

TEST REPORT

Applicant:	Hall Technologies
Address of Applicant:	1234 Lakeshore Dr, Suite 150, Coppell, Texas 75019, United States
Manufacturer:	Shen Zhen Proitav Technology Co.,Ltd
Address of Manufacturer:	301-401, Building 16, Hejing Industrial Zone, No. 87 Hexiu West Road, Zhancheng Community, Fuhai Street, Baoan District, Shenzhen, China
Equipment Under Test (E	EUT)
Product Name:	Wearable Microphone with Programmable Alert Buttons
Model No.:	HT-COMALERT-WM
Trade Mark:	Hall Technologies
FCC ID:	2A8VX-HTWM
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	July 23, 2024
Date of Test:	July 24, 2024-September 11, 2024
Date of report issued:	September 11, 2024
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 35

2 Version

Version No.	Date	Description
00	September 11, 2024	Original

Prepared By:

handlu

Date:

September 11, 2024

Project Engineer

Check By:

oppinson lund Reviewer

Date:

September 11, 2024

GTS

Report No.: GTS2024070302F01

3 Contents

		Pa	age
1	CO	VER PAGE	1
2	VE	RSION	2
3	со	NTENTS	3
4	TES	ST SUMMARY	4
5	GE	NERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	7
	5.6	TEST FACILITY	7
	5.7	TEST LOCATION	7
	5.8	Additional Instructions	7
6	TES	ST INSTRUMENTS LIST	. 8
	1000		
7	TES	ST RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	14
	7.4	20DB EMISSION BANDWIDTH	
	7.5	CARRIER FREQUENCIES SEPARATION	
	7.6	HOPPING CHANNEL NUMBER	
	7.7	DWELL TIME	
	7.8	SPURIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS	
	7.8.		-
	7.8	2 Radiated Emission Method	20
8	TES	ST SETUP PHOTO	35
9	EU	T CONSTRUCTIONAL DETAILS	35

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	±7.25×10 ⁻⁸
2	Duty cycle	±0.37%
3	Occupied Bandwidth	±3%
4	RF conducted power	±0.75dB
5	RF power density	±3dB
6	Conducted Spurious emissions	±2.58dB
7	AC Power Line Conducted Emission	±3.44dB (0.15MHz ~ 30MHz)
		±3.1dB (9kHz-30MHz)
		±3.8039dB (30MHz-200MHz)
8	Radiated Spurious emission test	±3.9679dB (200MHz-1GHz)
		±4.29dB (1GHz-18GHz)
		±3.30dB (18GHz-40GHz)
9	Temperature test	±1°C
10	Humidity test	±3%
11	Time	±3%

5 General Information

5.1 General Description of EUT

Product Name:	Wearable Microphone with Programmable Alert Buttons
Troduct Name.	
Model No.:	HT-COMALERT-WM
Test sample(s) ID:	GTS2024070302-1
Sample(s) Status:	Engineer sample
S/N:	116124180004
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Chip Antenna
Antenna gain:	2.73dBi(declare by applicant)
Power supply:	DC 3.7V, 400mAh, 1.48Wh for Li-ion battery(charging by charging base)

Remark:

1. Antenna gain information provided by the customer

2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transm

5.3 Description of Support Units

Manufacturer	acturer Description Model		Serial Number
Supplied by client	charging base	HT-COMALERT-BASE	N/A
Supplied by client	Adapter	BS10A-0502000US	N/A

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

	None.
5.6	Test Facility
	The test facility is recognized, certified, or accredited by the following organizations:
	FCC—Registration No.: 381383
	Designation Number: CN5029
	Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully
	described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter
	from the FCC is maintained in files.

• ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test software provided by manufacturer
Power level setup	Default

