2	ΣΑΕ		eport No.: DACE240829005RF001
	DAE		
	Shenz Prod	zhen Kunkun Technology Co.,L uct Name: Wireless Headphone Test Model(s).: H23	td. es DAC
1Ce	Report Reference No.	: DACE240829005RF001	
	FCC ID	: 2A8UE-H23	
	Applicant's Name	 Shenzhen Kunkun Technology Co. Ltd 	
2	Address	B202# Block B, Wenle Industrial Zone, Lo District, Shenzhen, China	ongzhu, Xixiang, Bao'an
	Testing Laboratory	: Shenzhen DACE Testing Technology Co., Ltd.	
	Address	102, Building H1, & 1/F., Building H, Hongfa SciTangtou Connunity, Shiyan Subdistrict, Bao'an I Guangdong, China	ence & Technology Park, District, Shenzhen,
	Test Specification Standard	: 47 CFR Part 15.247	
	Date of Receipt	: August 29, 2024	
NC	Date of Test	: August 29, 2024 to September 12, 2024	
	Data of Issue Result	: September 14, 2024 : Pass	
	Note: This report shall not be re Testing Technology Co., Ltd. Th Co., Ltd. personnel only, and sh report only apply to the tested s	produced except in full, without the written approval of is document may be altered or revised by Shenzhen all be noted in the revision section of the document. ample	of Shenzhen DACE DACE Testing Technology The test results in the
	Web: http://www.dace-lab.com	Tel: +86-755-23010613 E-mail: service@dace-lab.com	Page 1 of 81

)DC

26

Report No.: DACE240829005RF001

Ce.

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE240829005RF001	September 14, 2024
	26	6	
1			
		J.	

NOTE1:

-

24C

DAG

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Ne

Ben Tang /Test Engineer

Tom Chen Tom Chen / Project Engineer

)De

NE

24C

Supervised by:

Approved by:

ø

Machael MJ

Machael Mo / Manager

1

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 2 of 81

)De

١

CONTENTS

V1.0	Report No.: DACE240829005F
	CONTENTS
	CONTENTS
V	
TEST SUMMARY	
1.1 TEST STANDARDS	
1.2 SUMMARY OF TEST RESULT	
GENERAL INFORMATION	
2.1 CLIENT INFORMATION	
2.2 DESCRIPTION OF DEVICE (EUI)	\sim
2.4 DESCRIPTION OF TEST MODES.	rs
2.5 EQUIPMENTS USED DURING THE	E TEST
2.6 STATEMENT OF THE MEASUREM	IENT UNCERTAINTY
2.8 ANNOUNCEMENT	SORATORY
EVALUATION RESULTS (EVALUATION	(NC)
3.1 ANTENNA REQUIREMENT	
3.1.1 Conclusion:	
RADIO SPECTRUM MATTER TEST R	ESULTS (RF)
4.1 CONDUCTED EMISSION AT AC PC	OWER LINE
4.1.1 E.U.T. Operation:	
4.1.2 Test Setup Diagram:	
4.1.3 Test Data:	
4.2 OCCUPIED BANDWIDTH	
4.2.1 E.U.T. Operation:	
4.2.2 Test Setup Diagram:	
4.3 1 E LLT Operation:	FOWER
4.3.2 Test Setup Diagram:	
4.3.3 Test Data:	
4.4 CHANNEL SEPARATION	
4.4.1 E.U.T. Operation:	
4.4.2 Test Setup Diagram:	
4.4.3 Test Data:	
4.5 NUMBER OF HOPPING FREQUEN	ICIES
4.5.1 E.U.T. Operation:	<u></u>
4.5.2 Test Setup Diagram:	
4.5.3 Test Data:	
4.6.1 E.U.1. Operation:	
4.6.3 Test Data	
4.7 EMISSIONS IN NON-RESTRICTED I	
4.7.1 E.U.T. Operation:	
4.7.2 Test Setup Diagram:	
4.7.3 Test Data:	~
4.8 BAND EDGE EMISSIONS (RADIATI	'ED)
4.8.1 E.U.T. Operation:	

DAG

DAG

3

DAE

DAE

)ÀC

0

Report No.: DACE240829005RF001

DAG

)DE

1

	4.8.2 Test Setup Diagram:	23
	4.8.3 Test Data:	
	4.9 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ)	
	4.9.1 E.U.T. Operation:	29
	4.9.2 Test Data:	
	4.10 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHZ)	31
	4.10.1 E.U.T. Operation:	32
	4.10.2 Test Data:	
	5 TEST SETUP PHOTOS	
	6 PHOTOS OF THE EUT	
		50
1	120dB Bandwidth	51
	2. 99% Occupied Bandwidth	
	3. PEAK OUTPUT POWER	
	4. Spurious Emissions	
	5. BANDEDGE	
	6. CARRIER FREQUENCIES SEPARATION (HOPPING)	
	7. NUMBER OF HOPPING CHANNEL (HOPPING)	
	8. DWELL TIME (HOPPING)	

