

FCC/IC - TEST REPORT

Report Number	:	68.950.22.0951	.01	Date of Issue:	February 10, 2023
Model / HVIN	<u>:</u>	MEVA0088			
Product Type	<u>:</u>	RADIO V_MET	ER		
Applicant	:	Raider Collection	ns Company	y Limited	
Address	<u>:</u>	Room 1003, 10	/F, Tower1, I	Lippo Centre, 89	Queensway, Admiralty,
		HONG KONG			
Manufacturer	<u>:</u>	Raider Collection	ns Company	y Limited	
Address	:	Room 1003, 10	/F, Tower1, I	Lippo Centre, 89	Queensway, Admiralty,
		HONG KONG			
Factory	:	Raider Collection	ns Company	y Limited	
Address	:	Room 1003, 10	/F, Tower1, I	Lippo Centre, 89	Queensway, Admiralty,
		HONG KONG			
Test Result	:	■ Positive	☐ Negative	•	
Total pages including Appendices	:_	57			
Any use for advertising purposes must	be g	granted in writing. Th	is technical rep	oort may only be quo	ted in full. This report is the result

Any use for advertising purposes must be granted in writing. This technical report may only be quoted in full. This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production. For further details, please see testing and certification regulation, chapter A-3.4.

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory	3
3	Description of the Equipment Under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Test Setups	8
8	Systems Test Configuration	9
9	Technical Requirement	10
9.1	1 Conducted Emission	10
9.2	2 Conducted Peak Output Power & EIRP	13
9.3	3 20 dB Bandwidth and 99% Occupied Bandwidth	15
9.4	4 Carrier Frequency Separation	25
9.5	5 Number of Hopping Frequencies	28
9.6	6 Dwell Time	31
9.7	7 Spurious RF Conducted Emissions	35
9.8	8 Band Edge Testing	46
9.9	9 Spurious Radiated Emissions for Transmitter	52
10	Test Equipment List	55
11	System Measurement Uncertainty	57

2 Details about the Test Laboratory

Details about the Test Laboratory

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12 & 13, Zhiheng Wisdomland Business Park, Guankou Erlu, Nantou,

Nanshan District, Shenzhen 518052, P.R. China

Telephone: 86 755 8828 6998 Fax: 86 755 828 5299

FCC Registration

No.:

514049

FCC Designation

Number:

CA5009

IC Registration

10320A

No.:

3 Description of the Equipment Under Test

Product: RADIO V_METER

Model no.: MEVA0088

Hardware Version Identification

No. (HVIN)

MEVA0088

Firmware Version Identification

No

V1.0

FCC ID: 2A8QHMEVA0088

IC: 29634-MEVA0088

Options and accessories: N/A

Rating: Rated Input: 12V/24VDC

RF Transmission Frequency: 2402MHz-2480MHz

No. of Operated Channel: 79

Modulation: GFSK, π/4-DQPSK, 8DPSK

Antenna Type: Integrated antenna

Antenna Gain: -0.58dBi

Description of the EUT: The Equipment Under Test (EUT) is a RADIO V_METER which support

Bluetooth function (BR+EDR)

NOTE 1: The above EUT's information is declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

4 Summary of Test Standards

Test Standards				
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES			
10-1-2021 Edition	Subpart C - Intentional Radiators			
RSS-Gen Issue 5 April 2018 + A1 + A2	General Requirements for Compliance of Radio Apparatus			
RSS-247 Issue 2 February 2017	Digital Transmission Systems (DTSS), Frequency Hopping Systems (FHSS) and License-Exempt Local Area Network (LE-LAN) Devices			

All the test methods were according to KDB 558074 D01 15.247 Meas Guidance v05r02 Measurement Guidance and ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements					
FCC Part 15 Subpart C/ R	SS-247 Issue 2/RSS-Gen Issue 5				
Test Condition	T	Pages	Test Result		
§15.207& RSS-Gen 8.8	Conducted emission AC power port	10	Pass		
§15.247(b)(1) & RSS-247 5.4(b)	Conducted peak output power	13	Pass		
RSS-247 5.4(b)	Equivalent Isotropic Radiated Power	13	Pass		
§15.247(e) & RSS-247 5.2(b)	Power spectral density		N/A		
§15.247(a)(2) & RSS-247 5.2(a) & RSS-Gen 6.7	6dB bandwidth and 99% Occupied Bandwidth		N/A		
§15.247(a)(1) & RSS-247 5.1(a) & RSS-Gen 6.7	20dB bandwidth and 99% Occupied Bandwidth	15	Pass		
§15.247(a)(1) & RSS-247 5.1(b)	Min. of Hopping Channel Carrier Frequency Separation	25	Pass		
§15.247(a)(1)(iii) & RSS- 247 5.1(d)	Min number of hopping frequencies	28	Pass		
§15.247(a)(1)(iii) & RSS- 247 5.1(d)	Dwell Time - Average Time of Occupancy	31	Pass		
§15.247(d) & RSS-247 5.5	Spurious RF conducted emissions	34	Pass		
§15.247(d) & RSS-247 5.5	Band edge	45	Pass		
§15.247(d) & §15.209 & RSS-247 5.5 & RSS-Gen 6.13	Spurious radiated emissions for transmitter	51	Pass		
§15.203 & RSS-Gen 6.8	Antenna requirement	See note 2	Pass		

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an external antenna and manufacturer will stick it down with glue, which gain is -0.5dBi. In accordance to §15.203 & RSS-Gen 6.8, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2A8QHMEVA008, IC: 29634 MEVA0088, complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules and RSS-247, RSS-GEN.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed

The Equipment Under Test

- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date: July 01, 2022

Testing Start Date: August 02, 2022

Testing End Date: August 24, 2022

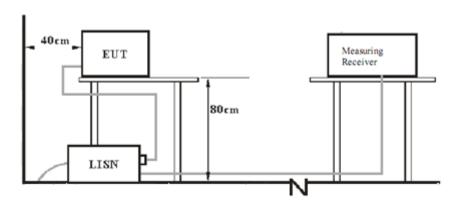
- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by:

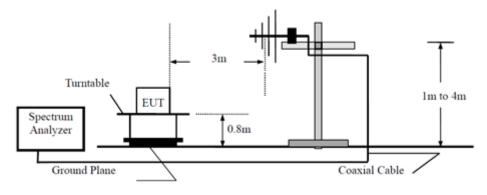
John Zhi

Project Manager

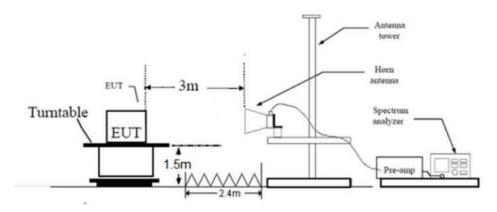
Prepared by:


Grace Gao Project Engineer Tested by:

Carry Cai Test Engineer



7 Test Setups


7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups Below 1GHz

Above 1GHz

7.3 Conducted RF test setups

8 Systems Test Configuration

Auxiliary Equipment Used during Test:

Description	Manufacturer	Model NO.	S/N
Adaptor	Dong Guan	AC05-1201000EU-	1
(Input: 100-240VAC, 0.4A, 50-60Hz	Qiangde Electronics	2	
Output: 12.0VDC, 1.0A)	Technology		
	Co.,Ltd		
Portable DC power source	UNI-T	UTP3303-II	C212682714
(0~64V/0~3A)			
Mobile Phone	HUAWEI	NOVA 8 SE	IMEI 862089068600808
SD card	SANDISK	16G	BL2010450862Z
USB Memory Card	SANDISK	Cruzer Glide 3.0	/

Cables Used During Test:

Cable	Length	Shielded/unshielded	With / without ferrite
Aux in Cable	80cm	Unshielded	Without ferrite

The system was configured to hopping mode and non-hopping mode.

Hopping mode: typical working mode (normal hopping status)

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power

9 Technical Requirement

9.1 Conducted Emission

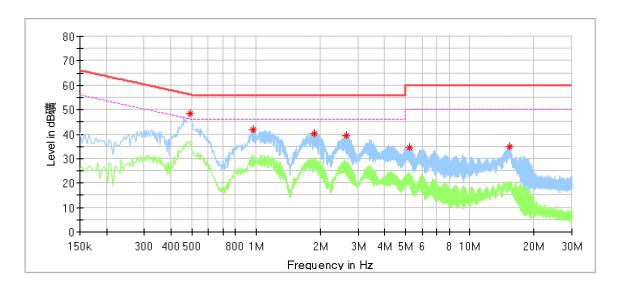
Test Method

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. Both sides of AC line were checked for maximum conducted interference.
- 6. The frequency range from 150 kHz to 30 MHz was searched.
- 7. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Limit

	Frequency	QP Limit	AV Limit	
_	MHz	dΒμV	dΒμV	
	0.150-0.500	66-56*	56-46*	
	0.500-5	56	46	
	5-30	60	50	

^{*}Decreases with the logarithm of the frequency.


Conducted Emission

Product Type : RADIO V_METER M/N : MEVA0088

Operating Condition : Normal Working

Test Specification : Line

Comment : 120VAC/60Hz (Supplied by adapter)

Critical_Freqs

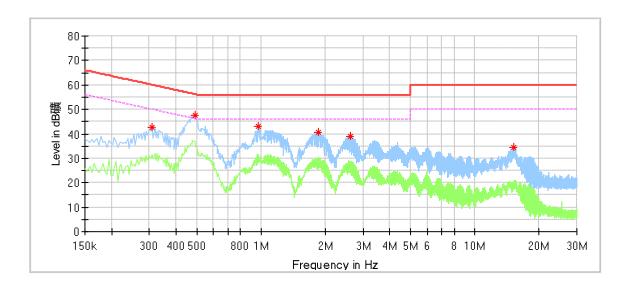
Frequency	MaxPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)
0.490000	48.30		56.17	7.87	L1	9.20
0.966000	41.76	-	56.00	14.24	L1	9.20
1.866000	40.40	-	56.00	15.60	L1	9.22
2.642000	39.32	-	56.00	16.68	L1	9.25
5.218000	34.62	-	60.00	25.38	L1	9.31
15.370000	34.89	-	60.00	25.11	L1	9.39

Final_Result

Frequency	QuasiPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)

Remark:

Max Peak= Read level + Corrector factor Correct factor=cable loss + LISN factor


Conducted Emission

Product Type : RADIO V_METER

M/N : MEVA0088
Operating Condition : Normal Working

Test Specification : Neutral

Comment : 120VAC/60Hz (Supplied by adapter)

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.310000	42.80		59.97	17.17	N	9.39
0.490000	47.60		56.17	8.57	N	9.39
0.974000	43.09		56.00	12.91	N	9.39
1.858000	40.47		56.00	15.53	N	9.41
2.606000	38.92		56.00	17.08	N	9.44
15.282000	34.56		60.00	25.44	N	9.64

Final_Result

Frequency	QuasiPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)
		I				

Remark:

Max Peak= Read level + Corrector factor Correct factor=cable loss + LISN factor

9.2 Conducted Peak Output Power & EIRP

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following test receiver settings:

 Span = approximately 5 times the 20dB bandwidth, centered on a hopping channel RBW > the 20dB bandwidth of the emission being measured, VBW≥RBW,

 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power and record the results in the test report.
- 5. Repeat above procedures until all frequencies measured were complete.

