

TEST REPORT

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr	Report No.: KR23-SRF0191-B Page (1) of (32)	 KCTL
---	---	--

1. Client

- Name : MVTECH
- Address : 1004, Hanshin IT Tower, 272, Digital-ro, Guro-gu, Seoul, Republic of Korea
- Date of Receipt : 2023-06-01

2. Use of Report : Certificate

3. Name of Product / Model : IOT_4_VIBRATION / IOT_4_VIBRATION

4. Manufacturer / Country of Origin : MVTECH / Korea

5. FCC ID : 2A8WW-IOT4VIBRATION

6. Date of Test : 2023-07-18 to 2023-07-24

7. Location of Test : Permanent Testing Lab On Site Testing

(Address: 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea)

8. Test method used : FCC Part 15 Subpart E, 15.407

9. Test Result : Refer to the test result in the test report

Affirmation	Tested by Name : Eunseong Lim	Technical Manager Name : Heesu Ahn
-------------	--	---

2023-08-03

Eurofins KCTL Co.,Ltd.

As a test result of the sample which was submitted from the client, this report does not guarantee the whole product quality. This test report should not be used and copied without a written agreement by Eurofins KCTL Co.,Ltd.

REPORT REVISION HISTORY

Date	Revision	Page No
2023-07-27	Originally issued	-
2023-07-31	Updated	6
2023-08-03	Updated	6

This report shall not be reproduced except in full, without the written approval of Eurofins KCTL Co.,Ltd. This document may be altered or revised by Eurofins KCTL Co.,Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by Eurofins KCTL Co.,Ltd. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

Note. The report No. KR23-SRC0191-A is superseded by the report No. KR23-SRC00191-B.

General remarks for test reports

Statement concerning the uncertainty of the measurement systems used for the tests

(may be required by the product standard or client)

Internal procedure used for type testing through which traceability of the measuring uncertainty has been established:

Procedure number, issue date and title:

Calculations leading to the reported values are on file with the testing laboratory that conducted the testing.

Statement not required by the standard or client used for type testing

CONTENTS

1. General information	4
2. Device information	4
2.1. Accessory information	5
2.2. Frequency/channel operations.....	5
2.3. RF power setting in TEST SW	5
2.4. Duty Cycle Factor	6
3. Antenna requirement	6
4. Summary of tests.....	7
5. Measurement uncertainty	8
6. Measurement results explanation example	9
7. Test results	10
7.1. Maximum conducted output power.....	10
7.2. Spurious Emission, Band Edge and Restricted bands.....	12
7.3. AC Conducted emission	30
8. Measurement equipment	32

1. General information

Client : MVTECH
Address : 1004, Hanshin IT Tower, 272, Digital-ro, Guro-gu, Seoul, Republic of Korea
Manufacturer : MVTECH
Address : 1004, Hanshin IT Tower, 272, Digital-ro, Guro-gu, Seoul, Republic of Korea
Laboratory : Eurofins KCTL Co.,Ltd.
Address : 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
Accreditations : FCC Site Designation No: KR0040, FCC Site Registration No: 687132
VCCI Registration No. : R-20080, G-20078, C-20059, T-20056
CAB Identifier: KR0040, ISED Number: 8035A
KOLAS No.: KT231

2. Device information

Equipment under test : IOT_4_VIBRATION
Model : IOT_4_VIBRATION
Modulation technique : WIFI(802.11b) : DSSS
WIFI(802.11a/g) : OFDM
Number of channels : WIFI(802.11b/g) : 11 ch (20 MHz)
UNII-1 : 4 ch (20 MHz)
UNII-3 : 5 ch (20 MHz)
Power source : DC 24 V
Antenna specification : Dipole Antenna
Antenna gain : WIFI (802.11b/g) : 4.16 dBi
UNII-1 : 3.92 dBi
UNII-3 : 3.07 dBi
Frequency range : WIFI (802.11b/g) : 2 412 MHz ~ 2 462 MHz
UNII-1 : 5 180 MHz ~ 5 240 MHz
UNII-3 : 5 745 MHz ~ 5 825 MHz
Software version : Rev1.0
Hardware version : Rev1.0
Test device serial No. : 220307VB40048
Operation temperature : -20 °C ~ 50 °C

2.1. Accessory information

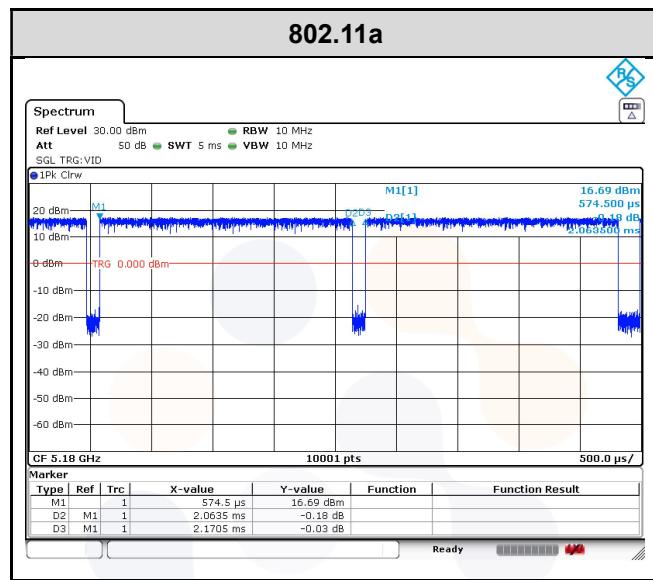
Equipment	Manufacturer	Model	Serial No.	Power source
AC/DC SWITCHING ADAPTOR	-MEAN WELL Technology Co., Ltd.	GST60A24	SC191N8978	Input : 100-240 VAC, 50/60 Hz, 1.4A Output : 24V, 2.5A 60W

2.2. Frequency/channel operations

UNII-1		UNII-3	
Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
36	5 180	149	5 745
40	5 200	157	5 785
48	5 240	165	5 825

Table 2.2.1. 802.11a mode

2.3. RF power setting in TEST SW


Test Condition		Frequency (MHz)	Test Program	Power Setting
802.11a	UNII-1	5 180	CP210xVCP	16
		5 200		18
		5 240		20
	UNII-3	5 745		20
		5 785		19
		5 825		19

2.4. Duty Cycle Factor

Test mode	Period (ms)	T _{on} time (ms)	Duty cycle		Duty cycle factor (dB)
			(Linear)	(%)	
802.11a	2.170 5	2.063 5	0.950 7	95.07	0.22

Notes.

1. Duty cycle (Linear) = T_{on} time / Period
2. DCF(Duty cycle factor) = 10log(1/duty cycle)
3. DCF is not compensated to average result if duty cycle is more than 98%

3. Antenna requirement

Requirement of FCC part section 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

- The transmitter has permanently attached Dipole Antenna on device.
- The E.U.T Complies with the requirement of §15.203, §15.407.

4. Summary of tests

FCC Part section(s)	Parameter	Test Condition	Test results
15.407(a)	Maximum conducted output power	Conducted	Pass
15.407(a)	Maximum power spectral density		N/T ¹⁾
15.407(a)	26 dB Channel Bandwidth		N/T ¹⁾
15.407(e)	6 dB Channel Bandwidth		N/T ¹⁾
15.207(a)	AC Conducted Emissions		Pass
15.407(b), 15.205(a), 15.209(a)	Spurious emission	Radiated	Pass

Notes:

1. This report is a host device test report with approved modules installed.
 These test items were performed. (FCC ID: 2AATL-8223A-SR, Test Report No.
 TCT171018E032 issued on 06, December, 2017 by Shenzhen Tongce Testing Lab.)
2. According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz.
 Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
3. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
4. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that X orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in X orientation.
5. The test procedure(s) in this report were performed in accordance as following.
 - ANSI C63.10-2013
 - KDB 789033 D02 v02r01
6. Based on the baseline scan, the worst-case data rates were:
 802.11a mode: 6Mbps

5. Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of $k=2$ to indicated a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (\pm)	
Radiated Emissions	Below 30 MHz	2.3 dB
	30 MHz to 1 000 MHz	2.5 dB
	1 000 MHz to 18 000 MHz	4.7 dB
	Above 18 000 MHz	4.8 dB
Conducted Emissions	150 kHz to 30 MHz	2.7 dB

6. Measurement results explanation example

The offset level is set in the spectrum analyzer to compensate the RF cable loss factor between EUT conducted output port and spectrum analyzer.