)De

DAG

)AC

DAG

)AC

-

TEST SUMMARY 1

1.1 Test Standards

DAG

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 5 of 81

De

2 GENERAL INFORMATION

V1.0

2.1 Client Information

DVC

Applicant's Name : Shenzhen Kunkun Technology Co.,Ltd.					
Address		B202# Block B, Wenle Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, China			
Manufacturer	:	Shenzhen H-Sound Technology Co., Ltd.			
Address :		506# Block C,Wenle Industrial Zone,Longzhu, Xixiang, Bao'an District, Shenzhen, China			

2.2 Description of Device (EUT)

Product Name:	Wireless Headphones		
Model/Type reference:	H23		
Series Model:	H25,H26,H27,H28,H29,H30,H32,H33,H35,H36,H37,H38,H39,HS88,MS04,Mi7		
Model Difference:	The product has many models, only the model name is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.		
Trade Mark:	N/A		
Power Supply:	DC 5V/1A from adapter Battery:DC3.7V 400mAh		
Operation Frequency:	2402MHz to 2480MHz		
Number of Channels:	79		
Modulation Type:	GFSK, π/4 DQPSK		
Antenna Type:	PCB		
Antenna Gain:	0dBi		
Hardware Version:	V1.0		
Software Version:	V1.0		

(Remark:The Antenna Gain is supplied by the customer.DACE is not responsible for This data and the related calculations associated with it)

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30 💙	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Report No.: DACE240829005RF001

.6

)AC

14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

DAC

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Toot channel	Frequency (MHz)		
rest channel	BDR/EDR		
Lowest channel	2402MHz		
Middle channel	2441MHz		
Highest channel	2480MHz		
	NE -		

2.3 Description of Test Modes

No	Title	Description			
TM1	TX-GFSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.			
TM2	TX-Pi/4DQPSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with Pi/4DQPSK modulation.			
тмз	TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.			
TM4	TX-Pi/4DQPSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with Pi/4DQPSK modulation.			
Remark: Only the data of the worst made would be recorded in this report					

Remark:Only the data of the worst mode would be recorded in this report.

2.4 Description of Support Units

NE

Title	Manufacturer	Model No.	Serial No.
AC-DC adapter	HUAWEI TECHNOLOGY	HW100400C01	
	AC	DAC	

C

DAC

2.5 Equipments Used During The Test

DVC

Conducted Emission at AC power line					5
Equipment	Manufacturer Model No Inventory No		Cal Date	Cal Due Date	
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	/	2024-03-25	2025-03-24
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	/	1
Cable	SCHWARZ BECK		1	2024-03-20	2025-03-19
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-12-12	2024-12-11
50ΩCoaxial Switch	Anritsu	nritsu MP59B M20531 /		1	/
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13
Pulse Limiter	CYBERTEK	EM5010A	/	2023-09-27	2024-09-26
EMI test software	EZ -EMC	EZ	V1.1.42	1	1

6

Occupied Bandwidth Maximum Conducted Output Power **Channel Separation** Number of Hopping Frequencies **Dwell Time**

Emissions in non-restricted frequency bands

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	TACHOY	RTS-01	V1.0.0	/	1
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	1
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Signal Generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08
Signal Generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11

De

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Report No.: DACE240829005RF001

1

DAG

2

3

DAG

OÌ

Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz)					
Emissions in frequence	cy bands (above 10	GHz)			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	/	/
Positioning Controller	· /	MF-7802	6 /	/	1
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	/	
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
Cable(LF)#2	Schwarzbeck	/	1.0	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	/		2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2024-03-20	2025-03-19
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20

DAG

)DE

DAE

1

,De

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 9 of 81 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

)DE

DA

2.6 Statement Of The Measurement Uncertainty

Test Item	200	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	VE	±3.41dB
Occupied Bandwidth		±3.63%
RF conducted power		±0.733dB
Duty cycle		±3.1%
Conducted Spurious emissions		±1.98dB
Radiated Emission (Above 1GHz)	J	±5.46dB
Radiated Emission (Below 1GHz)		±5.79dB
Note: (1) This upcontainty represents on even	and a uncortainty	every search at an every importably the OEO/

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.		
A dalama a c	102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,		
Address:	Tangtou, Shiyan, Bao′an District, Shenzhen, Guangdong, China		
Phone Number:	+86-13267178997		
Fax Number:	86-755-29113252		
Identification of the Responsi	ble Testing Location		
Company Name:	Shenzhen DACE Testing Technology Co., Ltd.		
A data a a .	102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,		
Address:	Tangtou, Shiyan, Bao′an District, Shenzhen, Guangdong, China		
Phone Number:	+86-13267178997		
Fax Number:	86-755-29113252		
FCC Registration Number:	0032847402		
Designation Number:	CN1342		
Test Firm Registration Number:	778666		
A2LA Certificate Number:	6270.01		

2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

3 Evaluation Results (Evaluation)

3.1 Antenna requirement

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

Test Requirement:

DAG

Report No.: DACE240829005RF001

Radio Spectrum Matter Test Results (RF) 4

4.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).			
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)		
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	*Decreases with the logarithm of the	frequency.		
Test Method:	ANSI C63.10-2013 section 6.2			
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices			
4.1.1 E.U.T. Operation:	.e			

4.1.1 E.U.T. Operation:

DAG

Operating Environment:						
Temperature:	22.3 °C		Humidity:	53 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2		V	
Final test mode:		TM1				