Limits

According to §15.247 (b) (1) & RSS-247 5.4(b), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

According to & RSS-247 5.4(b), EIRP limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤4	≤36

Conducted Peak Output Power & EIRP

Bluetooth Mode GFSK modulation Test Result

Frequency MHz	Conducted Peak Output Power dBm	Antenna Gain dBi	EIRP dBm	Result
Low channel 2402MHz	-2.7	-0.58	-3.2	Pass
Middle channel 2441MHz	-2.28	-0.58	-2.86	Pass
High channel 2480MHz	-2.21	-0.58	-2.79	Pass

Bluetooth Mode $\pi/4$ -DQPSK modulation Test Result

Frequency MHz	Conducted Peak Output Power dBm	Antenna Gain dBi	EIRP dBm	Result
Low channel 2402MHz	-1.82	-0.58	-2.40	Pass
Middle channel 2441MHz	-1.44	-0.58	-2.02	Pass
High channel 2480MHz	-1.4	-0.58	-1.98	Pass

Bluetooth Mode 8DPSK modulation Test Result

Frequency MHz	Conducted Peak Output Power dBm	Antenna Gain dBi	EIRP dBm	Result
Low channel 2402MHz	-1.43	-0.58	-2.01	Pass
Middle channel 2441MHz	-1.05	-0.58	-1.63	Pass
High channel 2480MHz	-0.94	-0.58	-1.52	Pass

9.3 20 dB Bandwidth and 99% Occupied Bandwidth

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Use the following test receiver settings: Span = approximately 5 times the 20dB bandwidth, centered on a hopping channel RBW > the 20dB bandwidth of the emission being measured, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth. Record the results.
- 5. Repeat above procedures until all frequencies measured were complete.

			• •
	ı	m	18
_	ı		ıı

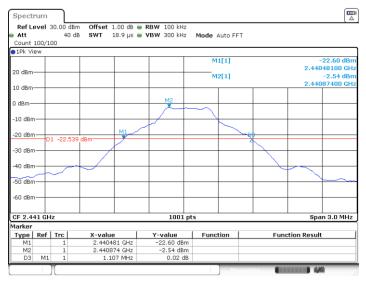
Limit [kHz]
N/A



Bluetooth Mode GFSK Modulation test result

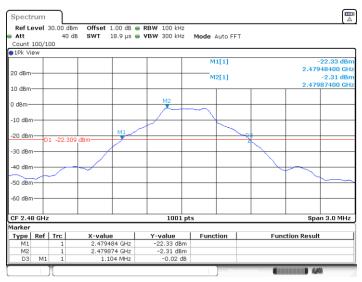
Frequency	20 dB Bandwidth	99% Bandwidth	Limit	Result
MHz	MHz	MHz	MHz	
2402	1.107	0.857		Pass
2441	1.107	0.86		Pass
2480	1.104	0.86		Pass

Low channel 2402MHz Spectrum Ref Level 30.00 dBm Att 40 dB Offset 1.00 dB ● RBW 100 kHz SWT 18.9 µs ● VBW 300 kHz 40 dB Mode Auto FFT M1[1] 2.40148100 GH 20 dBm M2[1] 10 dBm -30 dBm 40 dBm -50 dBm 1001 pts CF 2.402 GHz Type | Ref | Trc |


Date: 19.JUL.2022 18:07:18

Date: 19.JUL.2022 18:07:29

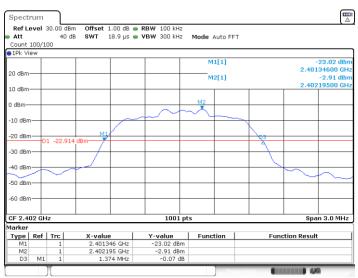
Middle channel 2441MHz


Date: 19.JUL.2022 18:56:28


Date: 19.JUL.2022 18:56:39

High channel 2480MHz

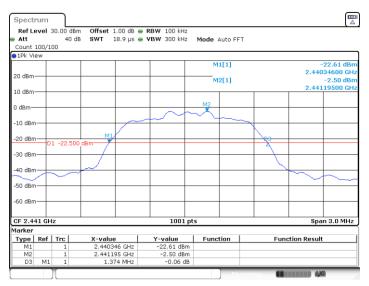
Date: 20.JUL.2022 10:28:05


Date: 20.JUL.2022 10:28:16

Bluetooth Mode π/4-DQPSK Modulation test result

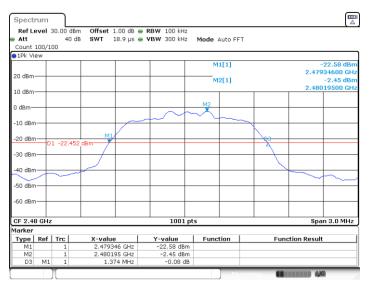
Frequency	20 dB Bandwidth	99% Bandwidth	Limit	Result
MHz	MHz	MHz	MHz	
2402	1.374	1.175		Pass
2441	1.374	1.175		Pass
2480	1.374	1.175		Pass

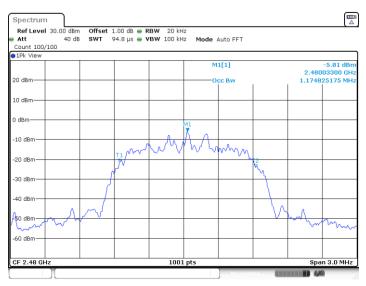
Low channel 2402MHz


Date: 20.JUL.2022 10:30:00

Date: 20.JUL.2022 10:30:11

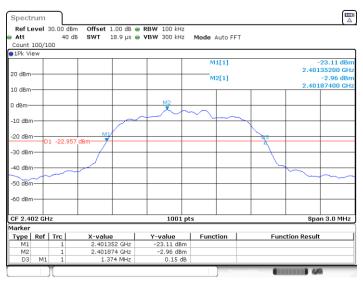
Middle channel 2441MHz


Date: 20.JUL.2022 10:33:43


Date: 20.JUL.2022 10:33:5

High channel 2480MHz

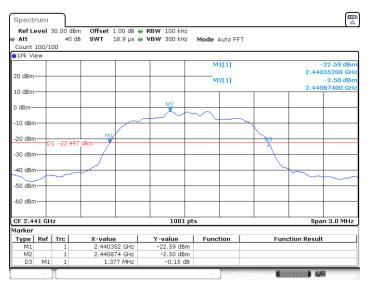
Date: 20.JUL.2022 10:37:01


Date: 20.JUL.2022 10:37:1

Bluetooth Mode 8DPSK Modulation test result

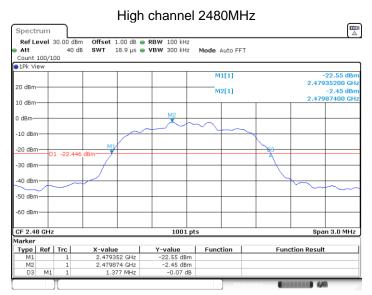
Frequency	20 dB Bandwidth	99% Bandwidth	Limit	Result
MHz	MHz	MHz	MHz	
2402	1.374	1.181		Pass
2441	1.377	1.184		Pass
2480	1.377	1.187		Pass

