Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone, Jiazitang Community, Fenghuang Street, Guangming District, Shenzhen, China

FCC PART 1	15 SUBPART C TEST	REPORT		
Report Reference No: FCC ID:				
Compiled by (position+printed name+signature):	Testing Engineer Jimmy Wang	Joseph Mey		
Supervised by (position+printed name+signature):	Project Engineer Kelley Zhang	(Lelley Thom)		
Approved by (position+printed name+signature):	Manager Sam Wang	Son Wong		
Date of issue:	Oct. 14, 2022			
Representative Laboratory Name.:	Shenzhen GUOREN Certification	n Technology Service Co., Ltd.		
Address·····::	101#, Building K & Building T, The Second Industrial Zone, Jiazitang Community, Fenghuang Street, Guangming District, Shenzhen, China			
Applicant's name:	King Yuk Technology (Donggu	an) Co.,Ltd		
Address:	Room 401,Building 3, No. 3, Fenghuangshan Road, Fenggang town, Dongguan City,Guangdong Provinc,China			
Test specification:				
Standard:	FCC Rules and Regulations Part ANSI C63.10: 2013	15 Subpart C (Section 15.209)		

Shenzhen GUOREN Certification Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purpses as long as the Shenzhen GUOREN Certification Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen GUOREN Certification Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

reproduced material due to its placement and context.			
Test item description:	Magnetic Wireless Car Charger		
Trade Mark:	1		
Manufacturer:	King Yuk Technology (Dongguan) Co.,Ltd		
Model/Type reference:	Т3		
Listed Models:	1		
Modulation Type:	ASK		
Operation Frequency:	From 110KHz~205KHz		
Rating:	Input: DC5V/2A,9V/2A,12V/1.67A Wireless Output:5W/7.5W/10W/15W		
Result:	PASS		

TEST REPORT

Equipment under Test : Magnetic Wireless Car Charger

Model /Type : T3

Listed Models : /

Applicant : King Yuk Technology (Dongguan) Co.,Ltd

Address : Room 401, Building 3, No. 3, Fenghuangshan Road, Fenggang town,

Dongguan City, Guangdong Provinc, China

Manufacturer : King Yuk Technology (Dongguan) Co.,Ltd

Address : Room 401, Building 3, No. 3, Fenghuangshan Road, Fenggang town,

Dongguan City, Guangdong Provinc, China

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1 TEST STANDARDS	4
2 SUMMARY	5
2.1 General Remarks	
2.2 Product Description	
2.3 Description of the test mode	
2.4 Special Accessories	. 6
2.5 Modifications	. 6
3 TEST ENVIRONMENT	7
3.1 Address of the test laboratory	7
3.2 Test Facility	. 7
3.3 Summary of measurement results	.7
3.4 Statement of the measurement uncertainty	
3.5 Equipments Used during the Test	8
4 TEST CONDITIONS AND RESULTS	9
4.1 AC Power Conducted Emission	. 9
4.2 Radiated Emission1	12
4.3 Occupied Bandwidth1	
4.4 Antenna Requirement 1	17
5 TEST SETUP PHOTOS OF THE EUT1	8
6 PHOTOS OF THE EUT1	9

Report No.: GRCTR220902018-01 Page 4 of 22

1 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules and Regulations Part 15 Subpart C (Section 15.207):</u> Conducted limits. <u>FCC Rules and Regulations Part 15 Subpart C (Section 15.209):</u> Radiated emission limits; general requirements.

