5 5 5	QPSK QPSK QPSK 16QAM 16QAM	12 12 25 1 1	7 13 0 0 12 24	22.10 22.13 22.12 22.36 22.01 22.32	22.19 22.38 22.16 22.41 22.12 22.42	22.18 22.02 22.10 22.01 22.34 22.18	22.0
5 5 5 5 5 5 5	QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM	12 12 25 1 1 1 1	7 13 0 0 12 24 0	22.10 22.13 22.12 22.36 22.01 22.32 21.55	22.19 22.38 22.16 22.41 22.12 22.42 21.27	22.18 22.02 22.10 22.01 22.34 22.18 21.50	22.0

STING

				LIEE	Band 41				
BW		RB	RB		Chann	el/Frequenc	y(MHz)		Tune-up
(MHz)	Modulation	Size	Offset	40140	40365	40590	40865	41140	limit
				2545	2567.5	2590	2617.5	2645	(dBm)
20	QPSK	1	0	23.63	23.24	23.01	23.39	23.84	
20	QPSK	1	49	23.42	23.59	23.85	23.45	23.20	24.0
20	QPSK	1	99	23.59	23.37	23.23	23.18	23.21	
20	QPSK	50	0	22.39	22.38	22.44	22.32	22.25	CAN.
20	QPSK	50	24	22.41	22.33	22.35	22.18	22.06	23.0
20	QPSK	50	50	22.35	22.29	22.28	22.15	22.20	
20	QPSK	100	0	22.24	22.13	22.09	22.20	22.35	22.0
20	16QAM	1	0	22.09	22.08	22.22	22.13	22.09	
20	16QAM	1	49	22.43	22.16	22.06	22.12	22.22	22.0
20	16QAM	1	99	22.02	22.11	22.26	22.18	22.19	GTIN
20	16QAM	50	0	23.63	23.32	23.01	23.42	23.84	TES
20	16QAM	50	24	23.42	23.54	23.85	23.47	23.20	22.0
20	16QAM	50	50	23.59	23.38	23.23	23.17	23.21	
20	16QAM	100	0	22.39	22.38	22.44	22.25	22.25	22.0
BW		RB	RB		Chann	el/Frequenc	y(MHz)		Tune-up
(MHz)	Modulation	Size	Offset	40115	40350	40590	40875	41165	limit
				2542.5	2566	2590	2618.5	2647.5	(dBm)
15	QPSK	1	0	23.62	23.59	23.74	23.76	23.89	
15	QPSK	1	37	23.65	23.42	23.32	23.39	23.59	24.0
15	QPSK	1	74	23.22	23.39	23.58	23.69	23.91	
15	QPSK	36	0	22.44	22.21	22.03	22.05	22.23	To tid
15	QPSK	36	20	22.01	22.04	22.07	22.04	22.02	23.0
15 15	QPSK	36	39	22.40	22.31	22.37	22.16	22.12	
15	QPSK	75	0	22.10	22.10	22.27	22.12	22.02	23.0
15	16QAM	1	0	22.45	22.36	22.39	22.23	22.19	
15	16QAM	1	37	22.28	22.05	22.02	22.14	22.34	23.0
15	16QAM	1	74	22.07	22.11	22.27	22.22	22.37	TIN
15	16QAM	36	0	21.51	21.43	21.47	21.36	21.34	LES.
15	16QAM	36	20	21.35	21.18	21.20	21.30	21.43	23.0
15	16QAM	36	39	21.21	21.18	21.17	21.18	21.36	
15	16QAM	75	0	21.41	21.39	21.43	21.33	21.28	22.0
-1	TOQAIVI				NG.				
C V				ATEST				ring	

ESTING

BW		RB	RB		Chann	el/Frequenc	y(MHz)		Tune-up
(MHz	Modulation)	Size	Offset	40090	40340	40590	40890	41190	limit
				2540	2565	2590	2620	2650	(dBm)
10	QPSK	1	0	23.22	23.08	23.06	23.09	23.21	
10	QPSK	1	25	23.40	23.39	23.48	23.46	23.57	24.0
10	QPSK	1	49	23.33	23.25	23.24	23.29	23.47	
10	QPSK	25	0	22.44	22.33	22.37	22.37	22.40	
10	QPSK	25	12	22.32	22.16	22.06	22.02	22.02	23.0
10	QPSK	25	25	22.09	22.09	22.16	22.21	22.32	The Part of the Pa
10	QPSK	50	0	22.24	22.25	22.30	22.17	22.07	23.0
10	16QAM	1	0	22.32	22.14	22.03	22.05	22.07	
10	16QAM	1	25	22.25	22.15	22.20	22.05	22.06	23.0
10	16QAM	1	49	22.14	22.23	22.44	22.19	22.03	1
10	16QAM	25	0	21.24	21.24	21.28	21.24	21.26	GTIN
10	16QAM	25	12	21.47	21.29	21.15	21.26	21.38	22.0
10	16QAM	25	25	21.28	21.39	21.53	21.35	21.27	
10	16QAM	50	0	21.41	21.37	21.39	21.29	21.29	22.0
BW		RB	RB		Chann	el/Frequenc	y(MHz)		Tune-up
(MHz	Modulation)	Size	Offset	40065	40325	40590	40900	41215	limit
				2537.5	2563.5	2590	2621	2652.5	(dBm)
5	QPSK	1	0	2537.5 23.22	2563.5 23.39	2590 23.70	2621 23.81	2652.5 23.92	(dBm)
5 5	QPSK QPSK		0 12	77 7 7					(dBm) 24.0
		1	+	23.22	23.39	23.70	23.81	23.92	
5	QPSK	1	12	23.22 23.54	23.39 23.26	23.70 23.04	23.81	23.92 23.15	
5	QPSK QPSK	1 1 1	12 24	23.22 23.54 23.05	23.39 23.26 23.09	23.70 23.04 23.23	23.81 23.03 23.27	23.92 23.15 23.33	
5 5 5 5	QPSK QPSK QPSK	1 1 1 1 12	12 24 0	23.22 23.54 23.05 22.39	23.39 23.26 23.09 22.21	23.70 23.04 23.23 22.03	23.81 23.03 23.27 21.94	23.92 23.15 23.33 22.03	24.0
5 5 5 5	QPSK QPSK QPSK QPSK	1 1 1 12 12	12 24 0 7	23.22 23.54 23.05 22.39 22.44	23.39 23.26 23.09 22.21 22.16	23.70 23.04 23.23 22.03 22.03	23.81 23.03 23.27 21.94 22.14	23.92 23.15 23.33 22.03 22.36	24.0
5 5 5 5	QPSK QPSK QPSK QPSK QPSK	1 1 1 12 12 12	12 24 0 7 13	23.22 23.54 23.05 22.39 22.44 22.37	23.39 23.26 23.09 22.21 22.16 22.26	23.70 23.04 23.23 22.03 22.03 22.34	23.81 23.03 23.27 21.94 22.14 22.33	23.92 23.15 23.33 22.03 22.36 22.37	24.0
5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK	1 1 1 12 12 12 12 25	12 24 0 7 13	23.22 23.54 23.05 22.39 22.44 22.37 22.07	23.39 23.26 23.09 22.21 22.16 22.26 22.10	23.70 23.04 23.23 22.03 22.03 22.34 22.18	23.81 23.03 23.27 21.94 22.14 22.33 22.27	23.92 23.15 23.33 22.03 22.36 22.37 22.41	24.0
5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 1 1 12 12 12 12 25	12 24 0 7 13 0	23.22 23.54 23.05 22.39 22.44 22.37 22.07 22.31	23.39 23.26 23.09 22.21 22.16 22.26 22.10 22.12	23.70 23.04 23.23 22.03 22.03 22.34 22.18 22.12	23.81 23.03 23.27 21.94 22.14 22.33 22.27 22.21	23.92 23.15 23.33 22.03 22.36 22.37 22.41 22.40	24.0
5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM	1 1 1 12 12 12 12 25 1	12 24 0 7 13 0 0	23.22 23.54 23.05 22.39 22.44 22.37 22.07 22.31 22.12	23.39 23.26 23.09 22.21 22.16 22.26 22.10 22.12 22.08	23.70 23.04 23.23 22.03 22.03 22.34 22.18 22.12 22.11	23.81 23.03 23.27 21.94 22.14 22.33 22.27 22.21 22.08	23.92 23.15 23.33 22.03 22.36 22.37 22.41 22.40 22.06	24.0
5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM	1 1 1 12 12 12 12 25 1 1	12 24 0 7 13 0 0 12 24	23.22 23.54 23.05 22.39 22.44 22.37 22.07 22.31 22.12 22.14	23.39 23.26 23.09 22.21 22.16 22.26 22.10 22.12 22.08 22.19	23.70 23.04 23.23 22.03 22.03 22.34 22.18 22.12 22.11 22.35	23.81 23.03 23.27 21.94 22.14 22.33 22.27 22.21 22.08 22.31	23.92 23.15 23.33 22.03 22.36 22.37 22.41 22.40 22.06 22.28	24.0
5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	1 1 1 12 12 12 25 1 1 1 1	12 24 0 7 13 0 0 12 24	23.22 23.54 23.05 22.39 22.44 22.37 22.07 22.31 22.12 22.14 21.18	23.39 23.26 23.09 22.21 22.16 22.26 22.10 22.12 22.08 22.19 21.33	23.70 23.04 23.23 22.03 22.03 22.34 22.18 22.12 22.11 22.35 21.54	23.81 23.03 23.27 21.94 22.14 22.33 22.27 22.21 22.08 22.31 21.35	23.92 23.15 23.33 22.03 22.36 22.37 22.41 22.40 22.06 22.28 21.30	24.0 23.0 23.0 23.0