Low channel 2402MHz


Date: 20.JUL.2022 10:38:33


Date: 20.JUL.2022 10:38:43

Middle channel 2441MHz



Date: 20.JUL.2022 10:39:56

Date: 20.JUL.2022 10:40:0

Date: 20.JUL.2022 10:44:09

Date: 20.JUL.2022 10:44:20

9.4 Carrier Frequency Separation

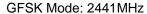
Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- 3. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 4. By using the Max-Hold function record the separation of two adjacent channels.
- 5. Measure the frequency difference of these two adjacent channels by spectrum analyzer marker function. Record the results.
- 6. Repeat above procedures until all frequencies measured were complete.

Limit

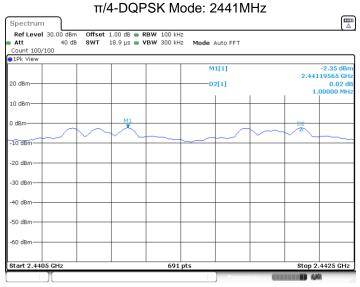
Limit
kHz
≥25KHz or 2/3 of the 20 dB bandwidth which is greater

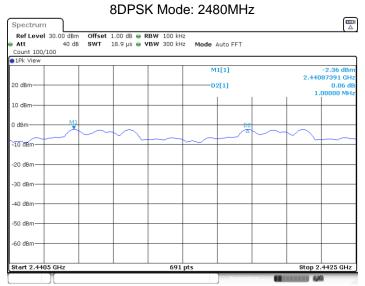
Limit


Frequency		2/3 of 20 dB Bandwidth
	MHz	kHz
	2402	887
	2441	940
	2480	940

Carrier Frequency Separation

Test result: The measurement was performed with the typical configuration (normal hopping status).


Modulation	Frequency	Carrier Frequency Separation	Result
	MHz	MHz	
GFSK	2441	0.783	Pass
π/4-DQPSK	2441	1	Pass
8DPSK	2441	1	Pass



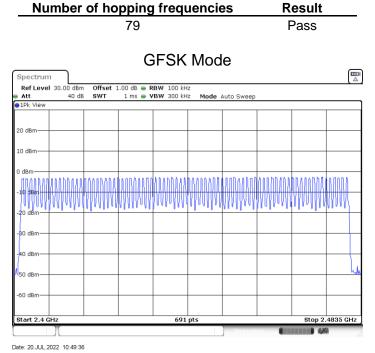
Carrier Frequency Separation

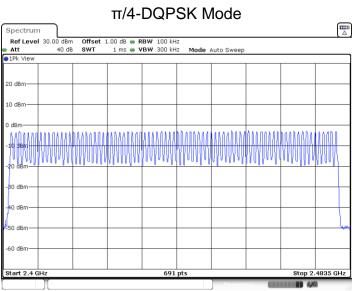
Date: 20.JUL.2022 17:24:21

Date: 20.JUL.2022 17:28:55

9.5 Number of Hopping Frequencies

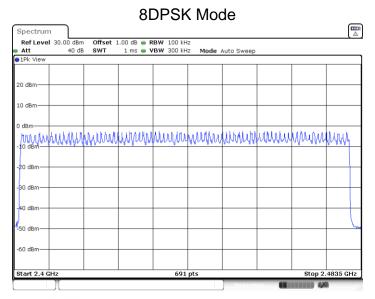
Test Method


- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- 3. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 4. Set the spectrum analyzer on Max-Hold Mode,
- 5. Record all the signals from each channel until each one has been recorded.
- 6. Repeat above procedures until all frequencies measured were complete.


Limit
number
 ≥ 15

Number of Hopping Frequencies

Test result: The measurement was performed with the typical configuration (normal hopping status), and the total hopping channels is constant for the all modulation mode according with the Bluetooth Core Specification.



Date: 20.JUL.2022 10:54:39

Number of Hopping Frequencies

Date: 20.JUL.2022 10:59:52

9.6 Dwell Time

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- Use the following spectrum analyzer settings: RBW: 1MHz; VBW: 1MHz; SPAN: Zero Span Set the spectrum analyzer on Max-Hold Mode,
- 4. Adjust the center frequency of spectrum analyzer on any frequency be measured.
- 5. Measure the Dwell Time by spectrum analyzer Marker function. Record the results. Dwell Time = Burst Width * Total Hops
- 6. Repeat above procedures until all frequencies measured were complete.