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

Report No.: GRCTR220902018-01 Page 5 of 22

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	:	Sep. 23, 2022
Testing commenced on	:	Sep. 23, 2022
Testing concluded on	:	Oct. 14, 2022

2.2 Product Description

Product Name:	Magnetic Wireless Car Charger
Model/Type reference:	Т3
Listed Models:	1
Test samples ID:	GRCTR220902018-1#
Power supply:	Input: DC5V/2A,9V/2A,12V/1.67A Wireless Output:5W/7.5W/10W/15W
Operation frequency:	110KHz - 205KHz
Modulation type:	ASK
Antenna type:	Loop coil antenna
Remark:	

2.3 Description of the test mode

Equipment under test was operated during the measurement under the following conditions:

Charging and communication mode

Test Mo	des:		
Mode 1	AC/DC Adapter (5V/2A) + EUT + Mobile Phone1 (Battery Status: <1%)	Record	
Mode 2	AC/DC Adapter (5V/2A) + EUT + Mobile Phone1 (Battery Status: <50%)	Pre-tested	
Mode 3	AC/DC Adapter (5V/2A) + EUT + Mobile Phone1 (Battery Status: 100%)	Pre-tested	
Mode 4	AC/DC Adapter (9V/2A) + EUT + Mobile Phone1 (Battery Status: <1%)	Pre-tested	
Mode 5	AC/DC Adapter (9V/2A) + EUT + Mobile Phone1 (Battery Status: <50%)	Pre-tested	
Mode 6	AC/DC Adapter (9V/2A) + EUT + Mobile Phone1 (Battery Status: 100%)	Pre-tested	
Mode 7	AC/DC Adapter (12V/1.67A) + EUT + Mobile Phone1 (Battery Status: <1%)	Pre-tested	
Mode 8	AC/DC Adapter (12V/1.67A) + EUT + Mobile Phone1 (Battery Status: <50%)	Pre-tested	
Mode 9	AC/DC Adapter (12V/1.67A) + EUT + Mobile Phone1 (Battery Status: 100%)	Pre-tested	
Note: All	Note: All test modes were pre-tested, but we only recorded the worst case in this report.		

Report No.: GRCTR220902018-01 Page 6 of 22

2.4 Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
Adapter	FYJIAHE	FP-C57912	Input: 100-240V~, 50/60Hz, 0.7A Output: 5V==3A / 7V==3A / 9V==2A / 12V==2A	FCC	laboratory

2.5 Modifications

No modifications were implemented to meet testing criteria.

Report No.: GRCTR220902018-01 Page 7 of 22

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone, Jiazitang Community, Fenghuang Street, Guangming District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 920798 Designation Number: CN1304

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6202.01

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED#: 27264 CAB identifier: CN0115

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

CNAS-Lab Code: L15631

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories for the Competence of Testing and Calibration Laboratories.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Summary of measurement results

DESCRIPTION OF TEST	RESULT
CONDUCTED EMISSIONS TEST	COMPLIANT
RADIATED EMISSION TEST	COMPLIANT
OCCUPIED BANDWIDTH MEASUREMENT	COMPLIANT
ANTENNA REQUIREMENT	COMPLIANT

3.4 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen GUOREN Certification Technology Service Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

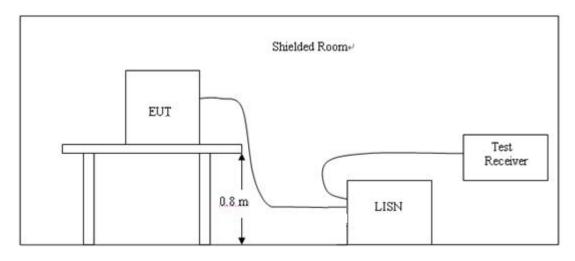
Report No.: GRCTR220902018-01 Page 8 of 22

Hereafter the best measurement capability for Shenzhen GUOREN Certification Technology Service Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.5 Equipments Used during the Test


Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	GRCTEE009	2021/10/30	2022/10/29
LISN	R&S	ENV216	GRCTEE010	2021/10/30	2022/10/29
EMI Test Receiver	R&S	ESPI	GRCTEE017	2021/10/30	2022/10/29
EMI Test Receiver	R&S	ESCI	GRCTEE008	2021/10/30	2022/10/29
Spectrum Analyzer	Agilent	N9020A	GRCTEE002	2021/10/30	2022/10/29
Spectrum Analyzer	R&S	FSP	GRCTEE003	2021/10/30	2022/10/29
Vector Signal generator	Agilent	N5181A	GRCTEE007	2021/10/30	2022/10/29
Analog Signal Generator	R&S	SML03	GRCTEE006	2021/10/30	2022/10/29
Universal Radio Communication	CMW500	R&S	GRCTEE001	2021/10/30	2022/10/29
Climate Chamber	QIYA	LCD-9530	GRCTES016	2021/10/30	2022/10/29
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	GRCTEE018	2020/10/25	2023/10/24
Horn Antenna	Schwarzbeck	BBHA 9120D	GRCTEE019	2020/10/25	2023/10/24
Loop Antenna	Zhinan	ZN30900C	GRCTEE020	2020/10/25	2023/10/24
Horn Antenna	Beijing Hangwei Dayang	OBH100400	GRCTEE049	2021/1/18	2024/1/17
Amplifier	Schwarzbeck	BBV 9745	GRCTEE021	2021/10/30	2022/10/29
Amplifier	Taiwan chengyi	EMC051845B	GRCTEE022	2021/10/30	2022/10/29
Temperature/Humidit y Meter	Huaguan	HG-308	GRCTES037	2021/10/30	2022/10/29
Directional coupler	NARDA	4226-10	GRCTEE004	2021/10/30	2022/10/29
High-Pass Filter	XingBo	XBLBQ-GTA18	GRCTEE053	2021/10/30	2022/10/29
High-Pass Filter	XingBo	XBLBQ-GTA27	GRCTEE054	2021/10/30	2022/10/29
Automated filter bank	Tonscend	JS0806-F	GRCTEE055	2021/10/30	2022/10/29
EMI Test Software	ROHDE & SCHWARZ	ESK1-V1.71	GRCTEE060	N/A	N/A
EMI Test Software	Fera	EZ-EMC	GRCTEE061	N/A	N/A

Report No.: GRCTR220902018-01 Page 9 of 22

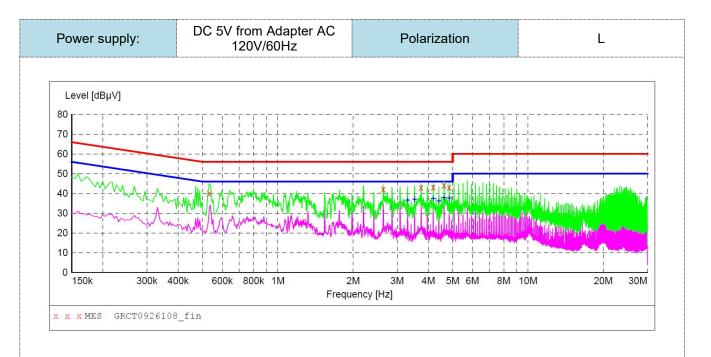
4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.


AC Power Conducted Emission Limit

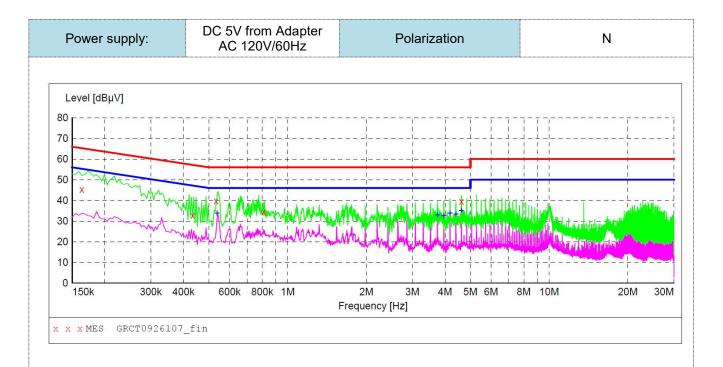
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguency range (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* Decreases with the logarithm of the frequency.			

TEST RESULTS

- 1. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:
- 2. All test modes described in section 2.3 has been tested, only the worst result of Mode 1 is recorded.