6 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June 22, 2024	June 21, 2027
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 11, 2024	April 10, 2025
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 19, 2023	March 18, 2025
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	April 17, 2023	April 16, 2025
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 11, 2024	April 10, 2025
8	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 13, 2023	Nov.12, 2024
9	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 11, 2024	April 10, 2025
10	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 11, 2024	April 10, 2025
11	Horn Antenna (18- 26.5GHz)	1	UG-598A/U	GTS664	Oct. 29, 2023	Oct. 28, 2024
12	Horn Antenna (26.5-40GHz)	A.H Systems	SAS-573	GTS665	Oct. 29, 2023	Oct. 28, 2024
13	FSV-Signal Analyzer (10Hz-40GHz)	Keysight	FSV-40-N	GTS666	March 12, 2024	March 11, 2025
14	Amplifier	/	LNA-1000-30S	GTS650	April 11, 2024	April 10, 2025
15	CDNE M2+M3-16A	НСТ	30MHz-300MHz	GTS692	Nov. 08, 2023	Nov.07, 2024
16	Wideband Amplifier	1	WDA-01004000-15P35	GTS602	April 11, 2024	April 10, 2025
17	Thermo meter	JINCHUANG	GSP-8A	GTS643	April 18, 2024	April 17, 2025
18	RE cable 1	GTS	N/A	GTS675	July 02. 2024	July 01. 2025
19	RE cable 2	GTS	N/A	GTS676	July 02. 2024	July 01. 2025
20	RE cable 3	GTS	N/A	GTS677	July 02. 2024	July 01. 2025
21	RE cable 4	GTS	N/A	GTS678	July 02. 2024	July 01. 2025
22	RE cable 5	GTS	N/A	GTS679	July 02. 2024	July 01. 2025
23	RE cable 6	GTS	N/A	GTS680	July 02. 2024	July 01. 2025
24	RE cable 7	GTS	N/A	GTS681	July 05. 2024	July 04. 2025
25	RE cable 8	GTS	N/A	GTS682	July 05. 2024	July 04. 2025

Cond	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	July 12, 2022	July 11, 2027	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 11, 2024	April 10, 2025	
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	April 11, 2024	April 10, 2025	
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
6	Thermo meter	JINCHUANG	GSP-8A	GTS642	April 18, 2024	April 17, 2025	
7	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 11, 2024	April 10, 2025	
8	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 11, 2024	April 10, 2025	
9	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 11, 2024	April 10, 2025	
10	Antenna end assembly	Weinschel	1870A	GTS560	April 11, 2024	April 10, 2025	

RF Co	RF Conducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 11, 2024	April 10, 2025
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 11, 2024	April 10, 2025
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	April 11, 2024	April 10, 2025
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 11, 2024	April 10, 2025
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 11, 2024	April 10, 2025
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 11, 2024	April 10, 2025
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 11, 2024	April 10, 2025
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 11, 2024	April 10, 2025
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	April 18, 2024	April 17, 2025
10	EXA Signal Analyzer	Keysight	N9010B	MY60241168	Nov. 03, 2023	Nov. 02, 2024

Gen	General used equipment:						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	KUMAO	SF132	GTS647	April 18, 2024	April 17, 2025	

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
-----------------------	-------------------------------------

15.203 requirement:

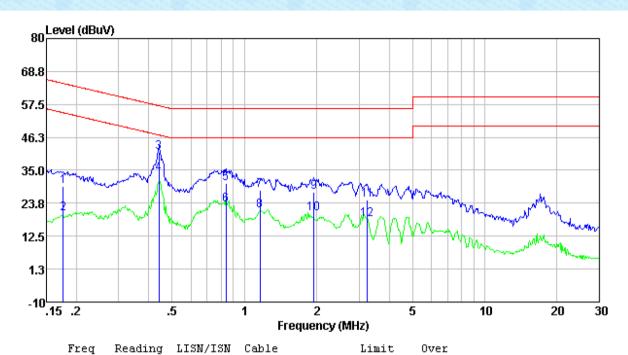
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

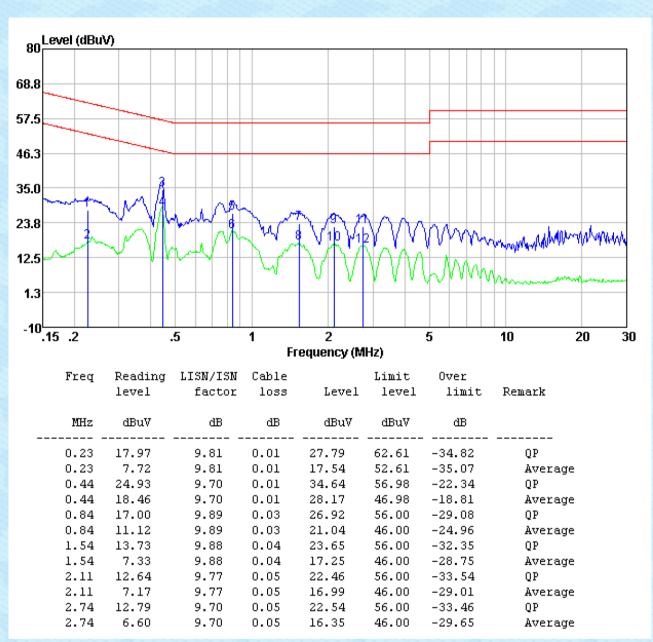
The antenna is chip antenna, reference to the appendix II for details.