With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Frequency (MHz)	Factor(dB)	Frequency (MHz)	Factor(dB)
30	10.14	9 000	13.92
50	10.17	10 000	15.06
100	10.23	11 000	15.19
200	10.37	12 000	15.16
300	10.48	13 000	15.06
400	10.54	14 000	15.17
500	10.59	15 000	14.63
600	10.66	16 000	15.11
700	10.70	17 000	15.34
800	10.78	18 000	14.77
900	10.78	19 000	14.96
1 000	10.78	20 000	14.84
2 000	11.11	21 000	15.63
3 000	11.39	22 000	15.94
4 000	11.53	23 000	15.46
5 000	11.96	24 000	15.30
6 000	11.99	25 000	15.46
7 000	12.28	26 000	15.24
8 000	14.36	26 500	16.27

Notes:

Offset(dB) = RF cable loss(dB) + Attenuator(dB)

7. Test results

7.1. Maximum conducted output power

Test setup

Limit

According to §15.407(a),

Band	EUT category	Conducted output power limit
UNII-1	Outdoor access point	1 W (30 dBm)
	Indoor access point	
	Fixed point-to-point access point	250 mW (23.98 dBm)
	Client device	
UNII-2A		250 mW or 11 dBm + 10logB ¹)
UNII-2C		250 mW or 11 dBm + 10logB ¹)
UNII-3	✓	1 W (30 dBm)

Note:

1) Conducted output power limit B is the 26 dB emission bandwidth.

Test procedure

ANSI C63.10-2013-Section 12.3.3.2
 KDB 789033 D02 v02r01 - Section E.2.d)

Test settings

Used test method is Section E.2.d)

◆ KDB 789033 D02 v02r01

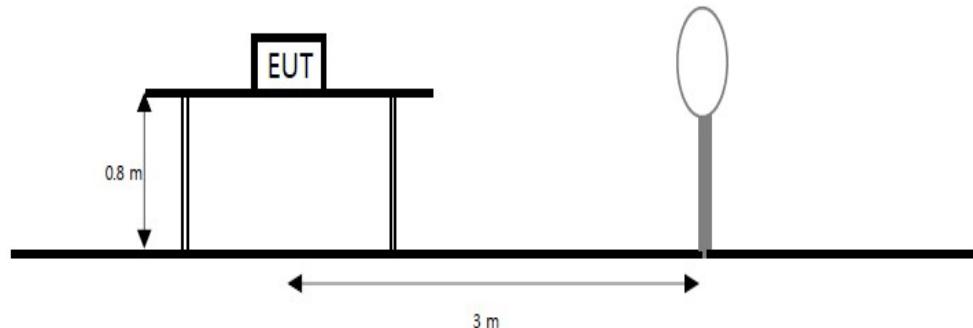
Section E.3.a)

Method PM (Measurement using an RF average power meter):

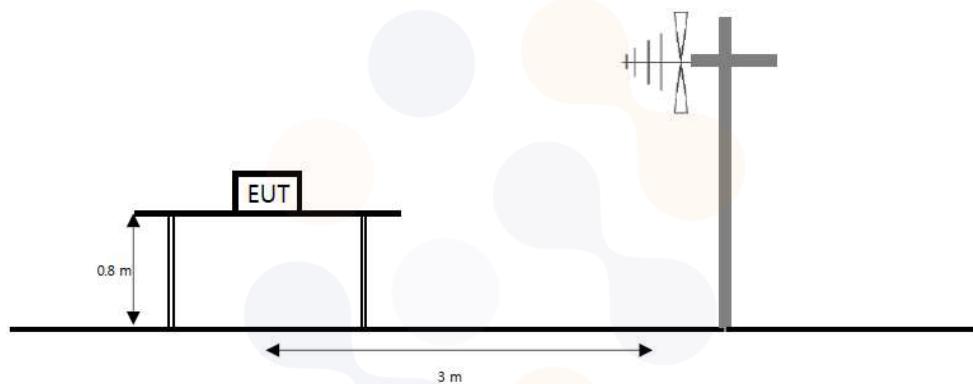
- (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.
 - The EUT is configured to transmit continuously or to transmit with a constant duty cycle.
 - At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
 - The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five
- (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in II
- (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- (iv) Adjust the measurement in dBm by adding $10 \log (1/x)$ where x is the duty cycle (e.g., $10 \log (1/0.25)$ if the duty cycle is 25%).

Test results

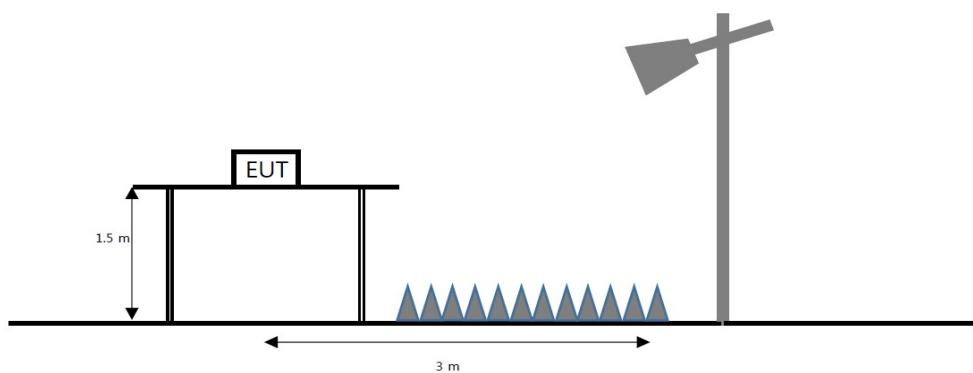
Test mode	Band	Frequency (MHz)	Measured output power			Limit (dBm)
			Reading (dBm)	DCF (dB)	Result (dBm)	
802.11a	UNII 1	5 180	15.31	0.22	15.53	30.00
		5 200	16.63	0.22	16.85	
		5 240	18.18	0.22	18.40	
	UNII 3	5 745	17.05	0.22	17.27	30.00
		5 785	15.94	0.22	16.16	
		5 825	16.49	0.22	16.71	


Note.

1. Result(dBm) = Reading Power + D.C.F


7.2. Spurious Emission, Band Edge and Restricted bands

Test setup


The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz emissions, whichever is lower.

Limit

According to section 15.209(a) except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (μ V/m)	Measurement distance (m)
0.009 - 0.490	2 400/F(kHz)	300
0.490 - 1.705	24 000/F(kHz)	30
1.705 - 30	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., Section 15.231 and 15.241.

According to section 15.205(a) and (b) only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 - 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 - 1 427	8.025 - 8.5
4.177 25 - 4.177 75	37.5 - 38.25	1 435 - 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 - 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 - 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 - 1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	2 200 - 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 - 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525	2 483.5 - 2 500	17.7 - 21.4
8.376 25 - 8.386 75	25	2 690 - 2 900	22.01 - 23.12
8.414 25 - 8.414 75	156.7 - 156.9	3 260 - 3 267	23.6 - 24.0
12.29 - 12.293	162.012 5 - 167.17	3 332 - 3 339	31.2 - 31.8
12.519 75 - 12.520 25	167.72 - 173.2	3 345.8 - 3 358	36.43 - 36.5
12.576 75 - 12.577 25	240 - 285	3 600 - 4 400	Above 38.6
13.36 - 13.41	322 - 335.4		

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in section 15.209. At frequencies equal to or less than 1 000 MHz, compliance with the limits in section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 MHz, compliance with the emission limits in section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in section 15.35 apply to these measurements.

Test procedure

ANSI C63.10-2013 Section 12.7.7.2, 12.7.5, 12.7.6

KDB 789033 D02 v02r01 – Section G

KDB 291074 D02 v01 – 2.10.2

Test settings

Peak field strength measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = as specified in table
3. VBW \geq (3 \times RBW)
4. Detector = peak
5. Sweep time = auto
6. Trace mode = max hold
7. Allow sweeps to continue until the trace stabilizes

Table. RBW as a function of frequency

Frequency	RBW
9 kHz to 150 kHz	200 Hz to 300 Hz
0.15 MHz to 30 MHz	9 kHz to 10 kHz
30 MHz to 1 000 MHz	100 kHz to 120 kHz
> 1 000 MHz	1 MHz

Average field strength measurements

Trace averaging with continuous EUT transmission at full power

If the EUT can be configured or modified to transmit continuously ($D \geq 98\%$), then the average emission levels shall be measured using the following method (with EUT transmitting continuously):

1. RBW = 1 MHz (unless otherwise specified).
2. VBW \geq (3 \times RBW).
3. Detector = RMS (power averaging), if $[\text{span} / (\# \text{ of points in sweep})] \leq (\text{RBW} / 2)$. Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
4. Averaging type = power (i.e., rms):
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.
5. Sweep time = auto.
6. Perform a trace average of at least 100 traces.

