

# Shenzhen Toby Technology Co., Ltd.



Report No.: TBR-C-202205-0291-6

Page: 1 of 32

# Radio Test Report

FCC ID: 2A8TU-TS06PRO

**Report No.** : TBR-C-202205-0291-6

Applicant : Shenzhen Forever Young Technology Co., Ltd

**Equipment Under Test (EUT)** 

**EUT Name** : Smart AC Controller with Touch Button

Model No. : TS06Pro

Series Model No. : TS08Pro, TS25

Brand Name : Zitech

Sample ID : RW-C-202205-0291-3-1#&RW-C-202205-0291-3-2#

**Receipt Date** : 2022-06-10

**Test Date** : 2022-06-10 to 2022-06-28

Issue Date : 2023-01-31

Standards : FCC Part 15 Subpart C 15.247

**Test Method** : ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor : TMM SV

Engineer Manager : \*\*\*\*

Ray Lair

arried out on one sample. The results

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TBR-C-202205-0291-6 Page: 2 of 32

# Contents

| CON | NTENTS                                                       | 2  |
|-----|--------------------------------------------------------------|----|
| 1.  | GENERAL INFORMATION ABOUT EUT                                | 5  |
|     | 1.1 Client Information                                       | 5  |
|     | 1.2 General Description of EUT (Equipment Under Test)        |    |
|     | 1.3 Block Diagram Showing the Configuration of System Tested |    |
|     | 1.4 Description of Support Units                             |    |
|     | 1.5 Description of Test Mode                                 |    |
|     | 1.6 Description of Test Software Setting                     | 8  |
|     | 1.7 Measurement Uncertainty                                  | 8  |
|     | 1.8 Test Facility                                            | 9  |
| 2.  | TEST SUMMARY                                                 | 10 |
| 3.  | TEST SOFTWARE                                                | 10 |
| 4.  | TEST EQUIPMENT                                               |    |
| 5.  | CONDUCTED EMISSION                                           |    |
|     | 5.1 Test Standard and Limit                                  |    |
|     | 5.2 Test Setup                                               |    |
|     | 5.3 Test Procedure                                           |    |
|     | 5.4 Deviation From Test Standard                             |    |
|     | 5.5 EUT Operating Mode                                       |    |
|     | 5.6 Test Data                                                |    |
| 6.  | RADIATED AND CONDUCTED UNWANTED EMISSIONS                    | 14 |
|     | 6.1 Test Standard and Limit                                  |    |
|     | 6.2 Test Setup                                               |    |
|     | 6.3 Test Procedure                                           |    |
|     | 6.4 Deviation From Test Standard                             |    |
|     | 6.5 EUT Operating Mode                                       | 17 |
|     | 6.6 Test Data                                                | 17 |
| 7.  | RESTRICTED BANDS REQUIREMENT                                 | 18 |
|     | 7.1 Test Standard and Limit                                  | 18 |
|     | 7.2 Test Setup                                               |    |
|     | 7.3 Test Procedure                                           | 19 |
|     | 7.4 Deviation From Test Standard                             | 20 |
|     | 7.5 EUT Operating Mode                                       | 20 |
|     | 7.6 Test Data                                                | 20 |
| 8.  | BANDWIDTH TEST                                               | 21 |
|     | 8.1 Test Standard and Limit                                  | 21 |
|     | 8.2 Test Setup                                               |    |
|     | 8.3 Test Procedure                                           | 21 |
|     | 8.4 Deviation From Test Standard                             | 22 |





Report No.: TBR-C-202205-0291-6 Page: 3 of 32

|      | 8.5 EUT Operating Mode                 | 22 |
|------|----------------------------------------|----|
|      | 8.6 Test Data                          | 22 |
| 9.   | PEAK OUTPUT POWER                      | 23 |
|      | 9.1 Test Standard and Limit            | 23 |
|      | 9.2 Test Setup                         |    |
|      | 9.3 Test Procedure                     |    |
|      | 9.4 Deviation From Test Standard       | 23 |
|      | 9.5 EUT Operating Mode                 | 23 |
|      | 9.6 Test Data                          |    |
| 10.  | POWER SPECTRAL DENSITY                 | 24 |
|      | 10.1 Test Standard and Limit           | 24 |
|      | 10.2 Test Setup                        | 24 |
|      | 10.3 Test Procedure                    | 24 |
|      | 10.4 Deviation From Test Standard      | 24 |
|      | 10.5 Antenna Connected Construction    | 24 |
|      | 10.6 Test Data                         | 24 |
| 11.  | ANTENNA REQUIREMENT                    |    |
|      | 11.1 Test Standard and Limit           | 25 |
|      | 11.2 Deviation From Test Standard      |    |
|      | 11.3 Antenna Connected Construction    | 25 |
|      | 11.4 Test Data                         | 25 |
| ATTA | ACHMENT A CONDUCTED EMISSION TEST DATA | 26 |
|      | ACHMENT BUNWANTED EMISSIONS DATA       |    |





Report No.: TBR-C-202205-0291-6 Page: 4 of 32

# **Revision History**

| Report No.          | Version  | Description             | Issued Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------|----------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TBR-C-202205-0291-6 | Rev.01   | Initial issue of report | 2023-01-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |          |                         | 4087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 133                 |          |                         | 033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     | 1 Albert |                         | The state of the s |
|                     | an By    | 1000                    | The state of the s |
|                     |          | Direction of the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 1000     |                         | (133)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0000                | 3 W      | TOBY                    | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| On the              |          | 3                       | TO DE LA COLONIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     | 3        | WORRY WOLFE             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | WOB.     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |          | TURE TO THE             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





