

SAR Test Report

For

Applicant Name:**Hall Technologies**

Address:

1234 Lakeshore Dr, Suite 150, Coppell, Texas 75019, United States

EUT Name:

Wearable Microphone with Programmable Alert Buttons

Brand Name:

Hall Technologies

Model Number:

HT-COMALERT-WM

Issued By**Company Name:****BTF Testing Lab (Shenzhen) Co., Ltd.**

Address:

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number:

BTF240912R00301

47 CFR Part 2.1093 IEC/IEEE 62209-1528: 2020

Test Standards:

IEEE C95.1-2019 KDB 447498 D04 KDB 865664 D01

KDB 865664 D02 KDB 648474 D04 KDB 690783 D01

FCC ID:

2A8VX-HTWM

Test Conclusion:

Pass

Test Date:

2024-09-19

Date of Issue:

2024-09-20

Tested By:

Jim Yin / Tester

Prepared By:

Zoey Zhang / Project Engineer

Date:

2024-09-20

Approved By:

Ryan.CJ / EMC Manager

Date:

2024-09-20

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Revision History		
Version	Issue Date	Revisions Content
R_V0	2024-09-20	Original
Note:	Once the revision has been made, then previous versions reports are invalid.	

Table of Contents

1. Introduction	4
1.1 Identification of Testing Laboratory	4
1.2 Identification of the Responsible Testing Location	4
1.3 Laboratory Condition	4
1.4 Announcement	4
2. Product Information	5
2.1 Application Information	5
2.2 Manufacturer Information	5
2.3 Factory Information	5
2.4 General Description of Equipment under Test (EUT)	5
2.5 Equipment under Test Ancillary Equipment	5
2.6 Technical Information	5
3. Summary of Test Results	6
3.1 Test Standards	6
3.2 Device Category and SAR Limit	7
3.3 Test Result Summary	7
3.4 Test Uncertainty	8
4. Measurement System	10
4.1 Specific Absorption Rate (SAR) Definition	10
4.2 MVG SAR System	10
5. System Verification	15
5.1 Purpose of System Check	15
5.2 System Check Setup	15
6. TEST POSITION CONFIGURATIONS	16
6.1 Head Exposure Conditions	16
6.2 Body-worn Position Conditions	21
6.3 Hotspot Mode Exposure Position Conditions	22
6.4 Product Specific 10g Exposure Consideration	22
7. Measurement Procedure	23
7.1 Measurement Process Diagram	23
7.2 SAR Scan General Requirement	24
7.3 Measurement Procedure	25
7.4 Area & Zoom Scan Procedure	25
8. Conducted RF Output Power	26
8.1 2.4G	26
9. Test Exclusion Consideration	26
9.1 SAR Test Exclusion Consideration Table	26
10. Test Result	27
11. SAR Measurement Variability	27
12. Simultaneous Transmission	28
12.1 Simultaneous Transmission Mode Considerations	28
13. Test Equipment List	29
ANNEX A Simulating Liquid Verification Result	30
ANNEX B System Check Result	30
ANNEX C SAR Dipole Calibrations	30
ANNEX C Test Data	33
ANNEX D SAR Test Setup Photos	35
ANNEX E EUT External and Internal Photos	36
ANNEX F Calibration Report	36

1. Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Test Location:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Description:	All measurement facilities used to collect the measurement data are located at F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
FCC Registration Number	518915
Designation Number	CN1330

1.3 Laboratory Condition

Ambient Temperature:	21°C to 25°C
Ambient Relative Humidity:	48% to 59%
Ambient Pressure:	100 kPa to 102 kPa

1.4 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2. Product Information

2.1 Application Information

Company Name:	Hall Technologies
Address:	1234 Lakeshore Dr, Suite 150, Coppell, Texas 75019, United States

2.2 Manufacturer Information

Company Name:	Shen Zhen Proitav Technology Co., Ltd
Address:	301-401, Building 16, Hejing Industrial Zone, No. 87 Hexiu West Road, Zhancheng Community, Fuhai Street, Baoan District, Shenzhen, China

2.3 Factory Information

Company Name:	Hall Technologies
Address:	1234 Lakeshore Dr, Suite 150, Coppell, Texas 75019, United States

2.4 General Description of Equipment under Test (EUT)

EUT Name	Wearable Microphone with Programmable Alert Buttons
Under Test Model Name	HT-COMALERT-WM
Sample No.	BTFSN240912013

2.5 Equipment under Test Ancillary Equipment

Ancillary Equipment 1	Rechargeable Battery	
	Capacity	400mAh
	Nominal Voltage	3.7VDC

2.6 Technical Information

Network and Wireless connectivity	2.4G
-----------------------------------	------

The requirement for the following technical information of the EUT was tested in this report:

Operating Mode	2.4G	
Frequency Range	2.4G	2402 ~ 2480 MHz
Antenna Type	2.4G: Chip Antenna	
Hotspot Function	Not Support	
Power Reduction	Not Support	
Exposure Category	General Population/Uncontrolled exposure	
EUT Stage	Portable Device	
Product	Type	
	<input type="checkbox"/> Production unit	<input checked="" type="checkbox"/> Identical prototype

3. Summary of Test Results

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 2.1093	Radiofrequency radiation exposure evaluation: portable devices
2	IEC/IEEE 62209-1528: 2020	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)
3	IEEE C95.1-2019	IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz
4	KDB447498 D04	Interim General RF Exposure Guidance v01
5	KDB 865664 D01	SAR measurement 100MHz to 6GHz v01r04
6	KDB 865664 D02	RF Exposure Reporting v01r02
7	KDB 648474 D04	Handset SAR v01r03
8	KDB 690783 D01	SAR Listings on Grant v01r03

3.2 Device Category and SAR Limit

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

Body Position	SAR Value (W/Kg)	
	General Population/ Uncontrolled Exposure	Occupational/ Controlled Exposure
Whole-Body SAR (averaged over the entire body)	0.08	0.4
Partial-Body SAR (averaged over any 1 gram of tissue)	1.60	8.0
SAR for hands, wrists, feet and ankles (averaged over any 10 grams of tissue)	4.0	20.0

NOTE:
General Population/Uncontrolled Exposure: Locations where there is the exposure of individuals who have no knowledge or control of their exposure. General population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Occupational/Controlled Exposure: Locations where there is exposure that may be incurred by persons who are aware of the potential for exposure. In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

3.3 Test Result Summary

The maximum results of Specific Absorption Rate (SAR) found during test as bellows:

<Highest Reported standalone SAR Summary>

Exposure Position	Frequency Band	Reported SAR (W/kg)
Body 1-g SAR (0 mm Gap)	2.4G	0.335

This device is in compliance with Specific Absorption Rate(SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC47 CFR part 2(2.1093) and ANSI/IEEE C95.1-2019, and had been tested in accordance with the measurement methods and procedures specified in IEC/IEEE 62209-1528: 2020.

3.4 Test Uncertainty

3.4.1 Measurement uncertainty evaluation for SAR test

Measurement uncertainty evaluation for SAR test (300MHz to 6GHz)

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+- %)	10 g Ui (+- %)	Vi veff
Measurement System								
Probe calibration	5.8	N	1	1	1	5.80	5.80	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	$\sqrt{0.5}$	$\sqrt{0.5}$	1.43	1.43	∞
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	$\sqrt{0.5}$	$\sqrt{0.5}$	2.41	2.41	∞
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
Response Time	0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
Integration Time	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
RF ambient Conditions - Noise	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient Conditions - Reflections	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner Mechanical Tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to Phantom Shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
Test sample Related								
Test sample positioning	2.6	N	1	1	1	2.60	2.60	11
Device Holder Uncertainty	3.0	N	1	1	1	3.00	3.00	7
Output power Variation - SAR drift measurement	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
SAR scaling	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Phantom and Tissue Parameters								
Phantom Shell Uncertainty - Shape, Thickness and Permittivity	4	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Uncertainty in SAR correction for deviation in permittivity and conductivity	2.0	N	1	1	0.84	2.00	1.68	∞
Liquid conductivity measurement	4.0	N	1	0.78	0.71	3.12	2.84	5
Liquid permittivity measurement	5.0	N	1	0.23	0.26	1.15	1.30	5
Liquid Conductivity - Temperature Uncertainty	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	∞
Liquid permittivity - Temperature Uncertainty	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Combined Standard Uncertainty		RSS				10.47	10.34	
Expanded Uncertainty (95% Confidence interval)		k				20.95	20.69	

