

TEST REPORT

Report No.:	BCTC2307882250-2E
Applicant:	Shenzhen Anxin Taihe Technology Co.,Ltd
Product Name:	Laptop
Model/Type Ref.:	P8
Tested Date:	2023-07-07 to 2023-07-19
Issued Date:	2023-07-19
She	enzhen BCTC Testing Co., Ltd. Page: 1 of 52 Editforn: B.0

FCC ID: 2A8WM-P8

Product Name:	Laptop
Trademark:	KOOSMILE
Model/Type Ref.:	P8
Prepared For:	Shenzhen Anxin Taihe Technology Co.,Ltd
Address:	Room 201, No. 7, Baolongjun Industrial Zone, Jiuwo, Longping Community, Dalang Street, Longhua District, Shenzhen
Manufacturer:	Shenzhen Anxin Taihe Technology Co.,Ltd
Address:	Room 201, No. 7, Baolongjun Industrial Zone, Jiuwo, Longping Community, Dalang Street, Longhua District, Shenzhen
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2023-07-07
Sample tested Date:	2023-07-07 to 2023-07-19
Issue Date:	2023-07-19
Report No.:	BCTC2307882250-2E
Test Standards:	FCC Part15.247 ANSI C63.10-2013
Test Results:	PASS
Remark:	This is Bluetooth BLE radio test report.

Tested by:

R

Brave Zeng/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page: 2 of 52

Table Of Content

Test	Report Declaration	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	8
4.4	Channel List	
4.5	Test Mode	
4.6	Table Of Parameters Of Text Software Setting	
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	
6.	Conducted Emissions	
6.1	Block Diagram Of Test Setup	
6.2	Limit	
6.3	Test Procedure	
6.4	EUT Operating Conditions	
6.5	Test Result	
7.	Radiated Emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test Procedure	
7.4	EUT Operating Conditions	
7.5	Test Result	
8. 8.1	Radiated Band Emission Measurement And Restricted Bands Of Ope Block Diagram Of Test Setup	
o. i 8.2	Limit	
0.2 8.3	Test Procedure	
8.4	FUIT operating Conditions	
8.5	EUT operating Conditions Test Result	
9.	Device One steel Demoity Test	00
9.1	Block Diagram Of Test Setup	26
9.2	Limit	26
9.3	Block Diagram Of Test Setup Limit Test Procedure EUT Operating Conditions Test Pesult	26
Q /	EUT Operating Conditions	26
9.5	Test Result Block Diagram Of Test Setup Limit EUT Operating Conditions Test Result Desk Output Dewer Test	
10.	Bandwidth Test	
10.1	Block Diagram Of Test Setup	
10.2	Limit	
10.3	Test Procedure	
10.4	EUT Operating Conditions	
10.5	Test Result	
11.	Peak Output Power Test	
11.1	Peak Output Power Test Block Diagram Of Test Setup	
	RF-EMC-005 Page: 3 of 52 Edition:	
	RF-EMC-005 Page: 3 of 52 / Edition:	9.C

11.2 Limit	
11.3 Test Procedure	
11.4 EUT Operating Conditions	
11.5 Test Result	
12. 100 KHz Bandwidth Of Frequency Band Edge	
12.1 Block Diagram Of Test Setup	
12.2 Limit	
12.3 Test Procedure	
12.4 EUT Operating Conditions	
12.5 Test Result	
13. Antenna Requirement	
13.1 Limit	
13.2 Test Result	
14. EUT Photographs	49
15. EUT Test Setup Photographs	

(Note: N/A Means Not Applicable)

Version 1.

Report No.	Issue Date	Description	Approved
BCTC2307882250-2E	2023-07-19	Original	Valid

Edition: B.0

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted Emission	15.207	PASS
2	6dB Bandwidth	15.247 (a)(2)	PASS
3	Peak Output Power	15.247 (b)	PASS
4	Radiated Spurious Emission	15.247 (d), 15.205	PASS
5	Power Spectral Density	15.247 (e)	PASS
6	Restricted Band of Operation	15.205	PASS
7	Band Edge (Out of Band Emissions)	15.247(d)	PASS
8	Antenna Requirement	15.203	PASS

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(9kHz-30MHz)	U=3.7dB
2	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission(150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59°C

4. Product Information And Test Setup

4.1 Product Information

Model/Type Ref.:	P8
Model differences:	N/A
Bluetooth Version:	5.0
Hardware Version:	N/A
Software Version:	N/A
Operation Frequency:	2402-2480MHz
Type of Modulation:	GFSK
Number Of Channel	40CH
Antenna installation:	Internal antenna
Antenna Gain:	-1.18 dBi
Ratings:	DC 5V from adapter/DC 11.4V from battery
Adapter Information:	MODEL: KWY-PD30C INPUT: 100-240V~50/60Hz 0.8A OUTPUT: USD-C 5V3A, 9V/3A, 12V2.5A 15V2A, 20V1.5A(30W Max) PPS: 3.6V-11V/3A(PPS 33W Max)

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission:

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Laptop	KOOSMILE	P8	N/A	EUT
E-2	ADAPTER	UGREEN	CD122	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	1M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

		Chann	el List		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2402	11	2422	21	2442
02	2404	12	2424	22	2444
03	2406	13	2426	23	2446
~	~	~	~	~	~
09	2418	19	2438	39	2478
10	2420	20	2440	40 ,	2480

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

For All Mode	Description	Modulation Type	
Mode 1	CH01		
Mode 2	CH20	GFSK	
Mode 3	CH40		
Mode 4	Link mode (Conducted emission & Radiated emission)		

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	CMD					
Frequency	2402 MHz	2440 MHz	2480 MHz			
Parameters	DEF	DEF	DEF			