STING

Page 47 of 123 Report No.: CTA24041700513

<WLAN 2.4GHz Conducted Power>

Mode	Channel	Frequency (MHz)	Conducted Output power PK (dBm)	Conducted Average Output Power(dBm)	Tune-up limit (dBm)
	1	2412	15.08	13.85	15.0
802.11b	6	2437	15.83	14.58	15.0
	11	2462	15.62	14.38	15.0
	1	2412	14.67	10.29	11.0
802.11g	6	2437	15.43	10.86	11.0 11.0
	11	2462	15.26	10.78	11.0
	1	2412	14.92	10.03	11.0
802.11n(HT20)	6	2437	15.08	10.42	11.0
	11	2462	15.23	10.66	11.0
	3	2422	13.69	9.07	10.0
802.11n(HT40)	6	2437	14.62	9.64	10.0
	9	2452	14.49	9.61	10.0

<Bluetooth Conducted Power>

Mode	Channel	Frequency (MHz)	Conducted PK Output Power(dBm)	Tune-up limit (dBm)
	0	2402	-0.79	1.0
GFSK	39	2441	-1.07	0.0
	78	2480	-1.03	0.0
	0	2402	-2.21	-1.0
T/4DQPSK	39	2441	-2.58	-1.0
	78	2480	-2.50	-1.0
	0	2402	-2.17	-1.0
8DPSK	39	2441	-2.36	-1.0
	78	2480	-2.54	-1.0
	0	2402	-0.51	1.0
BLE 1M	19	2440	-0.84	J.G 1.0
	39	2480	-0.90	1.0
	C.		CTATI	

Report No.: CTA24041700513 Page 48 of 123

10.2 SAR Test Exclusion and Estimated SAR

SAR Test Exclusion Considerations

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz.
- Power and distance are rounded to the nearest mW and mm before calculation.
- The result is rounded to one decimal place for comparison.

Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following:

- a) [Threshold at 50mm)+(test separation distance-50mm)*(f(MHz)/150)]mW, at 100MHz to 1500MHz
- b) [Threshold at 50mm)+(test separation distance-50mm)*10]mW at > 1500MHz and ≤ 6GHz

Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√ f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm

The below table, exemption limits for routine evaluation based on frequency and separation distance was according to SAR-based Exemption – §1.1307(b)(3)(i)(B).

- 6							405 200			
				Stand	alone SAR	Test Exclus	sion and Estim	nated SAR		
Ī	14	_		Max. Po		5	0 1 1 11	SAR	Standalone	Estimated
3	Wireless	Frequency	Configuration	With to	une-up	Distance	Calculation	Exclusion	SAR	SAR
	Interface	(MHz)		dBm	mW	(mm)	Result	Thresholds	Exclusion	(W/Kg)
Ī	WIFI 2.4G	2450	Next to Mouth	15.0	31.623	10	4.9	G 3	No	N/A
ſ	Bluetooth	2450	Next to Mouth	1.0	1.259	10	0.2	3	Yes	0.026
ſ	WIFI 2.4G	2450	Wrist-worn	15.0	31.623	0	9.9	3	No	N/A
	Bluetooth	2450	Wrist-worn	1.0	1.259	0	0.4	3	Yes	0.053

Remark:

- 1. Maximum average power including tune-up tolerance;
- 2. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- 3. when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW".

Report No.: CTA24041700513 Page 49 of 123

10.3 SAR Test Results Summary

General Note:

1 Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

- c) Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
- d) For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- e) For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tuneup scaling factor
- Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg, The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

Page 50 of 123 Report No.: CTA24041700513

SAR Results

SAR Values [GSM 850]

Plot No.	Mode	Test Position	Ch.	Freq.	Power	Tune-Up Limit	Scaling Factor	Power Drift	SAR(wred W/kg)	•	W/kg)	
					(dBm)	(dBm)		(dB)	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}	
		Meas	sured / R	eported	SAR nui	mbers- Ne	xt to Mout	h-distanc	e 10mm				
	GSM Voice	Front Side	251	848.8	32.62	33.00	1.091	0.09	0.087		0.095		TATES
		Me	easured	/ Report	ed SAR ı	numbers-V	Vrist-worn	-distance	0mm				CAL
#1	GPRS 4TX slot	Back Side	251	848.8	26.77	27.00	1.054	-0.05	-	0.494	ı	0.521	

SAR Values [PCS 1900]

Plot No.	Mode	Test Position	Ch.	Freq.	Average Power	Tune-Up Limit	Scaling Factor	Power Drift		sured W/kg)	Sca SAR(iled W/kg)			
110.		1 03111011		(1411 12)	(dBm)	(dBm)	1 dotoi	(dB)	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}			
		Meas	sured / R	eported	SAR nui	mbers- Ne	xt to Mout	h-distanc	e 10mm						
	GSM Voice	Front Side	512	1850.2	30.65	31.00	1.084	0.03	0.187		0.203				
	Measured / Reported SAR numbers-Wrist-worn-distance 0mm														
#2	GPRS 3TX slot	Back Side	512	1850.2	25.83	26.00	1.040	-0.09	-	1.554		1.616			
, Ltd	CTA					TING									
				SAF	R Values	[WCDM	A Band II								
					Average	Tune-Un		Power	Meas	sured	Sca	aled			

SAR Values [WCDMA Band II]

							-		•				
	Plot	Mode	Test Position	Ch.	Freq.	Average Power	Tune-Up Limit	Scaling Factor	Power Drift	Meas SAR(Sca SAR(aled W/kg)
	NO.		Position		(MHz)	(dBm)	(dBm)	ractor	(dB)	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}
			Meas	sured / R	eported	SAR nui	mbers- Ne	xt to Mout	h-distanc	e 10mm			
		RMC 12.2K	Front Side	9400	1880.0	23.60	24.00	1.096	0.11	0.255	-	0.280	G VIA
TES	Measured / Reported SAR numbers-Wrist-worn-distance 0mm												
CTA	#3	RMC 12.2K	Back Side	9400	1880.0	23.60	24.00	1.096	-0.07	-	1.672	1	1.833

SAR Values [WCDMA Band V]

Plot	Mode	Test	Ch.	Freq.	Average Power	Tune-Up Limit	Scaling	Power Drift		ured W/kg)		aled W/kg)
No.		Position		(MHz)	(dBm)	(dBm)	Factor	(dB)	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}
		Meas	sured / R	Reported	SAR nui	mbers- Ne	xt to Mout	h-distanc	e 10mm			
	RMC 12.2K	Front Side	4183	836.6	23.61	24.00	1.094	0.07	0.220		0.241	
		Me	easured	/ Report	ed SAR ı	numbers-V	Vrist-worn	-distance	0mm			
#4	RMC 12.2K	Back Side	4183	836.6	23.61	24.00	1.094	-0.03	-	1.465	-	1.603
#4 RMC 12.2K Back Side 4183 836.6 23.61 24.00 1.094 -0.03 1.465												