* This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.4.2 Measurement uncertainty evaluation for system check

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10 g)	1g Ui (+- %)	10 g Ui (+- %)	Vi veff
Measurement System								
Probe calibration	5.8	N	1	1	1	5.80	5.80	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	1	1	2.02	2.02	∞
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Boundary effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
System detection limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	0	N	$\sqrt{3}$	0	0	0.00	0.00	∞
Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
Response Time	0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Integration Time	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	∞
RF ambient Conditions - Noise	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient Conditions - Reflections	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner Mechanical Tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to Phantom Shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
Dipole								
Deviation of experimental source from numerical source	5	N	1	1	1	5.00	5.00	∞
Input Power and SAR driftmeasurement	0.5	R	$\sqrt{3}$	1	1	0.29	0.29	∞
Dipole Axis to Liquid Dist.	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Phantom and Tissue Parameters								
Phantom Shell Uncertainty - Shape, Thickness and Permittivity	4	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Uncertainty in SAR correction for deviation in permittivity and conductivity	2.0	N	1	1	0.84	2.00	1.68	∞
Liquid conductivity measurement	4	N	1	0.78	0.71	3.12	2.84	5
Liquid permittivity measurement	5.0	N	1	0.23	0.26	1.15	1.30	5
Liquid Conductivity - Temperature Uncertainty	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	∞
Liquid permittivity - Temperature Uncertainty	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Combined Standard Uncertainty		RSS				10.16	10.03	
Expanded Uncertainty (95% Confidence interval)		k				20.32	20.06	

4. Measurement System

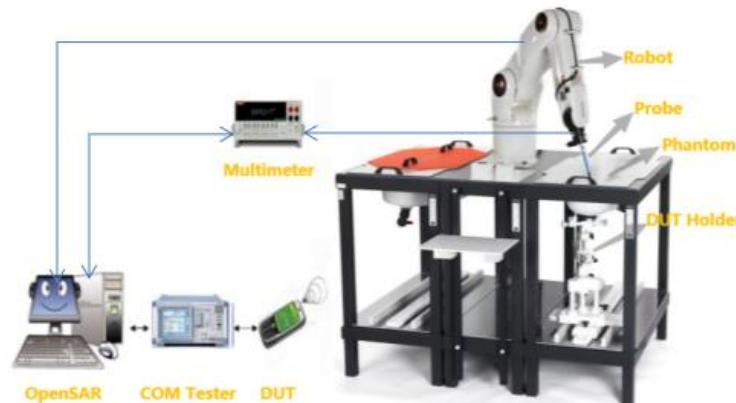
4.1 Specific Absorption Rate (SAR) Definition

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$\mathbf{SAR} = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue,

ρ is the mass density of the tissue and E is the RMS electrical field strength.

4.2 MVG SAR System

4.2.1 SAR system diagram

4.2.2 Robot

A standard high precision 6-axis robot (Denso) with teaches pendant with Scanning System

- It must be able to scan all the volume of the phantom to evaluate the tridimensional distribution of SAR.
- Must be able to set the probe orthogonal of the surface of the phantom ($\pm 30^\circ$).
- Detects stresses on the probe and stop itself if necessary to keep the integrity of the probe.

4.2.3 E-Field Probe

For the measurements, the Specific Dosimetric SSE2 E-Field Probe with following specifications is used:

- Dynamic range: 0.01-100 W/kg
- Tip diameter: 2mm for SSE2
- Distance between probe tip and sensor centre: 1mm for SSE2
- Distance between sensor centre and the inner phantom surface: 2mm for $f \geq 4\text{GHz}$.
- Probe linearity: <0.25dB.
- Axial Isotropy: <0.25dB.
- Spherical Isotropy: <0.50dB.
- Calibration range: 150 to 6000 MHz for head & body simulating liquid
- Angle between probe axis (evaluation axis) and surface normal line: less than 20° .

4.2.4 Phantoms

SAM Phantom

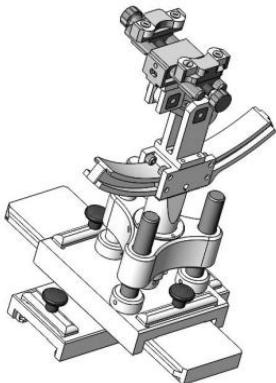
For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The probe scanning of the E-Field is done in the 2 halves of the normalized head. The normalized shape of the phantom corresponds to the dimensions of 90% of an adult head size. It enables the dosimetric evaluation of left and right-hand phone usage and includes an additional flat phantom part for the simplified body performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

SAM Phantom

The thickness of the phantom amounts to $2 \text{ mm} \pm 0.2 \text{ mm}$. The materials for the phantom do not affect the radiation of the device under test (DUT) : $\epsilon' < 5$. The head is filled with tissue simulating liquid. The hand do not have to be modeled.

TWIN SAM phantom			
	Mechanical	Electrical	
Overall thickness	$2 \pm 0.2 \text{ mm}$ (except ear area)	Relative permittivity	3.4
Dimensions	1000 mm(L) x 500 mm(W) x 200 mm(H)	Loss tangent	0.02
Maximum volume		27 L	
Material		Fiberglass based	

ELLIPTICAL Phantom


The phantom is for Body performance check filled with tissue-equivalent liquid to a depth of at least 150 mm, whose shell material is resistant to damage or reaction with tissue-equivalent liquid chemicals.

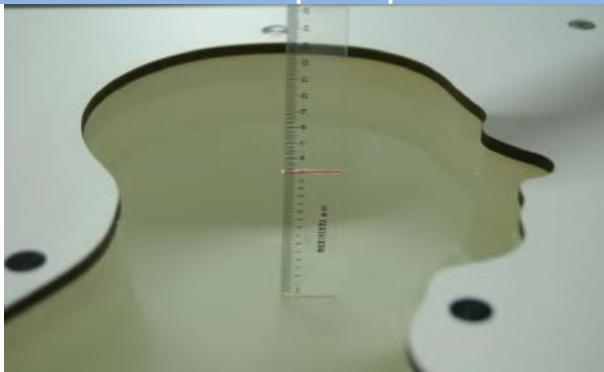
ELLI Phantom

The shape of the phantom is an ellipse with length $600\text{mm} \pm 5\text{mm}$ and width $400\text{mm} \pm 5\text{mm}$. The phantom shell is made of low-loss and low-permittivity material, having loss tangent $\tan\delta \leq 0.05$ and relative permittivity: $\epsilon' \leq 5$ for $f \leq 3 \text{ GHz}$ $3 \leq \epsilon' \leq 5$ for $f > 3 \text{ GHz}$. The thickness of the bottom-wall of the flat phantom is 2.0 mm with a tolerance of $\pm 0.2 \text{ mm}$.

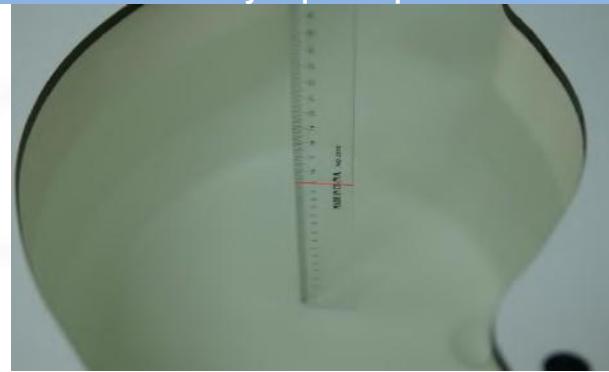
Technical & mechanical characteristics	
Shell thickness	$2 \text{ mm} \pm 0.2 \text{ mm}$
Filling volume	25 L
Dimensions	600 mm x 400 mm x 200mm
Permittivity	4.4
Loss tangent	0.017

4.2.5 Device Holder

System Material	Permittivity	Loss tangent
Delrin	3.7	0.005


(The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.)