Page: 10 of 52

5. Test Facility And Test Instrument Used

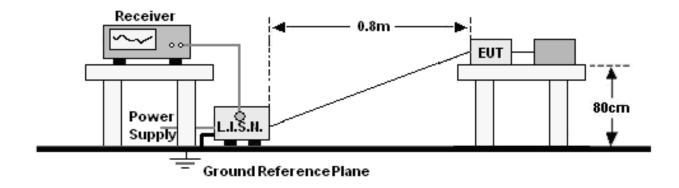
5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 A2LA certificate registration number is: CN1212 ISED Registered No.: 23583 ISED CAB identifier: CN0017

	Conducted Emissions Test						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024		
LISN	R&S	ENV216	101375	May 15, 2023	May 14, 2024		
Software	Frad	EZ-EMC	EMC-CON 3A1	١	١		
Attenuator	1	10dB DC-6GHz	1650	May 15, 2023	May 14, 2024		

5.2 Test Instrument Used

RF Conducted Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Power Metter	Keysight	E4419	١	May 15, 2023	May 14, 2024		
Power Sensor (AV)	Keysight	E9300A	/	May 15, 2023	May 14, 2024		
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 15, 2023	May 14, 2024		
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024		
Radio frequency control box	MAIWEI	MW100-RFC B		L.			
Software	MAIWEI	MTS 8310					



Radiated Emissions Test (966 Chamber01)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
966 chamber	ChengYu	966 Room	966	May 15, 2023	May 14, 2026	
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024	
Receiver	R&S	ESRP	101154	May 15, 2023	May 14, 2024	
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 15, 2023	May 14, 2024	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 29, 2023	May 28, 2024	
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 31, 2023	May 30, 2024	
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 15, 2023	May 14, 2024	
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 31, 2023	May 30, 2024	
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 15, 2023	May 14, 2024	
Horn Antenna(18G Hz-40GHz)	Schwarzbeck	BBHA9170	00822	May 31, 2023	May 30, 2024	
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024	
Software	Frad	EZ-EMC	FA-03A2 RE	\	\	

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (dBuV)		
FREQUENCY (MHz)	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

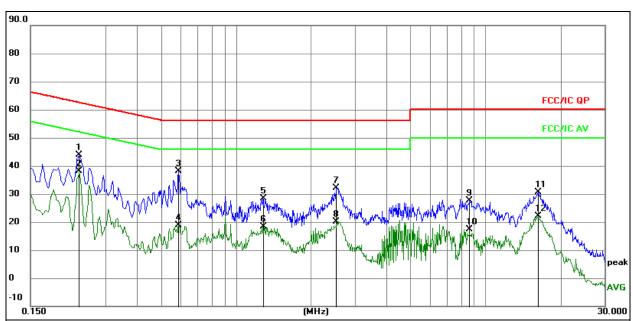
6.3 Test Procedure

Setting
10 dB
0.15 MHz
30 MHz
9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

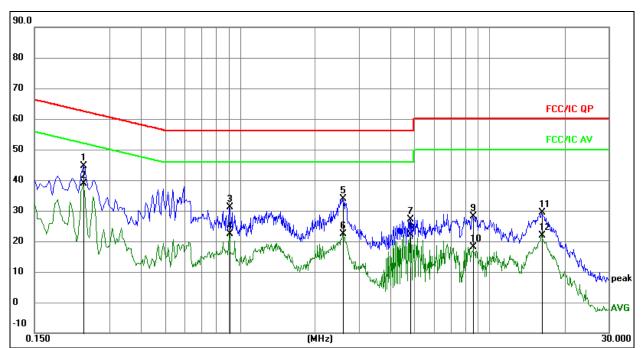
c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz


Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement=Reading Level+ Correct Factor
 Over=Measurement-Limit

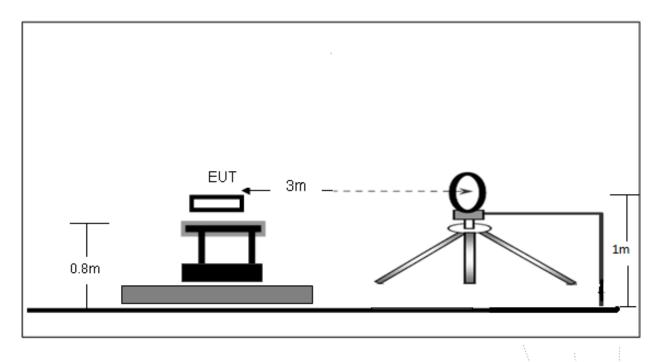
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.2353	34.18	9.61	43.79	62.26	-18.47	QP
2	*	0.2353	28.46	9.61	38.07	52.26	-14.19	AVG
3		0.5885	28.39	9.62	38.01	56.00	-17.99	QP
4		0.5885	9.33	9.62	18.95	46.00	-27.05	AVG
5		1.2824	18.75	9.73	28.48	56.00	-27.52	QP
6		1.2824	8.67	9.73	18.40	46.00	-27.60	AVG
7		2.5266	22.49	9.76	32.25	56.00	-23.75	QP
8		2.5266	10.39	9.76	20.15	46.00	-25.85	AVG
9		8.6373	17.94	9.70	27.64	60.00	-32.36	QP
10		8.6373	7.64	9.70	17.34	50.00	-32.66	AVG
11		16.2256	21.03	9.69	30.72	60.00	-29.28	QP
12		16.2256	12.47	9.69	22.16	50.00	-27.84	AVG

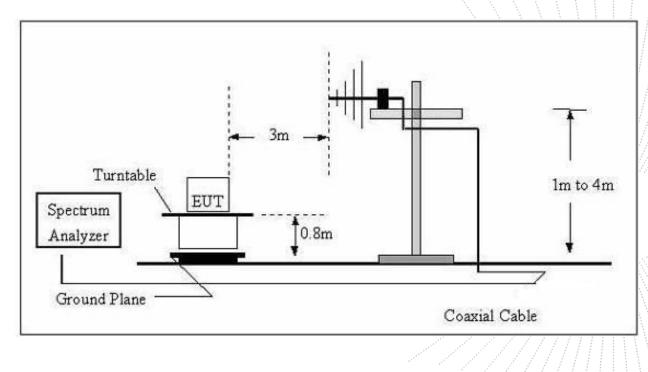
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	N
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement=Reading Level+ Correct Factor