4.1.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Report No.: DACE240829005RF001

4.2 Occupied Bandwidth

DγG

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidth measurements, use the procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.
AE	 c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances.
DAC	 e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference)
20	 value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).
	j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" and the marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h).
DAC	marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).
4.2.1 E.U.T. Operation:	
Operating Environment:	

Web: http://www.dace-lab.com

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China E-mail: service@dace-lab.com

DAG

Report No.: DACE240829005RF001

4.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) DRW > 20 dB bandwidth of the emission being measured.
JE . c	 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the
4.3.1 E.U.T. Operation:	

6

4.3.1 E.U.T. Operation:

Operating Environment:						- NG
Temperature:	22.3 °C		Humidity:	53 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2			*
Final test mode: TM1, TM2						
4.3.2 Test Setup Diagram:						

4.3.2 Test Setup Diagram:

Report No.: DACE240829005RF001

4.4 Channel Separation

DΔC

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6

4.4.1 E.U.T. Operation:

Operating Environmen	:					
Temperature: 22.3	С	Humidity:	53 %		Atmospheric Pressure:	102 kPa
Pretest mode:	TM3	TM4	- 3	C		. 6
Final test mode:	TM3	TM4	2			2

4.4.2 Test Setup Diagram:

e Dàe		EUT	TST PASS	DÀC
4.4.3 Test Da	ta:			
Please Refer t	o Appendix for Details.	k Tapatou Conpunity Shi	van Subdistrict, Bao'an District, Shanzhan, Guanadano	China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Report No.: DACE240829005RF001

4.5 Number of Hopping Frequencies

DγG

Test Limit: Refer	to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 band shall use at least 15 channels. The average time of occupancy on any
chanr multip system provide	lel shall not be greater than 0.4 seconds within a period of 0.4 seconds lied by the number of hopping channels employed. Frequency hopping ms may avoid or suppress transmissions on a particular hopping frequency led that a minimum of 15 channels are used.
Test Method: ANSI KDB	C63.10-2013, section 7.8.3 558074 D01 15.247 Meas Guidance v05r02
Procedure: The E analy a) Sp the de acros b) RB the ch c) VB d) Sw e) De f) Tra- g) Allo It mig the ho	UT shall have its hopping function enabled. Use the following spectrum zer settings: an: The frequency band of operation. Depending on the number of channels evice supports, it may be necessary to divide the frequency range of operation is multiple spans, to allow the individual channels to be clearly seen. W: To identify clearly the individual channels, set the RBW to less than 30% of nannel spacing or the 20 dB bandwidth, whichever is smaller. W \geq RBW. eep: Auto. tector function: Peak. ce: Max hold. bw the trace to stabilize. ht prove necessary to break the span up into subranges to show clearly all of opping frequencies. Compliance of an EUT with the appropriate regulatory

. 6

4.5.1 E.U.T. Operation:

Operating Enviro	onment:				6			
Temperature:	22.3 °C		Humidity:	53 %	20	Atmospheric Pressure:	102 kPa	
Pretest mode:		ΤМЗ,	TM4				212	
Final test mode:		ТМЗ,	TM4					

4.5.2 Test Setup Diagram:

Report No.: DACE240829005RF001

4.6 Dwell Time

DγG

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight
AE	 adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time
DAC	Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) =
って	 (number of hops in the period specified in the requirements) – (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transmit time and time between hops shall be consistent with the values described in the operational description for the FUT

4.6.1 E.U.T. Operation:

Operating Envir	onment:	~			JP 1	
Temperature:	22.3 °C		Humidity:	53 %	Atmospheric Pressure:	102 kPa
Pretest mode:		ТМ3,	TM4			
Final test mode:	:	ТМ3,	TM4	6		
4.6.2 Test Setu	up Diagra	m:	~	10	4	e
					~	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

DAG -	V1.0	Report No.: DACE240829005RF001
DAG	C C C C C C C C C C C C C C C C C C C	DIE
Ð		EUT
4.6.3 Test Data : Please Refer to Ap	pendix for Details.	E DIE
102 Building H1 & 1/E Duil	ding H. Hongfa Science & Technology Park	Tapotou Conpunity, Shivan Subdistrict, Rao'an District, Shanzhan, Guangdong, China

DAG

Report No.: DACE240829005RF001

4.7 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

4.7.1 E.U.T. Operation:

Operating Enviro	onment:						
Temperature:	22.3 °C		Humidity:	53 %		Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2, TM3, T	M4	C		. (.
Final test mode:		TM1,	TM2, TM3, T	M4			2

4.7.2 Test Setup Diagram:

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Report No.: DACE240829005RF001