System Material	Permittivity	Loss tangent
PMMA	2.9	0.028

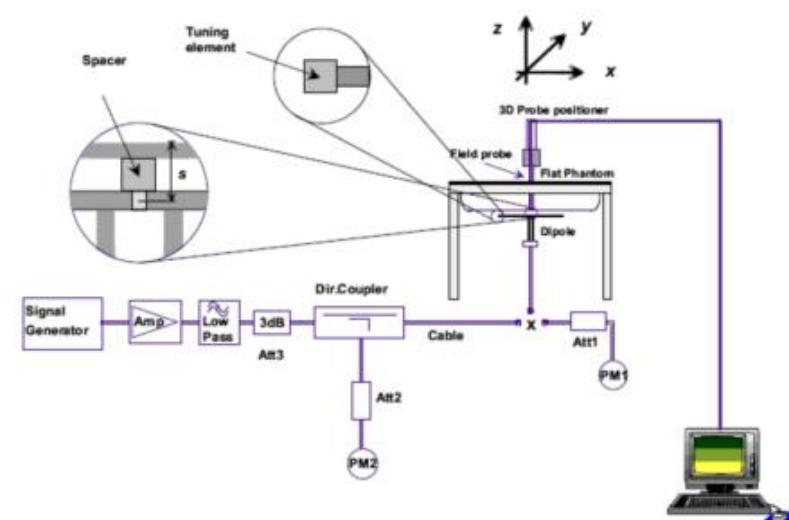

4.2.6 Simulating Liquid

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5%.

Head Liquid Depth

Body Liquid Depth

The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity.


Head (Reference IEEE1528)								
Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity σ (S/m)	Permittivity ϵ
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.4	40.0
2450	55.0	0	0	0.1	0	44.9	1.80	39.2
2600	54.9	0	0	0.1	0	45.0	1.96	39.0
Frequency (MHz)	Water (%)	Hexyl Carbitol			Triton X-100		Conductivity σ (S/m)	Permittivity ϵ
5200	62.52	17.24			17.24		4.66	36.0
5800	62.52	17.24			17.24		5.27	35.3
Body (From instrument manufacturer)								
Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity σ (S/m)	Permittivity ϵ
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0.1	0	31.3	1.95	52.7
2600	68.2	0	0	0.1	0	31.7	2.16	52.5
Frequency(MHz)	Water	DGBE (%)			Salt (%)		Conductivity σ (S/m)	Permittivity ϵ
5200	78.60	21.40			/		5.30	49.00
5800	78.50	21.40			0.1		6.00	48.20

5. System Verification

5.1 Purpose of System Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. The setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

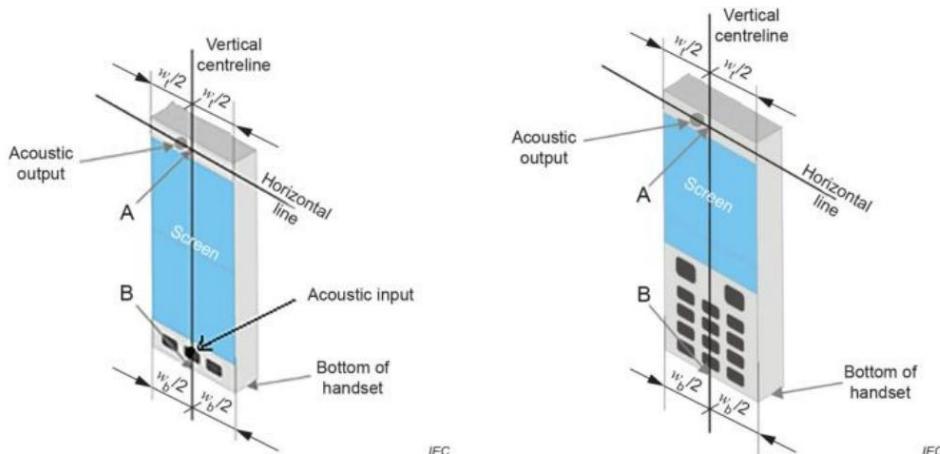
5.2 System Check Setup

6. TEST POSITION CONFIGURATIONS

According to KDB 648474 D04 Handset, handsets are tested for SAR compliance in head, body-worn accessory and other use configurations described in the following subsections.

6.1 Head Exposure Conditions

Head exposure is limited to next to the ear voice mode operations. Head SAR compliance is tested according to the test positions defined in IEC IEEE 62209-1528:2020 using the SAM phantom illustrated as below.


6.1.1 Definition of the cheek position

The cheek position is established using steps a) to j) as follows.

- (a) Configure the DUT for voice operation, if necessary. For example, for a DUT with a flip.a)swivel, or slide cover piece, open the cover if this is consistent with voice operation. If the DUT can also be used with the cover closed, both configurations shall be tested.
- (b) Define two imaginary lines on the DUT, the vertical centreline and the horizontal line, relative to the DUT in vertical orientation as shown in Figure 15.
- (c) The vertical centreline passes through two points on the front side of the DUT: the midpoint of the width w of the DUT at the level of the acoustic output (Point A in Figure 15), and the midpoint of the width w_t at the bottom of the DUT (Point B). The horizontal line is perpendicular to the vertical centerline, and passes through the centre of the acoustic output (Figure 15). The two lines intersect at Point A. Note that for many DUTs, Point A coincides with the centre of the acoustic output. However, the acoustic output could be located elsewhere on the horizontal line. Also note that the vertical centreline is not necessarily parallel to the front face of the DUT, especially for clamshell DUTs, DUTs with flip cover pieces, and other irregularly shaped DUTs.
- (d) Position the DUT close to the surface of the phantom such that Point A is on the (virtual) extension of the line passing through points RE (right-ear ear reference point) and LE left-ear ear reference point) on the phantom (see Figure 16a) and Figure 16b)). The plane determined by the vertical centreline and the horizontal line of the DUT shall be parallel to the sagittal plane of the phantom.
- (e) Translate the DUT towards the phantom along the line passing through RE and LE until the DUT touches the ear (see Figure 16c)).
- (f) Rotate the DUT around the (virtual) LE-RE Line until the DUT vertical centreline is in the)reference plane(see Figure 16d)).
- (g) Rotate the DUT around its vertical centreline until the plane established by the DUT vertical centreline and horizontal line is parallel to the N-F line (see Annex G), and then translate the DUT towards the phantom along the LE-RE line until DUT Point A touches the ear at the ERP (ear reference point) (see Figure 16e))
- (h) While keeping Point A on the line passing through RE and LE and maintaining the DUT in contact with the pinna, rotate the DUT about the N-F line until any point on the DUT is in contact with a phantom point below the pinna (cheek) (see Figure 16f)). The physical angles of rotation shall be documented.
- (i) While keeping DUT Point A in contact with the ERP rotate the DUT around a line perpendicular to the plane established by the DUT vertical centreline and horizontal line and passing through DUT Point A, until the DUT vertical centreline is in the reference plane(see Figure 16g)).

(j) Verify that the cheek position is correct as follows:

- 1) the N-F line is in the plane established by the DUT vertical centreline and horizontal line;
- 2) DUT Point A touches the pinna at the ERP
- 3) the DUT vertical centreline is in the reference plane.

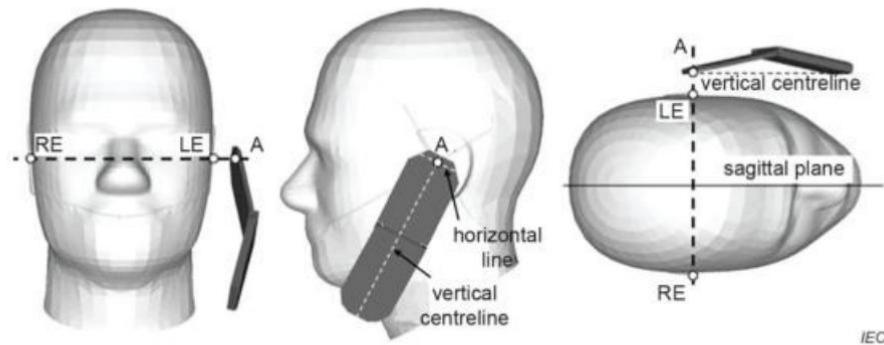
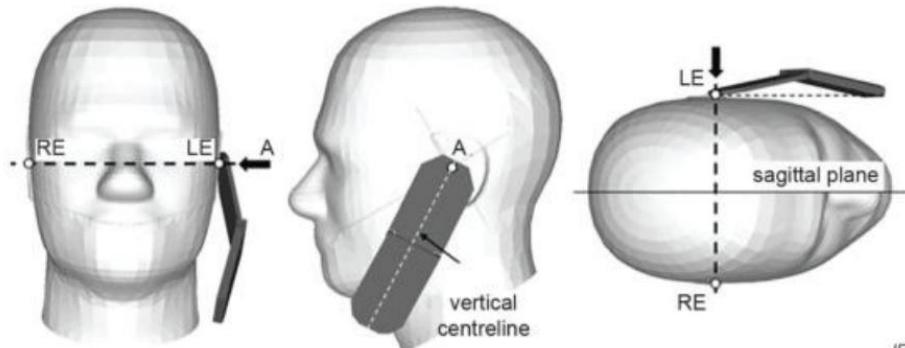
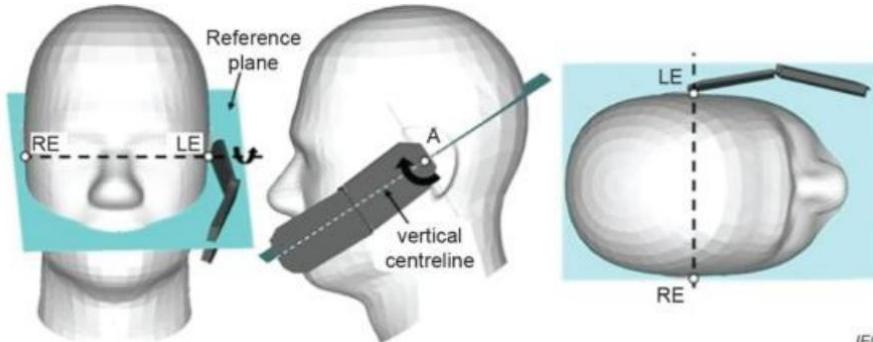