Trace averaging across ON and OFF times of the EUT transmissions followed by duty cycle correction

If continuous transmission of the EUT ($D \geq 98\%$) cannot be achieved and the duty cycle is constant (duty cycle variations are less than $\pm 2\%$), then the following procedure shall be used:

1. The EUT shall be configured to operate at the maximum achievable duty cycle.
2. Measure the duty cycle D of the transmitter output signal as described in 11.6.
3. RBW = 1 MHz (unless otherwise specified).
4. VBW \geq [3 \times RBW].
5. Detector = RMS (power averaging), if $[\text{span} / (\# \text{ of points in sweep})] \leq (\text{RBW} / 2)$. Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this

condition cannot be satisfied, then the detector mode shall be set to peak.

6. Averaging type = power (i.e., rms):

- 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
- 2) Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.

7. Sweep time = auto.

8. Perform a trace average of at least 100 traces.

9. A correction factor shall be added to the measurement results prior to comparing with the emission limit to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

- 1) If power averaging (rms) mode was used in step f), then the applicable correction factor is $[10 \log (1 / D)]$, where D is the duty cycle.
- 2) If linear voltage averaging mode was used in step f), then the applicable correction factor is $[20 \log (1 / D)]$, where D is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous ($D \geq 98\%$) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Notes:

1. $f < 30 \text{ MHz}$, extrapolation factor of 40 dB/decade of distance. $F_d = 40 \log(D_m/D_s)$

$f \geq 30 \text{ MHz}$, extrapolation factor of 20 dB/decade of distance. $F_d = 20 \log(D_m/D_s)$

Where:

F_d = Distance factor in dB

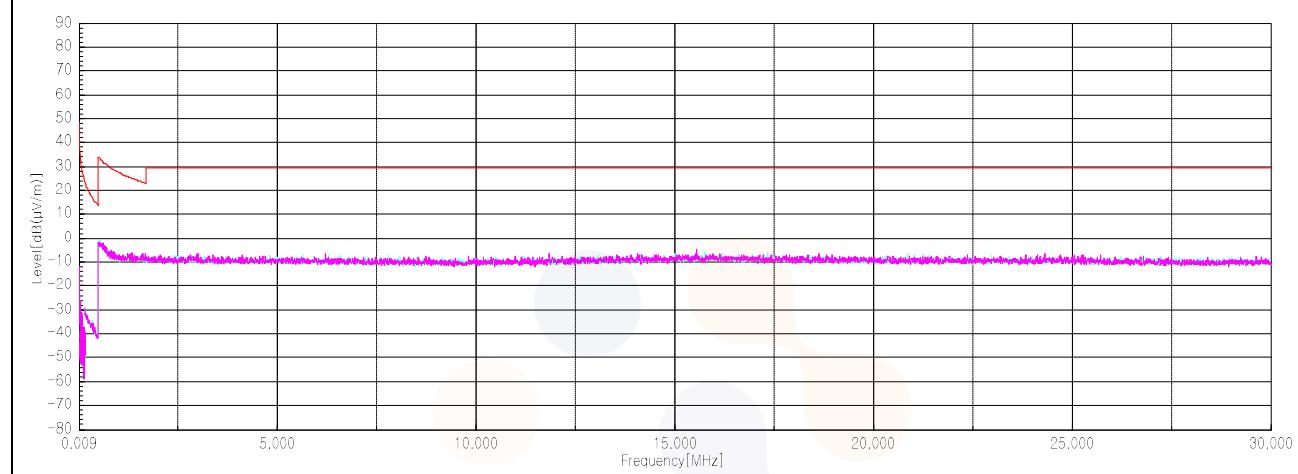
D_m = Measurement distance in meters

D_s = Specification distance in meters

2. Factors(dB) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or F_d (dB)

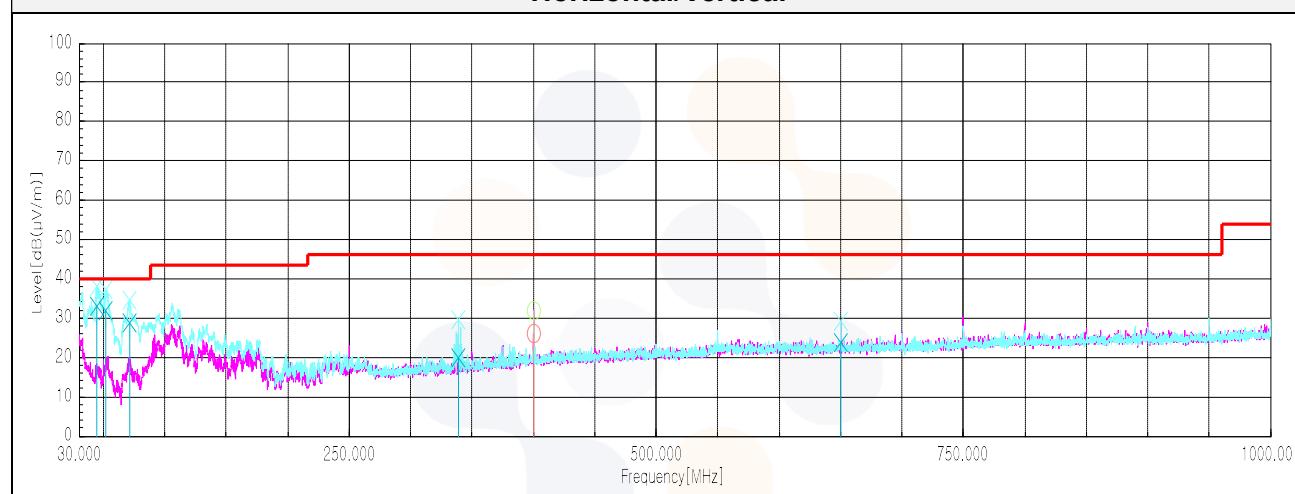
3. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.

4. Average test would be performed if the peak result were greater than the average limit.


5. ¹⁾ means restricted band.

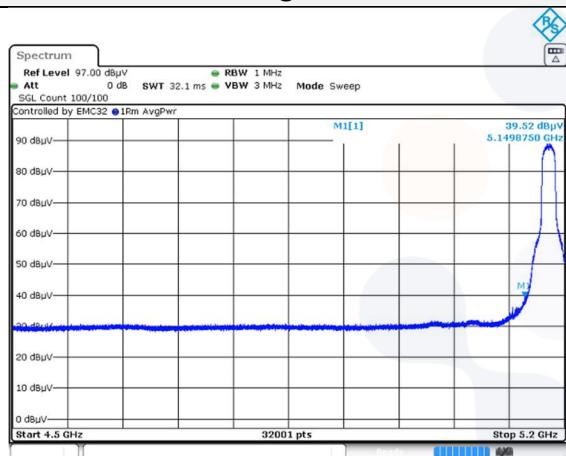
6. Below 30 MHz frequency range, In order to search for the worst result, all orientations about parallel, perpendicular, and ground-parallel were investigated then reported. when the emission level was higher than 20 dB of the limit, then the following statement shall be made: "No spurious emissions were detected within 20 dB of the limit."

7. For above 1 GHz pre-scan to detect harmonic and spurious emissions, the resolution bandwidth is set to 1 kHz; the video bandwidth is set to 30 kHz for peak measurements.

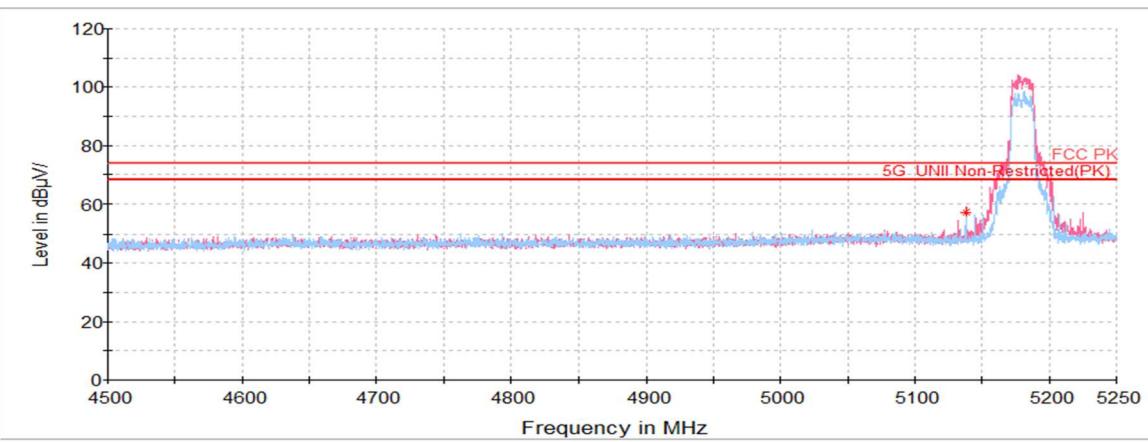

Test results**Test results (Below 30 MHz) – Worst case: 802.11a_UNII 1_5 240 MHz**

Frequency (MHz)	Pol. (V/H)	Reading (dB(μ V))	Cable Loss (dB)	Amp Gain (dB)	Antenna Factor (dB)	DCF (dB)	Result (dB(μ V/m))	Limit (dB(μ V/m))	Margin (dB)
No spurious emissions were detected within 20 dB of the limit.									