Page 51 of 123 Report No.: CTA24041700513

SAR Values [LTE Band 2]

		Olan			AIT Valu	es [LTE	Jana 2 _j					
Plot	Mode	Test Position	Ch.	Freq.	Average Power	Tune-Up Limit	Scaling Factor	Power Drift		w/kg)		aled W/kg)
NO.		Position		(IVITZ)	(dBm)	(dBm)	racioi	(dB)	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}
		Meas	sured / R	eported	SAR nui	mbers- Ne	xt to Mout	h-distanc	e 10mm			
	20MHz/1RB#49	Front Side	18900	1880	23.80	24.00	1.047	0.09	0.194	-	0.203	
	20MHz/50RB#0	Front Side	18900	1880	22.36	23.00	1.159	-0.11	0.141	-	0.163	(G. Ud
		Me	easured	/ Report	ted SAR ı	numbers-V	Vrist-worn	-distance	0mm			
#5	20MHz/1RB#49	Back Side	18900	1880	23.80	24.00	1.047	-0.05		1.351		1.415
#5	20MHz/50RB#0	Back Side	18900	1880	22.36	23.00	1.159	-0.07		1.105		1.280

	E	CTP	1	S	AR Value	es [LTE B	and 4]	ING				
Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	SAR(wred W/kg) SAR _{10g}	•	W/kg)
		Measu	ıred / Re	ported	SAR num	bers- Nex	t to Mout					
	20MHz/1RB#49	Front Side	20175	1747.5	23.87	24.00	1.030	0.09	0.175		0.180	
	20MHz/50RB#24	Front Side	20175	1747.5	22.41	23.00	1.146	0.11	0.131		0.150	
		Mea	sured /	Report	ed SAR nu	ımbers-W	rist-worn	-distance	0mm			
#6	20MHz/1RB#49	Back Side	20175	1747.5	23.87	24.00	1.030	-0.07		1.145	ı	1.180
	20MHz/50RB#24	Back Side	20175	1747.5	22.41	23.00	1.146	-0.05	7.	0.965		1.105

SAR Values [LTE Band 5]

	Plot	Mode	Test	Ch.	Freq.	Average Power	Tune-Up Limit	Scaling	Power Drift		sured W/kg)		iled W/kg)
CTATES	No.		Position		(MHz)	(dBm)	(dBm)	Factor	(dB)	•	SAR _{10g}	•	
			Measu	red / Re	ported	SAR num	bers- Next	t to Mout	h-distanc	e 10mm			
		10MHz/1RB#0	Front Side	20600	844	23.80	24.00	1.047	0.09	0.195		0.204	
		10MHz/25RB#0	Front Side	20450	829	22.41	23.00	1.146	-0.03	0.152		0.174	STIME
			Mea	sured /	Report	ed SAR nu	ımbers-Wı	rist-worn	-distance	0mm			
G	#7	10MHz/1RB#0	Back Side	20600	844	23.80	24.00	1.047	-0.05		1.229		1.287
		10MHz/25RB#0	Back Side	20450	829	22.41	23.00	1.146	0.05		1.012		1.159
		TOWINZ/ZSKB#U		C	C	ATES	LING		€ CTP	TES	IING		

Report No.: CTA24041700513 Page 52 of 123

SAR Values [LTE Band 7]

	Plot	Mode	Test	Ch.	Freq.	Power	Tune-Up Limit	Scaling	Power Drift		sured W/kg)		aled W/kg)	
	No.		Position		(MHz)	(dBm)	(dBm)	Factor	(dB)	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}	
			Measu	red / Re	ported	SAR num	bers- Nex	t to Mout	h-distanc	e 10mm				
		20MHz/1RB#99	Front Side	21100	2535	23.93	24.00	1.016	0.04	0.335		0.340		-6
		20MHz/50RB#0	Front Side	21350	2560	22.44	23.00	1.138	0.03	0.244		0.278	12-110	CTATES
			Mea	sured /	Report	ed SAR nu	ımbers-W	rist-worn	-distance	0mm				
	#8	20MHz/1RB#99	Back Side	21100	2535	23.93	24.00	1.016	-0.07		1.124		1.142	
CTATES		20MHz/50RB#0	Back Side	21350	2560	22.44	23.00	1.138	0.11		0.932		1.060	
			CTP						ING		•			
			NIE.		SA	AR Values	s [LTE Ba	and 17]						ĨA.
						A	Tuna IIn		Dower	Moor	surod	600	hole	

Plot	Mode	Test	Ch.	Freq.	Average Power	Tune-Up Limit	Scaling	Power Drift		sured W/kg)		aled W/kg)
No.		Position		(MHz)	(dBm)	(dBm)	Factor	(dB)	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}
		Measu	red / Re	ported	SAR num	bers- Nex	t to Mout	h-distanc	e 10mm			
	10MHz/1RB#25	Front Side	23800	711	23.82	24.00	1.042	0.11	0.177		0.184	
	10MHz/25RB#0	Front Side	23800	711	22.45	23.00	1.135	-0.03	0.104		0.118	
	7. 11	Mea	sured /	Report	ed SAR nu	ımbers-W	rist-worn	-distance	0mm	•		
#9	10MHz/1RB#25	Back Side	23800	711	23.82	24.00	1.042	-0.04	19	1.044		1.088
	10MHz/25RB#0	Back Side	23800	711	22.45	23.00	1.135	0.05	7-	0.905		1.027

SAR Values [LTE Band 41]

TE	Plot	Mode	Test Position	Ch.	Freq.	Average Power	Tune-Up Limit	Scaling Factor	Power Drift	Meas SAR(ured W/kg)	Sca SAR(aled W/kg)
CIL	NO.		Position		(IVITIZ)	(dBm)	(dBm)	ractor	(dB)	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}
			Measu	red / Re	ported	SAR num	bers- Next	to Mout	h-distanc	e 10mm			
		20MHz/1RB#49	Front Side	40590	2590	23.85	24.00	1.035	0.09	0.142		0.147	0
		20MHz/50RB#0	Front Side	40590	2590	22.44	23.00	1.138	0.07	0.103		0.117	3 Thu
			Mea	sured /	Report	ed SAR nu	ımbers-Wı	rist-worn	-distance	0mm			
G	#10	20MHz/1RB#49	Back Side	40590	2590	23.85	24.00	1.035	-0.01		1.622		1.679
		20MHz/50RB#0	Back Side	40590	2590	22.44	23.00	1.138	-0.03	-	1.323		1.505

Note: LTE B38 SAR test was covered by LTE B41; according to April 2015 TCB workshop, SAR test for overlapping LTE bands can be reduced if a. the maximum output power, including tolerance, for the smaller band is $\,\leqslant\,\,$ the larger band to qualify for the SAR test exclusion

CTATESTING b. the channel bandwidth and other operating parameters for the smaller band are fully supported by the larger band.

Report No.: CTA24041700513 Page 53 of 123

SAR Values [WIFI]

Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	SAR(sured W/kg) SAR _{10g}	SAR(aled W/kg) SAR _{10g}
		Measu	red / Re	ported	SAR num	bers- Next	to Mout	h-distanc	e 10mm			
	802.11b	Front Side	06	2437	14.58	15.0	1.102	0.05	0.086		0.095	
		Mea	sured / I	Report	ed SAR nu	ımbers-Wı	rist-worn	-distance	0mm			
#11	802.11b	Back Side	06	2437	14.58	15.0	1.102	-0.03		0.201		0.221

Note: Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Report No.: CTA24041700513 Page 54 of 123

10.4 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps
 through 4) do not apply.
- 2 When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3 Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4 Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

SAR Measurement Variability

Band	Mode	Test Position	Ch.	Spacing (mm)	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Second Repeated SAR (W/kg)
	1	The state of the s	1	1	1	CIATES	1	1
/	/	1	1	/	12.1	, ,	1	1
	1	1	/	1		1	,	1

Report No.: CTA24041700513 Page 55 of 123

10.5 Simultaneous Transmission Analysis

Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$\frac{(SAR_1+SAR_2)^{1.5}}{(peak location separation,mm)} < 0.04$$

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

Application Simultaneous Transmission information:

No	Simultaneous Transmission Configurations	Pos	ition
No.	Simultaneous Transmission Configurations	Next to Mouth	Wrist-worn
1	WWAN (2/3/4G) + WLAN 2.4GHz	Yes	Yes
2	WWAN (2/3/4G) + Bluetooth	Yes	Yes

Note: WLAN2.4G and BT share the same antenna and cannot transmitting at the same time.