Figure 15 - Vertical and horizontal reference lines and reference points A and B on two example device types: a full touch-screen smart phone (left) and a DUT with a keypad (right)



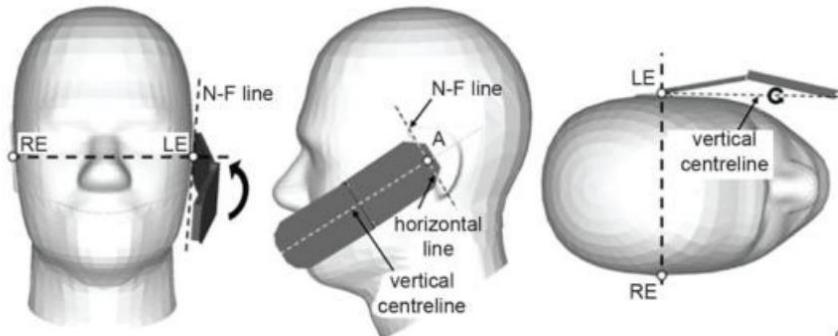
NOTE The reference points for the right-ear ear reference point (RE), left-ear ear reference point (LE), and mouth (M), which establish the reference plane for DUT positioning, are indicated. This device position shall be maintained for the sagittal phantom test set-up shown in Figure G.4.

a) Phone position 1 – cheek position


b) One possible DUT position against the head after applying 7.2.4.2.2 c)

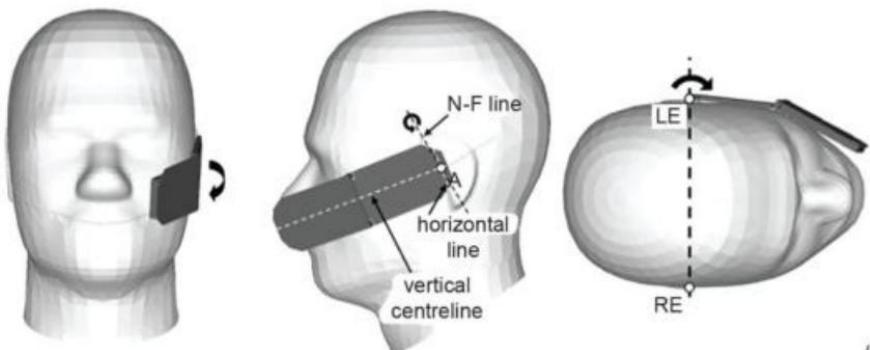
IEC

NOTE The black arrows show the direction of translation of the DUT for 7.2.4.2.2 d).


c) DUT position after applying 7.2.4.2.2 d)

IEC

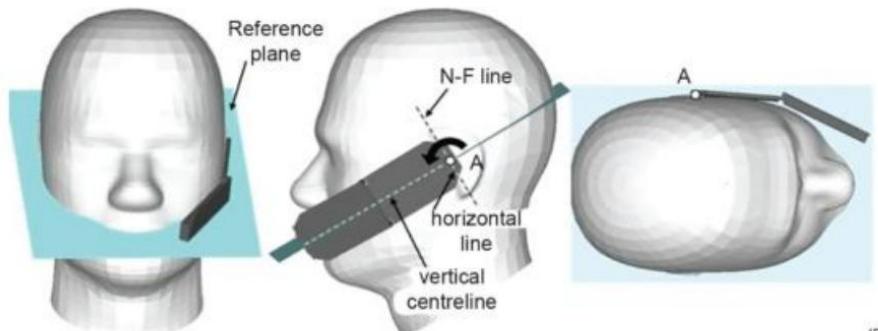
NOTE The curved black arrows show the direction of rotation of the DUT for 7.2.4.2.2 e).


d) DUT position after applying 7.2.4.2.2 e)

IEC

NOTE The curved black arrows show the direction of rotation of the DUT for 7.2.4.2.2 f).

e) DUT position after applying 7.2.4.2.2 f)



IEC

NOTE The curved black arrows show the direction of rotation of the DUT for 7.2.4.2.2 g)

f) DUT position after applying 7.2.4.2.2 g)

© IEC/IEEE 2020

IEC

NOTE The curved black arrows show the direction of rotation of the DUT for 7.2.4.2.2 h).

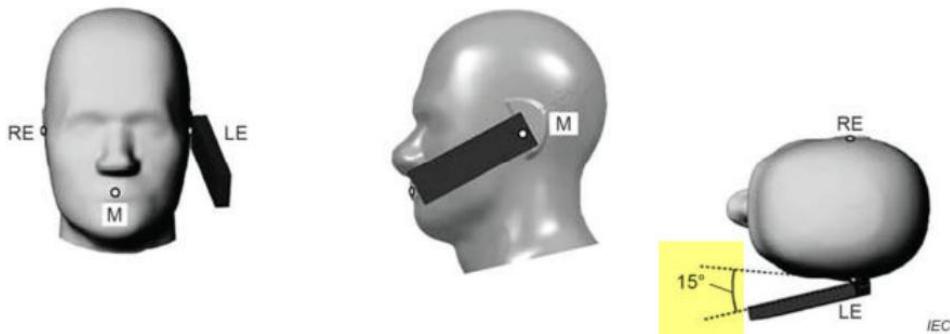

g) DUT position after applying 7.2.4.2.2 h)

Figure 16 – Cheek position of the DUT on the left side of SAM where the device position shall be maintained for the phantom test set-up

6.1.2 Definition of the tilt position

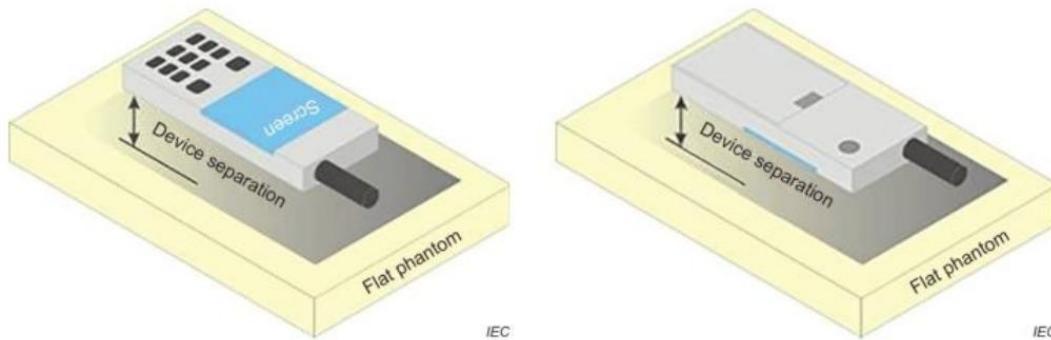
The tilt position is established using steps a) through d) as follows.