4.8 Band edge emissions (Radiated)

DγG

Test Requirement:	Refer to 47 CFR 15.247(d), restricted bands, as defined emission limits specified in a	In addition, radiated emissions wh in § 15.205(a), must also comply § 15.209(a)(see § 15.205(c)).`	iich fall in the with the radiated
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
20	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
1	Above 960	500	3
JC.	** Except as provided in par radiators operating under th 54-72 MHz, 76-88 MHz, 174 these frequency bands is per and 15.241. In the emission table above The emission limits shown i employing a CISPR quasi-p 110–490 kHz and above 10 are based on measurement	agraph (g), fundamental emission is section shall not be located in th 4-216 MHz or 470-806 MHz. Howe ermitted under other sections of thi , the tighter limit applies at the ban n the above table are based on me eak detector except for the freque 00 MHz. Radiated emission limits s employing an average detector.	s from intentional he frequency bands ever, operation within is part, e.g., §§ 15.231 hd edges. easurements ncy bands 9–90 kHz, in these three bands
Test Method:	ANSI C63.10-2013 section KDB 558074 D01 15.247 M	6.10 eas Guidance v05r02	
Procedure:	ANSI C63.10-2013 section	6.10.5.2	S.C.
4.8.1 E.U.T. Operation:	5		24

6

Operating Environment:

Operating Enviro	onment:							
Temperature:	22.3 °C		Humidity:	53 %	Atmospheric Press	ure:	102 kPa	
Pretest mode:		TM1,	TM2		6	·		
Final test mode:	DP	TM1			200			

4.8.2 Test Setup Diagram:

		00			POUPARI ISU CLASS	0 1012-10012			
		70-							1
	1	60- 50-							
		40-						2	
		30 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	Reference to a stand without when we do	ngan di san		ile its ward for a plane of and set along		Automatica a Maria	han
		10							
		0- 2.31G	2 32G 2 33G	2.34G	2 35G 2 36G	2 37G	2 38G 2	39G 24G	2.41G
		- PK Lin	nit — AV Limit	- Horizontal PK	Frequency[Hz]			
		• PK De	tector AV Detector						
S	uspe	cted Data	List						
		Freq.	Level	Factor	Limit	Margin	Height	Angle	
r	NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	2310.10	30.96	-11.73	74.00	43.04	150	62	Horizont
	2	2399.13	34.63	-11.45	74.00	39.37	150	13	Horizonta
	3	2310.17	21.04	-11.73	54.00	32.96	150	50	Horizonta
L	4	2398.91	26.57	-11.45	54.00	27.43	150	3	Horizonta
	0					6			.6

Web: http://www.dace-lab.com

Tel: +86-755-23010613 E-mail: service@dace-lab.com

DΔC V1.0 Report No.: DACE240829005RF001 TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L 80 70 60 [m/Vueb]ievei 50 40 30 20 10 0-2.31G 2.37G 2.4G 2.41G 2.32G 2.33G 2.34G 2.35G 2.36G 2.38G 2.39G Frequency[Hz] - PK Limit Vertical PK Vertical AV PK Detector AV Detector

Suspected Data List										
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	2310.07	30.74	-11.73	74.00	43.26	150	110	Vertical		
2	2399.04	35.26	-11.45	74.00	38.74	150	44	Vertical		
3	2310	20.72	-11.73	54.00	33.28	150	244	Vertical		
4	2398.96	26.41	-11.45	54.00	27.59	150	48	Vertical		

DAE

DAE

DAG

DAG

DAE

DAG

V

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

DAG

DAE

,AC

DΔC V1.0 Report No.: DACE240829005RF001 TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H 90 80 70 60 evel[dBµN/m 50 40 30 20 10 0-2.475G 2 4775G 2 48G 2.4825G 2.485G 2.4875G 2.49G 2 4925G 2 495G 2.4975G 2.5G Frequency[Hz] - PK Limit - Horizontal PK · PK Detector AV Detector **Suspected Data List** Limit Freq. Level Factor Margin Height Angle NO. Polarity [dBµV/m] [dBµV/m] [°] [MHz] [dB] [dB] [cm] 1 36.09 -11.18 74.00 150 332 Horizontal 2483.67 37.91 34.84 74.00 39.16 Horizontal 2 2499.94 -11.12 150 332 27.35 Horizontal 3 2483.70 -11.18 54.00 26.65 150 332 4 2499.95 25.95 -11.12 54.00 28.05 150 355 Horizontal 1 -DA DAE DAG NE 4 DAG DAG DAG DAG DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Succested Data Li

Susp	ecteu Data	LISL	ð					
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2483.60	36.22	-11.18	74.00	37.78	150	44	Vertical
2	2499.93	34.47	-11.12	74.00	39.53	150	39	Vertical
3	2483.60	27.74	-11.18	54.00	26.26	150	49	Vertical
4	2499.94	24.86	-11.12	54.00	29.14	150	44	Vertical

DAG

)De

DAG

Remark: The test software will only record the worst test angle and height, and only the worst case will be displayed in the test report