Page: 5 of 32

# 1. General Information about EUT

## 1.1 Client Information

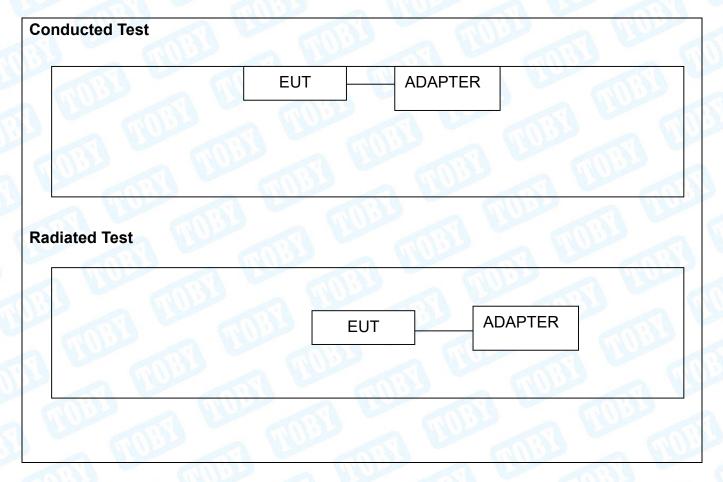
| Applicant : Shenzhen Forever Young Technology Co., Ltd                           |  | Shenzhen Forever Young Technology Co., Ltd                                               |
|----------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------|
| Address : 2/F, No.B2 Bldg, Fu Yuan Industrial Park, Fu District, Shenzhen, China |  | 2/F, No.B2 Bldg, Fu Yuan Industrial Park, Fu Yong Town, Bao'an District, Shenzhen, China |
| Manufacturer : Shenzhen Forever Young                                            |  | Shenzhen Forever Young Technology Co., Ltd                                               |
| Address :                                                                        |  | 2/F, No.B2 Bldg, Fu Yuan Industrial Park, Fu Yong Town, Bao'an District, Shenzhen, China |

## 1.2 General Description of EUT (Equipment Under Test)

| EUT Name         | ):                                  | Smart AC Controller with Touch Button                                                                             |                                     |  |  |
|------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|
| Models No.       | -                                   | TS06Pro, TS08Pro, TS25                                                                                            |                                     |  |  |
| Model Different  | 11                                  | All these models are identical in the same PCB, layout and electrical circuit, the only difference is appearance. |                                     |  |  |
|                  | A                                   | Operation Frequency:                                                                                              | Bluetooth 4.2(BLE): 2402MHz~2480MHz |  |  |
|                  |                                     | Number of Channel:                                                                                                | Bluetooth 4.2(BLE): 40 channels     |  |  |
| Product          |                                     | Antenna Gain:                                                                                                     | 2.21dBi PCB Antenna                 |  |  |
| Description      | 3                                   | Modulation Type:                                                                                                  | GFSK                                |  |  |
|                  |                                     | Bit Rate of Transmitter:                                                                                          | 1Mbps                               |  |  |
| Power Rating     | ower Rating : Micro Input: DC 5V/1A |                                                                                                                   |                                     |  |  |
| Software Version | •                                   | V3.35.5                                                                                                           |                                     |  |  |
| Hardware Version | :                                   | V1.1.80                                                                                                           |                                     |  |  |

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.






Report No.: TBR-C-202205-0291-6 Page: 6 of 32

## (4) Channel List:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|
| 00      | 2402               | 14      | 2430               | 28      | 2458               |
| 01      | 2404               | 15      | 2432               | 29      | 2460               |
| 02      | 2406               | 16      | 2434               | 30      | 2462               |
| 03      | 2408               | 17      | 2436               | 31      | 2464               |
| 04      | 2410               | 18      | 2438               | 32      | 2466               |
| 05      | 2412               | 19      | 2440               | 33      | 2468               |
| 06      | 2414               | 20      | 2442               | 34      | 2470               |
| 07      | 2416               | 21      | 2444               | 35      | 2472               |
| 08      | 2418               | 22      | 2446               | 36      | 2474               |
| 09      | 2420               | 23      | 2448               | 37      | 2476               |
| 10      | 2422               | 24      | 2450               | 38      | 2478               |
| 11      | 2424               | 25      | 2452               | 39      | 2480               |
| 12      | 2426               | 26      | 2454               |         |                    |
| 13      | 2428               | 27      | 2456               |         |                    |

# 1.3 Block Diagram Showing the Configuration of System Tested







Page: 7 of 32

## 1.4 Description of Support Units

| Equipment Information |               |              |              |           |  |  |
|-----------------------|---------------|--------------|--------------|-----------|--|--|
| Name                  | Model         | FCC ID/SDOC  | Manufacturer | Used "√"  |  |  |
| 005                   | -             |              | 33 6         | 1002      |  |  |
| Cable Information     |               |              |              |           |  |  |
| Number                | Shielded Type | Ferrite Core | Length       | Note      |  |  |
| Cable 1               | Yes           | NO           | 1.0M         | Accessory |  |  |

## 1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

| For Conducted Test                      |                   |  |  |  |  |
|-----------------------------------------|-------------------|--|--|--|--|
| Final Test Mode Description             |                   |  |  |  |  |
| Mode 1 TX Mode                          |                   |  |  |  |  |
|                                         | For Radiated Test |  |  |  |  |
| Final Test Mode Description             |                   |  |  |  |  |
| Mode 2 TX 1Mbps Mode (Channel 00/19/39) |                   |  |  |  |  |

#### Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.





Page: 8 of 32

## 1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

| Test Software Version | 400      | RTLBTAPP |          |
|-----------------------|----------|----------|----------|
| Frequency             | 2402 MHz | 2440MHz  | 2480 MHz |
| BLE 1M                | DEF      | DEF      | DEF      |

## 1.7 Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U_{\tau}$  where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of  $k=2_{\tau}$  providing a level of confidence of approximately 95 %.

| Test Item          | Parameters                                  | Expanded Uncertainty (U <sub>Lab</sub> )      |
|--------------------|---------------------------------------------|-----------------------------------------------|
| Conducted Emission | Level Accuracy: 9kHz~150kHz 150kHz to 30MHz | $\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$ |
| Radiated Emission  | Level Accuracy:<br>9kHz to 30 MHz           | ±4.60 dB                                      |
| Radiated Emission  | Level Accuracy:<br>30MHz to 1000 MHz        | ±4.50 dB                                      |
| Radiated Emission  | Level Accuracy:<br>Above 1000MHz            | ±4.20 dB                                      |