- (a) Repeat steps a) through j) of 7.2.4.2.2 to place the DUT in the cheek position)(see Figure16).
- (b) While maintaining the orientation of the DUT, move the DUT away from the pinna along the line passing through RE and LE far enough to allow a rotation of the DUT away from the cheek by 15°.
- (c) Rotate the DUT around the horizontal line by 15°(see Figure 17).
- (d) While maintaining the orientation of the DUT. move the DUT towards the phantom on a line passing through RE and LE until any part of the DUT touches the ear. The tilt position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna, e.g. an extended antenna in contact with the back of the head phantom, the angle of the DUT shall be reduced. in this case, the tilt position is obtained if any part of the DUT is in contact with the pinna and a second point on the DUT is in contact with the phantom,e.g.the antenna in contact with the back of the head.

Key

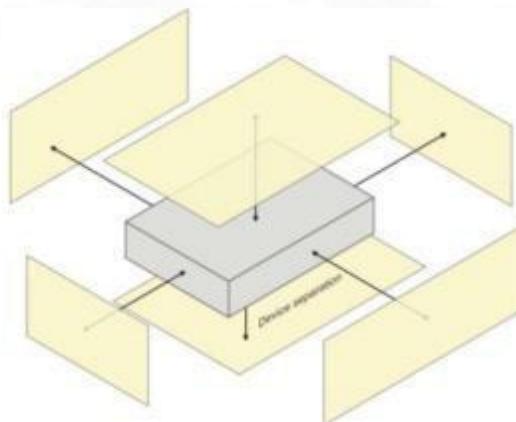
M Mouth reference point
LE Left-ear ear reference point
RE Right-ear ear reference point

This device position shall be maintained for the phantom test set-up.


Figure 17 – Tilt position of the DUT on the left side of SAM

6.2 Body-worn Position Conditions

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB 447498 are used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode. When the reported SAR for a body-worn accessory.

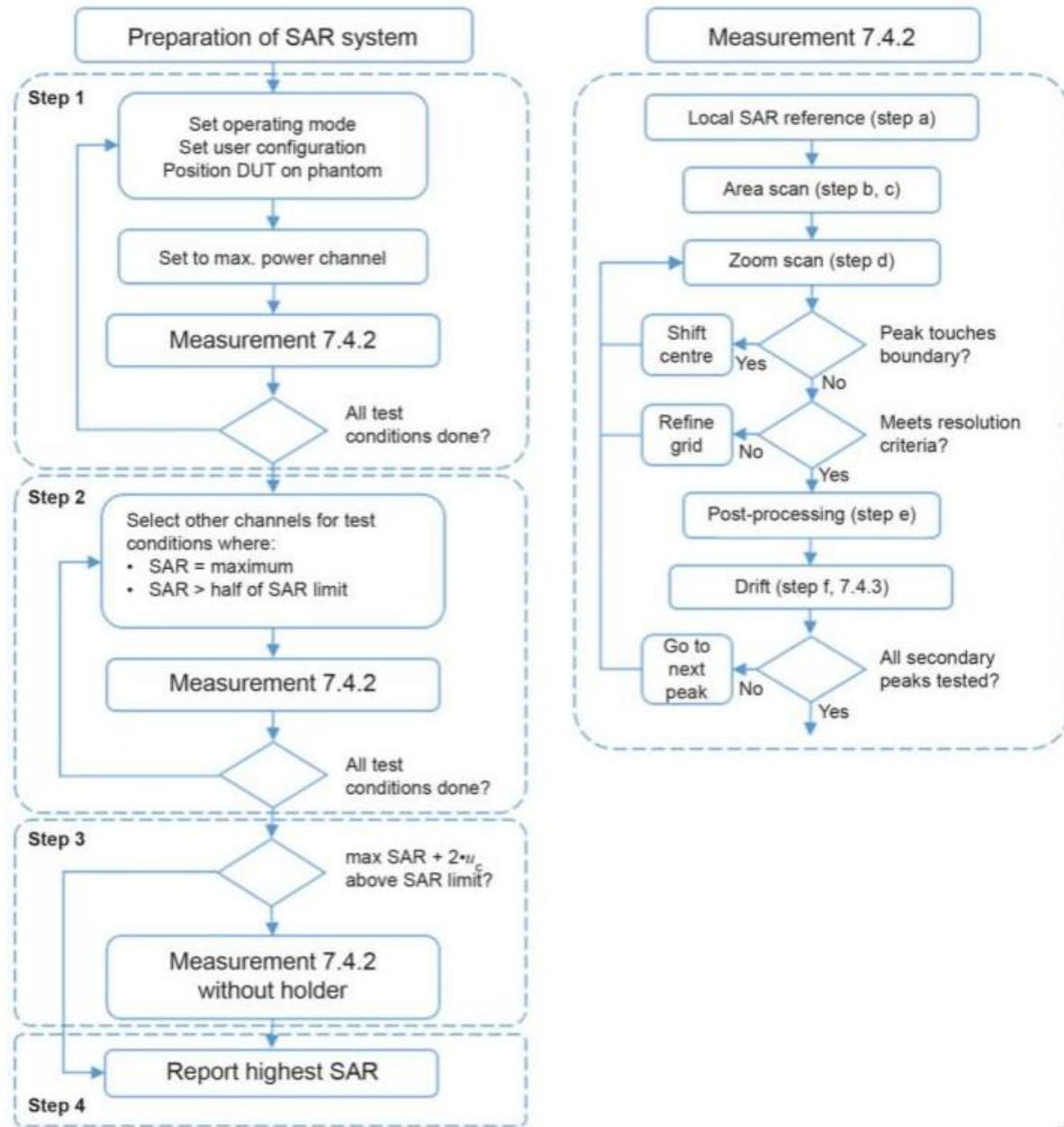

Body-worn accessories that do not contain metallic or conductive components may be tested according to worst-case exposure configurations, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. All body-worn accessories containing metallic components are tested in conjunction with the host device.

Body-worn accessory SAR compliance is based on a single minimum test separation distance for all wireless and operating modes applicable to each body-worn accessory used by the host, and according to the relevant voice and/or data mode transmissions and operations. If a body-worn accessory supports voice only operations in its normal and expected use conditions, testing of data mode for body-worn compliance is not required. A conservative minimum test separation distance for supporting off-the-shelf body-worn accessories that may be acquired by users of consumer handsets is used to test for body-worn accessory SAR compliance. This distance is determined by the handset manufacturer, according to the requirements of Supplement C 01-01. Devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body-worn accessories, will be tested using a conservative minimum test separation distance ≤ 5 mm to support compliance.

6.3 Hotspot Mode Exposure Position Conditions

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing functions, the relevant hand and body exposure conditions are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surfaces and edges with a transmitting antenna located within 25 mm from that surface or edge. When the form factor of a handset is smaller than 9 cm x 5 cm, a test separation distance of 5 mm (instead of 10 mm) is required for testing hotspot mode. When the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

6.4 Product Specific 10g Exposure Consideration


According with FCC KDB 648474 D04, for smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, unless it is confirmed otherwise through KDB inquiries, the following phablet procedures should be applied to evaluate SAR compliance for each applicable wireless modes and frequency band. Devices marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance;

The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

7. Measurement Procedure

7.1 Measurement Process Diagram

Body SAR

IEC

7.2 SAR Scan General Requirement

Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1 g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEC/IEEE 62209-1528: 2020.

Table 3 – Area scan parameters

Parameter	DUT transmit frequency being tested	
	$f \leq 3 \text{ GHz}$	$3 \text{ GHz} < f \leq 10 \text{ GHz}$
Maximum distance between the measured points (geometric centre of the sensors) and the inner phantom surface (z_{M1} in Figure 20 in mm)	5 ± 1	$\delta \ln(2)/2 \pm 0,5^a$
Maximum spacing between adjacent measured points in mm (see O.8.3.1) ^b	20, or half of the corresponding zoom scan length, whichever is smaller	60/f, or half of the corresponding zoom scan length, whichever is smaller
Maximum angle between the probe axis and the phantom surface normal (α in Figure 20) ^c	5° (flat phantom only) 30° (other phantoms)	5° (flat phantom only) 20° (other phantoms)
Tolerance in the probe angle	1°	1°

^a δ is the penetration depth for a plane-wave incident normally on a planar half-space.

^b See Clause O.8 on how Δx and Δy may be selected for individual area scan requirements.