DAE

)DE

1

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

Se

DγG

4.9 Emissions in frequency bands (below 1GHz)

	Test Requirement:	Refer to 47 CFR 15.247(d), I restricted bands, as defined emission limits specified in §	n addition, radiated emissions wh in § 15.205(a), must also comply 15.209(a)(see § 15.205(c)).`	ich fall in the with the radiated				
	Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	20	0.009-0.490	2400/F(kHz)	300				
		0.490-1.705	24000/F(kHz)	30				
		1.705-30.0	30	30				
		30-88	100 **	3				
		88-216	150 **	3				
	-	216-960	200 **	3				
	1	Above 960	500	3				
D	JC	radiators operating under this 54-72 MHz, 76-88 MHz, 174 these frequency bands is per and 15.241. In the emission table above, The emission limits shown in employing a CISPR quasi-per 110–490 kHz and above 100 are based on measurements	agraph (g), fundamental emission s section shall not be located in the -216 MHz or 470-806 MHz. Howe rmitted under other sections of thi the tighter limit applies at the ban the above table are based on me eak detector except for the freque 0 MHz. Radiated emission limits is employing an average detector.	a from intentional the frequency bands ver, operation within s part, e.g., §§ 15.231 d edges. easurements ncy bands 9–90 kHz, n these three bands				
	Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02						
	Procedure:	 a. For below TGHZ, the EUT above the ground at a 3 or 1 360 degrees to determine the b. For above 1GHz, the EUT above the ground at a 3 meta degrees to determine the post. The EUT was set 3 or 10 meta determine the maximum value polarizations of the antenna e. For each suspected emiss the antenna was tuned to he below 30MHz, the antenna was turned from 0 degrees to f. The test-receiver system we Bandwidth with Maximum Hords. If the emission level of the specified, then testing could reported. Otherwise the emiss tested one by one using pear reported in a data sheet. h. Test the EUT in the lowest is. The radiation measurement Transmitting mode, and foun j. Repeat above procedures Remark: 1) For emission below 1GHz. 	Was placed on the top of a rotatin 0 meter semi-anechoic chamber. e position of the highest radiation. was placed on the top of a rotatin er fully-anechoic chamber. The ta sition of the highest radiation. meters away from the interference op of a variable-height antenna to ed from one meter to four meters us of the field strength. Both horized are set to make the measurement sion, the EUT was arranged to its ights from 1 meter to 4 meters (for vas tuned to heights 1 meter) and b 360 degrees to find the maximu vas set to Peak Detect Function and b 360 degrees to find the maximu vas set to Peak Detect Function and b and Mode. EUT in peak mode was 10dB low be stopped and the peak values of sions that did not have 10dB mark k, quasi-peak or average method the X axis positioning which it is until all frequencies measured was , through pre-scan found the wors	In table 0.8 meters The table was rotated Ing table 1.5 meters ble was rotated 360 -receiving antenna, wer. above the ground to ontal and vertical t. worst case and then r the test frequency of the rotatable table m reading. Ind Specified ver than the limit of the EUT would be rgin would be re- as specified and then Highest channel. ositioning for s the worst case. s complete. St case is the lowest				

 102, Building H1, & 1/F., Building H, Hongta Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, C

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Pag

		246
DVC	V1.0	Report No.: DACE240829005RF001
DAC	 channel. Only the worst case if 2) The field strength is calculated Preamplifier. The basic equation Final Test Level =Receiver Read Preamplifier Factor 3) Scan from 9kHz to 25GHz, was very low. The points mark found when testing, so only absolution spurious emissions from the read the limit need not be reported. spurious emission is shown. 	s recorded in the report. ted by adding the Antenna Factor, Cable Factor & on with a sample calculation is as follows: ading + Antenna Factor + Cable Factor "C the disturbance above 12.75GHz and below 30MHz ed on above plots are the highest emissions could be hove points had been displayed. The amplitude of adiator which are attenuated more than 20dB below Fundamental frequency is blocked by filter, and only

4.9.1 E.U.T. Operation:

Operating Enviro	onment:					
Temperature:	22.3 °C		Humidity:	Atmospheric Pressure:	102 kPa	
Pretest mode: TM1, TM2					. 6	
Final test mode: T					200	

4.9.2 Test Data:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Report No.: DACE240829005RF001

OVE

)AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG

DAG

Page 30 of 81

NE

DγG

Report No.: DACE240829005RF001

4.10 Emissions in frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emis 15.205(a), must also cor 15.209(a)(see § 15.205(ssions which fall in the restricted b nply with the radiated emission lim c)).`	ands, as defined in § its specified in §
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
20	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
DAG	radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands is and 15.241. In the emission table abor The emission limits show employing a CISPR quas 110–490 kHz and above are based on measurem	r this section shall not be located i 174-216 MHz or 470-806 MHz. Ho s permitted under other sections of ove, the tighter limit applies at the l on in the above table are based on si-peak detector except for the free 1000 MHz. Radiated emission lim ents employing an average detect	n the frequency bands owever, operation within f this part, e.g., §§ 15.231 band edges. measurements quency bands 9–90 kHz, its in these three bands or.
Test Method:	ANSI C63.10-2013 secti KDB 558074 D01 15.24	on 6.6.4 7 Meas Guidance v05r02	
Procedure:	a. For below TGHZ, the f above the ground at a 3 360 degrees to determine b. For above 1GHz, the above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on t d. The antenna height is determine the maximum polarizations of the anten e. For each suspected e the antenna was tuned to below 30MHz, the anten was turned from 0 degree f. The test-receiver syste Bandwidth with Maximur g. If the emission level o specified, then testing co reported. Otherwise the tested one by one using reported in a data sheet.	EUT was placed on the top of a rot or 10 meter semi-anechoic chamb e the position of the highest radiat EUT was placed on the top of a rot meter fully-anechoic chamber. The e position of the highest radiation. 10 meters away from the interfere he top of a variable-height antenna varied from one meter to four met value of the field strength. Both ho ona are set to make the measurem mission, the EUT was arranged to o heights from 1 meter to 4 meters na was tuned to heights 1 meter) a es to 360 degrees to find the maxi m was set to Peak Detect Functio n Hold Mode. f the EUT in peak mode was 10dB ould be stopped and the peak value emissions that did not have 10dB of peak, quasi-peak or average method	ating table 0.8 meters er. The table was rotated ion. tating table 1.5 meters table was rotated 360 nce-receiving antenna, a tower. ers above the ground to prizontal and vertical nent. its worst case and then offor the test frequency of and the rotatable table mum reading. n and Specified lower than the limit es of the EUT would be margin would be re- nod as specified and then