Page: 9 of 32

## 1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

## **CNAS (L5813)**

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

#### A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

## IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.





Report No.: TBR-C-202205-0291-6 Page: 10 of 32

# 2. Test Summary

| Standard Section FCC   | Test Item                     | Test Sample(s)        | Judgment | Remar |
|------------------------|-------------------------------|-----------------------|----------|-------|
| FCC 15.207(a)          | Conducted Emission            | RW-C-202205-0291-3-1# | PASS     | N/A   |
| FCC 15.209 & 15.247(d) | Radiated Unwanted Emissions   | RW-C-202205-0291-3-1# | PASS     | N/A   |
| FCC 15.203             | Antenna Requirement           | RW-C-202205-0291-3-2# | PASS     | N/A   |
| FCC 15.247(a)(2)       | 6dB Bandwidth                 | RW-C-202205-0291-3-2# | PASS     | N/A   |
|                        | 99% Occupied bandwidth        | RW-C-202205-0291-3-2# | PASS     | N/A   |
| FCC 15.247(b)(3)       | Peak Output Power and E.I.R.P | RW-C-202205-0291-3-2# | PASS     | N/A   |
| FCC 15.247(e)          | Power Spectral Density        | RW-C-202205-0291-3-2# | PASS     | N/A   |
| FCC 15.247(d)          | Band Edge Measurements        | RW-C-202205-0291-3-2# | PASS     | N/A   |
| FCC 15.207             | Conducted Unwanted Emissions  | RW-C-202205-0291-3-2# | PASS     | N/A   |
| FCC 15.247(d)          | Emissions in Restricted Bands | RW-C-202205-0291-3-2# | PASS     | N/A   |
|                        | On Time and Duty Cycle        | RW-C-202205-0291-3-2# |          | N/A   |

# 3. Test Software

| Test Item                 | Test Software | Manufacturer | Version No.  |
|---------------------------|---------------|--------------|--------------|
| Conducted Emission        | EZ-EMC        | EZ           | CDI-03A2     |
| Radiation Emission        | EZ-EMC        | EZ           | FA-03A2RE    |
| Radiation Emission        | EZ-EMC        | EZ           | FA-03A2RE+   |
| RF Conducted  Measurement | MTS-8310      | MWRFtest     | V2.0.0.0     |
| RF Test System            | JS1120        | Tonscend     | V2.6.88.0336 |





Report No.: TBR-C-202205-0291-6 Page: 11 of 32

# 4. Test Equipment

| Conducted Emission  |                                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due Date |
|---------------------|-------------------------------------|-------------------|---------------|---------------|---------------|
| Equipment           | Manufacturer                        |                   |               |               |               |
| EMI Test Receiver   | Rohde & Schwarz                     | ESCI              | 100321        | Jul. 02, 2021 | Jul. 01, 2022 |
| RF Switching Unit   | Compliance Direction<br>Systems Inc | RSU-A4            | 34403         | Jul. 02, 2021 | Jul. 01, 2022 |
| AMN                 | SCHWARZBECK                         | NNBL 8226-2       | 8226-2/164    | Jul. 02, 2021 | Jul. 01, 2022 |
| LISN                | Rohde & Schwarz                     | ENV216            | 101131        | Jul. 02, 2021 | Jul. 01, 2022 |
| Radiation Emission  | Test (A Site)                       |                   |               |               | _             |
| Equipment           | Manufacturer                        | Model No.         | Serial No.    | Last Cal.     | Cal. Due Date |
| Spectrum Analyzer   | Rohde & Schwarz                     | FSV40-N           | 102197        | Jul. 02, 2021 | Jul. 01, 2022 |
| EMI Test Receiver   | Rohde & Schwarz                     | ESPI              | 100010/007    | Jul. 02, 2021 | Jul. 01, 2022 |
| Bilog Antenna       | ETS-LINDGREN                        | 3142E             | 00117537      | Feb. 27, 2022 | Feb. 26, 2024 |
| Horn Antenna        | ETS-LINDGREN                        | 3117              | 00143207      | Feb. 26, 2022 | Feb. 25, 2024 |
| Horn Antenna        | SCHWARZBECK                         | BBHA 9170         | 1118          | Feb. 26, 2022 | Feb. 25, 2024 |
| Loop Antenna        | SCHWARZBECK                         | FMZB 1519 B       | 1519B-059     | Jul. 06, 2021 | Jul. 05, 2022 |
| Pre-amplifier       | SONOMA                              | 310N              | 185903        | Feb. 26, 2022 | Feb. 25, 2023 |
| Pre-amplifier       | HP                                  | 8449B             | 3008A00849    | Feb. 26, 2022 | Feb. 25, 2023 |
| HF Amplifier        | Tonscend                            | TAP0184050        | AP21C806129   | Sep. 03, 2021 | Sep. 02, 2022 |
| Radiation Emission  | Test (B Site)                       |                   | -             |               |               |
| Equipment           | Manufacturer                        | Model No.         | Serial No.    | Last Cal.     | Cal. Due Date |
| Spectrum Analyzer   | Rohde & Schwarz                     | FSV40-N           | 102197        | Jul. 02, 2021 | Jul. 01, 2022 |
| MXA Signal Analyzer | Agilent                             | N9020A            | MY47380425    | Sep. 03, 2021 | Sep. 02, 2022 |
| EMI Test Receiver   | Rohde & Schwarz                     | ESU-8             | 100472        | Feb. 26, 2022 | Feb. 25, 2023 |
| Bilog Antenna       | SCHWARZBECK                         | VULB 9168         | 1225          | Dec. 05, 2021 | Dec. 04, 2023 |
| Horn Antenna        | SCHWARZBECK                         | BBHA 9120 D       | 2463          | May 20, 2021  | May 19, 2023  |
| Horn Antenna        | SCHWARZBECK                         | BBHA 9170         | 1118          | Feb. 26, 2022 | Feb. 25, 2024 |
| Loop Antenna        | SCHWARZBECK                         | FMZB 1519 B       | 1519B-059     | Jul. 06, 2021 | Jul. 05, 2022 |
| HF Amplifier        | Tonscend                            | TAP9E6343         | AP21C806117   | Sep. 03, 2021 | Sep. 02, 2022 |
| HF Amplifier        | Tonscend                            | TAP051845         | AP21C806141   | Sep. 03, 2021 | Sep. 02, 2022 |
| HF Amplifier        | Tonscend                            | TAP0184050        | AP21C806129   | Sep. 03, 2021 | Sep. 02, 2022 |
| Antenna Conducte    | d Emission                          |                   |               |               |               |
| Equipment           | Manufacturer                        | Model No.         | Serial No.    | Last Cal.     | Cal. Due Date |
| Spectrum Analyzer   | Agilent                             | E4407B            | MY45106456    | Jul. 02, 2021 | Jul. 01, 2022 |
| Spectrum Analyzer   | Rohde & Schwarz                     | FSV40-N           | 102197        | Jul. 02, 2021 | Jul. 01, 2022 |
| MXA Signal Analyzer | Agilent                             | N9020A            | MY49100060    | Sep. 03, 2021 | Sep. 02, 2022 |
| Spectrum Analyzer   | KEYSIGT                             | N9020B            | MY60110172    | Sep. 03, 2021 | Sep. 02, 2022 |
| The same of         | DARE!! Instruments                  | RadiPowerRPR3006W | 17I00015SNO26 | Sep. 03, 2021 | Sep. 02, 2022 |
|                     | DARE!! Instruments                  | RadiPowerRPR3006W | 17I00015SNO29 | Sep. 03, 2021 | Sep. 02, 2022 |
| RF Power Sensor     | DARE!! Instruments                  | RadiPowerRPR3006W | 17I00015SNO31 | Sep. 03, 2021 | Sep. 02, 2022 |
|                     | DARE!! Instruments                  | RadiPowerRPR3006W | 17I00015SNO33 | Sep. 03, 2021 | Sep. 02, 2022 |
| RF Control Unit     | Tonsced                             | JS0806-2          | 21F8060439    | Sep. 03, 2021 | Sep. 02, 2022 |