^c The probe angle relative to the phantom surface normal is restricted due to the degradation in the measurement accuracy in fields with steep spatial gradients. The measurement accuracy decreases with increasing probe angle and increasing frequency. This is the reason for the tighter probe angle restriction at frequencies above 3 GHz.

Table 4 – Zoom scan parameters

Parameter	DUT transmit frequency being tested	
	$f \leq 3 \text{ GHz}$	$3 \text{ GHz} < f \leq 10 \text{ GHz}$
Maximum distance between the closest measured points and the phantom surface (z_{M1} in Figure 20 and Table 3, in mm)	5	$\delta \ln(2)/2^a$
Maximum angle between the probe axis and the phantom surface normal (α in Figure 20)	5° (flat phantom only) 30° (other phantoms)	5° (flat phantom only) 20° (other phantoms)
Maximum spacing between measured points in the x- and y-directions (Δx and Δy , in mm)	8	$24/f^b$
For uniform grids: Maximum spacing between measured points in the direction normal to the phantom shell (Δz_1 in Figure 20, in mm)	5	$10/(f-1)$
For graded grids: Maximum spacing between the two closest measured points in the direction normal to the phantom shell (Δz_1 in Figure 20, in mm)	4	$12/f$
For graded grids: Maximum incremental increase in the spacing between measured points in the direction normal to the phantom shell ($R_z = \Delta z_2/\Delta z_1$ in Figure 20)	1,5	1,5
Minimum edge length of the zoom scan volume in the x- and y-directions (L_z in O.8.3.2, in mm)	30	22
Minimum edge length of the zoom scan volume in the direction normal to the phantom shell (L_h in O.8.3.2 in mm)	30	22
Tolerance in the probe angle	1°	1°

^a δ is the penetration depth for a plane-wave incident normally on a planar half-space.

^b This is the maximum spacing allowed, which might not work for all circumstances.

7.3 Measurement Procedure

The following steps are used for each test position

- a. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- b. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- c. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- d. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.4 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

When the 1 g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

8. Conducted RF Output Power

8.1 2.4G

Mode	Maximum Tune-up(dBm)	Peak Conducted Output Power (dBm)		
		0	39	78
		2402MHz	2441MHz	2480MHz
DH5	3.50	3.29	2.74	1.94
2DH5	5.00	4.90	4.45	3.67
3DH5	5.50	5.18	4.79	4.18

Note: The customer requires a sar test

9. Test Exclusion Consideration

Antenna information:

2.4G Antenna	2.4G TX/RX
Note:	
1. KDB 447498 D04v01, particular DUT edges were not required to be evaluated for SAR if the antenna-to-edge distance is greater than 2.5cm. 2. KDB 616217 D04 SAR for laptop and tablets v01r02, it doesn't require SAR evaluation for the front surface of a tablet. 3. Per KDB648474 D04,10-g extremity SAR is not required when Body-Worn mode 1-g reported SAR<1.2W/Kg.	

9.1 SAR Test Exclusion Consideration Table

Per KDB 447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following format to determine simultaneous transmission SAR test exclusion:

(max.power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] · [$\sqrt{f(\text{GHz})} / x$]

W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x= 18.75 for 10-g SAR.

0.4 W/Kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is $>$ 50 mm

10. Test Result

Body 1g SAR Data

Band	Mode	Test Position with 0 mm	CH.	Freq. (MHz)	Peak Power (dBm)	Tune-Up Limit (dBm)	Power Drift (%)	Meas. SAR1g (W/kg)	Scaling Factor	Reported SAR1g (W/kg)	Meas. No.	Limit (W/Kg)
2.4G	2.4G	Front	0	2402	5.18	5.50	3.830	0.143	1.076	0.154	/	1.60
		Back	0	2402	5.18	5.50	-2.000	0.311	1.076	0.335	1#	

Note:

1. The maximum SAR Value of each test band is marked bold.
2. SAR plot is provided only for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination.
3. Per KDB 447498 D04 v01, for each exposure position, if the highest output power channel Reported SAR $\leq 0.8\text{W/kg}$, other channels SAR testing is not necessary.
4. Per KDB 616217 D04 where SAR test considerations for tablets are based on a composite test separation distance of 0 mm from the back and edges of the device with antennas 2.5 cm or closer to the edge of the device, determined from general mixed use conditions for this type of devices.
5. Per KDB 447498 D04 v01, the report SAR is measured SAR value adjusted for maximum tune-up tolerance. Scaling Factor= $10^{(tune-up\ limit\ power(dBm) - Peak\ power\ power\ (dBm))/10}$, where tune-up limit is the maximum rated power among all production units.
- Reported SAR(W/kg)=Measured SAR (W/kg)*Scaling Factor.
4. When the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

11. SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are $\leq 1.45\text{ W/kg}$ and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

1. When the highest measured SAR is $< 0.80\text{ W/kg}$, repeated measurement is not required.
2. When the highest measured SAR is $\geq 0.80\text{ W/kg}$, repeat that measurement once.
3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 , or when the original or repeated measurement is $\geq 1.45\text{ W/kg}$, perform a second repeated measurement.
4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 , and the original, first or second repeated measurement is $\geq 1.5\text{ W/kg}$, perform a third repeated measurement.

Note: For 1g SAR, the highest 1g SAR is 0.311 $< 0.80\text{ W/kg}$, repeated measurement is not required.

12. Simultaneous Transmission

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR 1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR 1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR 1g is greater than the SAR limit (SAR 1g 1.6 W/kg), SAR test exclusion is determined by the SAR to Peak Location Ratio (SPLSR).

12.1 Simultaneous Transmission Mode Considerations

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. The device has 1 Tx antennas, so we do not need to consider simultaneous transmission.

13. Test Equipment List

Description	Manufacturer	Model	Serial No./Version	Cal. Date	Cal. Due
E-Field Probe	MVG	SSE2	04/22 EPGO365	2024/02/06	2025/02/05
6 1/2 Digital Multimeter	Keithley	DMM6500	4527164	2023/11/16	2024/11/15
Wideband Radio Communication Tester	ROHDE & SCHWARZ	CMW500	161997	2023/11/16	2024/11/15
MXG Vector Signal Generator	Agilent	N5182A	MY46240163	2023/11/16	2024/11/15
E-Series Avg. Power Sensor	KEYSIGHT	E9300A	MY55050017	2024/03/20	2025/03/19
EPM Series Power Meter	KEYSIGHT	E4418B	MY41293435	2024/03/20	2025/03/19
10dB Attenuator	MIDWEST MICROWAVE	263-10dB	/	2024/03/20	2025/03/19
Coupler	MERRIMAC	CWM-10R-10.8G	LOT-83391	2024/03/20	2025/03/19
2450MHz Validation Dipole	MVG	SID2450	07/22 DIP 2G450-662	2023/02/06	2025/02/05
LIMESAR Dielectric Probe	MVG	SCLMP	06/22 OCPG88	2024/02/02	2025/02/01
ENA Series Network Analyzer	Agilent	E5071B	MY42301221	2023/11/16	2024/11/15
Thermometer	Riters	DT-232	21A11	2024/03/20	2025/03/19
Antenna network emulator	MVG	ANTA 74	07/22 ANTA 74	/	/
SAM Phantom	MVG	SAM	07/22 SAM149	/	/
Mobile Phone Positioning System	MVG	MSH 118	07/22 MSH 118	/	/
Mechanical Calibration Kit	PNA	/	/	2023/11/16	2024/11/15
Open SAR test software	MVG	/	V5.3.5	/	/

Note: For dipole antennas, BTF has adopted 3 years as calibration intervals, and on annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

1. There is no physical damage on the dipole;
2. System validation with specific dipole is within 10% of calibrated value;
3. Return-loss is within 20% of calibrated measurement.
4. Impedance (real or imaginary parts) is within 5 Ohms of calibrated measurement.