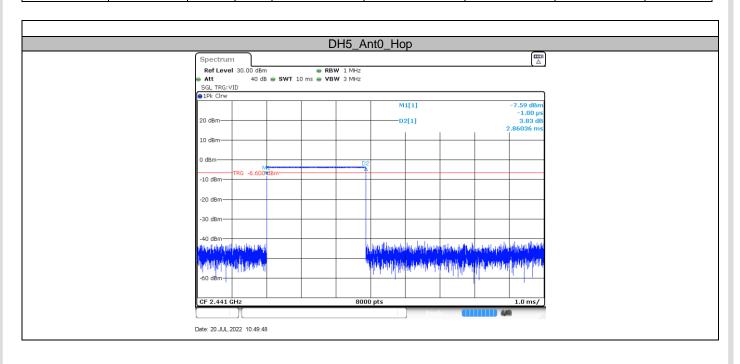
Limit

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

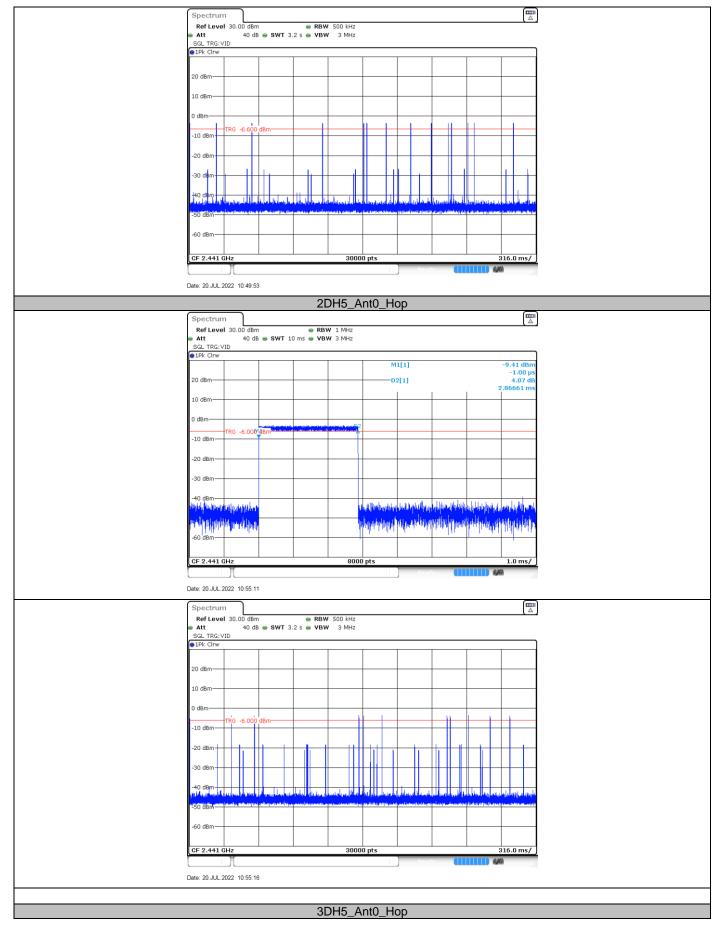
Dwell Time

Dwell time

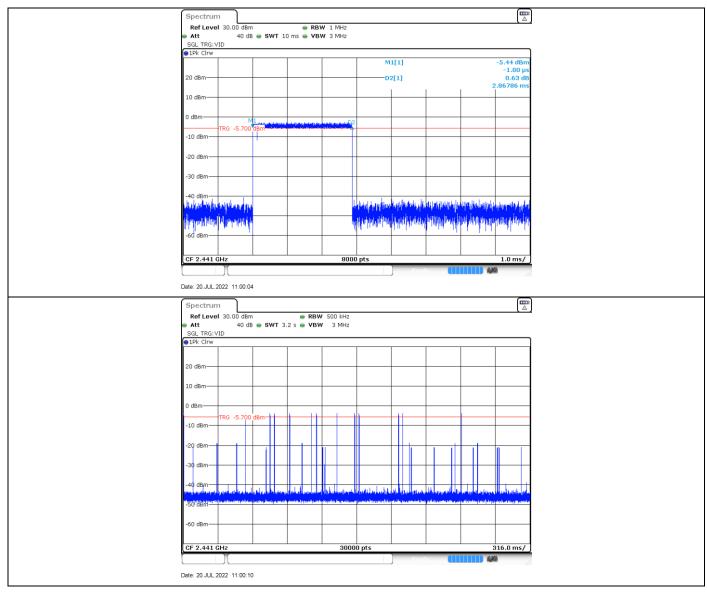
The maximum dwell time shall be 0.4 s.


According to the Bluetooth Core Specification, the worse result (DH5 mode) was reported to show compliance.

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows: The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 79 [ch] = 31.6 [s*ch];


The burst width, which is directly measured, refers to the duration on one channel hop.

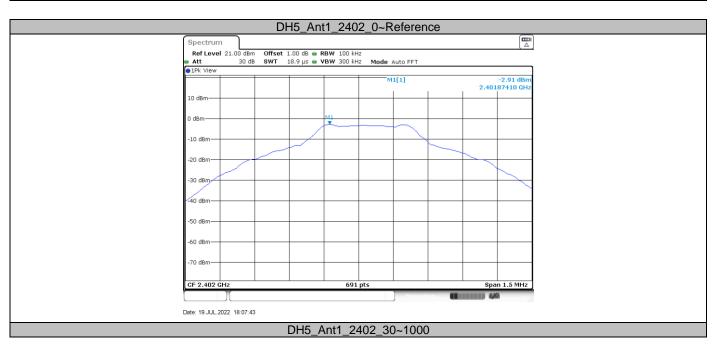
Test Result


Test Mode	Antenna	Channel	Burst Width (ms)	Total Hops	Result (s)	Limit (s)	Verdict
DH5	Ant0	Нор	2.86	130	0.372	<=0.4	PASS
2DH5	Ant0	Нор	2.87	100	0.287	<=0.4	PASS
3DH5	Ant0	Нор	2.87	120	0.344	<=0.4	PASS