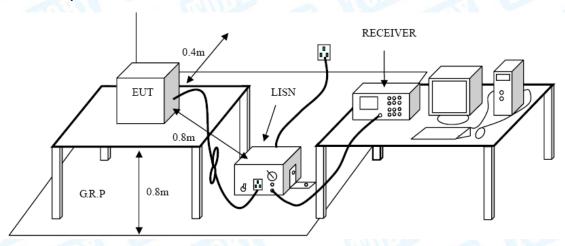
Page: 12 of 32

## 5. Conducted Emission

## 5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

| Fraguenav     | Maximum RF Line Voltage (dBμV) |               |  |
|---------------|--------------------------------|---------------|--|
| Frequency     | Quasi-peak Level               | Average Level |  |
| 150kHz~500kHz | 66 ~ 56 *                      | 56 ~ 46 *     |  |
| 500kHz~5MHz   | 56                             | 46            |  |
| 5MHz~30MHz    | 60                             | 50            |  |

#### Notes:

- (1) \*Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

## 5.2 Test Setup



#### 5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.





Page: 13 of 32

## 5.4 Deviation From Test Standard

No deviation

## 5.5 EUT Operating Mode

Please refer to the description of test mode.

## 5.6 Test Data

Please refer to the Attachment A inside test report.



Page: 14 of 32

## 6. Radiated and Conducted Unwanted Emissions

## 6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

| General field strength limits at frequencies Below 30MHz |                                    |                               |  |  |  |
|----------------------------------------------------------|------------------------------------|-------------------------------|--|--|--|
| Frequency<br>(MHz)                                       | Field Strength (microvolt/meter)** | Measurement Distance (meters) |  |  |  |
| 0.009~0.490                                              | 2400/F(KHz)                        | 300                           |  |  |  |
| 0.490~1.705                                              | 24000/F(KHz)                       | 30                            |  |  |  |
| 1.705~30.0                                               | 30                                 | 30                            |  |  |  |

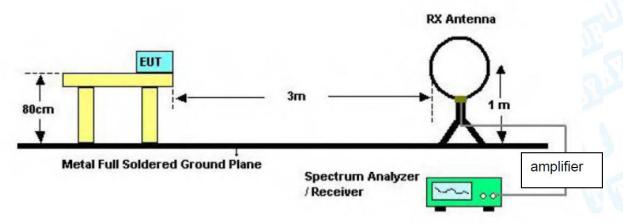
**Note:** 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

|                                                           | WINA I PLANT  |          |  |  |  |
|-----------------------------------------------------------|---------------|----------|--|--|--|
| General field strength limits at frequencies above 30 MHz |               |          |  |  |  |
| Frequency Field strength Measurement Distan               |               |          |  |  |  |
| (MHz)                                                     | (μV/m at 3 m) | (meters) |  |  |  |
| 30~88                                                     | 100           | 3        |  |  |  |
| 88~216                                                    | 150           | 3        |  |  |  |
| 216~960                                                   | 200           | 3        |  |  |  |
| Above 960                                                 | 500           | 3        |  |  |  |

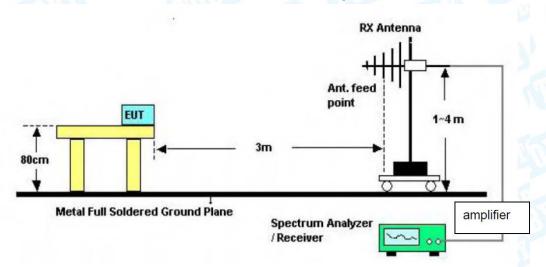
| General field strength limits at frequencies Above 1000MHz |                         |         |  |  |
|------------------------------------------------------------|-------------------------|---------|--|--|
| Frequency                                                  | Distance of 3m (dBuV/m) |         |  |  |
| (MHz)                                                      | Peak                    | Average |  |  |
| Above 1000                                                 | 74                      | 54      |  |  |

#### Note

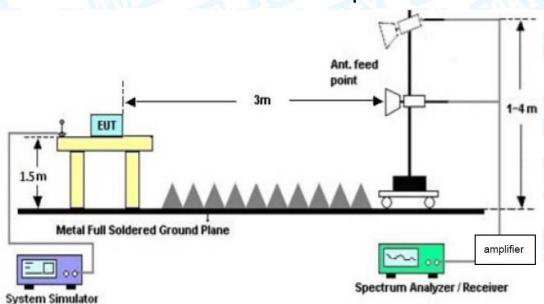
- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.




Page: 15 of 32

## 6.2 Test Setup

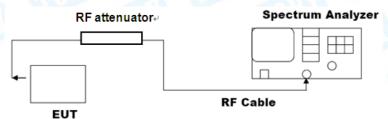

## Radiated measurement



## **Below 30MHz Test Setup**



## **Below 1000MHz Test Setup**








Page: 16 of 32

# Above 1GHz Test Setup Conducted measurement



### 6.3 Test Procedure

#### ---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- ●Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.





Page: 17 of 32

### --- Conducted measurement

#### Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3\*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level

#### Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3\*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

### 6.4 Deviation From Test Standard

No deviation

## 6.5 EUT Operating Mode

Please refer to the description of test mode.