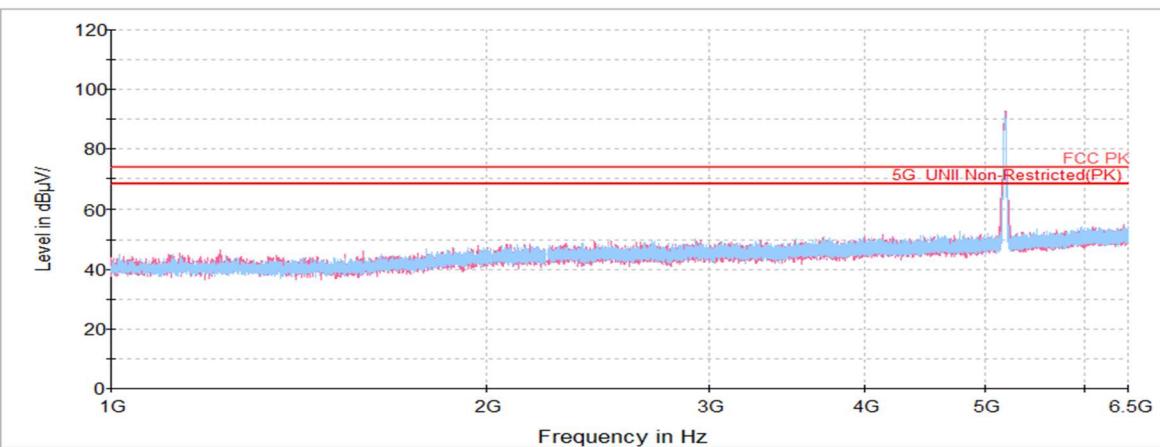
Horizontal/Vertical


Test results (Below 1 000 MHz) – Worst case: 802.11a_UNII 1_ 5 240 MHz

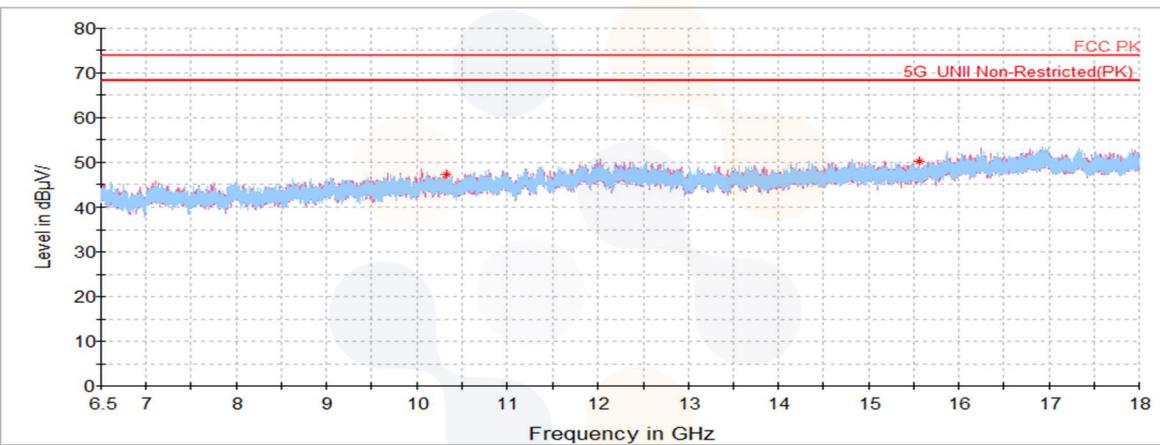
Frequency	Pol.	Reading	Amp. + Cable	Antenna Factor	DCF	Result	Limit	Margin
(MHz)	(V/H)	(dB(μ V))	(dB)	(dB)	(dB)	(dB(μ V/m))	(dB(μ V/m))	(dB)
Quasi peak data								
44.31	V	47.50	16.55	-31.97	-	32.08	40.00	7.92
52.19	V	49.20	13.34	-31.84	-	30.70	40.00	9.30
71.10	V	47.30	12.20	-31.70	-	27.80	40.00	12.20
338.82	V	30.30	19.80	-31.10	-	19.00	46.00	27.00
400.06 ¹⁾	H	34.40	21.60	-31.09	-	24.91	46.00	21.09
650.07	V	28.70	24.80	-30.48	-	23.02	46.00	22.98


Horizontal/Vertical

Test results (Above 1 000 MHz)**802.11a UNII 1****Lowest Channel (5 180 MHz)**

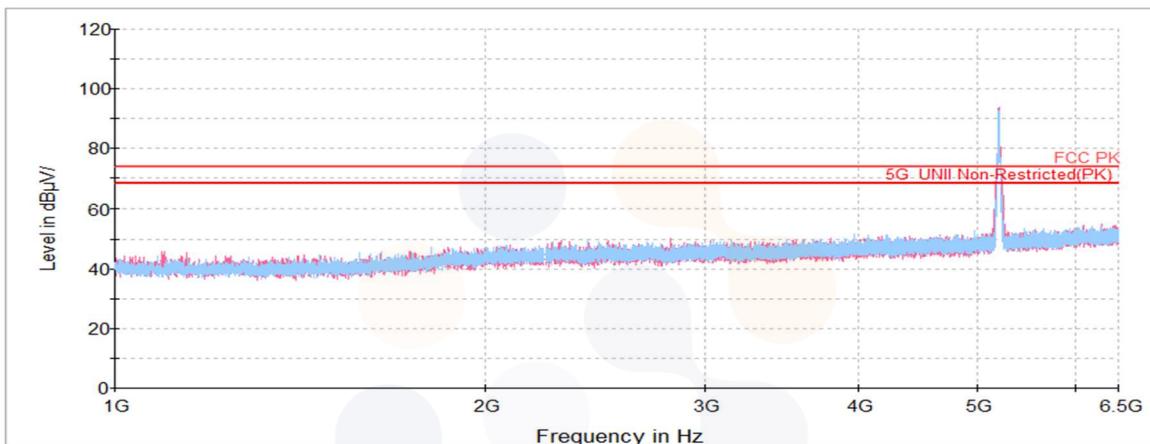

Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin
(MHz)	(V/H)	(dB(μ V))	(dB)	(dB)	(dB)	(dB(μ V/m))	(dB(μ V/m))	(dB)
Peak data								
5 149.88 ¹⁾	V	47.74	33.61	-23.99	-	57.36	74.00	16.64
10 330.22	H	58.07	37.10	-48.00	-	47.17	68.20	21.03
15 560.56 ¹⁾	H	57.77	39.60	-47.29	-	50.08	74.00	23.92
Average Data								
5 149.88 ¹⁾	V	39.52	33.61	-23.99	0.22	49.36	54.00	4.64