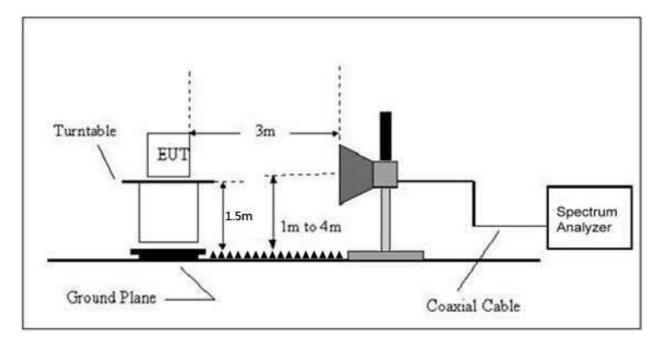
4. Over=Measurement-Limit


-								
No. I	Mk. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	1	MHz		dB	dBuV	dBuV	dB	Detector
1	C	.2355	34.98	9.61	44.59	62.25	-17.66	QP
2	* 0	.2355	29.32	9.61	38.93	52.25	-13.32	AVG
3	C	.9060	21.33	9.70	31.03	56.00	-24.97	QP
4	0	.9060	12.76	9.70	22.46	46.00	-23.54	AVG
5	2	.5889	24.17	9.76	33.93	56.00	-22.07	QP
6	2	.5889	12.50	9.76	22.26	46.00	-23.74	AVG
7	4	.8075	17.29	9.81	27.10	56.00	-28.90	QP
8	4	.8075	12.35	9.81	22.16	46.00	-23.84	AVG
9	8	.5875	18.33	9.70	28.03	60.00	-31.97	QP
10	8	.5875	8.53	9.70	18.23	50.00	-31.77	AVG
11	16	6.1700	19.73	9.69	29.42	60.00	-30.58	QP
12	16	6.1700	12.12	9.69	21.81	50.00	-28.19	AVG


7. Radiated Emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

			1.	
Frequency	Field Strength	Distance	Field Strength Li	mit at 3m Distance
(MHz)	uV/m	(m)	uV/m	dBuV/m
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY	Limit (dBuV/m) (at 3M)			
(MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 - 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

7.3 Test Procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting		
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average		

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).

h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

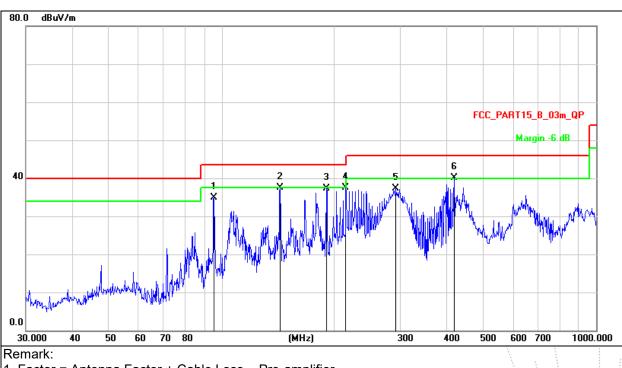
Below 30MHz

Temperature:	26 ℃	Relative Humidity:	24%
Pressure:	101KPa	Test Voltage :	AC120V/60Hz
Test Mode:	Mode 4	Polarization :	

		· · · ·		
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

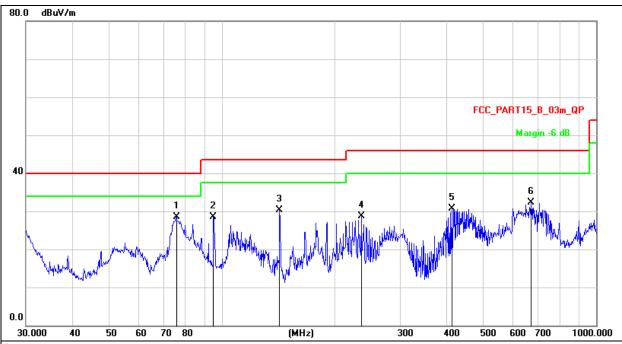

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.


2. Measurement=Reading Level+ Correct Factor

3. Over=Measurement-Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		95.4270	53.42	-18.43	34.99	43.50	-8.51	QP
2		143.3261	58.02	-20.61	37.41	43.50	-6.09	QP
3		190.4050	55.36	-18.08	37.28	43.50	-6.22	QP
4	!	214.5143	54.45	-16.92	37.53	43.50	-5.97	QP
5	:	292.0583	52.11	-14.78	37.33	46.00	-8.67	QP
6	*	417.6411	52.16	-11.96	40.20	46.00	-5.80	QP

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Measurement=Reading Level+ Correct Factor

Over=Measurement-Lim	it
--	----

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	75.7114	49.44	-20.87	28.57	40.00	-11.43	QP
2		95.0930	46.94	-18.48	28.46	43.50	-15.04	QP
3		142.8243	50.81	-20.58	30.23	43.50	-13.27	QP
4	2	235.8164	44.97	-16.27	28.70	46.00	-17.30	QP
5	4	411.8240	42.79	-12.04	30.75	46.00	-15.25	QP
6	(670.4893	39.76	-7.49	32.27	46.00	-13.73	QP