#### 6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the external appendix report of BLE.



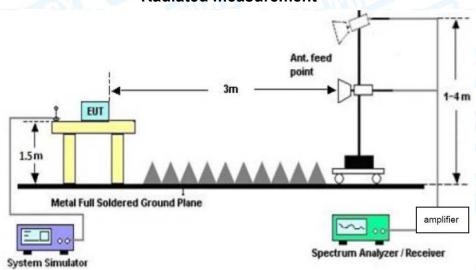
Page: 18 of 32

# 7. Restricted Bands Requirement

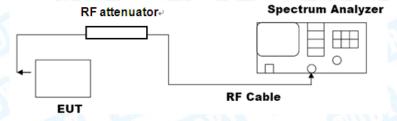
## 7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)


7.1.2 Test Limit

| Restricted Frequency | Distance Meters(at 3m) |                         |  |  |
|----------------------|------------------------|-------------------------|--|--|
| Band (MHz)           | Peak (dBuV/m)          | Average (dBuV/m)        |  |  |
| 2310 ~2390           | 74                     | 54                      |  |  |
| 2483.5 ~2500         | 74                     | 54                      |  |  |
|                      | Peak (dBm)see 7.3 e)   | Average (dBm) see 7.3 e |  |  |
| 2310 ~2390           | -21.20                 | -41.20                  |  |  |
| 2483.5 ~2500         | -21.20                 | -41.20                  |  |  |


Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

## 7.2 Test Setup

#### Radiated measurement



#### **Conducted measurement**







Page: 19 of 32

## 7.3 Test Procedure

#### ---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

#### --- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to
- determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies
- ≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for

frequencies > 1000 MHz).

- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$ 

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.





Page: 20 of 32

## 7.4 Deviation From Test Standard

No deviation

## 7.5 EUT Operating Mode

Please refer to the description of test mode.

## 7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

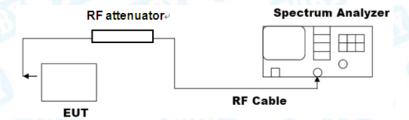




Page: 21 of 32

## 8. Bandwidth Test

## 8.1 Test Standard and Limit


8.1.1 Test Standard

## FCC Part 15.205 & FCC Part 15.247(d)

8.1.2 Test Limit

| Test Item                          | Limit     | Frequency Range(MHz) |
|------------------------------------|-----------|----------------------|
| -6dB bandwidth<br>(DTS bandwidth ) | >=500 KHz | 2400~2483.5          |
| 99% occupied bandwidth             |           | 2400~2483.5          |

## 8.2 Test Setup



### 8.3 Test Procedure

#### --- DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3\*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

#### ---occupied bandwidth

- ●The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified





Page: 22 of 32

by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

## 8.4 Deviation From Test Standard

No deviation

## 8.5 EUT Operating Mode

Please refer to the description of test mode.

## 8.6 Test Data

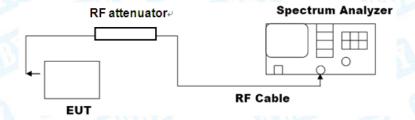




Page: 23 of 32

# 9. Peak Output Power

## 9.1 Test Standard and Limit


9.1.1 Test Standard

FCC Part 15.247(b)(3)

9.1.2 Test Limit

| Test Item         | Limit                   | Frequency Range(MHz) |
|-------------------|-------------------------|----------------------|
| Peak Output Power | not exceed 1 W or 30dBm | 2400~2483.5          |

## 9.2 Test Setup



### 9.3 Test Procedure

#### ---RBW≥DTS bandwidth

● The following procedure shall be used when an instrument with a resolution bandwidth that is greater than

the DTS bandwidth is available to perform the measurement:

- a) Set the RBW≥DTS bandwidth.
- b) Set VBW≥[3\*RBW].
- c) Set span≥[3\*RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

## 9.4 Deviation From Test Standard

No deviation

## 9.5 EUT Operating Mode

Please refer to the description of test mode.

## 9.6 Test Data

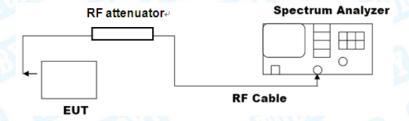




Page: 24 of 32

## 10. Power Spectral Density

## 10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247(e)

10.1.2 Test Limit

| Test Item              | Limit              | Frequency Range(MHz) |  |
|------------------------|--------------------|----------------------|--|
| Power Spectral Density | 8dBm(in any 3 kHz) | 2400~2483.5          |  |

## 10.2 Test Setup



## 10.3 Test Procedure

- The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW ≥[3\*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

## 10.4 Deviation From Test Standard

No deviation

#### 10.5 Antenna Connected Construction

Please refer to the description of test mode.

#### 10.6 Test Data





Page: 25 of 32

## 11. Antenna Requirement

## 11.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

## 11.2 Deviation From Test Standard

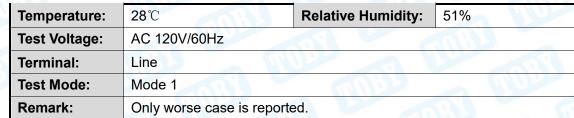
No deviation

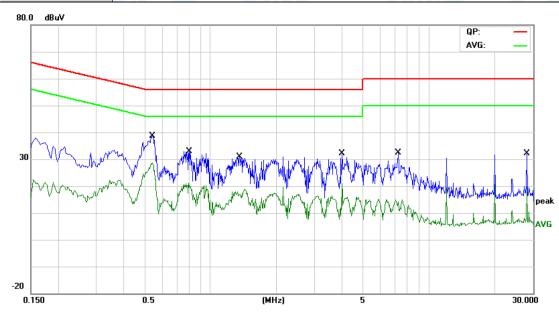
### 11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 2.21dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

## 11.4 Test Data

The EUT antenna is a PCB Antenna. It complies with the standard requirement.


| Antenna Type |                                    |      |
|--------------|------------------------------------|------|
| 40000        | ⊠Permanent attached antenna        |      |
|              | ☐Unique connector antenna          | MORN |
| 4000         | ☐Professional installation antenna |      |