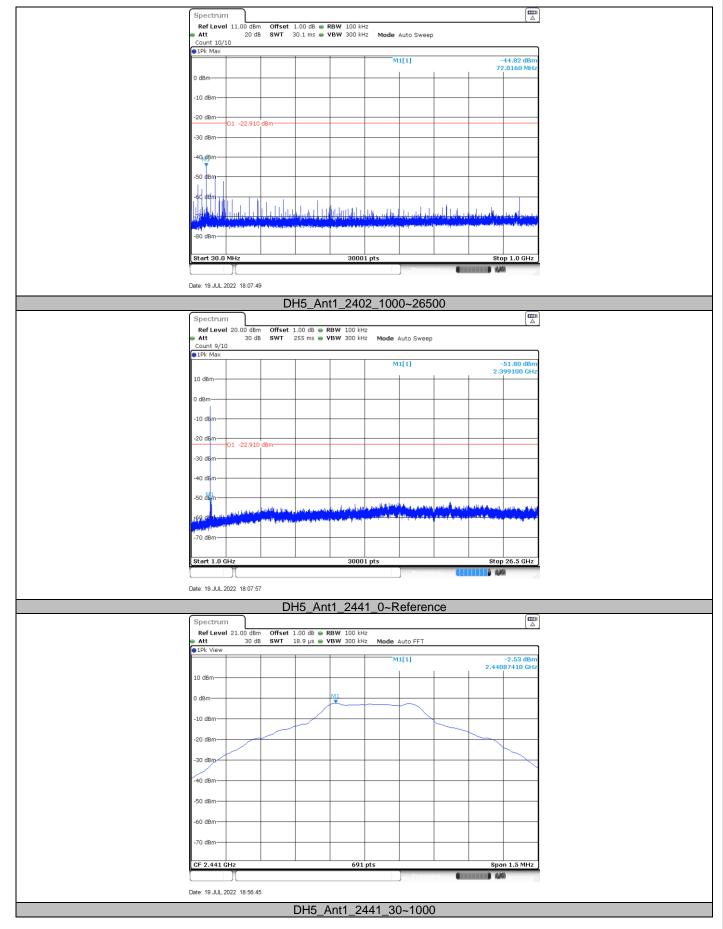
9.7 Spurious RF Conducted Emissions

Test Method

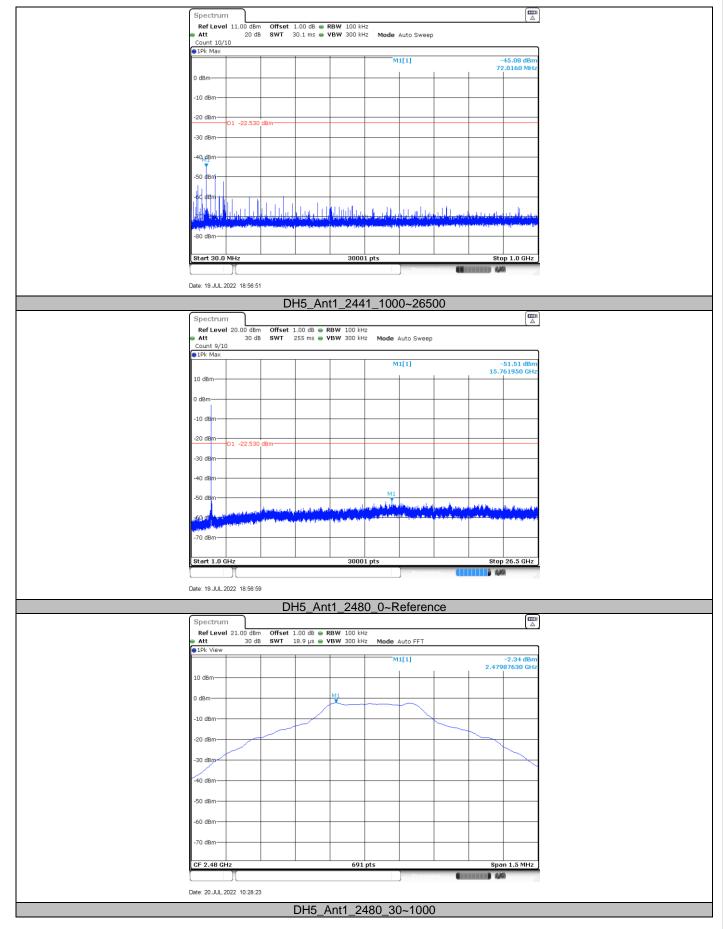
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency

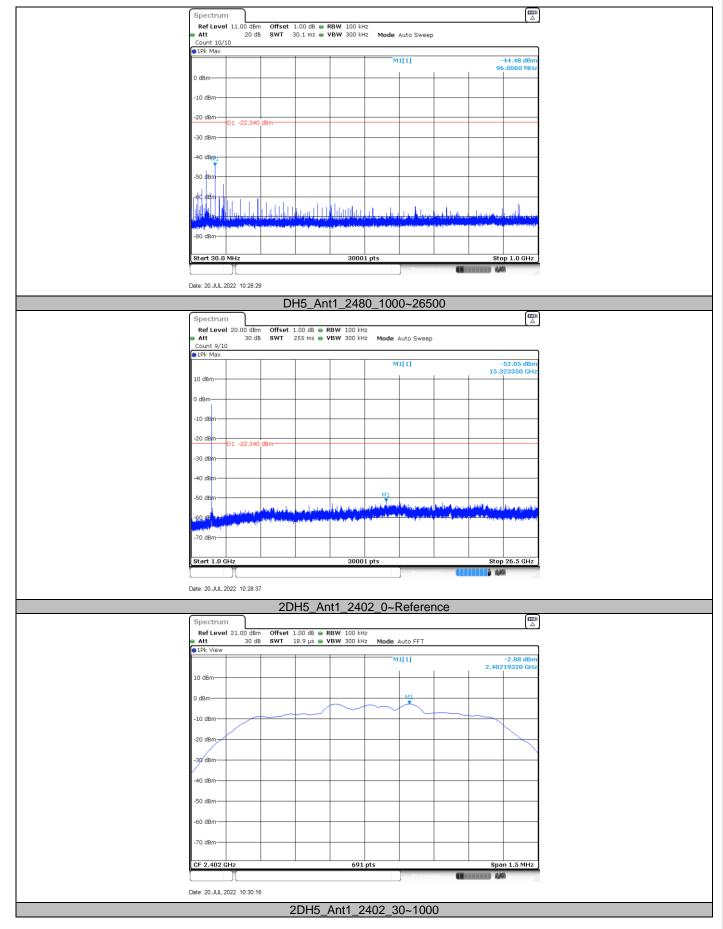

Limit

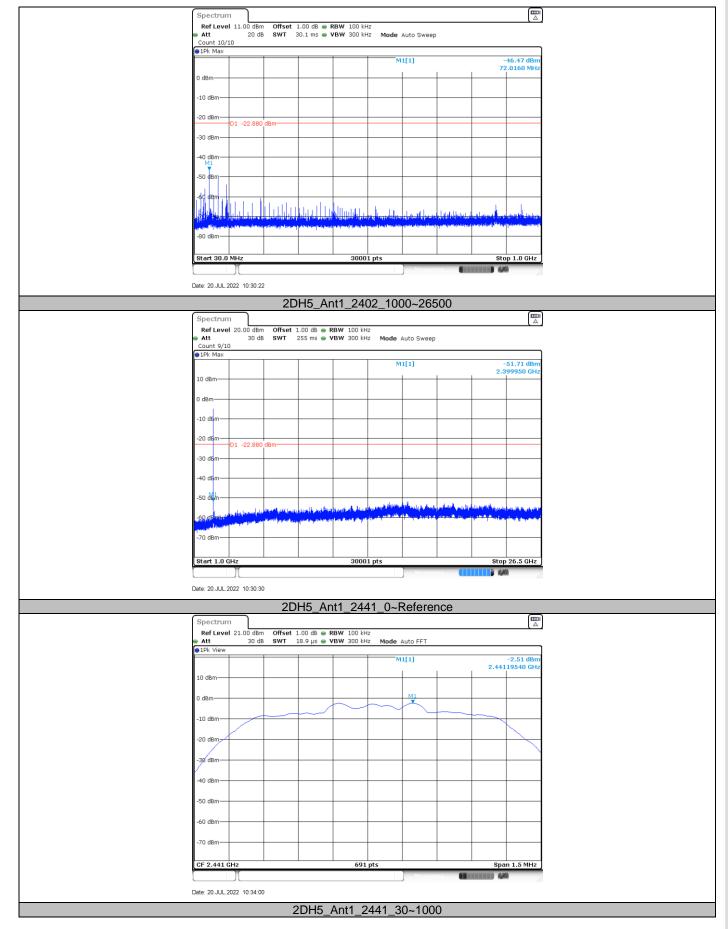
Frequency Range MHz	Limit (dBc)
 30-25000	-20