MEASUREMENT RESULT: "GRCT0926108 fin"


9	/26/2022 11: Frequency MHz	46AM Level dBμV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.532500	40.00	9.7	56	16.0	QP	L1	GND
	2.638500	42.10	9.9	56	13.9	QP	L1	GND
	3.741000	43.00	9.9	56	13.0	QP	L1	GND
	4.182000	43.10	10.0	56	12.9	QP	L1	GND
	4.618500	44.10	10.0	56	11.9	QP	L1	GND
	4.839000	43.00	10.0	56	13.0	QP	L1	GND

MEASUREMENT RESULT: "GRCT0926108_fin2"

9/26/2022 11 Frequency MHz	:46AM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
3.300000	36.70	9.9	46	9.3	AV	L1	GND
3.520500	37.00	9.9	46	9.0	AV	L1	GND
4.182000	37.40	10.0	46	8.6	AV	L1	GND
4.402500	36.30	10.0	46	9.7	AV	L1	GND
4.618500	38.00	10.0	46	8.0	AV	L1	GND
4.839000	37.60	10.0	46	8.4	AV	L1	GND

Note:1).Level (dB μ V)= Reading (dB μ V)+ Transducer (dB)

- 2). Transducer (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) = Limit (dB μ V) Level (dB μ V)

MEASUREMENT RESULT: "GRCT0926107 fin"

9/2	6/2022 11:	43AM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dBµV	dB	dBuV	dB			
	0.163500	45.30	9.7	65	20.0	QP	N	GND
	0.433500	32.80	9.7	57	24.4	QP	N	GND
	0.532500	39.80	9.7	56	16.2	QP	N	GND
	0.811500	34.50	9.8	56	21.5	QP	N	GND
	4.618500	39.50	10.0	56	16.5	QP	N	GND

MEASUREMENT RESULT: "GRCT0926107 fin2"

9/26/2022 11: Frequency	43AM Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dBµV	dB	Deceesor	штис	1.11
0.537000	33.90	9.7	46	12.1	AV	N	GND
3.741000	33.00	9.9	46	13.0	AV	N	GND
3.957000	32.60	10.0	46	13.4	AV	N	GND
4.177500	33.80	10.0	46	12.2	AV	N	GND
4.398000	33.50	10.0	46	12.5	AV	N	GND
4 618500	35.20	10.0	46	10.8	VA	N	GND

Note:1).Level ($dB\mu V$)= Reading ($dB\mu V$)+ Transducer (dB)

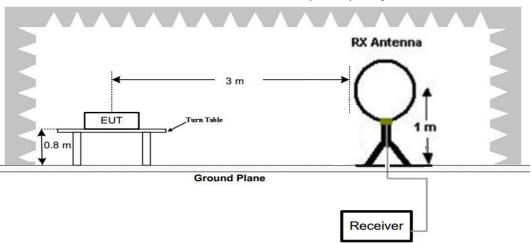
- 2). Transducer (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) = Limit (dB μ V) Level (dB μ V)

Report No.: GRCTR220902018-01 Page 12 of 22

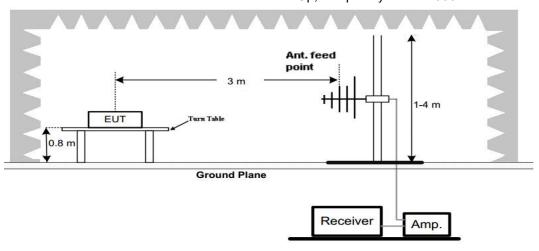
4.2 Radiated Emission

Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.