Page: 26 of 32

# **Attachment A-- Conducted Emission Test Data**





|     |     |         | Reading | Correct | Measure- |       |        |          |
|-----|-----|---------|---------|---------|----------|-------|--------|----------|
| No. | Mk. | Freq.   | Level   | Factor  | ment     | Limit | Over   |          |
|     |     | MHz     | dBuV    | dB      | dBuV     | dBuV  | dB     | Detector |
| 1   |     | 0.5420  | 23.95   | 11.48   | 35.43    | 56.00 | -20.57 | QP       |
| 2   | *   | 0.5420  | 16.44   | 11.48   | 27.92    | 46.00 | -18.08 | AVG      |
| 3   |     | 0.7980  | 16.32   | 11.34   | 27.66    | 56.00 | -28.34 | QP       |
| 4   |     | 0.7980  | 8.14    | 11.34   | 19.48    | 46.00 | -26.52 | AVG      |
| 5   |     | 1.3580  | 13.81   | 10.97   | 24.78    | 56.00 | -31.22 | QP       |
| 6   |     | 1.3580  | 4.92    | 10.97   | 15.89    | 46.00 | -30.11 | AVG      |
| 7   |     | 4.0020  | 17.96   | 10.15   | 28.11    | 56.00 | -27.89 | QP       |
| 8   |     | 4.0020  | 10.70   | 10.15   | 20.85    | 46.00 | -25.15 | AVG      |
| 9   |     | 7.2460  | 10.84   | 10.10   | 20.94    | 60.00 | -39.06 | QP       |
| 10  |     | 7.2460  | -0.96   | 10.10   | 9.14     | 50.00 | -40.86 | AVG      |
| 11  |     | 28.0180 | 16.39   | 10.69   | 27.08    | 60.00 | -32.92 | QP       |
| 12  |     | 28.0180 | 7.03    | 10.69   | 17.72    | 50.00 | -32.28 | AVG      |

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)





Report No.: TBR-C-202205-0291-6 Page: 27 of 32

| Temperature:  | 28℃                          | Relative Humidity: | 51%             |  |  |  |
|---------------|------------------------------|--------------------|-----------------|--|--|--|
| Test Voltage: | AC 120V/60Hz                 | CHILD              | A RIV           |  |  |  |
| Terminal:     | Neutral                      | Neutral            |                 |  |  |  |
| Test Mode:    | Mode 1                       | Mode 1             |                 |  |  |  |
| Remark:       | Only worse case is reported. |                    |                 |  |  |  |
| 80.0 dBuV     |                              |                    |                 |  |  |  |
|               |                              |                    | QP: —<br>AVG: — |  |  |  |
|               |                              |                    |                 |  |  |  |
|               |                              |                    |                 |  |  |  |

|            |     |      |     |   |          |          |          |           |          |                                        |                                        |                                               |                                        |              |            | AVG                              | =                |     |
|------------|-----|------|-----|---|----------|----------|----------|-----------|----------|----------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------------|--------------|------------|----------------------------------|------------------|-----|
| 30         | ₩,  | Www. | man |   | <b>/</b> | <b>₩</b> | /M<br>/^ | Mary Mary | Y MARINE | ~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | <b>M</b> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Mayor<br>Mar | hypapah ho | kolj <sub>i Ajr</sub> dojek vedi | mulipud<br>Labor | ×   |
| o  <br>O.* | 150 |      |     | ( | 1.5      |          |          |           | (MH:     | z)                                     | ļ                                      | 5                                             |                                        |              |            |                                  | 30.              | 000 |

| No. | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector |
| 1   |     | 0.5460  | 23.19            | 11.49             | 34.68            | 56.00 | -21.32 | QP       |
| 2   | *   | 0.5460  | 15.91            | 11.49             | 27.40            | 46.00 | -18.60 | AVG      |
| 3   |     | 0.7940  | 16.40            | 11.37             | 27.77            | 56.00 | -28.23 | QP       |
| 4   |     | 0.7940  | 8.42             | 11.37             | 19.79            | 46.00 | -26.21 | AVG      |
| 5   |     | 1.6260  | 9.48             | 10.74             | 20.22            | 56.00 | -35.78 | QP       |
| 6   |     | 1.6260  | -0.88            | 10.74             | 9.86             | 46.00 | -36.14 | AVG      |
| 7   |     | 6.8300  | 8.41             | 10.02             | 18.43            | 60.00 | -41.57 | QP       |
| 8   |     | 6.8300  | -0.50            | 10.02             | 9.52             | 50.00 | -40.48 | AVG      |
| 9   |     | 12.0100 | 16.01            | 10.23             | 26.24            | 60.00 | -33.76 | QP       |
| 10  |     | 12.0100 | 9.24             | 10.23             | 19.47            | 50.00 | -30.53 | AVG      |
| 11  |     | 28.0220 | 17.45            | 10.64             | 28.09            | 60.00 | -31.91 | QP       |
| 12  |     | 28.0220 | 8.60             | 10.64             | 19.24            | 50.00 | -30.76 | AVG      |

- Remark:
  1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)