Report No.: GTS2024070302F01

7.2 Conducted Emissions						
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto				
Limit:	Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56* 56	56 to 46* 46			
	5-30	60	50			
	* Decreases with the logarithm					
Test setup:	Reference Plane					
Test procedure:	40cm 40cm 40cm 40cm 8 8 8 8 8 8 8 8 8 8 8 8 8	EMI Receiver	AC power			
rest procedure.	 The E.O.T and simulators a line impedance stabilization 50ohm/50uH coupling impedance LISN that provides a 50ohr termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10: 	n network (L.I.S.N.). edance for the measu also connected to th n/50uH coupling impo the block diagram of checked for maximur d the maximum emise all of the interface ca	This provides a uring equipment. he main power through a edance with 500hm of the test setup and m conducted sion, the relative ables must be changed			
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.: 1012mbar			
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Measurement data:

Pre-scan all test modes, found worst case at GFSK 2402MHz, and so only show the test result of it Line:



	level	factor	loss	Level	level	limit	Remark
MHz	dBuV	dB	dB	dBuV	dBuV	dB	
 0.18	19.80	9.81	0.01	29.62	64.68	-35.06	QP
0.18	10.28	9.81	0.01	20.10	54.68	-34.58	Average
0.44	31.50	9.73	0.01	41.24	57.07	-15.83	QP
0.44	23.99	9.73	0.01	33.73	47.07	-13.34	Average
0.84	20.63	9.74	0.03	30.40	56.00	-25.60	QP
0.84	13.53	9.74	0.03	23.30	46.00	-22.70	Average
1.16	18.37	9.90	0.03	28.30	56.00	-27.70	QP
1.16	11.24	9.90	0.03	21.17	46.00	-24.83	Average
1.95	17.85	9.80	0.04	27.69	56.00	-28.31	QP
1.95	10.31	9.80	0.04	20.15	46.00	-25.85	Average
3.24	15.50	9.46	0.05	25.01	56.00	-30.99	QP
3.24	8.84	9.46	0.05	18.35	46.00	-27.65	Average

Neutral:

Report No.: GTS2024070302F01

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013		
Limit:	GFSK: 30dBm		
	π/4-DQPSK, 8-DPSK: 20.97dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Limit:	N/A		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=300KHz, VBW=300KHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)			
Test Method:	ANSI C63.10:2013			
Receiver setup:	RBW=VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak			
Limit:	15 channels			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

7.6 Hopping Channel Number

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.8 Spurious Emission in Non-restricted & restricted Bands

I Method
FCC Part15 C Section 15.247 (d)
ANSI C63.10:2013
RBW=100kHz, VBW=300kHz, Detector=Peak
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Refer to section 6.0 for details
Refer to section 5.2 for details
Pass

7.8.1 Conducted Emission Method

GTS

7.8.2 Radiated Emission N	letitou					
Test Requirement:	FCC Part15 C Section	on 18	5.209			
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	9kHz to 25GHz					
Test site:	Measurement Distar	nce:	3m			
Receiver setup:	Frequency	E	Detector	RBV	V VBW	Value
	9KHz-150KHz	Qı	uasi-peak	200	lz 600Hz	Quasi-peak
	150KHz-30MHz	Qu	uasi-peak	9KH	z 30KHz	Quasi-peak
	30MHz-1GHz	Qu	uasi-peak	120KI	Hz 300KHz	z Quasi-peak
	Above 1GHz		Peak	1MH	z 3MHz	Peak
	710010112		Peak	1MH	z 10Hz	Average
	Note: For Duty cyc cycle < 98%, avera			-		
Limit:	Frequency		Limit (u\	//m)	Value	Measurement Distance
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)	PK/QP/AV	300m
	0.490MHz-1.705M	Hz	24000/F(KHz)	QP	30m
	1.705MHz-30MH	z	30		QP	30m
	30MHz-88MHz		100		QP	
	88MHz-216MHz		150		QP	
	216MHz-960MH	Z	200		QP	- 3m
	960MHz-1GHz		500		QP	
	Above 1GHz		500		Average	
Test setup:			5000		Peak	
	For radiated emiss		< 3m >	z to 30	MHZ Test Antenna	
	Ţ			Receiver		