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

	V1.0	Report No.: DACE240829005RF001
DAC	channel. Only the worst case	is recorded in the report
DAC	2) The field strength is calcula Preamplifier. The basic equat Final Test Level =Receiver Re Preamplifier Factor	ited by adding the Antenna Factor, Cable Factor & on with a sample calculation is as follows: eading + Antenna Factor + Cable Factor "C
S	3) Scan from 9kHz to 25GHz, was very low. The points mark found when testing, so only a spurious emissions from the r the limit need not be reported	the disturbance above 12.75GHz and below 30MHz ked on above plots are the highest emissions could be bove points had been displayed. The amplitude of adiator which are attenuated more than 20dB below Fundamental frequency is blocked by filter, and only

4.10.1 E.U.T. Operation:

Operating Enviro	onment:					
Temperature:	Temperature: 22.3 °C			53 %	Atmospheric Pressure:	102 kPa
Pretest mode: TM1,			TM2		. 6	
Final test mode: TM1					200	

4.10.2Test Data:

Suspected Data List

NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	4801.60	34.58	-6.95	74.00	39.42	150	253	Horizontal
2	7901.05	37.28	-0.28	74.00	36.72	150	133	Horizontal
3	11495.5	39.32	3.56	74.00	34.68	150	355	Horizontal
4	4803.06	25.47	-6.95	54.00	28.53	150	253	Horizontal
5	7862.85	26.44	-0.41	54.00	27.56	150	203	Horizontal
6	11496.9	29.13	3.56	54.00	24.87	150	66	Horizontal

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	4754.59	31.89	-7.13	74.00	42.11	150	174	Vertical
2	7971.55	36.77	-0.03	74.00	37.23	150	124	Vertical
3	11604.2	39.68	3.40	74.00	34.32	150	226	Vertical
4	4803.06	23.86	-6.95	54.00	30.14	150	357	Vertical
5	8003.87	26.58	0.07	54.00	27.42	150	129	Vertical
6	11596.8	29.06	3.41	54.00	24.94	150	243	Vertical

DAE

DAG

\$

.

DAG

DAG

)AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

)AC

Page 33 of 81

)DE

DAG V1.0 Report No.: DACE240829005RF001 TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M 90 80 70 60 evei[dBµN/m] 50 40 30 with the 20 10 0+ 1G 12 75G 9G 5G 7G 2G 3G 4G Frequency[Hz] - PK Limit Horizontal PK · PK Detector AV Detector Suspected Data List

NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	4625.32	31.94	-7.61	74.00	42.06	150	77	Horizontal
2	8231.56	36.74	-0.38	74.00	37.26	150	356	Horizontal
3	11680.6	38.80	3.28	74.00	35.20	150	360	Horizontal
4	4660.58	21.57	-7.48	54.00	32.43	150	354	Horizontal
5	8149.29	26.45	-0.22	54.00	27.55	150	100	Horizontal
6	11599.8	29.06	3.41	54.00	24.94	150	10	Horizontal

DAE

)AC

0

٧

.

DAG

DAG

2AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

)AC

)DE

DΔG V1.0 Report No.: DACE240829005RF001 TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M 90 80 70 60 evel[0BµV/m] 50 40 30 20 10 0 1G 12.75G 2G 4G 5G 7G 9G 3G Frequency[Hz] PK Limit - Vertical PK - Vertical AV PK Detector AV Detector Sugnastad

NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	4660.58	31.63	-7.48	74.00	42.37	150	260	Vertical
2	8175.74	37.39	-0.27	74.00	36.61	150	125	Vertical
3	11878.9	40.01	2.98	74.00	33.99	150	147	Vertical
4	4682.61	22.03	-7.39	54.00	31.97	150	243	Vertical
5	8161.05	26.36	-0.25	54.00	27.64	150	358	Vertical
6	11900.9	29.35	2.95	54.00	24.65	150	52	Vertical

DAE

DAG

.