10.8.2 Evaluation of Simultaneous SAR

Simultaneous transmission SAR for WLAN/BT and GSM/WCDMA/LTE_Next to Mouth

Exposure Position	1 MAX. WWAN Reported SAR 1g SAR (W/kg)	2 MAX. WLAN2.4G Reported SAR 1g SAR (W/kg)	3 Bluetooth 1g SAR (W/kg)	1+2 Summed 1g SAR (W/kg)	1+3 Summed 1g SAR (W/kg)	SPLSR	, TES
Front Side	0.340	0.095	0.026	0.435	0.366	N/A	CIP.

MAX. ΣSAR_{1g} =**0.435** W/kg<1.6 W/kg, so the Simultaneous transmission SAR with volume scan are not required.

Simultaneous transmission SAR for WLAN/BT and GSM/WCDMA/LTE_ Wrist-worn

Exposure Position	1 MAX. WWAN Reported SAR 10g SAR	2 MAX. WLAN2.4G Reported SAR 10g SAR	3 Bluetooth 10g SAR	1+2 Summed 10g SAR (W/kg)	1+3 Summed 10g SAR (W/kg)	SPLSR
	(W/kg)	(W/kg)	(W/kg)	(vv/kg)	(vv/kg)	
Front Side	1.833	0.221	0.053	2.054	1.886	N/A

MAX. Σ SAR_{10g} =**2.054** W/kg<4 W/kg, so the Simultaneous transmission SAR with volume scan are not required.

Report No.: CTA24041700513 Page 56 of 123

11 Measurement Uncertainty

NO	Source	Uncert. ai (%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	Stand.U ncert. ui (1g)	Stand.U ncert. ui (10g)	Veff
1	Repeat	0.4	N	1	1	1	0. 4	0. 4	9
			Instr	ument			G tr		
2	Probe calibration	7	N	2	1	The state of the s	3.5	3.5	∞ co ua
3	Axial isotropy	4.7	R	_ √3	0.7	0.7	1.9	1.9	∞
4	Hemispherical isotropy	9.4	R	<u>_</u> √3	0.7	0.7	3.9	3.9	∞
5	Boundary effect	1.0	R		1	1	0.6	0.6	∞
6	Linearity	4.7	R	_ √3	15	5 1	2.7	2.7	∞
7	Detection limits	1.0	R	$\frac{-}{\sqrt{3}}$	1	1	0.6	0.6	∞
8	Readout electronics	0.3	N	1	1	1	0.3	0.3	∞
9	Response time	0.8	R		1	1	0.5	0.5	∞
10	Integration time	2.6	R	_ √3	1	1	1.5	1.5	∞
11	Ambient noise	3.0	R		1	1	1.7	1.7	∞
12	Ambient reflections	3.0	R		1	1	1.7	1.7	∞
13	Probe positioner mech. restrictions	0.4	R	_ √3	1	1	0.2	0.2	∞
14	Probe positioning with respect to phantom shell	2.9	R	√ 3	1	1	1.7	1.7	∞
15	Max.SAR evaluation	1.0	R	_ √3	1	1	0.6	0.6	8
15	CTATE!	STING				STING	3		ESTIN

Report No.: CTA24041700513 Page 57 of 123

			Test samp	ole rel	ated					
16	Device positioning	3.8	N	1	1	1	3.8	3.8	99	
17	Device holder	5.1	N	NY	1	1	5.1	5.1	5	
18	Drift of output power	5.0	R		1	1	2.9	2.9	8	
		CAL	Phantom a	and s	et-up		TATES	51	•	
19	Phantom uncertainty	4.0	R	_ √3	1	11	2.3	2.3	8	TES
20	Liquid conductivity (target)	5.0	R	- √3	0.64	0.43	1.8	1.2	8	CTATES
21	Liquid conductivity (meas)	2.5	N	1	0.64	0.43	1.6	1.2	8	
22	Liquid Permittivity (target)	5.0	R		0.6	0.49	1.7	1.5	8	
23	Liquid Permittivity (meas)	2.5	N	1	0.6	0.49	1.5	1.2	8	
С	ombined standard		RSS	II.	$=\sqrt{\sum_{i=1}^{n}C_{i}}$	2 _{II} 2	11.4%	11.3%	236	G
u	Expanded ncertainty(P=95%)	U = k U					22.8%	22.6%	TESTI	
								CAN		•

Report No.: CTA24041700513 Page 58 of 123

Appendix A. EUT Photos and Test Setup Photos

CTATESTING

Page 59 of 123 Report No.: CTA24041700513

Date: 04/21/2024

Appendix B. Plots of SAR System Check

750MHz System Check

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1194

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.909 \text{ S/m}$; $\varepsilon_r = 41.209$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(10.02, 10.02, 10.02); Calibrated: 6/21/2023

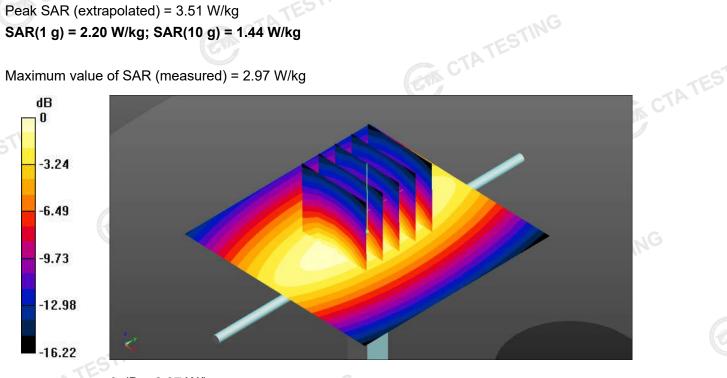
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.14 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 55.42 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 3.51 W/kg

SAR(1 g) = 2.20 W/kg; SAR(10 g) = 1.44 W/kg

Maximum value of SAR (measured) = 2.97 W/kg

0 dB = 2.97 W/kg

CTATESTING System Performance Check 750MHz 250mW

Report No.: CTA24041700513 Page 60 of 123

Date: 04/22/2024

835MHz System Check

DUT: Dipole 835 MHz; Type: D835V2; Serial: 484

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.883$ S/m; $\varepsilon_r = 41.068$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

•Probe: EX3DV4 – SN7380; ConvF(9.62, 9.62, 9.62); Calibrated: June 21, 2023;

Sensor-Surface: 4mm (Mechanical Surface Detection)

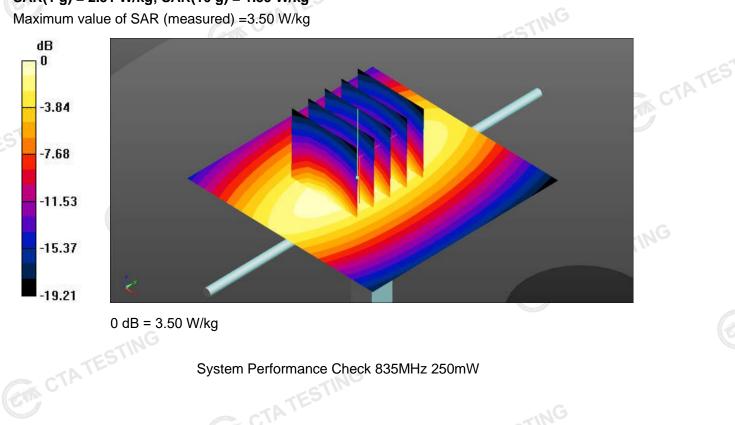
•Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.43 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 62.54 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 4.21 W/kg

SAR(1 g) = 2.51 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) =3.50 W/kg

0 dB = 3.50 W/kg

System Performance Check 835MHz 250mW CTA TESTI

Page 61 of 123 Report No.: CTA24041700513

Date: 04/23/2024

1750 MHz System Check

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: 2d158

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1750 MHz; $\sigma = 1.369 \text{ S/m}$; $\epsilon_r = 38.981$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

•Probe: EX3DV4 – SN7380; ConvF(8.35, 8.35, 8.35); Calibrated: June 21, 2023;

Sensor-Surface: 4mm (Mechanical Surface Detection)