Between 1GHz – 25GHz

GFSK(2M)								
Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector	
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре	
	Low channel							
V	4804.00	65.85	-10.85	55.00	74.00	-19.00	PK	
V	4804.00	57.42	-10.85	46.57	54.00	-7.43	AV	
V	7206.00	58.16	-3.06	55.10	74.00	-18.90	PK	
V	7206.00	47.93	-3.06	44.87	54.00	-9.13	AV	
Н	4804.00	62.04	-10.85	51.19	74.00	-22.81	PK	
Н	4804.00	52.11	-10.85	41.26	54.00	-12.74	AV	
Н	7206.00	56.75	-3.06	53.69	74.00	-20.31	PK	
Н	7206.00	48.96	-3.06	45.90	54.00	-8.10	AV	
	Middle channel							
V	4880.00	64.13	-10.62	53.51	74.00	-20.49	PK	
V	4880.00	55.63	-10.62	45.01	54.00	-8.99	AV	
V	7320.00	54.05	-2.65	51.40	74.00	-22.60	PK	
V	7320.00	45.08	-2.65	42.43	54.00	-11.57	AV	
Н	4880.00	62.96	-10.62	52.34	74.00	-21.66	PK	
Н	4880.00	52.57	-10.62	41.95	54.00	-12.05	AV	
Н	7320.00	52.96	-2.65	50.31	74.00	-23.69	PK	
Н	7320.00	45.94	-2.65	43.29	54.00	-10.71	AV	
			High chan	nel				
V	4960.00	66.08	-10.38	55.70	74.00	-18.30	PK	
V	4960.00	57.63	-10.38	47.25	54.00	-6.75	AV	
V	7440.00	57.20	-2.22	54.98	74.00	-19.02	PK	
V	7440.00	47.00	-2.22	44.78	54.00	-9.22	AV	
Н	4960.00	64.72	-10.38	54.34	74.00	-19.66	PK	
Н	4960.00	54.78	-10.38	44.40	54.00	-9.60	AV	
Н	7440.00	54.33	-2.22	52.11	74.00	-21.89	PK	
Н	7440.00	47.06	-2.22	44.84	54.00	-9.16	AV	

Remark:

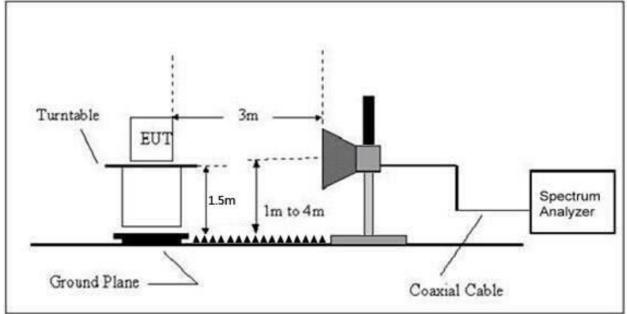
1.Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


5. This report only shows the worst case test data.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test Procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

	Polar	Frequency	Reading Level	Correct Factor	Measure- ment (dBuV/m)	Lim (dBu		Result
	(H/V)	(MHz)	(dBuV/m)	(dB)	PK	PK	AV	
			Lov	v Channel 24	402MHz			
	Н	2390.00	53.80	-19.46	34.34	74.00	54.00	PASS
	Н	2400.00	57.83	-19.42	38.41	74.00	54.00	PASS
	V	2390.00	54.59	-19.46	35.13	74.00	54.00	PASS
GFSK	V	2400.00	57.93	-19.42	38.51	74.00	54.00	PASS
2Mbps			Hig	h Channel 24	480MHz			
	Н	2483.50	55.93	-19.05	36.88	74.00	54.00	PASS
	Н	2500.00	50.86	-18.98	31.88	74.00	54.00	PASS
	V	2483.50	58.87	-19.05	39.82	74.00	54.00	PASS
	V	2500.00	54.59	-18.98	35.61	74.00	54.00	PASS

Remark:

1. Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5. This report only shows the worst case test data.

9. Power Spectral Density Test

9.1 Block Diagram Of Test Setup

9.2 Limit

	FCC Part15 (15.247) , Subpart C						
Section	Section Test Item Limit Frequency Range (MHz) Result						
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

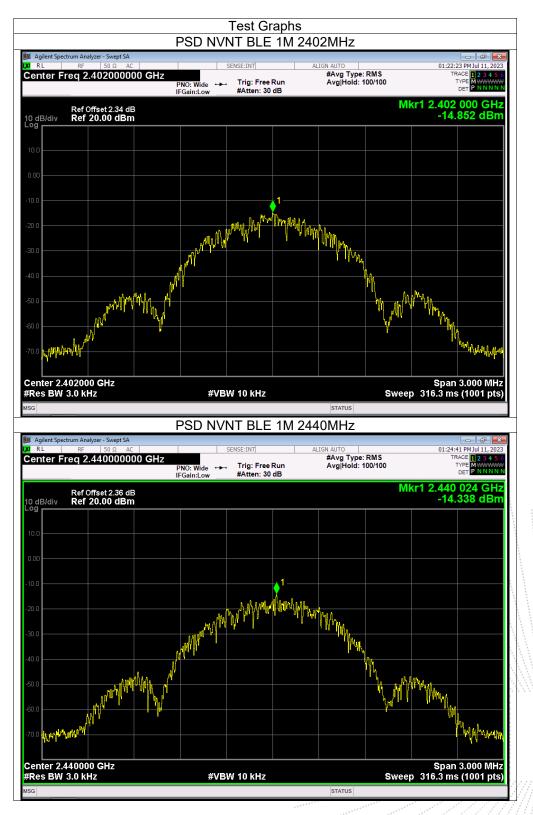
9.3 Test Procedure

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz
- 4. Set the VBW \ge 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