ANNEX A Simulating Liquid Verification Result

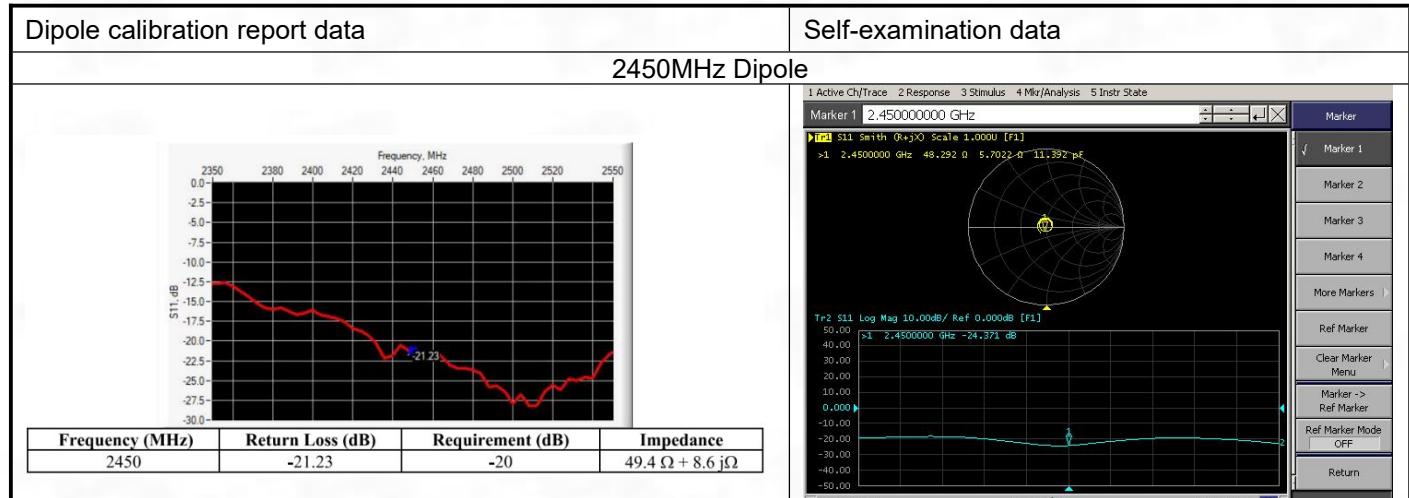
The dielectric parameters of the liquids were verified prior to the SAR evaluation using an SCLMP Dielectric Probe Kit.

Dielectric performance of tissue simulating liquid									
Frequency (MHz)	ϵ_r		σ (s/m)		Delta (ϵ_r)	Delta (σ)	Limit	Temp (°C)	Date
	Target	Measured	Target	Measured					
2450	39.20	39.08	1.80	1.81	-0.31%	0.56%	±5%	20.5	19/9/2024

NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

ANNEX B System Check Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %(for 1 g).


Frequency (MHz)	Input Power (mW)	10g SAR (W/Kg)	1g SAR (W/Kg)	10g SAR 1W input power normalized (W/Kg)	1g SAR 1W input power normalized (W/Kg)	10g SAR Standard target (1W) (W/Kg)	1g SAR Standard target (1W) (W/Kg)	10g SAR Deviation	1g SAR Deviation
2450	16	0.352	0.793	22.00	49.56	23.86	54.4	-7.80%	-8.89%

ANNEX C SAR Dipole Calibrations

Justification for Extended SAR Dipole Calibrations

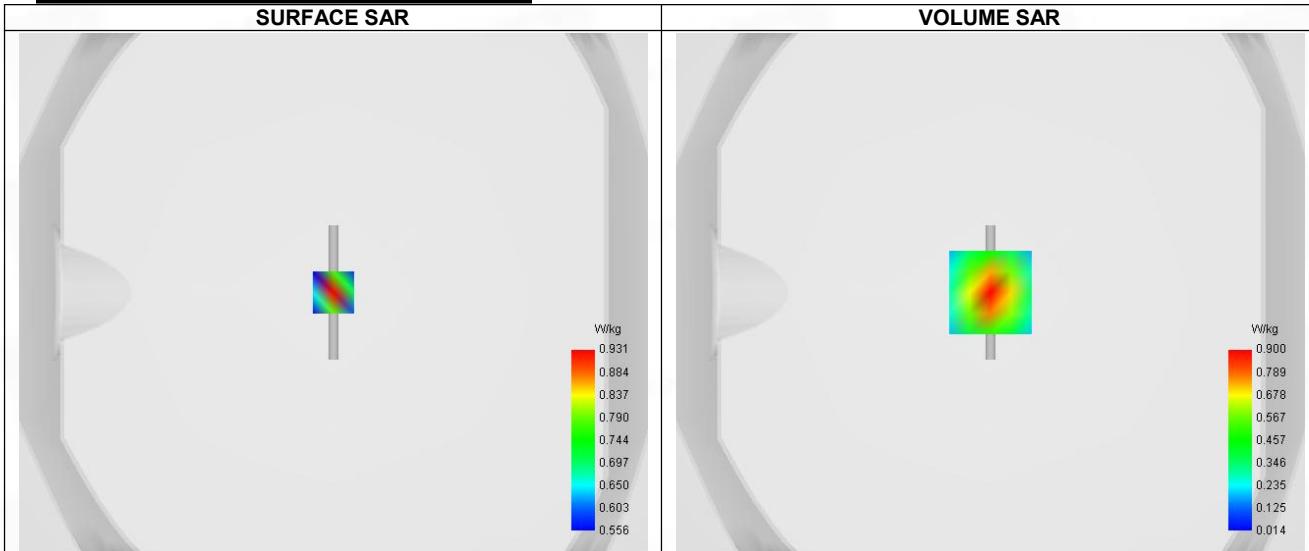
Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration) and in impedance (within 5 ohm of prior calibration). the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

Frequency (MHz)	Return loss(dB)		Impedance(Ω)				error range (%)		Results	Date of Measurement		
	measurement	target	measurement		target		Return loss(±20%)	Impedance(±5 Ω)				
			real part	imaginary part	real part	imaginary part						
CW2450	-24.37	-21.23	48.3	5.7	49.4	+8.6	14.79%	4.0	P	2/5/2024		

System Performance Check Data (2450MHz)

System check at 2450 MHz

Date of measurement: 19/9/2024

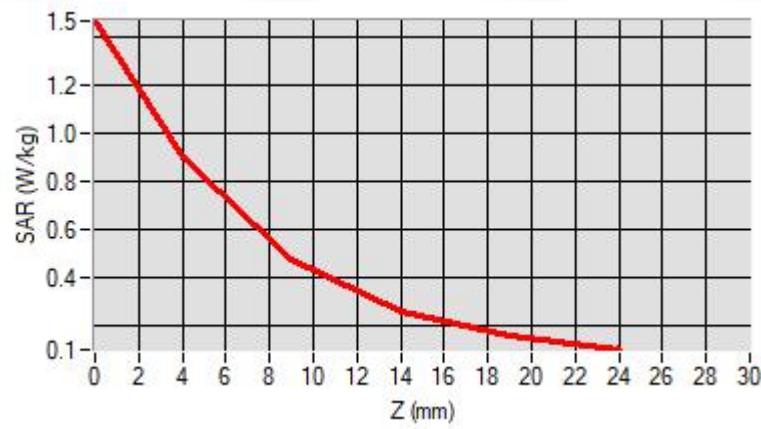

A. Experimental conditions.

Probe	SN 04/22 EPGO365
ConvF	2.36
Area Scan	dx=8mm dy=8mm, Adaptative 1 max
Zoom Scan	5x5x7, dx=8mm dy=8mm dz=5mm, Complete
Phantom	Validation plane
Device Position	Dipole
Band	CW2450
Channels	Middle
Signal	CW

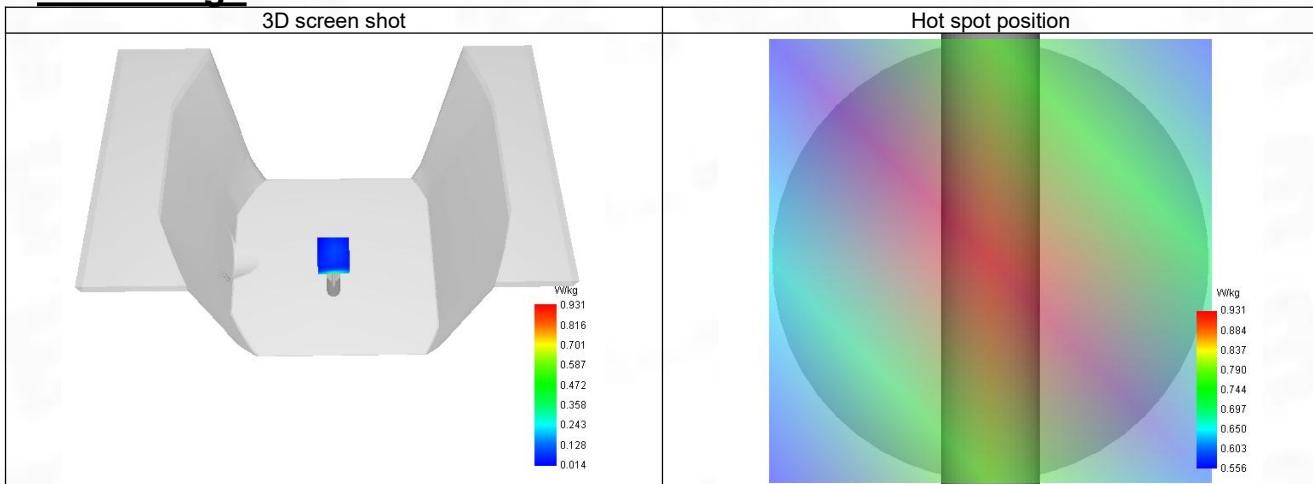
B. Permittivity

Frequency (MHz)	2450.000
Relative permittivity (real part)	39.080
Relative permittivity (imaginary part)	13.340
Conductivity (S/m)	1.810