7.8.2 Radiated Emission Method

Report No.: GTS2024070302F01 For radiated emissions from 30MHz to1GHz < 3m Test Antenna 4m > < 1m EUT. Turn Table+ 80cm Receiver Preamplifier. For radiated emissions above 1GHz < 3m > Test Antenna-< 1m ... 4m > EUT. Tum Table <150cm> 2 Receiver+ Preamplifier-Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, guasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details

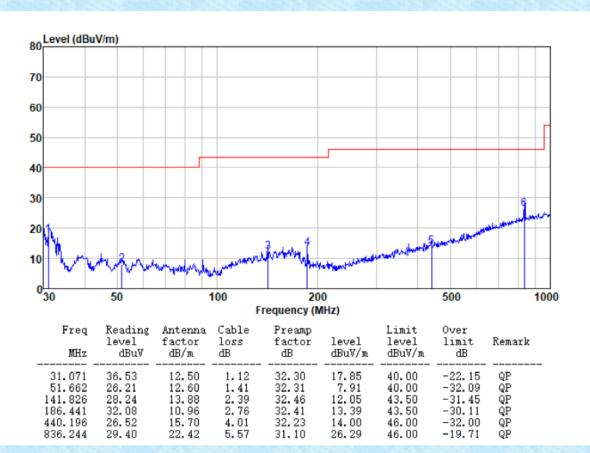
GTS

				Report No	.: GTS20240	70302F01
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

Measurement data:

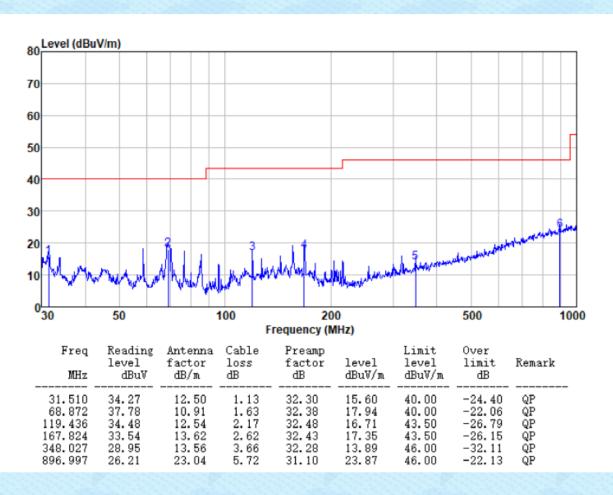
Remarks:

- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

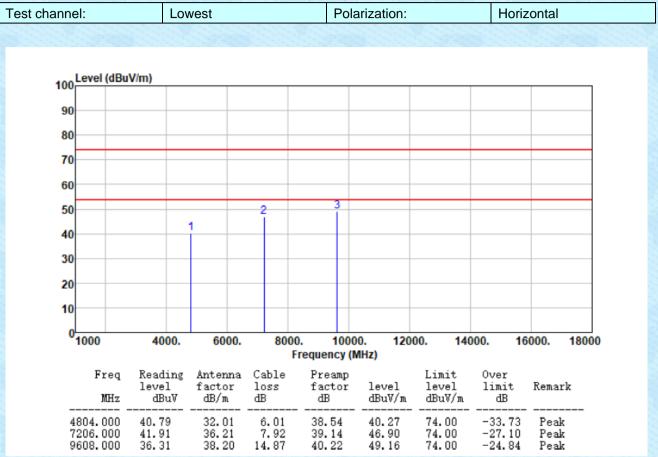

9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz


Pre-scan all test modes, found worst case at GFSK 2402MHz, and so only show the test result of it **Horizontal:**

Vertical:

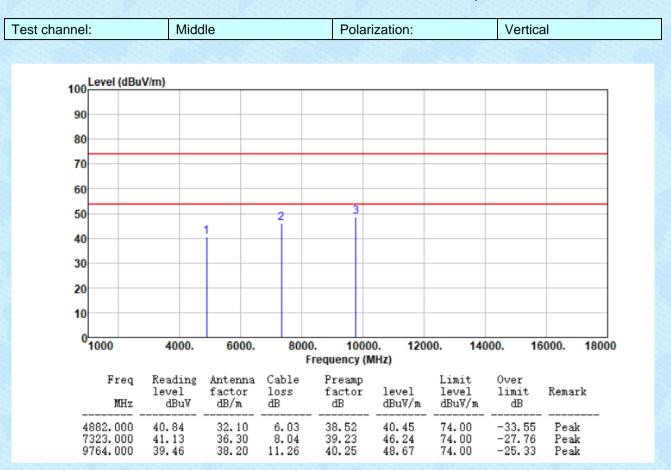

Report No.: GTS2024070302F01

Above 1GHz

Unwanted Emissions in Non-restricted Frequency Bands

Report No.: GTS2024070302F01

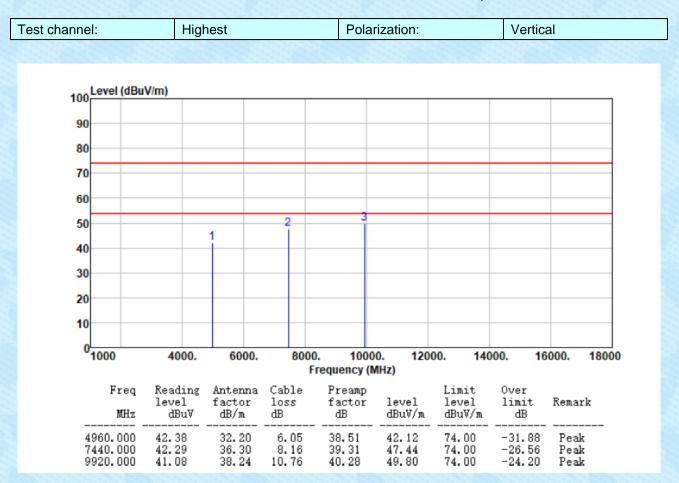
Lowest	Polarization:	Vertical
2	3	
1		
4000. 6000. 8000.	10000. 12000. 140	00. 16000. 18000
	quency (MHz)	
ading Antenna Cable vel factor loss dBuV dB/m dB	Preamp Limit factor level level dB dBuV/m dBuV/m	Over limit Remark dB
.53 32.01 6.01 .73 36.21 7.92 .76 38.20 14.87	38.54 41.01 74.00 39.14 45.72 74.00 40.22 48.61 74.00	 -32.99 Peak -28.28 Peak -25.39 Peak
	4000. 6000. 8000. Free ading Antenna Cable vel factor loss dBuV dB/m dB .53 32.01 6.01 .73 36.21 7.92	2 3 1 3 2 3 1 1 4000. 6000. 8000. 10000. 1 1 1



Report No.: GTS2024070302F01

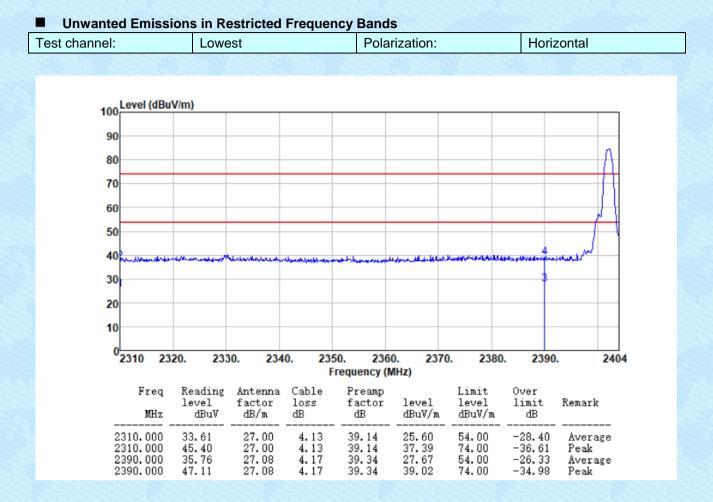
Fest channel:		Mido	dle		Polar	ization:		Horizo	ntal
	ovol (dBuV	(m)							
100	.evel (dBuV								
90									
80									
70									
60									
50				2	3				
40			1						
30									
20									
10									
0 <mark>1</mark>	1000	4000.	6000.	800 F	0. 1000 Frequency (N		00. 140	00. 16	000. 18000
	Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBu∛/m	Limit level dBuV/m	Over limit dB	Remark
73	323.000	40.71 42.50 39.37	32.10 36.30 38.20	6.03 8.04 11.26	38.52 39.23 40.25	40.32 47.61 48.58	74.00 74.00 74.00 74.00	-33.68 -26.39 -25.42	Peak Peak Peak