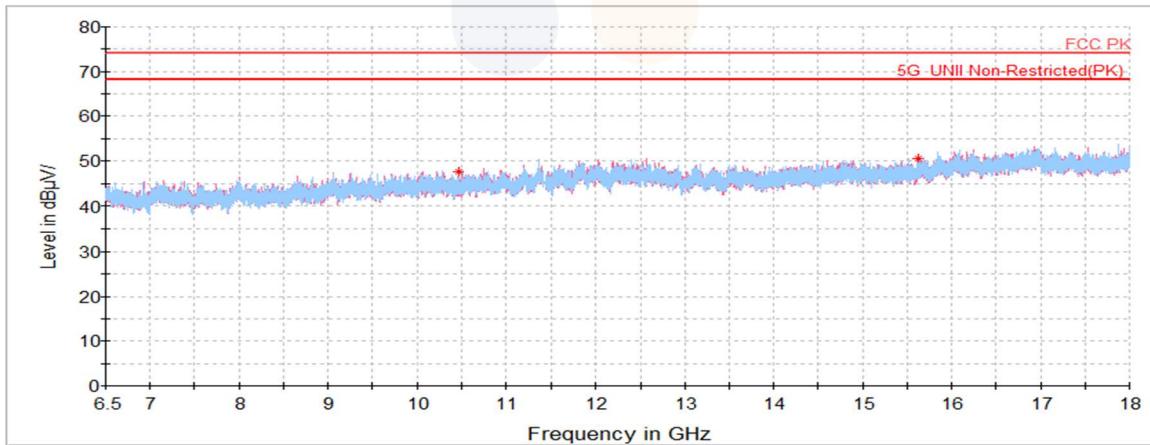
Average data


Blank

Horizontal/Vertical for Band-edge

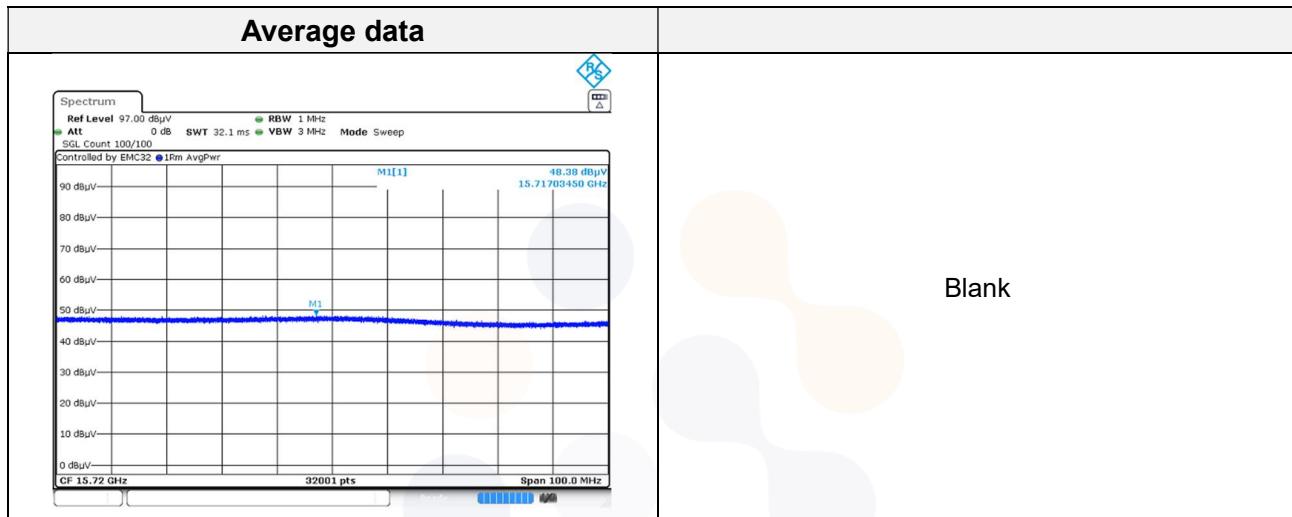
Horizontal/Vertical for 1 GHz ~ 6.5 GHz


Horizontal/Vertical for 6.5 GHz ~ 18 GHz

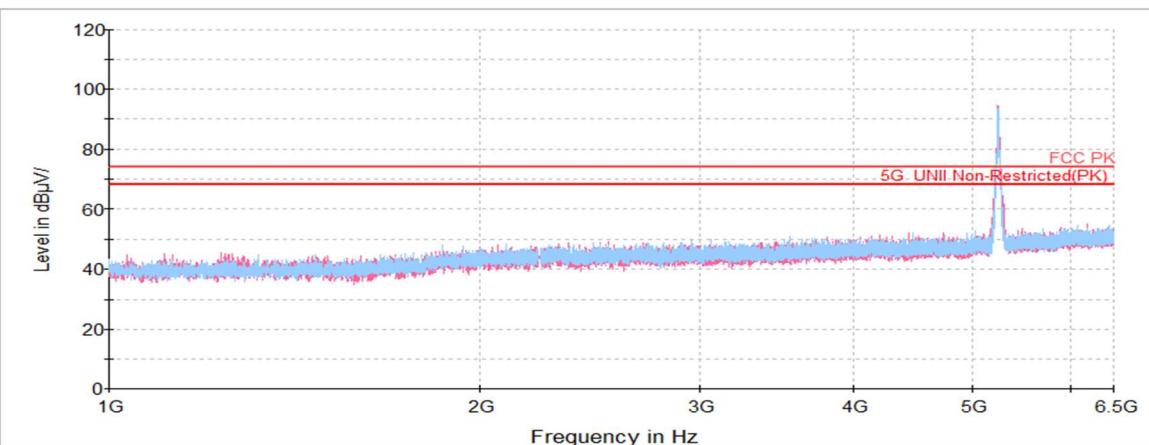

Middle Channel (5 200 MHz)

Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin
(MHz)	(V/H)	(dB(μ N))	(dB)	(dB)	(dB)	(dB(μ N/m))	(dB(μ N/m))	(dB)
Peak data								
10 472.17	V	58.31	37.18	-47.88	-	47.61	68.20	20.59
15 623.09 ¹⁾	H	58.01	39.60	-47.17	-	50.44	74.00	23.56
Average Data								
No spurious emissions were detected within 20 dB of the limit.								

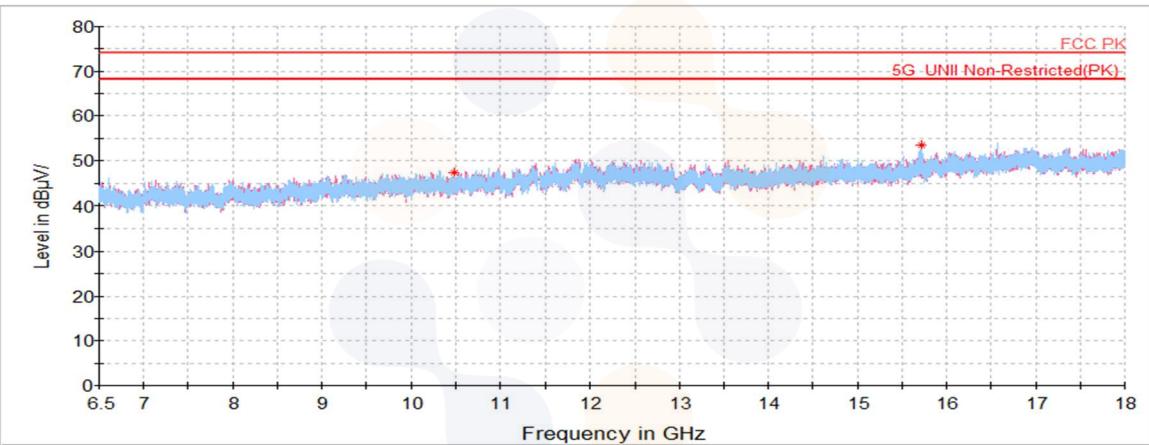
Horizontal/Vertical for 1 GHz ~ 6.5 GHz



Horizontal/Vertical for 6.5 GHz ~ 18 GHz

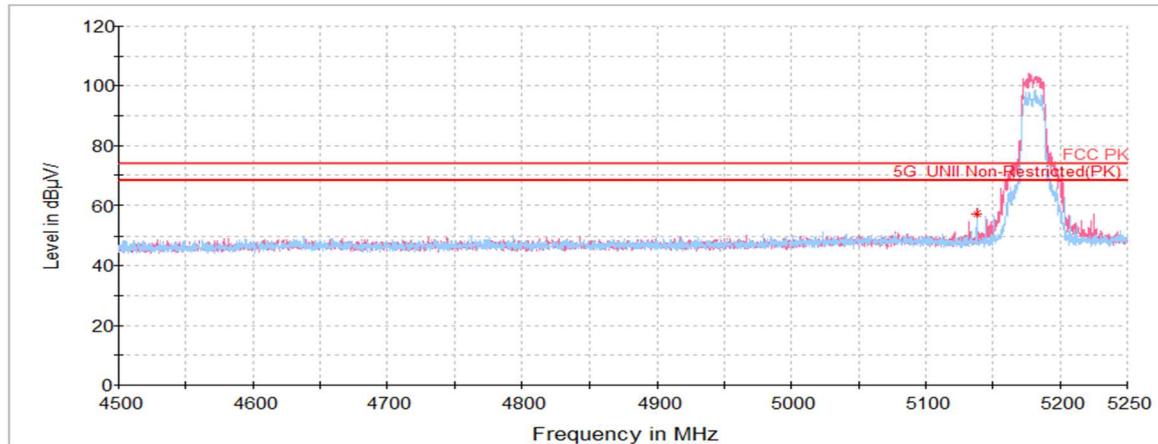


Highest Channel (5 240 MHz)


Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin
(MHz)	(V/H)	(dB(μ V))	(dB)	(dB)	(dB)	(dB(μ V/m))	(dB(μ V/m))	(dB)
Peak data								
10 481.88	V	57.98	37.19	-47.87	-	47.30	68.20	20.90
15 717.03 ¹⁾	H	60.81	39.60	-46.98	-	53.43	74.00	20.57
Average Data								
15 717.03 ¹⁾	H	48.38	39.60	-46.98	0.22	41.22	54.00	12.78

Average data

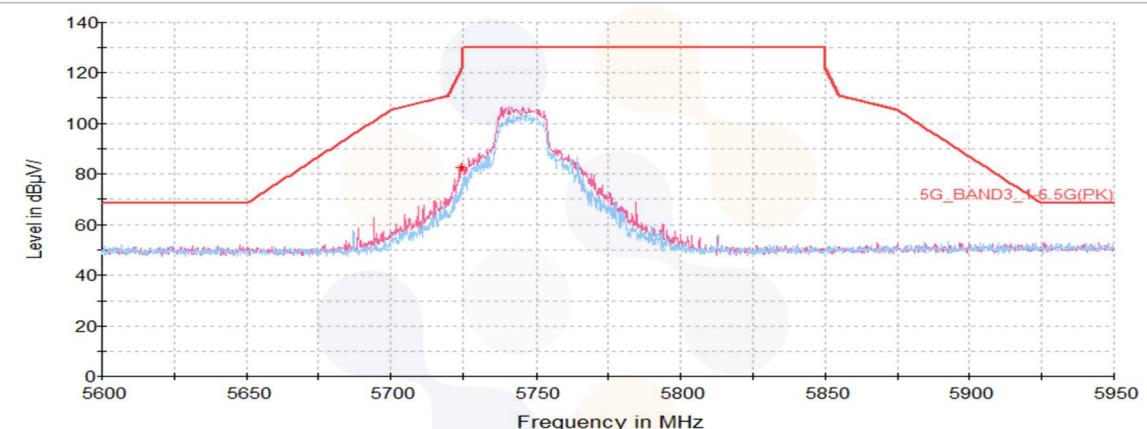
Horizontal/Vertical for 1 GHz ~ 6.5 GHz



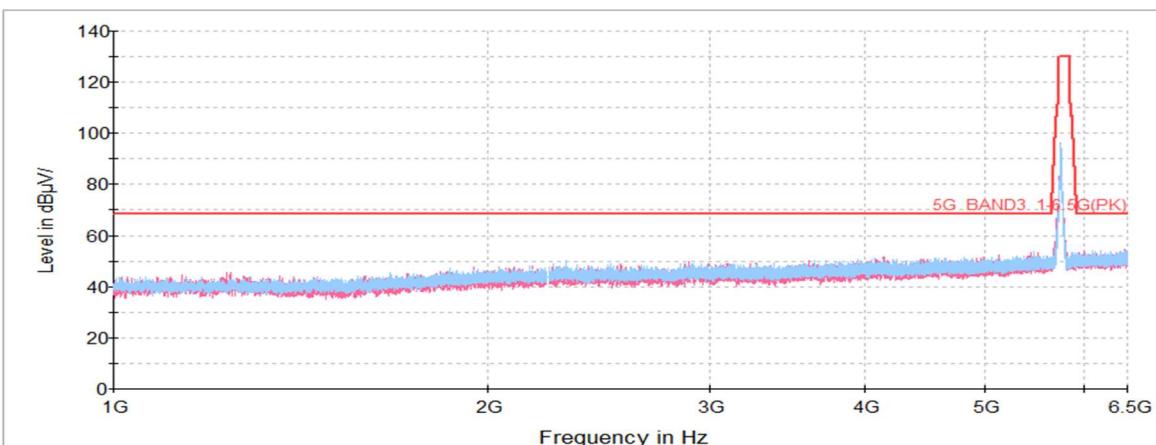
Horizontal/Vertical for 6.5 GHz ~ 18 GHz

Test results (Above 18 GHz) – Worst case: 802.11a_UNII 1_ 5 180 MHz

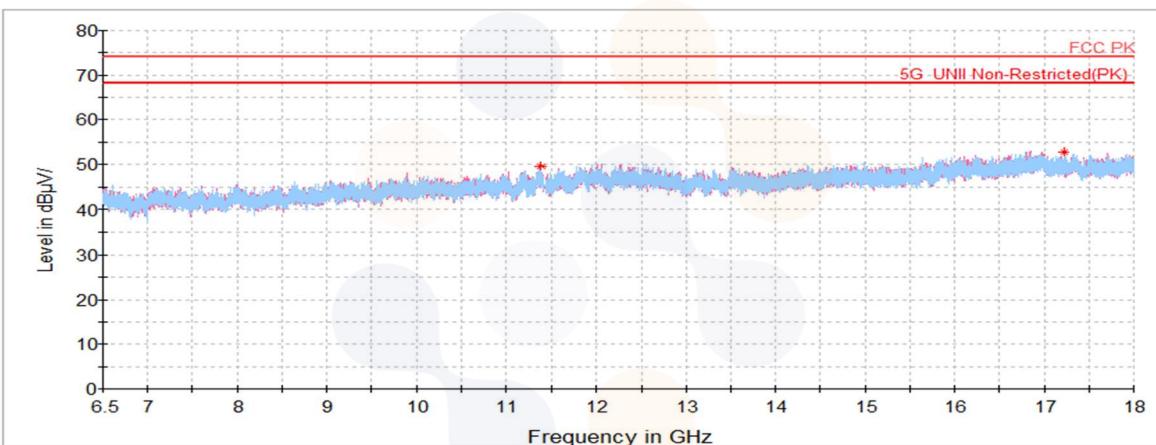
Horizontal/Vertical for 18 GHz ~ 40 GHz


Note: The Worst case was based on the lowest margin condition considering Harmonic and Spurious Emission.

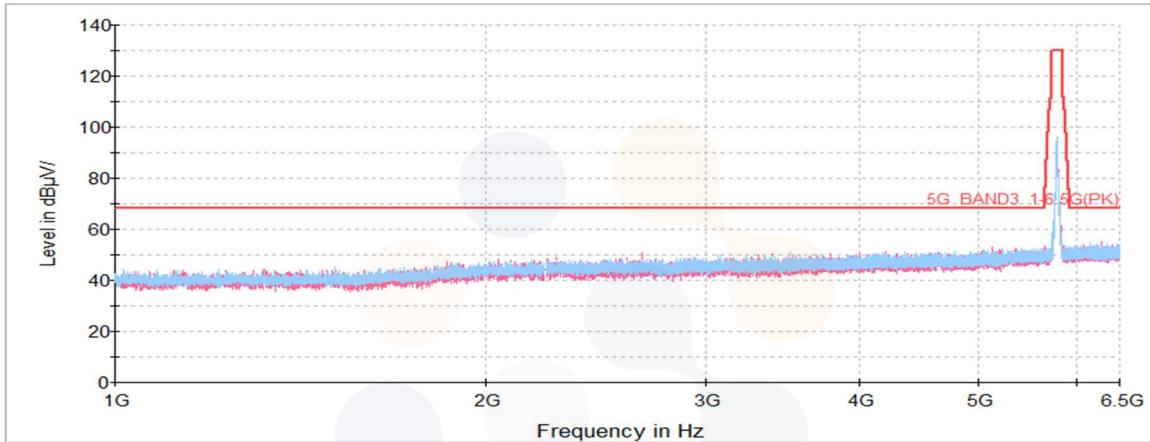
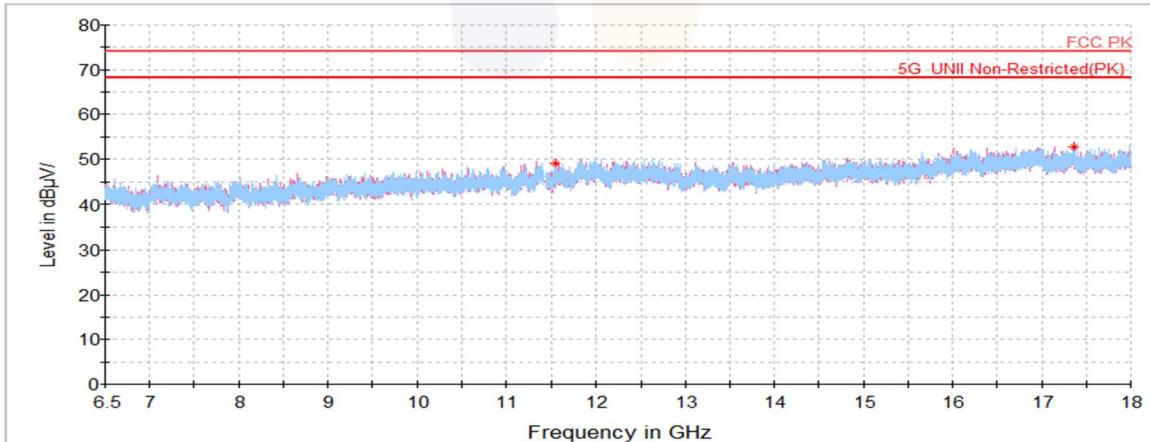
802.11a UNII 3