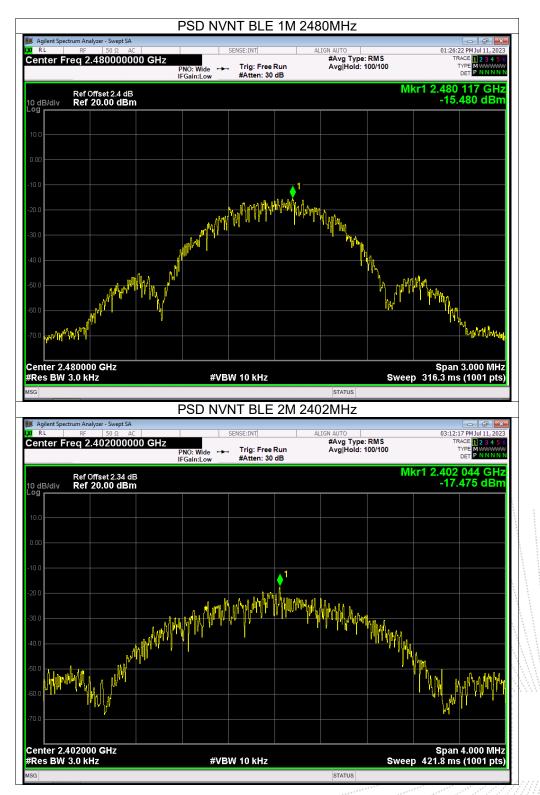
9.4 EUT Operating Conditions

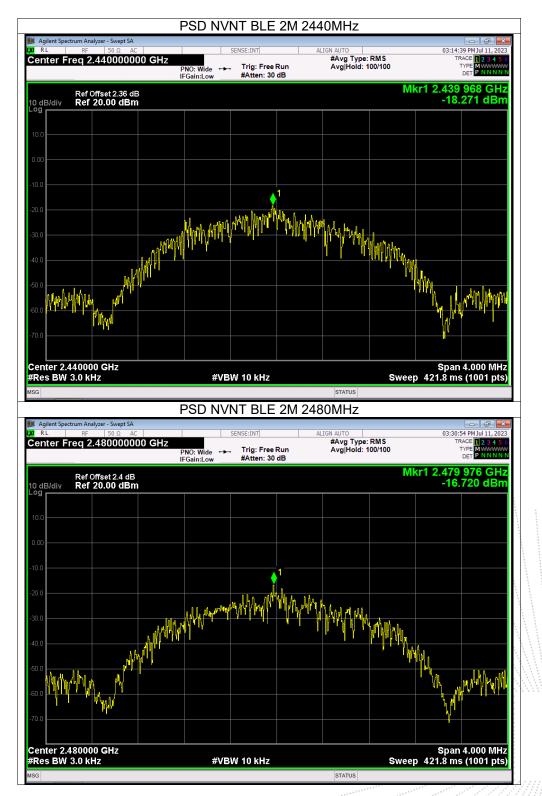
The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

Page: 26 of 52


9.5 Test Result

	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 5V


	Frequency	Power Spectral Density(dBm/3kHz)	Limit (dBm/3kHz)	Result
	2402 MHz	-14.85	8	PASS
GFSK 1Mbps	2440 MHz	-14.34	8	PASS
	2480 MHz	-15.48	8	PASS
	2402 MHz	-17.48	8	PASS
GFSK 2Mbps	2440 MHz	-18.27	8	PASS
	2480 MHz	-16.72	8	PASS



10. Bandwidth Test

10.1 Block Diagram Of Test Setup

10.2 Limit

FCC Part15 (15.247) , Subpart C					
Section Test Item Limit Frequency Range (MHz) Result				Result	
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

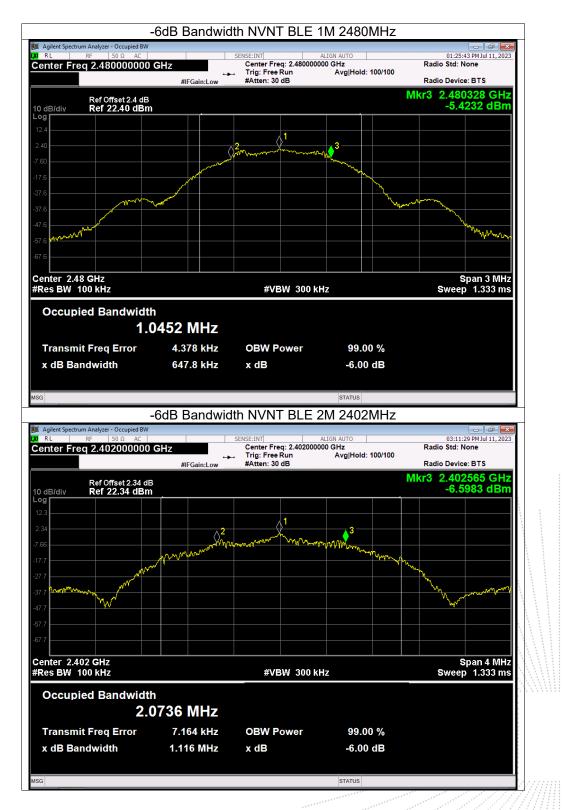
10.3 Test Procedure

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

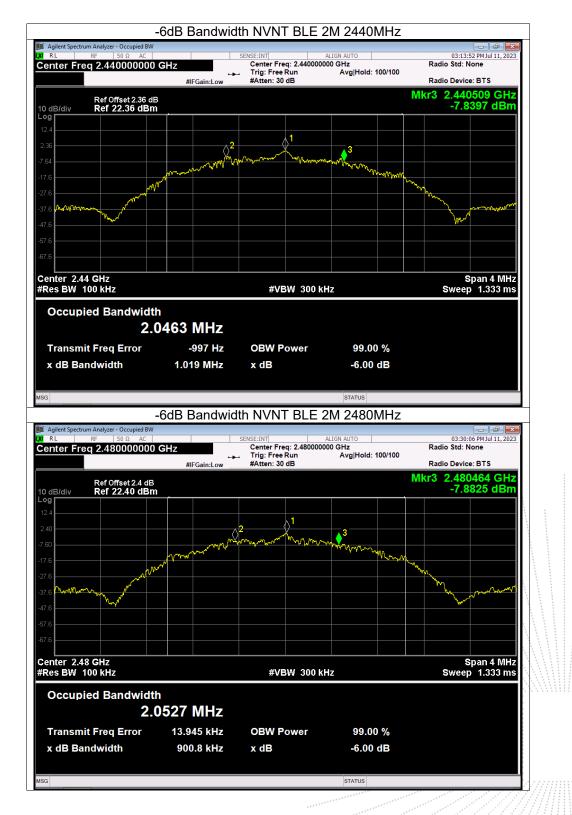
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss


10.5 Test Result

Temperature :	26 ℃	Relative F	lumidity :	54%	
Test Mode :	GFSK	Test Volta	ige :	DC 5V	
	Frequency (MHz)	-6dB bandwidth (MHz)	Limi (kHz		Result
	2402	0.653	500		Pass
GFSK 1Mbps	2440	0.651	500		Pass
	2480	0.648	500		Pass
	2402	1.116	500		Pass
GFSK 2Mbps	2440	1.019	500		Pass
	2480	0.901	500		Pass



11. Peak Output Power Test

11.1 Block Diagram Of Test Setup

11.2 Limit

FCC Part15 (15.247) , Subpart C					
Section	Test Item Limit Frequency Range Result				
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS	

11.3 Test Procedure

a. The EUT was directly connected to the Power meter

11.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

11.5 Test Result

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 5V

	Frequency	Maximum Conducted Output Power(PK)	Conducted Output Power Limit
	(MHz)	(dBm)	dBm
	2402	0.68	30
GFSK 1Mbps	2440	0.36	30
	2480	0.69	30
	2402	-0.36	30
GFSK 2Mbps	2440	-0.61	30
	2480	-0.15	30

12. 100 KHz Bandwidth Of Frequency Band Edge

12.1 Block Diagram Of Test Setup

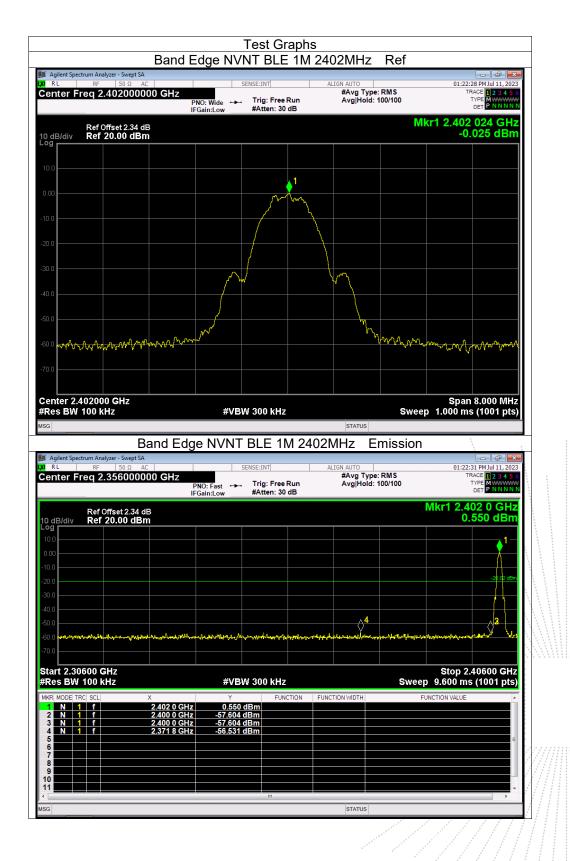
12.2 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

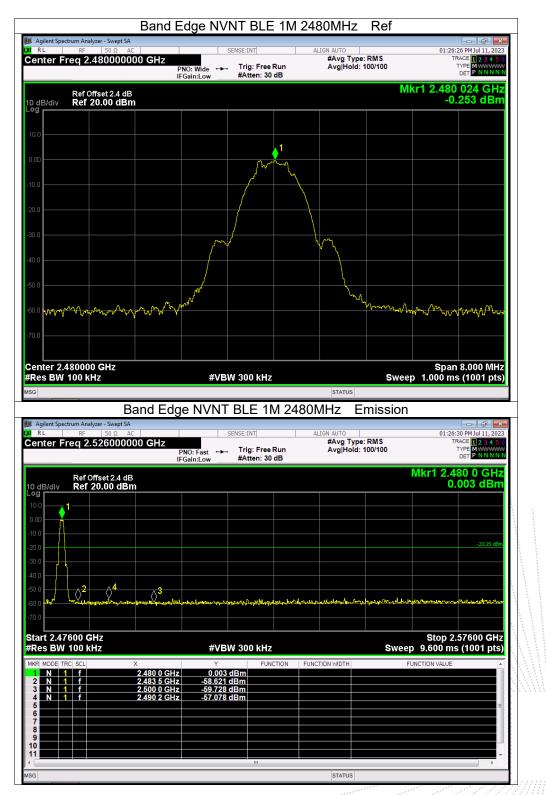
12.3 Test Procedure

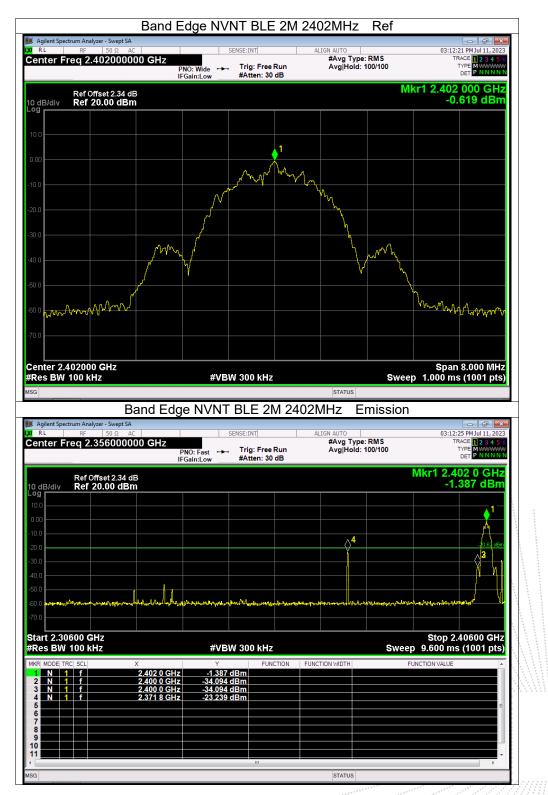
Using the following spectrum analyzer setting:

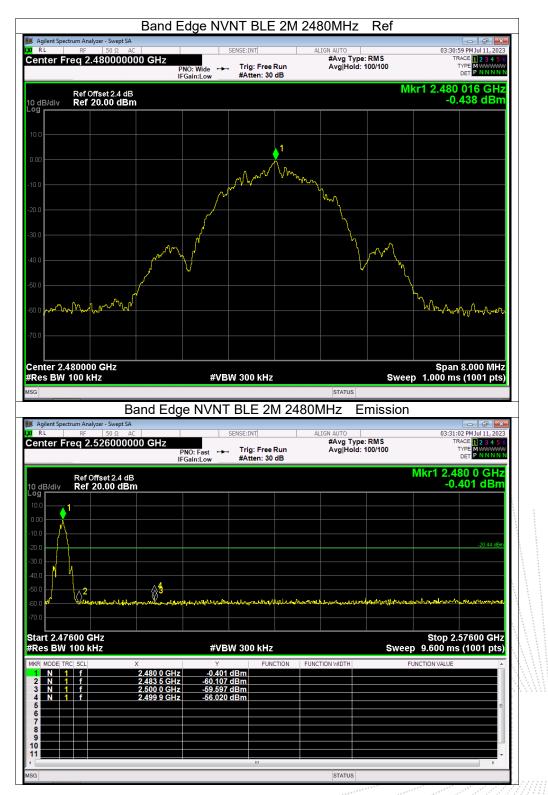
- a) Set the RBW = 100KHz.
- b) Set the VBW = 300KHz.
- c) Sweep time = auto couple.
- d) Detector function = peak.
- e) Trace mode = max hold.
- f) Allow trace to fully stabilize..