In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Radiated emission limits


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)	
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)	
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)	
1.705-30 3		20log(30)+ 40log(30/3)	30	
30-88	3	40.0	100	
88-216	3	43.5	150	
216-960 3 Above 960 3		46.0	200	
		54.0	500	

TEST CONFIGURATION

1. Radiated Emission Test Set-Up, Frequency Below 30MHz

2. Radiated Emission Test Set-Up, Frequency below 1000MHz

Report No.: GRCTR220902018-01 Page 13 of 22

Test Procedure

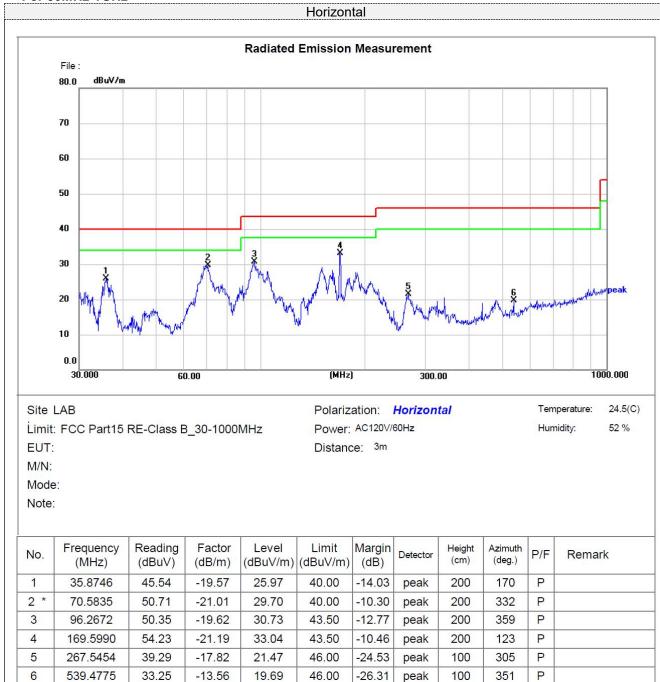
- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0 ℃ to 360 ℃ to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 1000MHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	
30MHz-1GHz	Bilog Antenna	3	

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
		2 0 10 0 10 1
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP

TEST RESULTS

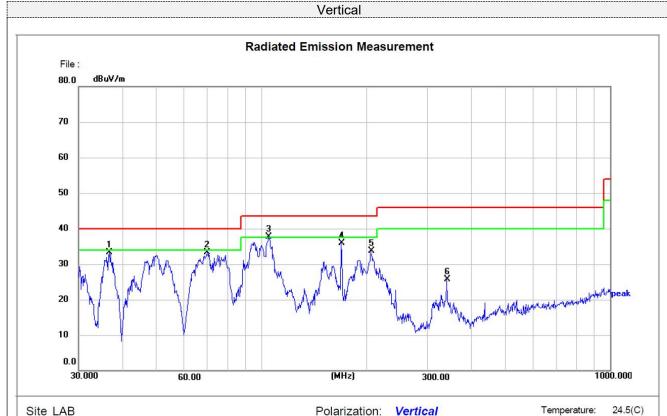

For 9 KHz-30MHz

Frequency	Reading	Polar	Antenna Factor	Cable Loss	Emission Levels	Limits at 3m	Margin	Detector Mode
(MHz)	(dBµV/m)	Loop	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
0.1281(F)	59.27	Loop	23.64	0.01	82.92	105.88	22.96	PK
0.1281(F)	51.63	Loop	23.64	0.01	75.28	85.88	10.60	AV
0.110	29.48	Loop	23.55	0.01	53.04	106.78	53.74	PK
0.110	25.16	Loop	23.55	0.01	48.72	86.78	38.06	AV
0.753	19.50	Loop	24.80	-0.15	44.15	70.07	25.92	QP
2.246	23.98	Loop	24.04	-0.23	47.79	69.54	21.75	QP
		-						

Remark:

- 1. Data of measurement within this frequency range shown "-- in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits and not recorded.
- 2. The test limit distance is 3m limit.
- 3. PK means Peak Value, QP means Quasi Peak Value, AV means Average Value.
- 4. F means Fundamental Frequency.
- 5. Emission level (dBuV/m) =Reading + Antenna Factor + Cable Loss.
- 6. Margin value = Limit value- Emission level.