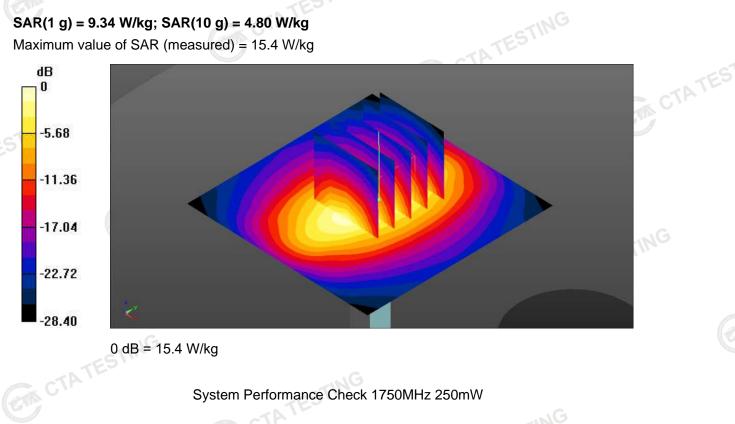
Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

•Phantom: SAM 1; Type: SAM;

CTATESTING •Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 15.65 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 90.25 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 19.5 W/kg

SAR(1 g) = 9.34 W/kg; SAR(10 g) = 4.80 W/kg

Maximum value of SAR (measured) = 15.4 W/kg

0 dB = 15.4 W/kg

System Performance Check 1750MHz 250mW CTA TESTING Report No.: CTA24041700513 Page 62 of 123

Date: 04/24/2024

1900MHz System Check

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d002

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.398 \text{ S/m}$; $\epsilon r = 39.944$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

•Probe: EX3DV4 – SN7380; ConvF(8.05, 8.05, 8.05); Calibrated: June 21, 2023;

Sensor-Surface: 4mm (Mechanical Surface Detection)

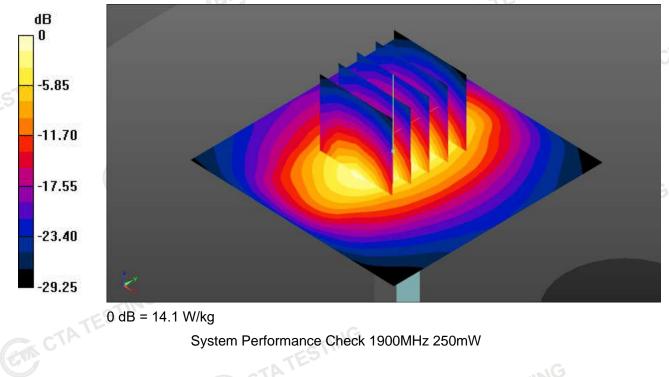
Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

•Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) CTATESTING

Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 13.2 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 82.90 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 16.65 W/kg

SAR(1 g) = 10.53 W/kg; SAR(10 g) = 5.33 W/kg

Maximum value of SAR (measured) = 14.1 W/kg

System Performance Check 1900MHz 250mW CTATESTING

Report No.: CTA24041700513 Page 63 of 123

Date: 04/28/2024

2450MHz System Check

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 745

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.833 \text{ S/m}$; $\epsilon r = 38.087$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

•Probe: EX3DV4 – SN7380; ConvF(7.50, 7.50, 7.50); Calibrated: June 21, 2023;

Sensor-Surface: 4mm (Mechanical Surface Detection)

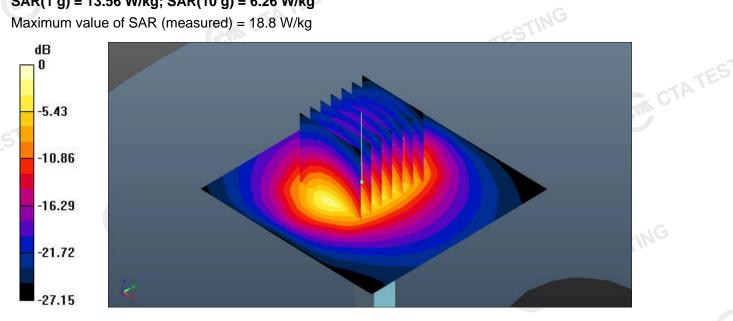
Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) CTA TESTING

Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 20.3 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.5 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 25.5 W/kg

SAR(1 g) = 13.56 W/kg; SAR(10 g) = 6.26 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

0 dB = 18.8 W/kgOTA TESTIN

System Performance Check 2450MHz 250mW CTATES

Report No.: CTA24041700513 Page 64 of 123

Date: 04/25/2024

2600MHz System Check

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1073

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2600 MHz; $\sigma = 1.919 \text{ S/m}$; $\epsilon r = 37.935$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

•Probe: EX3DV4 – SN7380; ConvF(7.35, 7.35, 7.35); Calibrated: June 21, 2023;

Sensor-Surface: 4mm (Mechanical Surface Detection)

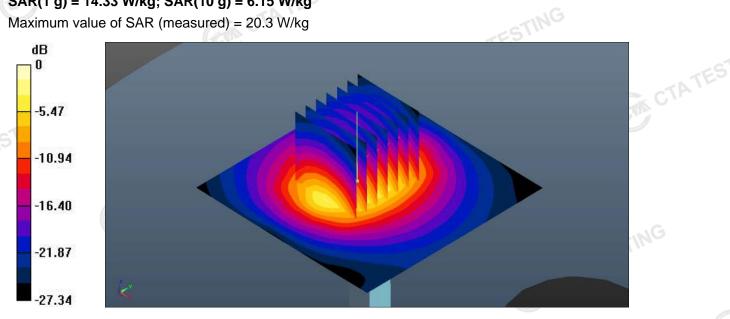
Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) CTA TESTING

Area Scan (91x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 20.6 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.1 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 28.4 W/kg

SAR(1 g) = 14.33 W/kg; SAR(10 g) = 6.15 W/kg

Maximum value of SAR (measured) = 20.3 W/kg

0 dB = 20.3 W/kgOF CTATESTIN

System Performance Check 2600MHz 250mW CTATES

Page 65 of 123 Report No.: CTA24041700513

Appendix C. Plots of SAR Test Data

Date: 04/22/2024

Communication System: UID 0, GSM (0); Frequency: 848.8 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.8 MHz; = -0.000 Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.891 \text{ S/m}$; $\varepsilon_r = 41.662$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(9.62, 9.62, 9.62); Calibrated: June 21, 2023;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

Phantom: SAM 1; Type: SAM;

CTA TESTING Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (41x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.887 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.41 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.912 W/kg; SAR(10 g) = 0.494 W/kg

Maximum value of SAR (measured) = 1.01 W/Kg

0 db = 1.01 W/Kg

Page 66 of 123 Report No.: CTA24041700513

#2.

Date: 04/24/2024

GSM1900_GPRS 3TX slot_Back side_0mm_Ch512

Communication System: UID 0, GSM (0); Frequency: 1850.2 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.407 \text{ S/m}$; $\epsilon_r = 39.320$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(8.05, 8.05, 8.05); Calibrated: June 21, 2023;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (41x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.34 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.22 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 4.62 W/kg

SAR(1 g) = 2.85 W/kg; SAR(10 g) = 1.554 W/kg

Maximum value of SAR (measured) = 3.22 W/Kg

0 db = 3.22 W/Kg

Page 67 of 123 Report No.: CTA24041700513

#3.

Date: 04/24/2024

WCDMA II_RMC 12.2Kbps_Back side_0mm_Ch9400

Communication System: UID 0, WCDMA (0); Frequency: 1880.0 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1880.0 MHz; $\sigma = 1.428 \text{ S/m}$; $\epsilon_r = 40.700$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(8.05, 8.05, 8.05); Calibrated: June 21, 2023;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (41x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.77 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.21 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 4.87 W/kg

SAR(1 g) = 2.754 W/kg; SAR(10 g) = 1.672 W/kg

Maximum value of SAR (measured) = 3.56 W/Kg

0 db = 3.56 W/Kg

Page 68 of 123 Report No.: CTA24041700513

#4.

Date: 04/22/2024

WCDMA V_RMC 12.2Kbps_Back side_0mm_Ch4183

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.889 \text{ S/m}$; $\varepsilon_r = 41.542$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(9.62, 9.62, 9.62); Calibrated: June 21, 2023;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (41x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.22 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.32 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 4.52 W/kg

SAR(1 g) = 2.74 W/kg; SAR(10 g) = 1.465 W/kg

Maximum value of SAR (measured) = 3.15 W/Kg

0 db = 3.15 W/Kg

Page 69 of 123 Report No.: CTA24041700513

#5.