Lowest Channel (5 745 MHz)

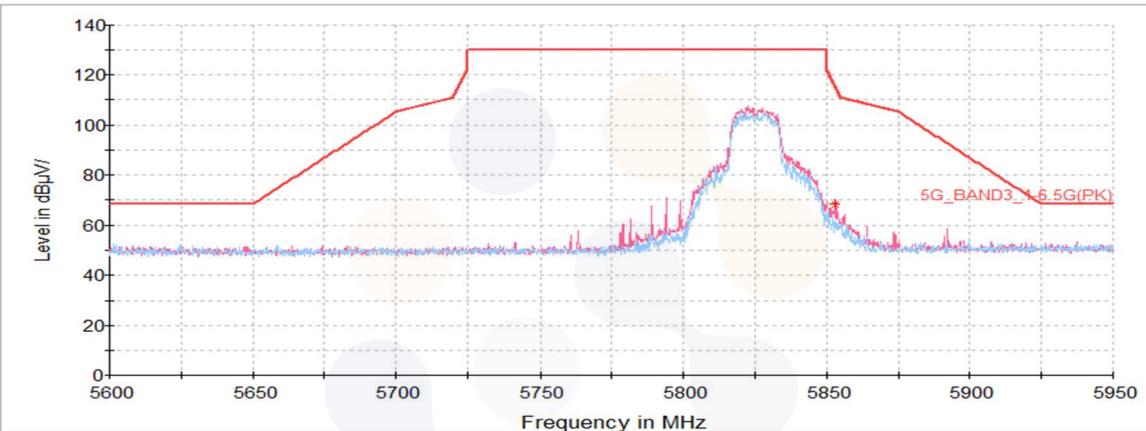
Frequency (MHz)	Pol.	Reading (dB μ V)	Antenna Factor	Amp. + Cable	DCF	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
Peak data								
5 724.50	V	71.52	34.37	-23.30	-	82.59	121.06	38.47
11 390.73 ¹⁾	V	59.18	37.91	-47.60	-	49.49	74.00	24.51
17 230.22	H	56.92	41.05	-45.16	-	52.81	68.20	15.39
Average Data								
No spurious emissions were detected within 20 dB of the limit.								


Horizontal/Vertical for Band-edge

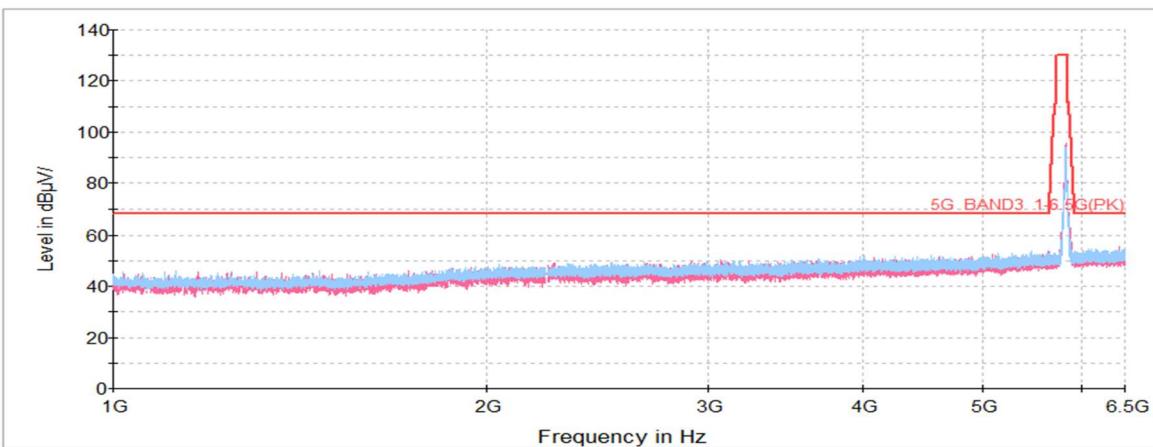
Horizontal/Vertical for 1 GHz ~ 6.5 GHz

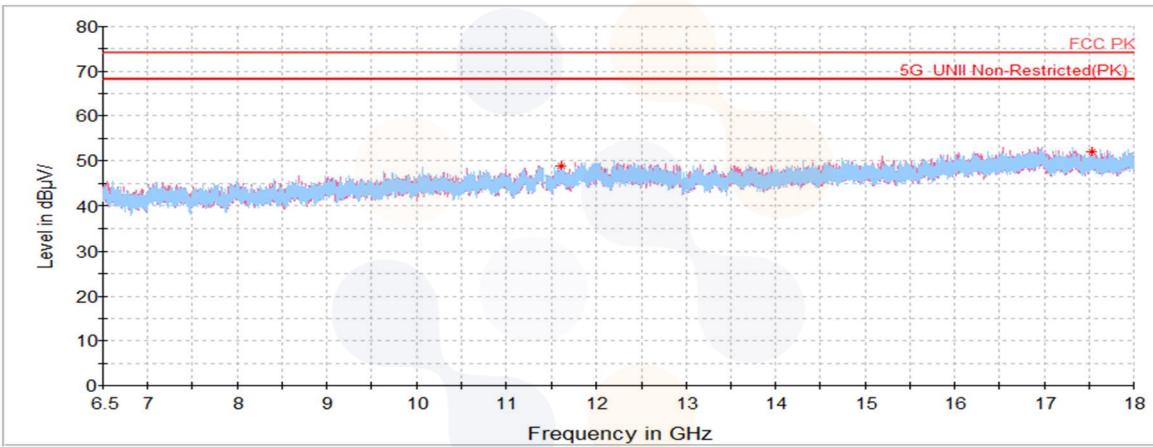
Horizontal/Vertical for 6.5 GHz ~ 18 GHz


Middle Channel (5 785 MHz)

Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin
(MHz)	(V/H)	(dB(μ V))	(dB)	(dB)	(dB)	(dB(μ V/m))	(dB(μ V/m))	(dB)
Peak data								
11 544.55 ¹⁾	V	58.48	38.04	-47.46	-	49.06	74.00	24.94
17 365.70	V	57.18	41.07	-45.42	-	52.83	68.20	15.37
Average Data								
No spurious emissions were detected within 20 dB of the limit.								

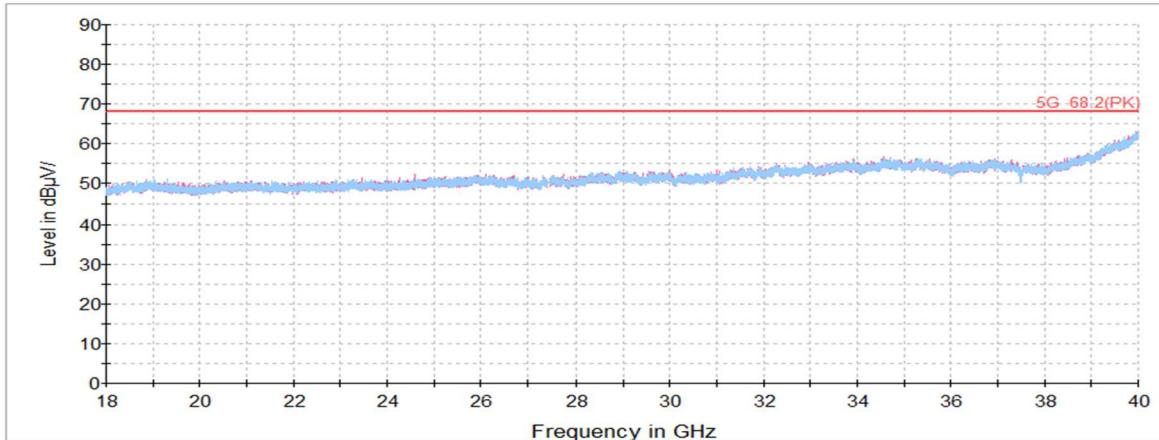

Horizontal/Vertical for 1 GHz ~ 6.5 GHz**Horizontal/Vertical for 6.5 GHz ~ 18 GHz**

Highest Channel (5 825 MHz)


Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin
(MHz)	(V/H)	(dB(μ V))	(dB)	(dB)	(dB)	(dB(μ V/m))	(dB(μ V/m))	(dB)
Peak data								
5 853.06	V	56.26	34.52	-22.72	-	68.06	115.22	47.16
11 613.19 ¹⁾	V	58.26	38.11	-47.47	-	48.90	74.00	25.10
17 536.77	H	57.04	40.68	-45.63	-	52.09	68.20	16.11
Average Data								
No spurious emissions were detected within 20 dB of the limit.								