DAG

DAG

24C

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

DAG

,AC

DAG V1.0 Report No.: DACE240829005RF001 TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H 10.0 90 80 70 60 evel[dBµN/m] 50 40 30 20 10 0∔ 1G 12.75G 2G 3G 5G 7G 9G 4G Frequency[Hz] - PK Limit - Horizontal PK

Suspected Data List								
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	4638.54	31.48	-7.56	74.00	42.52	150	84	Horizontal
2	7978.90	36.55	0.00	74.00	37.45	150	225	Horizontal
3	11568.9	39.42	3.46	74.00	34.58	150	321	Horizontal
4	4654.70	22.50	-7.50	54.00	31.50	150	354	Horizontal
5	7955.40	26.40	-0.09	54.00	27.60	150	254	Horizontal
6	11516.0	29.12	3.54	54.00	24.88	150	1	Horizontal
6	11516.0	29.12	3.54	54.00	24.88	150	1	

DAE

DAG

.

DAG

· PK Detector

AV Detector

DAE

DAG

DAE

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

DAG

,AC

Remark: The test software will only record the worst test angle and height, and only the worst case will be displayed in the test report

DAG

)AC

DAG

NE

DDE

DAG

)AC

)AC

FCC_BT (Part15.247) Test Data

1. -20dB Bandwidth

Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS
NVNT	ANT1	1-DH5	2402.00	1.018	Yes
NVNT	ANT1	1-DH5	2441.00	1.036	Yes
NVNT	ANT1	1-DH5	2480.00	1.031	Yes
NVNT	ANT1	2-DH5	2402.00	1.020	Yes
NVNT	ANT1	2-DH5	2480.00	1.030	Yes
NVNT	ANT1	2-DH5	2441.00	1.034	Yes

V1.0

DVC

Die	-20dB_Ba	Andwidth_NVNT_ANT1_2	2-DH5_2441_00	quency
Ð	Log 9.44 0.56 -10.6 -30.5 -30.6 -40.6 -40.6 -40.6 -40.6 -40.8 -70.5		C 2.441	enter Freq 000000 GHz
-	Center 2.441 GHz #Res BW 30 kHz Occupied Bandwidth 915.20 Transmit Freq Error 38.99 x dB Bandwidth 1.03	#VBW 100 kHz Total Power KHZ 99 kHz % of OBW Powe 4 MHz x dB	Span 3 MHz Sweep 3.2 ms Auto 9.04 dBm F r 99.00 % -20.00 dB	CF Step 800.000 KHz Man req Offset 0 Hz
) <u>Ac</u>				C
	DALE C			
	Ð			

Report No.: DACE240829005RF001

2. 99% Occupied Bandwidth

DAG

Condition	Antenna	Modulation	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1-DH5	2402.00	0.897
NVNT	ANT1	1-DH5	2441.00	0.917
NVNT	ANT1	1-DH5	2480.00	0.910
NVNT	ANT1	2-DH5	2402.00	0.899
NVNT	ANT1	2-DH5	2480.00	0.911
NVNT	ANT1	2-DH5	2441.00	0.914

· C.

99%_Occupie	ed_Bandwidth_NVNT_A	NT1_2-DH5_2441_00		
ieysight Spectrum Analyzer - Occupied BW RL RF 50 Ω AC nter Freq 2.441000000 GHz #IFGain:Lo	SENSE:INT Center Freq: 2.441000000 GHz Trig: Free Run Avg Hold w #Atten: 30 dB	ALIGN AUTO 12:00:29 PM Sep 03, 2024 Radio Std: None d:>10/10 Radio Device: BTS	Frequency	k
Ref Offset 4.22 dB dB/div Ref 19.44 dBm				
6	mm		2.441000000 GHz	
		n have have a second se		200
6			1	
nter 2.441 GHz es BW 30 kHz	#VBW 100 kHz	Span 3 MHz Sweep 3.2 ms	CF Step 300.000 kHz Auto Man	
Occupied Bandwidth 913.87 Transmit Freg Error 39.5	KHZ 82 kHz % of OBW Pow	9.03 dBm	Freq Offset 0 Hz	
k dB Bandwidth 1.21	I4 MHz x dB	-26.00 dB		ī
		STATUS		
25		~	Ne	
	spight Spectrum Analyzer - Occupied BW Ref Spectrum Analyzer - Occupied BW Ref Offset 4.22 dB Geodeside and width Spectrum Analyzer - Occupied Bandwidth 913.87 Transmit Freq Error 39.54 A dB Bandwidth 1.21	99%_Occupied_Bandwidth_NVNT_A	By Coupled Eandwidth_NUNT_AUT_2-DUT_24L1_00 Discription Discription Discription Discription<	<section-header></section-header>

V1.0

Report No.: DACE240829005RF001

3. Peak Output Power

DAG

-

2

1

DAG

Condition	Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1-DH5	2402.00	1.54	1.42	125	Pass
NVNT	ANT1	1-DH5	2441.00	1.36	1.37	125	Pass
NVNT	ANT1	1-DH5	2480.00	1.07	1.28	125	Pass
NVNT	ANT1	2-DH5	2402.00	1.65	1.46	125	Pass
NVNT	ANT1	2-DH5	2480.00	1.17	1.31	125	Pass
NVNT	ANT1	2-DH5	2441.00	1.50	1.41	125	Pass
		•					