Date: 04/24/2024

LTE Band 2_20M_QPSK_1RB#49_Back side_0mm_Ch18900

Communication System: UID 0, Generic LTE (0); Frequency: 1880.0 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1880.0 MHz; $\sigma = 1.374 \text{ S/m}$; $\epsilon r = 38.880$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(8.05, 8.05, 8.05); Calibrated: June 21, 2023;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (41x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.05 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.36 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 3.95 W/kg

SAR(1 g) = 2.67 W/kg; SAR(10 g) = 1.351 W/kg

Maximum value of SAR (measured) = 3.07 W/Kg

0 db = 3.07 W/Kg

Report No.: CTA24041700513 Page 70 of 123

#6.

Date: 04/23/2024

LTE Band 4_20M_QPSK_1RB#49_Back side_0mm_Ch20175

Communication System: UID 0, LTE (0); Frequency: 1747.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): = 1747.5 MHz; σ = 1.341 S/m; ϵ r = 40.894; ρ = 1000 kg/m3

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7380; ConvF(8.35, 8.35, 8.35); Calibrated: June 21, 2023

Sensor-Surface: 2mm (Mechanical Surface Detection)

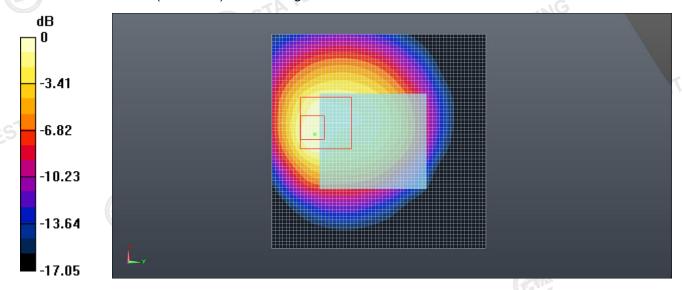
Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

Phantom: SAM 1; Type: SAM;

• Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (41x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.05 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.36 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 2.88 W/kg

SAR(1 g) = 1.857 W/kg; SAR(10 g) = 1.145 W/kg

Maximum value of SAR (measured) = 2.32 W/Kg

0 db = 2.32 W/Kg

Page 71 of 123 Report No.: CTA24041700513

#7.

Date: 04/22/2024

LTE Band 5_10M_QPSK_1RB#0_Back side_0mm_Ch20600

Communication System: UID 0, LTE (0); Frequency: 844.0 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 844.0 MHz; $\sigma = 0.884 \text{ S/m}$; $\epsilon r = 41.235$; $\rho = 1000 \text{ kg/m}3$

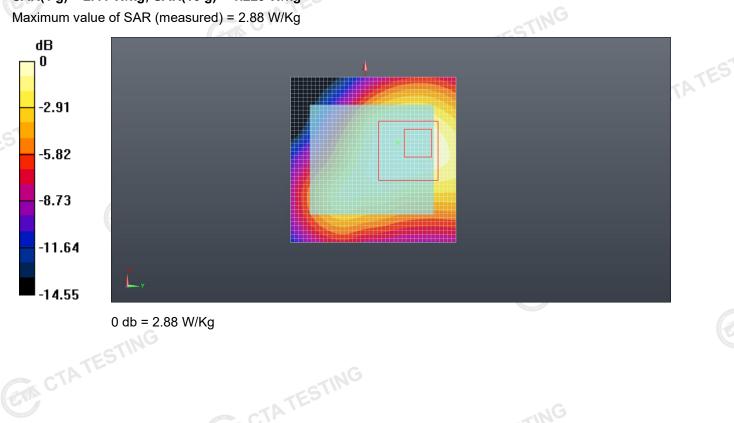
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7380; ConvF(9.62, 9.62, 9.62); Calibrated: June 21, 2023;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;
- Phantom: SAM 1; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (41x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.64 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.32 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 3.77 W/kg

SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.229 W/kg

Maximum value of SAR (measured) = 2.88 W/Kg

0 db = 2.88 W/Kg

Report No.: CTA24041700513 Page 72 of 123

#8.

Date: 04/25/2024

LTE Band 7_20M_QPSK_1RB#99_Back side_0mm_Ch21100

Communication System: UID 0, LTE (0); Frequency: 2535.0 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2535.0 MHz; $\sigma = 1.962 \text{ S/m}$; $\epsilon r = 39.862$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7380; ConvF(7.35, 7.35, 7.35); Calibrated: June 21, 2023;

Sensor-Surface: 2mm (Mechanical Surface Detection)

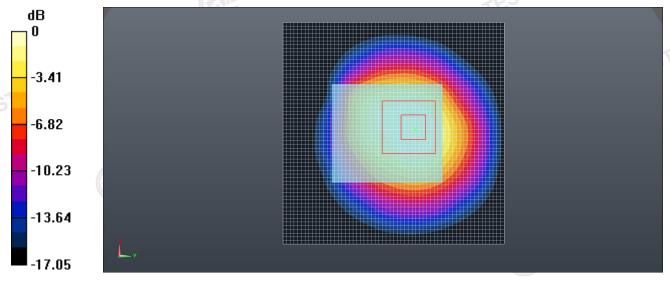
Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

Phantom: SAM 1; Type: SAM;

• Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (61x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 2.21 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.15 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 4.25 W/kg

SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.124 W/kg

Maximum value of SAR (measured) =2.98 W/Kg

0 db = 2.98 W/Kg

Page 73 of 123 Report No.: CTA24041700513

#9.

Date: 04/21/2024

LTE Band 17_10M_QPSK_1RB#25_Back side_0mm_Ch23800

Communication System: UID 0, LTE (0); Frequency: 711.0 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): = 711.0 MHz; σ = 0.895 S/m; ϵ r = 41.256; ρ = 1000 kg/m3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(10.02, 10.02, 10.02); Calibrated: 6/21/2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (41x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.05 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.41 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 2.74 W/kg

SAR(1 g) = 1.755 W/kg; SAR(10 g) = 1.044 W/kg

Maximum value of SAR (measured) = 1.80 W/Kg

0 db = 1.80 W/Kg

Report No.: CTA24041700513 Page 74 of 123

#10.

Date: 04/25/2024

LTE Band 41_20M_QPSK_1RB#49_Back side_0mm_Ch40590

Communication System: UID 0, LTE (0); Frequency: 2590.0 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): = 2590.0 MHz; σ = 1.984 S/m; ϵ r = 38.676; ρ = 1000 kg/m3

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7380; ConvF(7.35, 7.35, 7.35); Calibrated: June 21, 2023

Sensor-Surface: 2mm (Mechanical Surface Detection)

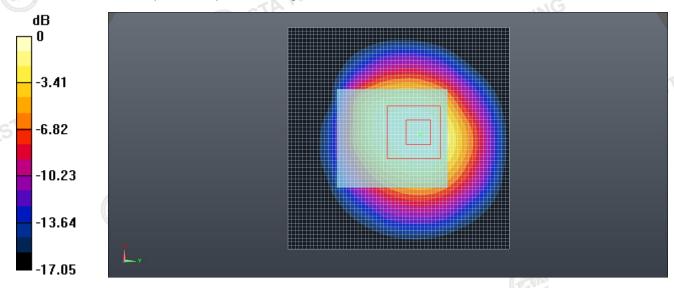
Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

Phantom: SAM 1; Type: SAM;

• Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (61x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 3.14 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.01 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.75 W/kg

SAR(1 g) = 2.84 W/kg; SAR(10 g) = 1.622 W/kg

Maximum value of SAR (measured) = 3.01 W/Kg

0 db = 3.01 W/Kg

Report No.: CTA24041700513 Page 75 of 123

#11.