For 30MHz-1GHz



Note:1).Level (dBμV/m)= Reading (dBμV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) =Level (dB μ V/m) Limit (dB μ V/m)

Humidity:

52 %

Site LAB Polarization: Vertical
Limit: FCC Part15 RE-Class B_30-1000MHz Power: AC120V/60Hz

EUT: Distance: 3m

M/N: Mode: Note:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	36.7661	52.67	-19.29	33.38	40.00	-6.62	peak	100	163	Р	
2	70.0901	54.26	-20.89	33.37	40.00	-6.63	peak	200	270	Р	
3 *	104.9033	56.71	-19.05	37.66	43.50	-5.84	peak	200	301	Р	
4	169.5990	57.08	-21.19	35.89	43.50	-7.61	peak	100	125	Р	
5	206.3976	52.66	-18.88	33.78	43.50	-9.72	peak	100	358	Р	
6	340.7817	42.18	-16.49	25.69	46.00	-20.31	peak	100	178	Р	

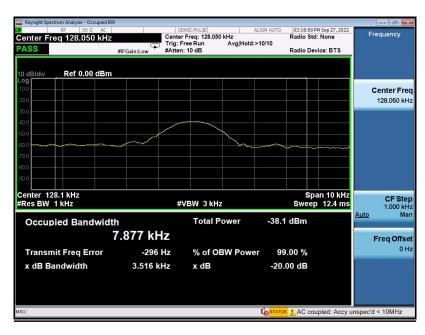
Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Level (dB μ V/m) Limit (dB μ V/m)

Report No.: GRCTR220902018-01 Page 16 of 22

4.3 Occupied Bandwidth

TEST CONFIGURATION


TEST PROCEDURE

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be deomonstrated by measuring the radiated emissions.

LIMIT

The 20dB bandwidth shall be less than 80% of the permitted frequency band.

TEST RESULTS

Mode	Freq (KHz)	20dB Bandwidth (KHz)	Conclusion
Tx Mode	128.10	3.516	PASS

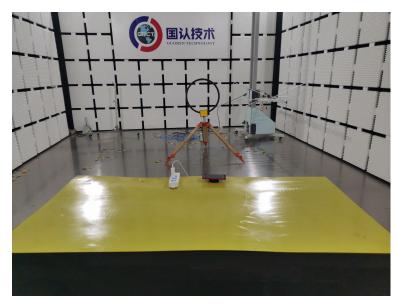
Report No.: GRCTR220902018-01 Page 17 of 22

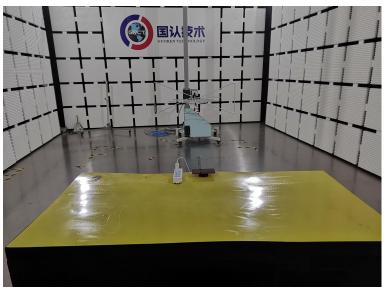
4.4 Antenna Requirement

Standard Applicable

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

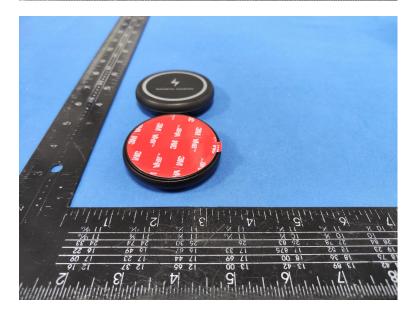

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

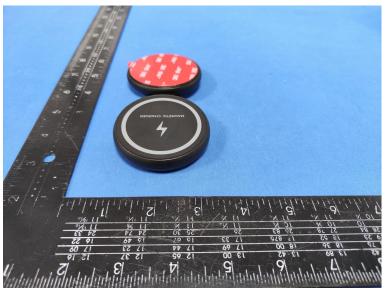

Antenna Information

The antenna used in this product is a Coil Antenna, The directional gains of antenna used for transmitting is 0dBi.

Remark:The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen GUOREN Certification Technology Service Co., Ltd. does not assume any responsibility.

5 Test Setup Photos of the EUT




6 PHOTOS OF THE EUT