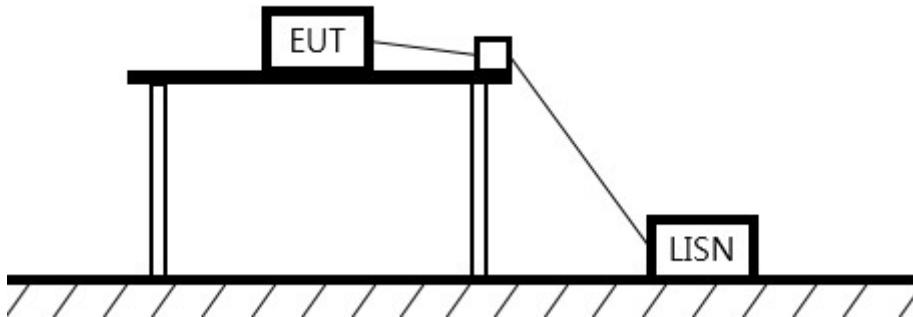
Horizontal/Vertical for Band-edge

Horizontal/Vertical for 1 GHz ~ 6.5 GHz



Horizontal/Vertical for 6.5 GHz ~ 18 GHz

Test results (Above 18 GHz) – Worst case: 802.11a_UNII 3_ 5 785 MHz


Horizontal/Vertical for 18 GHz ~ 40 GHz

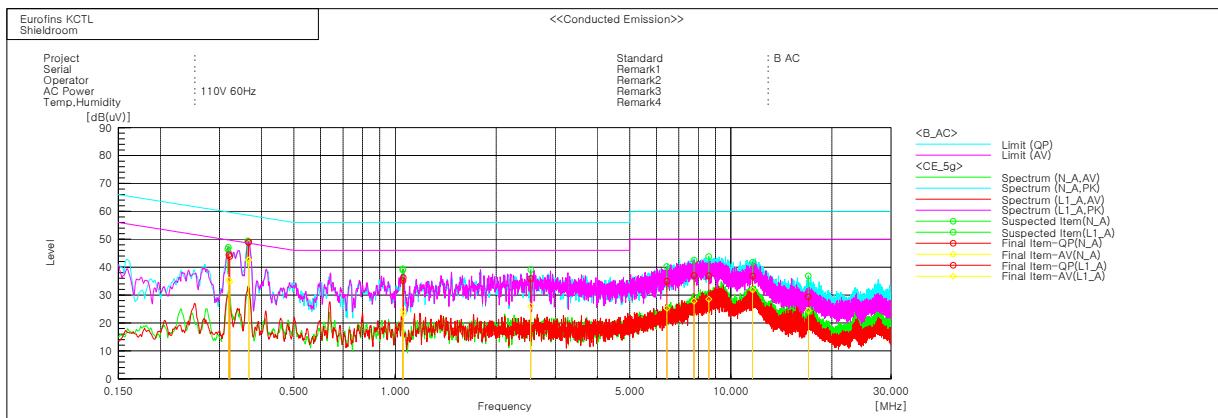
Note: The Worst case was based on the lowest margin condition considering Harmonic and Spurious Emission.

7.3. AC Conducted emission

Test setup

Limit

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.


Frequency of Emission (MHz)	Conducted limit (dB μ V/m)	
	Quasi-peak	Average
0.15 – 0.50	66 - 56*	56 - 46*
0.50 – 5.00	56	46
5.00 – 30.0	60	50

Measurement procedure

1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
2. Each current-carrying conductor of the EUT power cord was individually connected through a 50Ω/50μH LISN, which is an input transducer to a spectrum analyzer or an EMI/Field Intensity Meter, to the input power source.
3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 MHz to 30 MHz.
5. The measurements were made with the detector set to peak amplitude within a bandwidth of 10 kHz or to quasi-peak and average within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.

Test results

Worst case: 802.11a_UNII 1_5 240 MHz

Final Result

--- N_A Phase ---												
No.	Frequency	Reading QP	Reading CAV	c. f	Result QP	Result CAV	Limit QP	Limit AV	Margin QP	Margin CAV		
	[MHz]	[dB(uV)]	[dB(uV)]		[dB]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB]	[dB]		
1	0.32182	34.0	24.9		9.8	43.8	34.7	59.7	49.7	15.9	15.0	
2	0.3665	38.9	32.6		9.9	48.8	42.5	58.6	48.6	9.8	6.1	
3	1.05526	25.4	14.8		9.8	35.2	24.6	56.0	46.0	20.8	21.4	
4	2.53481	26.1	16.1		9.8	35.9	25.9	56.0	46.0	20.1	20.1	
5	8.60106	26.7	18.3		10.2	36.9	28.5	60.0	50.0	23.1	21.5	
6	16.99985	18.8	13.9		10.6	29.4	24.5	60.0	50.0	30.6	25.5	

--- L1_A Phase ---												
No.	Frequency	Reading QP	Reading CAV	c. f	Result QP	Result CAV	Limit QP	Limit AV	Margin QP	Margin CAV		
	[MHz]	[dB(uV)]	[dB(uV)]		[dB]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB]	[dB]		
1	0.32013	34.6	25.6		9.8	44.4	35.4	59.7	49.7	15.3	14.3	
2	0.36627	39.1	32.7		9.9	49.0	42.6	58.6	48.6	9.6	6.0	
3	1.05836	26.4	13.2		9.8	36.2	23.0	56.0	46.0	19.8	23.0	
4	6.44991	24.9	15.3		10.0	34.9	25.3	60.0	50.0	25.1	24.7	
5	7.77585	26.9	17.7		10.1	37.0	27.8	60.0	50.0	23.0	22.2	
6	11.61448	26.4	21.5		10.4	36.8	31.9	60.0	50.0	23.2	18.1	

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr	Report No.: KR23-SRF0191-B Page (32) of (32)	eurofins KCTL
---	--	--

8. Measurement equipment

Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date
Antenna Mast	Innco Systems	MA4640-XP-ET	-	-
Controller	Innco Systems	CO3000	1175/45850319/P	-
Spectrum Analyzer	R&S	FSV40	100989	23.10.14
Horn antenna	ETS.lindgren	3117	251528	24.02.02
Horn antenna	ETS.lindgren	3116	86632	24.01.25
AMPLIFIER	B&Z Technologies	BZRT-00504000-481055-382525	26299-27735	24.07.04
AMPLIFIER	B&Z Technologies	BZR-0050400-551028-252525	27736	24.07.04
Attenuator	API Inmet	40AH2W-10	12	24.05.03
High pass Filter	WT	WT-A1698-HS	WT160411001	24.04.25
High pass Filter	WT	WT-A1699-HS	WT160411002	24.04.25
High pass Filter	Qotana	DBHF058004000A	20070100016	24.07.04
Signal Generator	R&S	SMB100A	176206	24.01.19
TWO-LINE V - NETWORK	R&S	ENV216	101358	23.09.29
EMI TEST RECEIVER	R&S	ESCI3	100001	23.08.18
Controller	INNCO SYSTEMS	CO3000	1441/54370322/P	-
Antenna Mast	INNCO SYSTEMS	MA4640-XP-ET	-	-
Turn Device	INNCO SYSTEMS	DS1200-S-1t	-	-
Spectrum Analyzer	R&S	FSVA40	101575	24.06.19
PSA Spectrum Analyzer	Agilent	E4440A	MY46186407	24.03.22
Amplifier	SONOMA INSTRUMENT	310N	421821	23.12.14
Bilog Antenna	Teseq GmbH	CBL 6112D	63756	24.11.17
Loop Antenna	R&S	HFH2-Z2	100355	24.08.10
DC Power Supply	Powercom	DCP-50100A	20220610-02	24.02.02
Attenuator	API Inmet	40AH2W-10	11	24.05.03
Power Sensor	R&S	NRP-Z81	1137.9009.02-106223-bB	24.04.25

End of test report