Page: 28 of 32

## **Attachment B--Unwanted Emissions Data**

## --- Radiated Unwanted Emissions

#### 9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

## 30MHz~1GHz

| empe                                     | rature:                                 | 24.3                                      | 3℃                     |                             | N. Carrie                                       | Relative                                       | Humidity                                     | : 45                                         | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
|------------------------------------------|-----------------------------------------|-------------------------------------------|------------------------|-----------------------------|-------------------------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| est Vo                                   | oltage:                                 | DC                                        | 5V                     |                             |                                                 |                                                |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| nt. Po                                   | ol.                                     | Hori                                      | izonta                 | ıl                          |                                                 |                                                |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| est Mo                                   | ode:                                    | Mod                                       | le 2 T                 | X 1M                        | bps Mode (                                      | Channel 00                                     |                                              |                                              | 11.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| Remarl                                   | k:                                      | Only                                      | y wors                 | se cas                      | se is report                                    | ed.                                            |                                              | 1                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M             |
| 80.0 d                                   | lBuV/m                                  |                                           |                        |                             |                                                 |                                                |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 70                                       |                                         |                                           |                        |                             |                                                 |                                                |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 60                                       |                                         |                                           |                        |                             |                                                 |                                                |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _             |
| 50                                       |                                         |                                           |                        |                             |                                                 |                                                |                                              | CC 15C 3M<br>in -6 dB                        | Radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ч             |
| 40                                       |                                         |                                           |                        |                             |                                                 |                                                |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1             |
|                                          |                                         |                                           |                        |                             |                                                 |                                                |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 30                                       |                                         |                                           |                        |                             |                                                 |                                                |                                              |                                              | 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
|                                          |                                         |                                           |                        |                             |                                                 |                                                |                                              |                                              | . A HARANIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wypeak        |
| 20                                       | 1                                       | 2                                         |                        |                             | 3                                               |                                                |                                              | Had Made a few prospersion of                | hadron draft gellar fra 1944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r™peak        |
| 20                                       | hajjajan kalupahajah                    | 2<br>*                                    | Altraphysicals.        | المالادال والمراد           | 3<br>X<br>Aminima kalambahahahahahah            | abandhhadh phogashibha mily                    | adory Magrardy Sink bandal                   | ped may a managed by                         | Mary Control of the C | w peak        |
| 4.1                                      | hypoton, <sup>2</sup> h, shyky          | Z<br>Milyania<br>Milyania                 | want had a             | ywih /w/h                   | ANNINA HAMANA ANNINA A                          | althodology begged blo-sily                    | akonfallaturika jarak kananda                | jadorat paparasinalif                        | MANA MARINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Y</b> peak |
| 10 <b>11</b>                             | hiyyarayi <sup>2</sup> iyatiydi         | 2<br>************************************ | en special and the     | yww.v.v.                    | A CHARLAN AND AND AND AND AND AND AND AND AND A | athrodology for special laboratory             | akoyanaprahitahkanah                         | jadinoty of mouse of                         | iga kondina di kana kana di kana kana di kana d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rwpeak        |
| 0 -10                                    | hypron Lines h                          | Z<br>MANAMANA                             | Army Many fa           | yvaky/ss/dai                | Annipart-Antophiloppille                        | aktional standigg the set of all help with the | akuripplaggyshp <mark>ik</mark> ahlynahl     | ped not represented by                       | Androdon Anglorom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>rypeak</b> |
| 10 <b>11</b>                             | hypar Land                              | 60.0                                      |                        | yvatys salla                |                                                 | Hz)                                            | 300.00                                       | ud och falmonterally                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000.000       |
| 10 -10 -20                               | horpor party de                         |                                           |                        | gardy front his             |                                                 |                                                |                                              | ed out of want of                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 10 -10 -20                               | Frequ<br>(MF                            | ency                                      | Rea                    | ading<br>BuV)               |                                                 | Hz)                                            |                                              | Margir<br>(dB)                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
| 10                                       | Frequ                                   | ency<br>Hz)                               | Rea (dB                | ading                       | Factor                                          | Hz)                                            | 300.00<br>Limit                              | Margir                                       | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000.000       |
| 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | Frequ<br>(MF                            | ency<br>Hz)                               | Rea (dB                | nding<br>BuV)               | Factor (dB/m)                                   | Level<br>(dBuV/m)                              | Limit (dBuV/m)                               | Margir<br>(dB)                               | Detector  peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 000.000       |
| 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | Freque (MF                              | ency<br>Hz)<br>765                        | Rea (dB 36 37          | ading<br>BuV)               | Factor (dB/m)                                   | Level<br>(dBuV/m)<br>13.80                     | Limit (dBuV/m) 40.00                         | Margir<br>(dB)                               | Detector  peak peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P/F           |
| 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | Freque (MF 41.2 53.13                   | ency<br>Hz)<br>765<br>313                 | Rea (dB 36 37 36       | ading<br>BuV)<br>.78        | Factor (dB/m) -22.98 -22.88                     | Level<br>(dBuV/m)<br>13.80<br>14.33            | Limit (dBuV/m) 40.00 40.00                   | Margir<br>(dB)<br>-26.20                     | Detector  peak peak peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P/F           |
| 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | Freque<br>(MF<br>41.2<br>53.13<br>159.2 | ency<br>Hz)<br>765<br>313<br>2251         | Rea (dB 36 37 36 36 36 | ading<br>8uV)<br>.78<br>.21 | Factor (dB/m) -22.98 -22.88 -21.45              | Level<br>(dBuV/m)<br>13.80<br>14.33<br>15.17   | Limit<br>(dBuV/m)<br>40.00<br>40.00<br>43.50 | Margir<br>(dB)<br>-26.20<br>-25.67<br>-28.33 | Detector  peak peak peak peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P/F P P       |

<sup>\*:</sup>Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB $\mu$ V/m)-Limit QPK(dB $\mu$ V/m)





Report No.: TBR-C-202205-0291-6 Page: 29 of 32

| emper                                    | rature:                                   | 24.3                                     | $^{\circ}$ C                                                                                     |                               |                                      | Relative I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Humidity:                                     | 459                                          | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11            |
|------------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| est Vo                                   | Itage:                                    | DC !                                     | 5V                                                                                               |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| nt. Po                                   | ıl.                                       | Verti                                    | ical                                                                                             | N. D.                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| est Mo                                   | ode:                                      | Mod                                      | e 2 T                                                                                            | X 1Mb                         | ops Mode (                           | Channel 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181           |
| Remark                                   | <b>C</b> :                                | Only                                     | wors                                                                                             | se cas                        | e is reporte                         | ed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                           |                                              | ARO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| 80.0 dB                                  | BuV/m                                     |                                          |                                                                                                  |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _             |
| 70                                       |                                           |                                          |                                                                                                  |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                                          |                                           |                                          |                                                                                                  |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 60                                       |                                           |                                          |                                                                                                  |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (RF)I                                         | FCC 15C 3M                                   | Radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| 50                                       |                                           |                                          |                                                                                                  |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Marg                                          | in -6 dB                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #             |
| 40                                       |                                           |                                          |                                                                                                  |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4             |
| 30                                       |                                           |                                          |                                                                                                  | _                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pea رايماء    |
|                                          |                                           |                                          |                                                                                                  |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                              | السلامان ت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | γ** <b>•</b>  |
| 20                                       |                                           |                                          |                                                                                                  |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                             | was a look and water                         | Market May No May No Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
| . Judan                                  | 1<br>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | wylografiwylo <sub>bodylly</sub> g       | 3<br>X                                                                                           | الله الدارات                  | ja, jayajyunpar ni ditrajiiriijijiji | defendant of the second of the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aller Lander Andrew Horacon                   | white white for the first the first          | Apple William China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| 10 HAVING                                | willywww.kw                               | -phylodopratures and hope                | 3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | and should                    | pe, peoply report and the plantifies | and market of the state of the | Marchylana proper                             | white in the flower haster                   | at the state of th |               |
| . Judan                                  | waithwater                                | -/4/defrator-conflor                     | 3<br>~~~~~~~~~                                                                                   | an paperale                   | a populari di pungga                 | daglar spirite og fresklindsgen er vinn skille                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S 5                                           | godis from the plant of the second           | and the second s |               |
| 10 HAVING                                | militaria, Fran                           | ~/4/4 <del>4</del> ~et.~/ <sub>~~</sub>  | 3<br>~(X)                                                                                        | was a special to              | pe, pengurupan di di pennisia        | della appropriate della appropriate della                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | allandraharharharh                            | egent to be placed to the second             | and the second s |               |
| 10 Hwww.                                 | waller of the second                      |                                          | 3                                                                                                | AND PROPERTY OF               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | weight a last                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000.00       |
| 10 HWW                                   |                                           | 60.00                                    | 1                                                                                                | A.V.                          | (MI                                  | lz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300.00                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 10 HWW                                   | Frequ<br>(MH                              | 60.00<br>ency                            | Rea                                                                                              | ading BuV)                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300.00<br>Limit                               | Margir                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000.00       |
| 10 WWW.                                  | Frequ                                     | 60.00<br>ency<br>1z)                     | Rea<br>(dB                                                                                       | ading                         | Factor                               | Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300.00<br>Limit                               | Margir                                       | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000.00       |
| 110 -100 -220 30.000 NO.                 | Frequ<br>(MF                              | 60.00<br>ency<br>Hz)                     | Rea<br>(dB                                                                                       | ading<br>BuV)                 | Factor<br>(dB/m)                     | Level<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Limit (dBuV/m)                                | Margir<br>(dB)                               | Detector peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P/F           |
| 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | Frequ<br>(MH<br>37.8                      | 60.00<br>ency<br>Hz)<br>121<br>303       | Rea<br>(dB<br>38                                                                                 | ading<br>BuV)                 | Factor (dB/m)                        | Level<br>(dBuV/m)<br>14.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300.00<br>Limit<br>(dBuV/m)<br>40.00          | Margir<br>(dB)                               | Detector peak peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P/F           |
| 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | Frequ<br>(MH<br>37.8<br>46.8              | ency<br>Hz)<br>121<br>303<br>806         | Rea<br>(dB<br>38<br>37<br>38                                                                     | ading<br>BuV)<br>3.04         | Factor (dB/m) -23.06 -22.71          | Level<br>(dBuV/m)<br>14.98<br>14.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300.00<br>Limit<br>(dBuV/m)<br>40.00<br>40.00 | Margir<br>(dB)<br>-25.02                     | Detector peak peak peak peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P/F           |
| No. 10 No. 10 2 3                        | Frequ<br>(MF<br>37.8<br>46.83<br>71.56    | ency<br>Hz)<br>121<br>303<br>806<br>8735 | Rea<br>(dB<br>38<br>37<br>38<br>37                                                               | ading<br>BuV)<br>3.04<br>7.47 | Factor (dB/m) -23.06 -22.71 -24.69   | Level<br>(dBuV/m)<br>14.98<br>14.76<br>13.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Limit<br>(dBuV/m)<br>40.00<br>40.00           | Margir<br>(dB)<br>-25.02<br>-25.24<br>-26.33 | Detector peak peak peak peak peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P/F<br>P<br>P |