C. SAR Surface and Volume



D. SAR 1g & 10g


SAR 10g (W/Kg)	0.352
SAR 1g (W/Kg)	0.793
Variation (%)	-2.570
Horizontal validation criteria: minimum distance (mm)	8.498
Vertical validation criteria: SAR ratio M2/M1 (%)	53.00%

E. Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	1.466	0.900	0.477	0.261	0.158

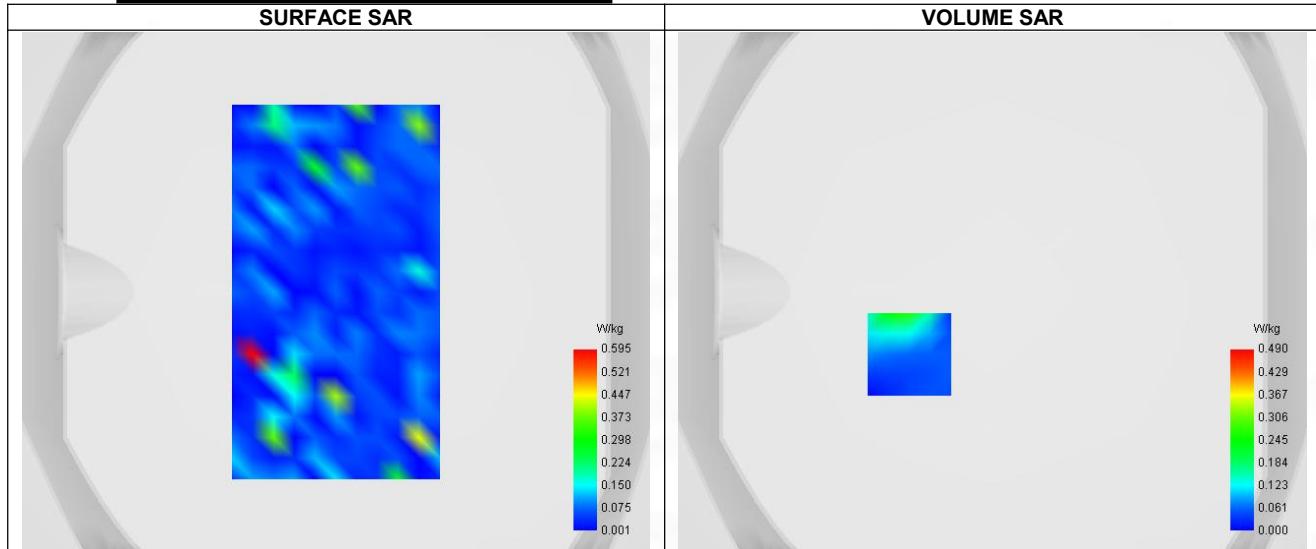
F. 3D Image

ANNEX C Test Data

1-Body with back position in dist. 0mm on Channel 0 in 2.4G

SAR Measurement at 2.4G (Body, Validation Plane)

Date of measurement: 19/9/2024

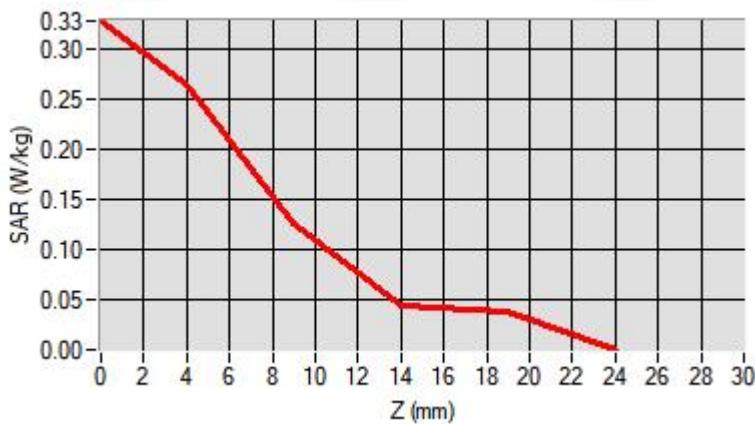

A. Experimental conditions.

Probe	SN 04/22 EPGO365
ConvF	2.36
Area Scan	dx=8mm dy=8mm, Adaptative 1 max
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body
Band	2.4G
Channels	Lower (0)
Signal	2.4G

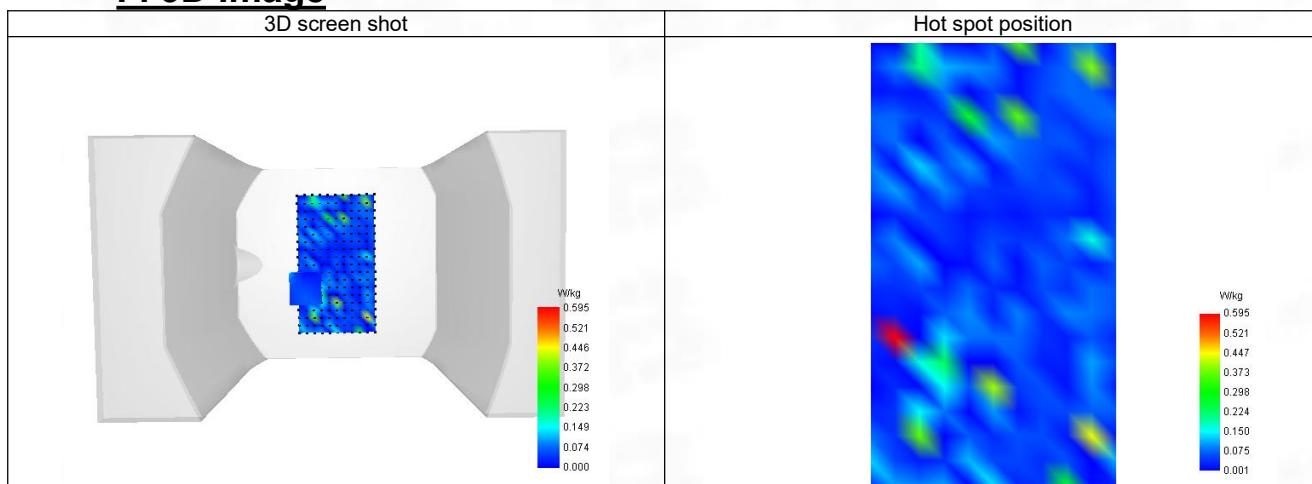
B. Permittivity

Frequency (MHz)	2402.000
Relative permittivity (real part)	39.150
Relative permittivity (imaginary part)	13.343
Conductivity (S/m)	1.775

C. SAR Surface and Volume



D. SAR 1g & 10g


SAR 10g (W/Kg)	0.168
SAR 1g (W/Kg)	0.311
Variation (%)	-2.000
Horizontal validation criteria: minimum distance (mm)	8.652
Vertical validation criteria: SAR ratio M2/M1 (%)	47.37%

E. Z Axis Scan


Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.329	0.266	0.126	0.044	0.038

F. 3D Image

ANNEX D SAR Test Setup Photos

ANNEX E EUT External and Internal Photos

Please refer to RF Report.

ANNEX F Calibration Report

Please refer to the document "Calibration.pdf".

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street,
Bao'an District, Shenzhen, China

www.btf-lab.com

--END OF REPORT--