- C-

AC

24C

DAG

Peak_Output_Power_NVNT_ANT1_1-DH5_2402_00

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAE

DAG

)DE

DAG -	V1.0	Report No.: DACE240829005RF0
1	Peak_Output_Power_NVNT.	_ANT1_2-DH5_2441_00
DR	Keysight Spectrum Analyzer - Swept SA R RF 50.0. AC SENSE:INT Center Freq 2.441000000 GHz Televic Sense Pure	ALICN AUTO 12:00:48 PM Sep 03, 2024
	PNO: Fast + Ing: Free Kun IFGain:Low Atten: 28 dB	Mkr1 2.441 048 GHz 1.501 dBm
		Center Freq
	1.44	StartFreq
	8.56	2.437000000 GHz
	-18.6	Stop Freq 2.44500000 GHz
-	33.6	CF Step 800.000 kHz Auto Man
	48.6	FreqOffset
	-68.6	0 Hz
E	Center 2.441000 GHz #Res BW 3.0 MHz #VBW 8.0 MHz	Span 8.000 MHz Sweep 1.000 ms (1001 pts)
	MSG	STATUS

D

V

Report No.: DACE240829005RF001

V1.0

4. Spurious Emissions

DΔC

4. Spurious	Emissions							
Condition	Antenna	Modulation	TX Mode	Spurious MAX.Value(dBm)	Limit	Result		
NVNT	ANT1	1-DH5	2402.00	-46.330	-18.780	Pass		
NVNT	ANT1	1-DH5	2441.00	-47.355	-18.856	Pass		
NVNT	ANT1	1-DH5	2480.00	-46.230	-19.167	Pass		
NVNT	ANT1	2-DH5	2402.00	-45.569	-18.519	Pass		
NVNT 🥢	ANT1	2-DH5	2480.00	-46.658	-19.036	Pass		
NVNT 🝆	ANT1	2-DH5	2441.00	-46.903	-18.701	Pass		
	,	2 8110	2111.00	10.000	10.101	1 466		

Tel: +86-755-23010613

V1.0

Report No.: DACE240829005RF001

ø,

5. Bandedge

DAG

-

Q)

1

DAG

Condition	Antenna	Modulation	TX Mode	Bandedge MAX.Value	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-52.335	-18.509	Pass
NVNT	ANT1	1-DH5	Hopping_LCH	-57.392	-18.508	Pass
NVNT	ANT1	1-DH5	2480.00	-60.111	-19.167	Pass
NVNT	ANT1	1-DH5	Hopping_HCH	-48.211	-18.346	Pass
NVNT 🥏	ANT1	2-DH5	2402.00	-52.560	-18.519	Pass
NVNT 🔹	ANT1	2-DH5	Hopping_LCH	-52.211	-18.659	Pass
NVNT	ANT1	2-DH5	2480.00	-59.874	-19.036	Pass
NVNT	ANT1	2-DH5	Hopping_HCH	-48.413	-18.492	Pass

. 6

DAG

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAE

DAG

- ale	2_Band_Edge_(Hopping)_NVNT_ANT1_2-DH5_Hop	ping	6
Cente	RF Control Solo AC F Freq 2.487500000 GHz Sense IFGain:Low Free R IFGain:Low Atten: 24 dl	אוז	ep 03, 2024 2 2 4 4 Frequency P NNNNN Auto Tune	
10 dB/c 7.35	Ref Offset 4.35 dB Ref 17.35 dBm ↓	Mkr3 2.499 35 -48.41	0 GHz 3 dBm Center Freq	
-285 -127 -127 -227			2.487500000 GHz	
32.7 42.7 62.7	hand a hand		2.475000000 GHz	
627 727 Start 2	47500 GHz	Stop 2 500	2.50000000 GHz	
#Res E MRR. MD	W 100 kHz #VBW 300 kHz # TRC SCI X 1 f 2478 025 GHz 1 002 dBm 1 f 2478 025 GHz 1 002 dBm	Sweep 2.400 ms (10 FUNCTION FUNCTION WIDTH FUNCTION	2.500000 MHz Auto Man	
2 3 N 4 5 6 7	1 f 2.499 350 GHz -48.413 dBm		Freq Offset 0 Hz	
8 9 10 11			Scale Type	
MSG	24	Lo status	. (

D

DΔG

6. Carrier Frequencies Separation (Hopping)

Condition	Antenna	Modulation	Frequency(MHz)	Hopping NO.0 (MHz)	Hopping NO.1 (MHz)	Carrier Frequencies Separation(MHz)	Limit(MHz)	Result
NVNT	ANT1	1-DH5	2441.00	2441.200	2442.199	1.00	0.691	Pass
NVNT	ANT1	2-DH5	2441.00	2441.050	2442.043	0.99	0.689	Fail

DAC

Report No.: DACE240829005RF001

7. Number of Hopping Channel (Hopping)

Condition	Antenna	Modulation	Hopping Num	Limit	Result
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass

V1.0

Report No.: DACE240829005RF001

8. Dwell Time (Hopping)

DAC

Condition	Antenna	Packet Type	Pulse Time(ms)	Hops	Dwell Time(ms)	Limit(s)	Result
NVNT	ANT1	1-DH5	2.889	117.00	338.013	0.40	Pass
NVNT	ANT1	2-DH5	2.889	102.00	294.678	0.40	Pass

. Co

Page 80 of 81

Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