Date: 04/28/2024

WLAN2.4GHz_802.11b 1Mbps_Back side_0mm_Ch06

Communication System: UID 0, WIFI (0); Frequency: 2437.0 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437.0 MHz; $\sigma = 1.829 \text{ S/m}$; $\epsilon_r = 38.440$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(7.50, 7.50, 7.50); Calibrated: June 21, 2023

Sensor-Surface: 2mm (Mechanical Surface Detection)

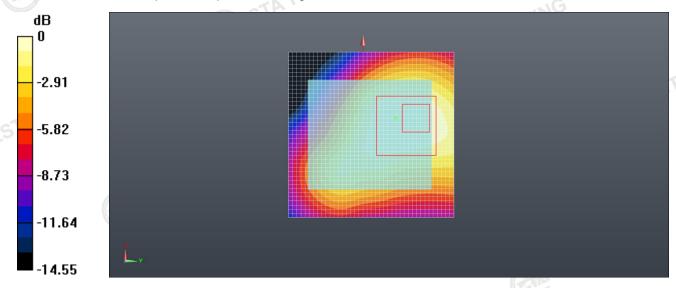
Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (41x41x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

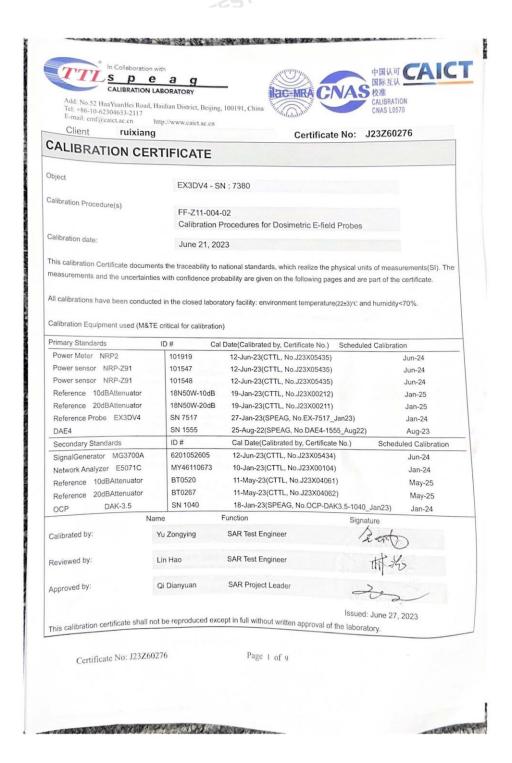
Maximum value of SAR (interpolated) = 0.455 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.55 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.766W/kg

SAR(1 g) = 0.411 W/kg; SAR(10 g) = 0.201 W/kg


Maximum value of SAR (measured) = 0.332 W/Kg

0 db = 2.88 W/Kg

Report No.: CTA24041700513 Page 76 of 123

Appendix D. DASY System Calibration Certificate

CTA TESTING

CTA TESTING

Report No.: CTA24041700513 Page 77 of 123

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn

a

E-mail: emf@caict.ac.cn

Glossary:

tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Φ rotation around probe axis Polarization Φ

Polarization θ

 θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

0=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)",

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the

E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.

DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep

(no uncertainty required). DCP does not depend on frequency nor media.

PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal

characteristics

Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the

Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for fs800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters assessment as a second applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to allows extending the validity from ±50MHz to±100MHz.

allows extending the validity from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

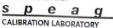
phantom exposed by a patent antenna.

Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the

probe tip (on probe axis). No total last required.

Connector Angle: The angle is assessed using the information gained by determining the NORMx

Certificate No:J23Z60276


Control of the Contro

Page 2 of 9

Report No.: CTA24041700513 Page 78 of 123

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7380

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.44	0.35	0.41	±10.0%
DCP(mV) ^B	100.5	101.6	100.6	210.070

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	X	0.0	0.0	1.0	0.00	161.9	±2.2%	
		Υ	0.0	0.0	1.0		139.0	2.270
	Z	0.0	0.0	1.0		149.3	1	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:J23Z60276

A CONTRACTOR OF THE PARTY OF TH

Page 3 of 9

Report No.: CTA24041700513 Page 79 of 123

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7380

Calibration Parameter Determined in Head Tissue Simulating Media

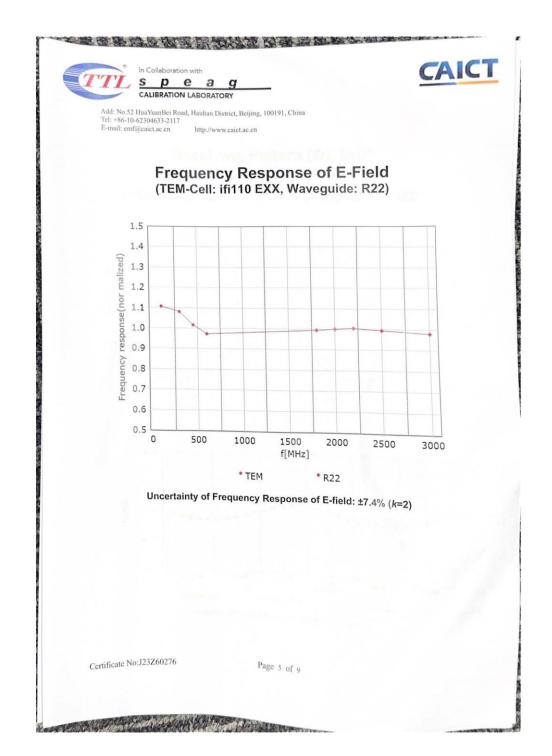
f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.02	10.02	10.02	0.17	1.27	±12.7%
835	41.5	0.90	9.62	9.62	9.62			
1750	40.1	1.37	8.35	8.35		0.18	1.30	±12.7%
1900	40.0	1.40	8.05	8.05	8.35 8.05	0.28	1.02	±12.7%
2100	39.8	1.49	8.00	8.00	8.00	0.24	1.11	±12.7%
2300	39.5	1.67	7.75	7.75		0.24	1.11	±12.7%
2450	39.2	1.80	7.50	7.50	7.75	0.65	0.67	±12.7%
2600	39.0	1.96	7.35	7.35	7.50 7.35	0.65	0.69	±12.7%
3500	37.9	2.91	6.85	6.85		0.47	0.85	±12.7%
3700	37.7	3.12	6.69	6.69	6.85	0.41	1.03	±13.9%
3900	37.5	3.32	6.58	6.58		0.43	1.03	±13.99
4100	37.2	3.53	6.62	6.62	6.58	0.30	1.50	±13.9
4200	37.1	3.63	6.52	6.52	6.62	0.35	1.25	±13.99
4400	36.9	3.84	6.44	6.44	6.44	0.30	1.45	±13.9
4600	36.7	4.04	6.41	6.41	6.41	0.30	1.50	±13.9°
4800	36.4	4.25	6.36	6.36		0.35	1.48	±13.9
4950	36.3	4.40	5.95	5.95	6.36	0.35	1.50	±13.9
5250	35.9	4.71	5.45	5.45	5.95	0.35	1.55	±13.9
5600	35.5	5.07	4.86	4.86	5.45	0.40	1.55	±13.9
5750	35.4	5.22	4.96	4.96	4.86	0.45	1.40	±13.9

© Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

150 and 220 km is 150 cm.

FAt frequency up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation. formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

tissue parameters.