Report No.: GTS2024070302F01


Report No.: GTS2024070302F01

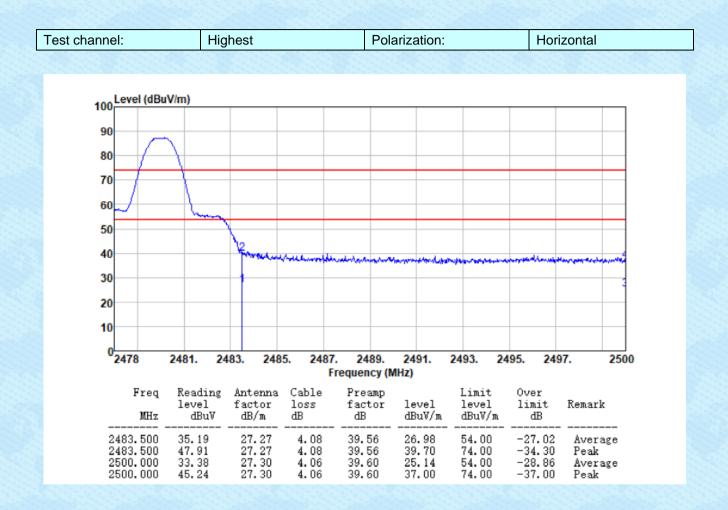
est channel:	Highe	est		Polarizat	ion:	H	Iorizontal	
100 Level (dB	ıV/m)							
90								
80								
70								
60								
50			2	3				
40								
30								
20								
10								
⁰ 1000	4000.	6000.	8000.	10000. uency (MHz)	12000.	14000.	16000.	18000

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBu∛/m	Limit level dBu∛/m	Over limit dB	Remark
4960.000	42.60	32.20	6.05	38.51	42.34	74.00	-31.66	Peak
7440.000	43.17	36.30	8.16	39.31	48.32	74.00	-25.68	Peak
9920.000	38.18	38.24	10.76	40.28	46.90	74.00	-27.10	Peak


Report No.: GTS2024070302F01

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Report No.: GTS2024070302F01

hannel:	Low	est		Polaria	zation:		Vertical	
100 Level (dB	uV/m)							
90								
80								A
70								
60								
50								
40	and the second second	وريغ مدانيه مردفهم والمهمة		a thanks a sea	-	ويتعر والمجار والمحالي المجاهر	4 A A A A A A A A A A A A A A A A A A A	und and and and and and and and and and a
30								
20								
10								
⁰ 2310 2	320. 233	30. 234		50. 236 requency (N). 2380	2390	. 2404
Freq	Reading		Cable	Preamp		Limit	Over	
MHz	level dBuV	factor dB/m	loss dB	factor dB	level dBu∛/m	level dBu∛/m	limit dB	Remark
2310.000	33.79	27.00	4.13	39.14	25.78	54.00	-28.22	Average
	15 00	27.00	4.13	39.14	37.97	74.00	-36.03	Peak
2310.000 2390.000 2390.000	45.98 35.27 47.12	27.08 27.08	4.17	39.34 39.34	27.18 39.03	54.00 74.00	-26.82 -34.97	Average Peak

Report No.: GTS2024070302F01

Testshemmel	Llighaat	Delerization	Vartical
Test channel:	Highest	Polarization:	Vertical
100 Level (dBuV/m)			
90			
80			
70			
60			
50			
40	manara		
40	NLC I I I I I I I I I I I I I I I I I I I		
	**************************************	heredaterry/terration-initiations/sectors/articles	and the second of the second
30	**************************************	handen an fan sen en e	eshiptory and a second s
30 20		\$*************************************	······································
		\$*************************************	
20			
20		2489. 2491. 2493.	2495. 2497. 2500
20 10 0 2478 2481 Freq Rea	Fre	2489. 2491. 2493. 3 equency (MHz) Preamp Limit	2495. 2497. 2500 Over
20 10 0 2478 2481 Freq Rea lev	Fre ading Antenna Cable vel factor loss	2489. 2491. 2493. equency (MHz) Preamp Limit factor level level	2495. 2497. 2500 Over limit Remark
20 10 0 2478 2481 Freq Rea lev MHz d	Fre ading Antenna Cable vel factor loss HBUV dB/m dB	2489. 2491. 2493. Sequency (MHz) Preamp Limit factor level level dB dBuV/m dBuV/m	2495. 2497. 2500 Over limit Remark dB
20 10 0 2478 2481 Freq Rea lev	Fre ading Antenna Cable vel factor loss BuV dB/m dB 22 27.27 4.08 05 27.27 4.08	2489. 2491. 2493. equency (MHz) Preamp Limit factor level level	2495. 2497. 2500 Over limit Remark

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

GTS

Report No.: GTS2024070302F01

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----