#### \*:Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB $\mu$ V/m)-Limit QPK(dB $\mu$ V/m)





Page: 30 of 32

### **Above 1GHz**

| Temperature:  | 26℃                     | Relative Humidity: | 54%    |
|---------------|-------------------------|--------------------|--------|
| Test Voltage: | DC 5V                   |                    |        |
| Ant. Pol.     | Horizontal              |                    |        |
| Test Mode:    | BLE(1Mbps) Mode TX 2402 | MHz                | MILLER |

| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|------------------|-------------------|-------|----------------|----------|-----|
| 1 * | 4803.831           | 40.48          | 1.38             | 41.86             | 54.00 | -12.14         | AVG      | Р   |
| 2   | 4803.935           | 50.08          | 1.38             | 51.46             | 74.00 | -22.54         | peak     | Р   |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 26℃                    | Relative Humidity: | 54% |
|---------------|------------------------|--------------------|-----|
| Test Voltage: | DC 5V                  |                    |     |
| Ant. Pol.     | Vertical               | THU TO             |     |
| Test Mode:    | BLE(1Mbps) Mode TX 240 | )2 MHz             | AMO |

| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|------------------|-------------------|-------|----------------|----------|-----|
| 1 * | 4803.628           | 40.48          | 1.38             | 41.86             | 54.00 | -12.14         | AVG      | Р   |
| 2   | 4803.877           | 50.24          | 1.38             | 51.62             | 74.00 | -22.38         | peak     | Р   |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 31 of 32

| Temperature:  | 26℃                   | Relative Humidity: | 54%   |
|---------------|-----------------------|--------------------|-------|
| Test Voltage: | DC 5V                 |                    |       |
| Ant. Pol.     | Horizontal            |                    | 11:30 |
| Test Mode:    | BLE(1Mbps) Mode TX 24 | 40 MHz             |       |

| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|------------------|-------------------|-------|----------------|----------|-----|
| 1 * | 4879.883           | 40.72          | 1.54             | 42.26             | 54.00 | -11.74         | AVG      | Р   |
| 2   | 4879.953           | 49.89          | 1.54             | 51.43             | 74.00 | -22.57         | peak     | Р   |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 26℃                     | Relative Humidity: | 54%    |
|---------------|-------------------------|--------------------|--------|
| Test Voltage: | DC 5V                   | 10137              |        |
| Ant. Pol.     | Vertical                |                    | and it |
| Test Mode:    | BLE(1Mbps) Mode TX 2440 | MHz                |        |

| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1 * | 4880.383           | 40.74          | 1.55             | 42.29             | 54.00             | -11.71         | AVG      | Р   |
| 2   | 4880.421           | 47.83          | 1.55             | 49.38             | 74.00             | -24.62         | peak     | Р   |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 32 of 32

| Temperature:  | <b>26</b> ℃     | Relative Humidity: | 54%    |
|---------------|-----------------|--------------------|--------|
| Test Voltage: | DC 5V           |                    | A FILL |
| Ant. Pol.     | Horizontal      |                    | 1.37   |
| Test Mode:    | BLE(1Mbps) Mode | TX 2480 MHz        |        |

| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1 * | 4959.801           | 40.66          | 1.81             | 42.47             | 54.00             | -11.53         | AVG      | Р   |
| 2   | 4960.225           | 48.62          | 1.81             | 50.43             | 74.00             | -23.57         | peak     | Р   |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | <b>26</b> ℃             | Relative Humidity: | 54% |
|---------------|-------------------------|--------------------|-----|
| Test Voltage: | DC 5V                   |                    |     |
| Ant. Pol.     | Vertical                | W.                 |     |
| Test Mode:    | BLE(1Mbps) Mode TX 2480 | MHz                | MA  |

| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1 * | 4959.854           | 40.65          | 1.81             | 42.46             | 54.00             | -11.54         | AVG      | Р   |
| 2   | 4959.914           | 50.22          | 1.81             | 52.03             | 74.00             | -21.97         | peak     | Р   |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

----END OF REPORT-----