12.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

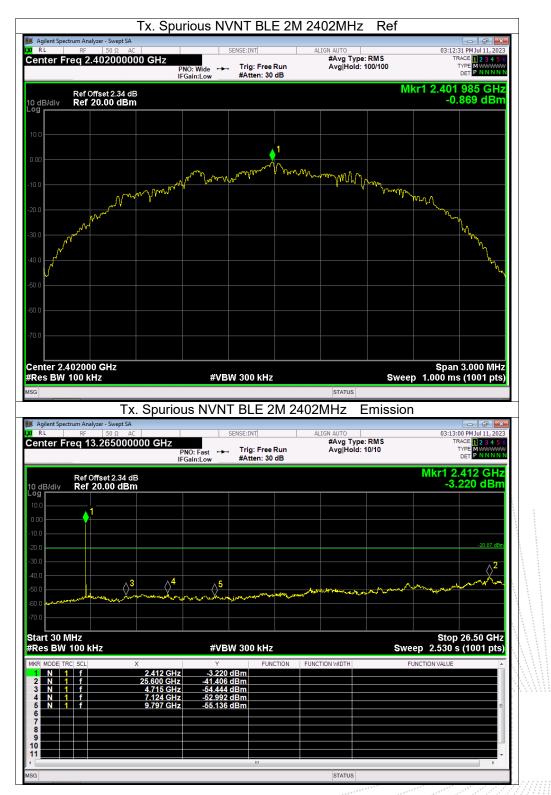

Page: 37 of 52


12.5 Test Result





RL RF 50 Ω	AC		SENSE:INT	ALIGN AUTO		01:22:37 PM Jul 11, 2023
nter Freq 2.40200	0000 GHz	PNO: Wide ↔	. Trig: Free Run #Atten: 30 dB	#Avg Type Avg Hold:	e: RMS 100/100	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN
Ref Offset 2.3 dB/div Ref 20.00 d	4 dB Bm				Mkr1	2.402 004 5 GHz 0.413 dBm
0			1			
0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.	Manufrence	~	
0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, 			where the second	-www
0 m						
O TYPE THE STATE						
0						
0						
0						
0						
nter 2.4020000 GHz						Span 1.500 MHz
es BW 100 kHz		#VE	3W 300 kHz		Sweep	1.000 ms (1001 pts)
es BW 100 kHz				STATUS		1.000 ms (1001 pts)
es BW 100 kHz	Tx. Spurio		300 kHz T BLE 1M 2		Sweep Emission	1.000 ms (1001 pts)
es BW 100 kHz Agilent Spectrum Analyzer - Swep RL RF 50 Ω	Tx. Spuric	ous NVN	T BLE 1M 2	402MHz [ALIGN AUTO #Avg Type	Emission	1.000 ms (1001 pts)
es BW 100 kHz Agilent Spectrum Analyzer - Swep RL RF 50 Ω	Tx. Spuric		T BLE 1M 2	402MHz	Emission	1.000 ms (1001 pts)
es BW 100 kHz Agilent Spectrum Analyzer - Swep RL RF 50 Ω nter Freq 13.2650 Ref Offset 2.3 dB/div Ref 20.00 d	Tx. Spurid AC 000000 GHz	DUS NVN	T BLE 1M 2 SENSE:INT	402MHz [ALIGN AUTO #Avg Type	Emission	1.000 ms (1001 pts)
es BW 100 kHz Agilent Spectrum Analyzer - Swep RL RF 50 Ω nter Freq 13.2650 Ref Offset 2.3 dB/div Ref 20.00 d	Tx. Spurid AC 000000 GHz	DUS NVN	T BLE 1M 2 SENSE:INT	402MHz [ALIGN AUTO #Avg Type	Emission	1.000 ms (1001 pts)
es BW 100 kHz Agilent Spectrum Analyzer - Swep RL RF 50 Ω nter Freq 13.2650 Ref Offset 2.3 dB/div Ref 20.00 d	Tx. Spurid AC 000000 GHz	DUS NVN	T BLE 1M 2 SENSE:INT	402MHz [ALIGN AUTO #Avg Type	Emission	1.000 ms (1001 pts) 01:23:07 PM Jul 11,202 TRACE 1 2 3 4 5 0 TYPE MUNITI Mkr1 2.412 GHz -2.190 dBm
es BW 100 kHz Agilent Spectrum Analyzer - Swep RL RF 50 Ω nter Freq 13.2650 Ref Offset 2.3 dB/div Ref 20.00 d	Tx. Spurid AC 000000 GHz	DUS NVN	T BLE 1M 2 SENSE:INT	402MHz [ALIGN AUTO #Avg Type	Emission	1.000 ms (1001 pts)
es BW 100 kHz Agilent Spectrum Analyzer - Swep RL RF 50 Ω nter Freq 13.2650 Ref Offset 2.3 dB/dlv Ref 20.00 d	Tx. Spurid AC 000000 GHz	PNO: Fast IFGain:Low	T BLE 1M 2 SENSE:INT	402MHz [ALIGN AUTO #Avg Type	Emission	1.000 ms (1001 pts) 01:23:07 PM Jul 11,202 TRACE 1 2 3 4 5 0 TYPE MUNITI Mkr1 2.412 GHz -2.190 dBm
es BW 100 kHz Agilent Spectrum Analyzer - Swep RL RF 50 Ω nter Freq 13.2650 Ref Offset 2.3 dB/div Ref 20.00 d	Tx. Spurid AC 000000 GHz	PNO: Fast IFGain:Low	T BLE 1M 2 SENSE:INT	402MHz [ALIGN AUTO #Avg Type	Emission	1.000 ms (1001 pts) 01:23:07 PM Jul 11,202 TRACE 1 2 3 4 5 0 TYPE MUNITI Mkr1 2.412 GHz -2.190 dBm
es BW 100 kHz	Tx. Spurid ISA AC 000000 GHz 4 dB Bm A A A A A A A A A A	PNO: Fast IFGain:Low	T BLE 1M 2 SENSE:INT Trig: Free Run #Atten: 30 dB	402MHz [ALIGN AUTO #Avg Type	Emission	1.000 ms (1001 pts) 01:23:07 PM ul 11, 2023 TRACE 12 3 4 5 c DET P. NNNNN Mkr1 2.412 GHz -2.190 dBm
es BW 100 kHz	Tx. Spurid ISA AC 000000 GHz 4 dB Bm A A A A A A A A A A	PNO: Fast IFGain:Low	T BLE 1M 2 SENSE:INT Trig: Free Run #Atten: 30 dB	402MHz [ALIGN AUTO #Avg Type	Emission ErrMS 10/10	1.000 ms (1001 pts) 01:23:07 PM Jul 11,202 TRACE 1 2 3 4 5 0 TYPE MUNITI Mkr1 2.412 GHz -2.190 dBm
es BW 100 kHz	Tx. Spurid AC 000000 GHz 4 dB Bm 3 4 4 4 dB 4 d	PNO: Fast IFGain:Low #VE #VE	T BLE 1M 2 SENSE:INT Trig: Free Run Atten: 30 dB	402MHz [ALIGN AUTO #Avg Type	Emission RMS 10/10 Control Control	1.000 ms (1001 pts)
es BW 100 kHz Agilent Spectrum Analyzer - Swep RL RF 50 Ω nter Freq 13.2650 Block Ref Offset 2.3 dB/div Ref 20.00 d 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Tx. Spurid ISA AC 000000 GHz 4 dB Bm 4 dB 4 dB	OUS NVN PNO: Fast IFGain:Low #VE #VE 2 2.190 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	T BLE 1M 2 SENSE:INT Trig: Free Run #Atten: 30 dB	402MHz I	Emission RMS 10/10 Control Control	1.000 ms (1001 pts) 01:23:07 PM Jul 11, 2023 TRACE 12 3 4 5 G DET P. NNNNN Mkr1 2.412 GHz -2.190 dBm -19 59 dBm
es BW 100 kHz	Tx. Spuric	OUS NVN PNO: Fast IFGain:Low #VE #VE 2 2.190 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	T BLE 1M 2 SENSE:INT Trig: Free Run #Atten: 30 dB	402MHz I	Emission RMS 10/10 Control Control	1.000 ms (1001 pts) 01:23:07 PM Jul 11, 2023 TRACE 12 3 4 5 G DET P. NNNNN Mkr1 2.412 GHz -2.190 dBm -19 59 dBm





13. Antenna Requirement

13.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

13.2 Test Result

The EUT antenna is Internal antenna, Antenna Gain is -1.18 dBi, fulfill the requirement of this section.

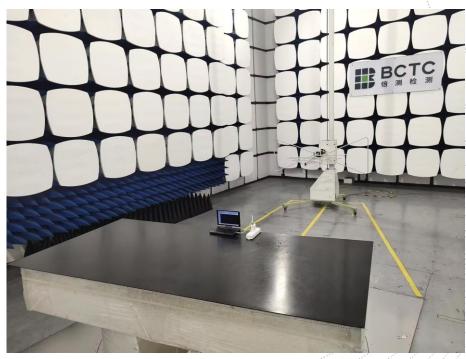
14. EUT Photographs

EUT Photo 1

EUT Photo 2


No.: BCTC/RF-EMC-005

Page: 49 of 52



15. EUT Test Setup Photographs

Conducted Emissions Photo

Radiated Measurement Photos

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without the "special seal for inspection and testing".

4. The test report is invalid without the signature of the approver.

5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

***** END *****

Page: 52 of 52