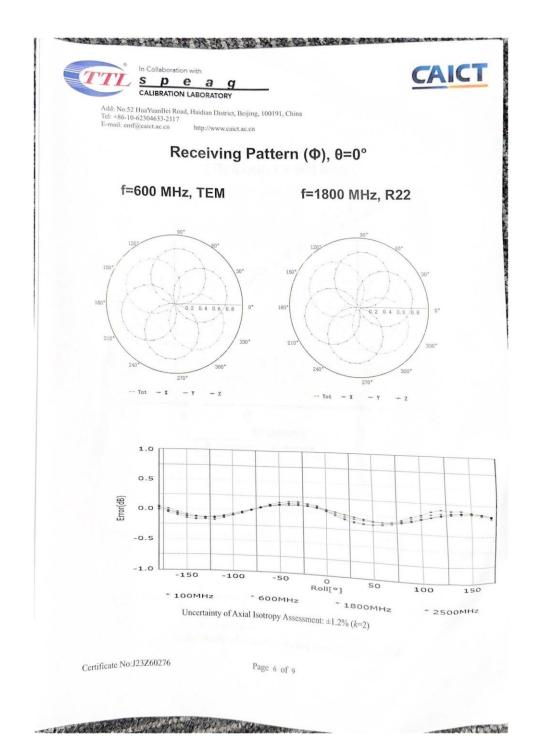

GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:J23Z60276

Control of the second of the s

Page 4 of 9

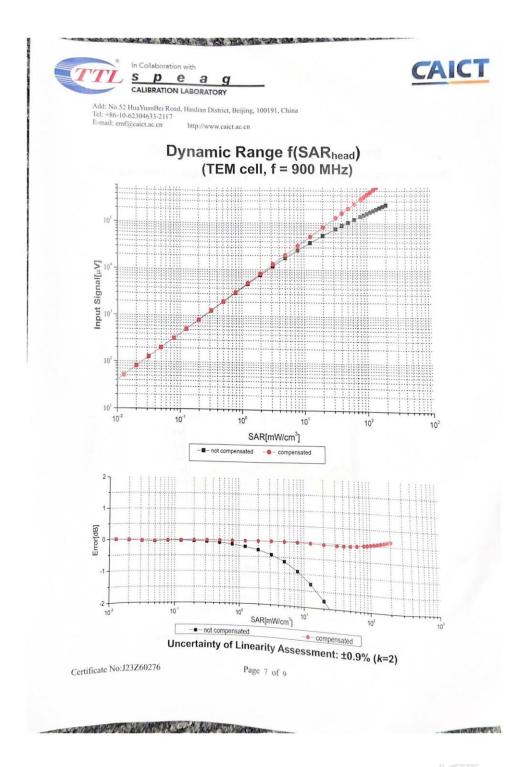
Report No.: CTA24041700513 Page 80 of 123



CTA TESTING

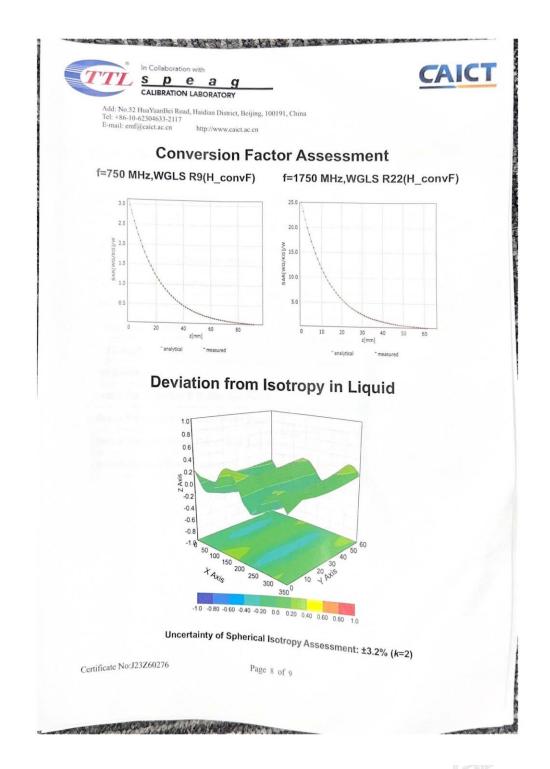
CTA TESTING

TATESTING

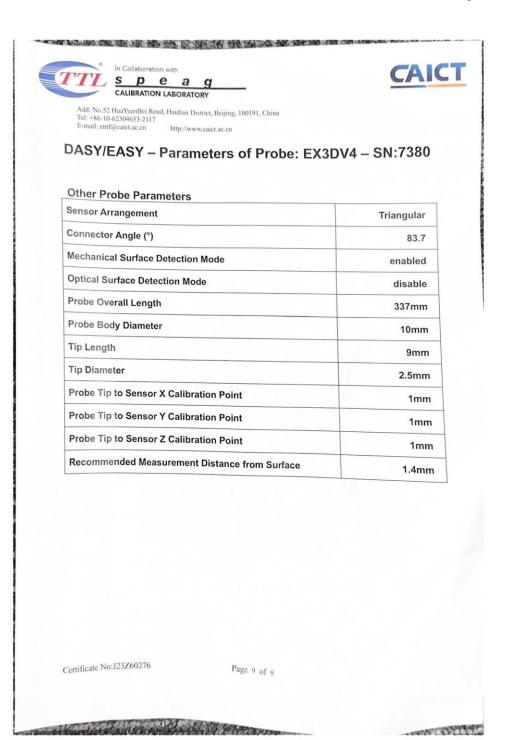

Report No.: CTA24041700513 Page 81 of 123

CTATEST!

CTA TESTING


Report No.: CTA24041700513 Page 82 of 123

CTATESTING


CTA TESTING

Report No.: CTA24041700513 Page 83 of 123

GTA TESTING

Report No.: CTA24041700513 Page 84 of 123

CTATESTING

CTATESTING

ESTING

CTATES

Report No.: CTA24041700513 Page 85 of 123

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.en

http://www.caict.ac.cn

Certificate No: J23Z60391

CTA **CALIBRATION CERTIFICATE**

Object

DAE3 - SN: 428

Calibration Procedure(s)

Client :

FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

August 30, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards Cal Date(Calibrated by, Certificate No.) Scheduled Calibration

Process Calibrator 753 1971018 12-Jun-23 (CTTL, No.J23X05436) Jun-24

Calibrated by:

Name

Function

SAR Test Engineer

Reviewed by:

Lin Hao

Yu Zongying

SAR Test Engineer

Approved by:

Qi Dianyuan SAR Project Leader

Issued: September 06, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60391

Page 1 of 3

Page 86 of 123 Report No.: CTA24041700513

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: J23Z60391

Page 2 of 3

Report No.: CTA24041700513 Page 87 of 123

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DC Voltage Measurement

A/D - Converter Resolution nominal High Range: 1LSB = $6.1 \mu V$, full range = -100...+300 m Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec -100...+300 mV

Calibration Factors	Х	Υ	Z
High Range	404.468 ± 0.15% (k=2)	404.804 ± 0.15% (k=2)	404.579 ± 0.15% (k=2)
Low Range	3.95934 ± 0.7% (k=2)	3.95437 ± 0.7% (k=2)	3.91875 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	258.5° ± 1 °

Certificate No: J23Z60391

Page 3 of 3

Page 88 of 123 Report No.: CTA24041700513

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

ATC Client

Certificate No: Z23-60083

CALIBRATION CERTIFICATE

Object

D750V3 - SN: 1194

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

February 17, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
106276	10-May-22 (CTTL, No.J22X03103)	May-23
101369	10-May-22 (CTTL, No.J22X03103)	May-23
SN 7464		Jan-24
SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24
ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
MY49070393	17-May-23 (CTTL, No.J22X03157)	May-24
MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24
	106276 101369 SN 7464 SN 1556 ID # MY49070393	106276 10-May-22 (CTTL, No.J22X03103) 101369 10-May-22 (CTTL, No.J22X03103) SN 7464 19-Jan-23 (CTTL-SPEAG,No.Z22-60565) SN 1556 11-Jan-23(CTTL-SPEAG,No.Z23-60034) ID# Cal Date (Calibrated by, Certificate No.) MY49070393 17-May-23 (CTTL, No.J22X03157)

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Hao	SAR Test Engineer	研粉
Approved by:	Qi Dianyuan	SAR Project Leader	عرام

Issued: February 24, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z23-60083

Page 1 of 6

Report No.: CTA24041700513 Page 89 of 123

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z23-60083

Page 2 of 6

Report No.: CTA24041700513 Page 90 of 123

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	42.0	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.57 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.61 W/kg ± 18.7 % (k=2)

Certificate No: Z23-60083

Page 3 of 6

Page 91 of 123 Report No.: CTA24041700513

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8Ω- 3.54jΩ	
Return Loss	- 28.9dB	

General Antenna Parameters and Design

0.979 ns	
	0.979 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	OI LAG

Certificate No: Z23-60083

Page 4 of 6

Report No.: CTA24041700513 Page 92 of 123

Date: 2023-02-17

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1194

Communication System: UID 0, CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.885$ S/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

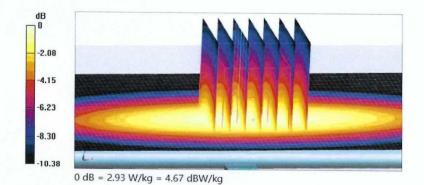
DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(10.26, 10.26, 10.26) @ 750 MHz; Calibrated: 2023-01-19
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2023-01-11
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 50.59 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 3.42 W/kg

SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.4 W/kg

Smallest distance from peaks to all points 3 dB below = 20 mm

Ratio of SAR at M2 to SAR at M1 = 62.9%

Maximum value of SAR (measured) = 2.93 W/kg

Certificate No: Z23-60083

Page 5 of 6