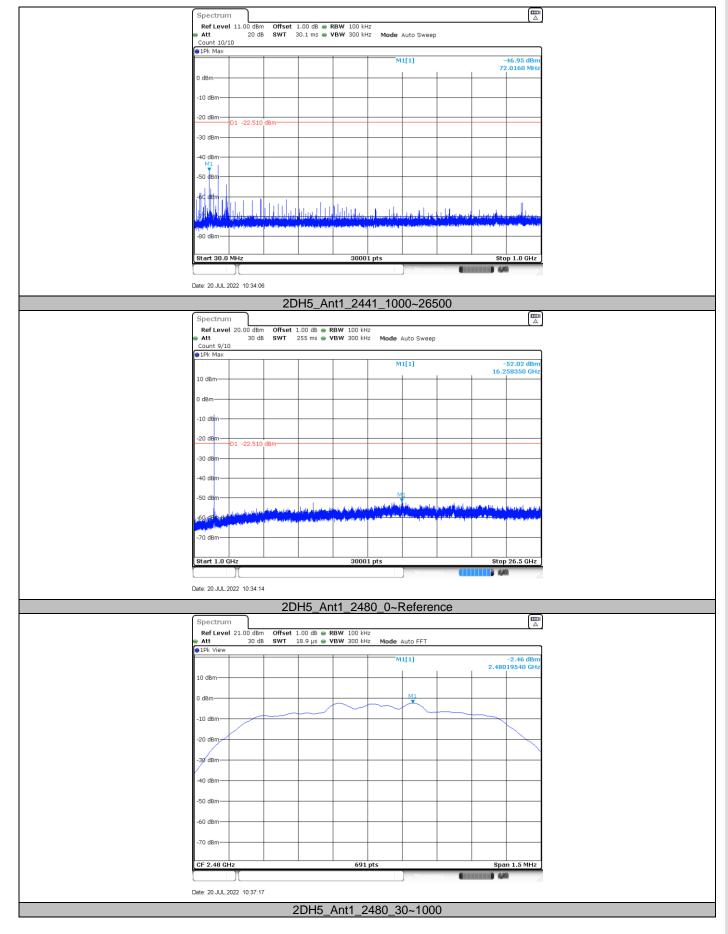


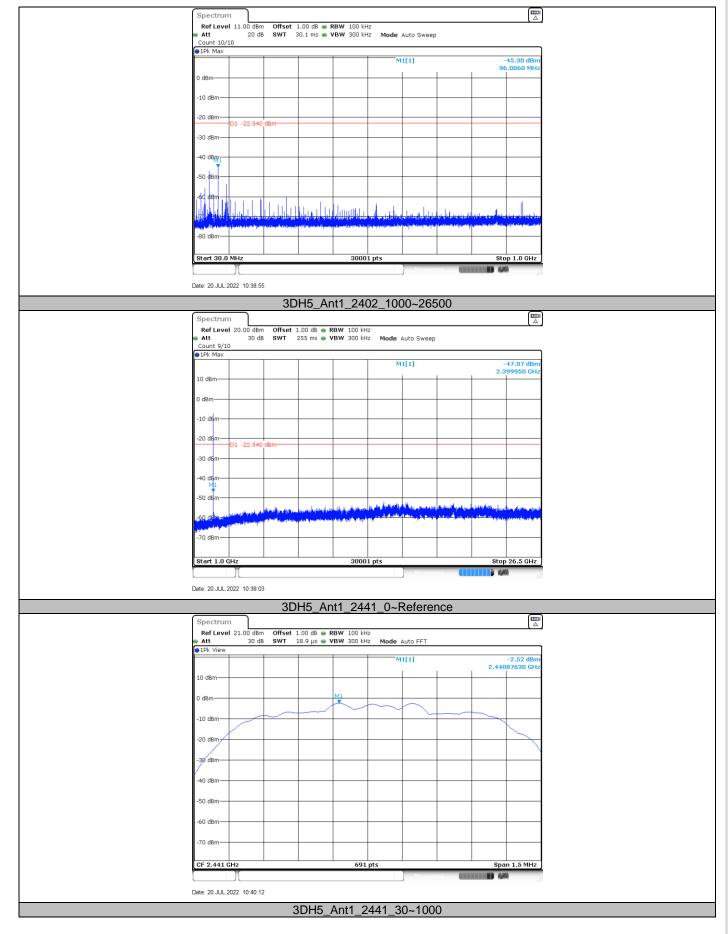
Spurious RF Conducted Emissions

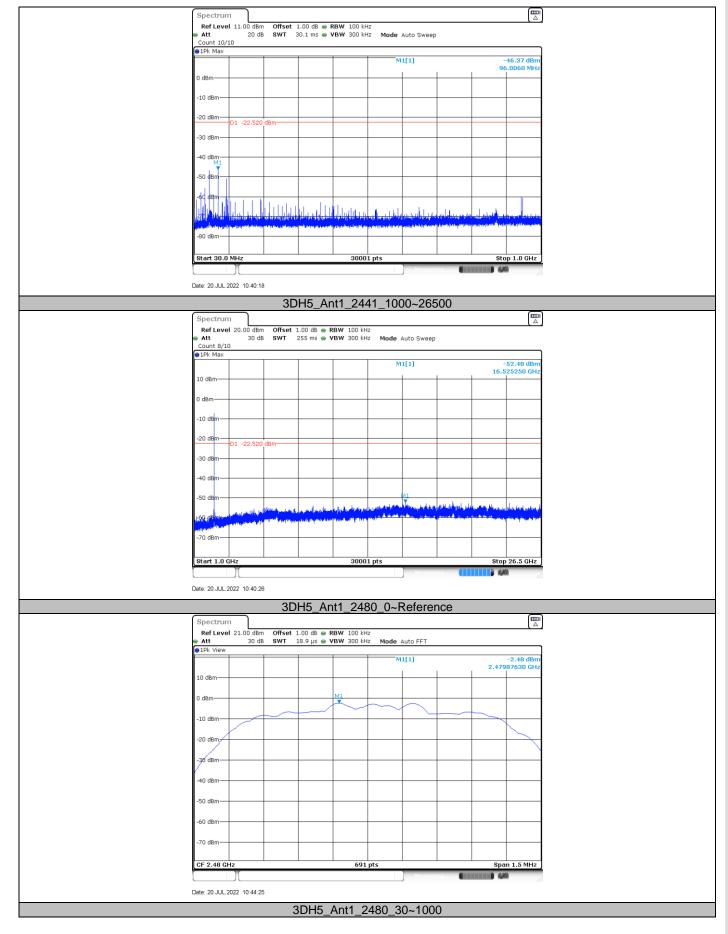

Test Mode	Antenna	Channel	Frequency Range	Reference	Result	Limit	Verdict
		(MHz)	(MHz)	Level	(dBm)	(dBm)	
			Reference	-2.91		-2.91	PASS
	Ant0	2402	30~1000	-44.82	<=-22.91	-44.82	PASS
			1000~26500	-51.8	<=-22.91	-51.8	PASS
		2441	Reference	-2.53		-2.53	PASS
DH5			30~1000	-45.37	<=-22.53	-45.37	PASS
			1000~26500	-51.51	<=-22.53	-51.51	PASS
		2480	Reference	-2.34		-2.34	PASS
			30~1000	-44.48	<=-22.34	-44.48	PASS
			1000~26500	-52.05	<=-22.34	-52.05	PASS
			Reference	-2.88		-2.88	PASS
		2402	30~1000	-46.47	<=-22.88	-46.47	PASS
	Ant0		1000~26500	-51.71	<=-22.88	-51.71	PASS
		2441	Reference	-2.51		-2.51	PASS
2DH5			30~1000	-46.95	<=-22.51	-46.95	PASS
			1000~26500	-52.02	<=-22.51	-52.02	PASS
		2480	Reference	-2.46		-2.46	PASS
			30~1000	-45.92	<=-22.46	-45.92	PASS
			1000~26500	-52.27	<=-22.46	-52.27	PASS
			Reference	-2.94		-2.94	PASS
		2402	30~1000	-45.3	<=-22.94	-45.3	PASS
	Ant0		1000~26500	-47.07	<=-22.94	-47.07	PASS
		2441	Reference	-2.52		-2.52	PASS
3DH5			30~1000	-46.37	<=-22.52	-46.37	PASS
			1000~26500	-52.48	<=-22.52	-52.48	PASS
		2480	Reference	-2.48		-2.48	PASS
			30~1000	-47.07	<=-22.48	-47.07	PASS
			1000~26500	-52.57	<=-22.48	-52.57	PASS

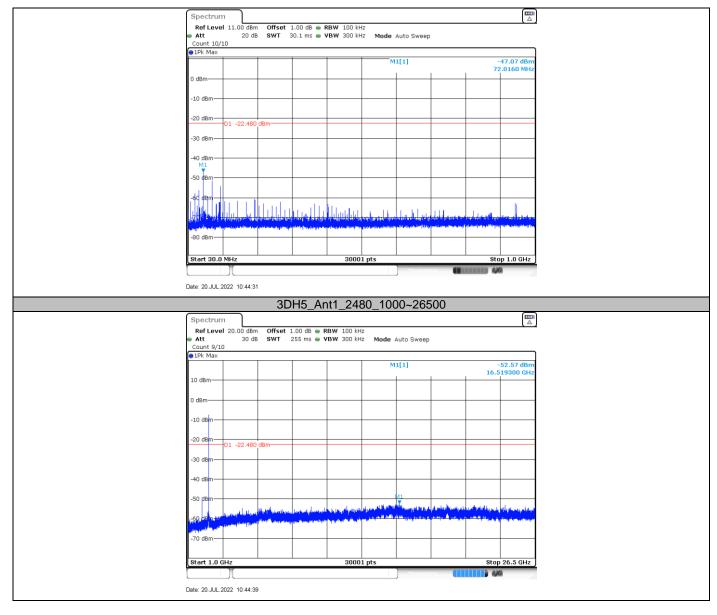








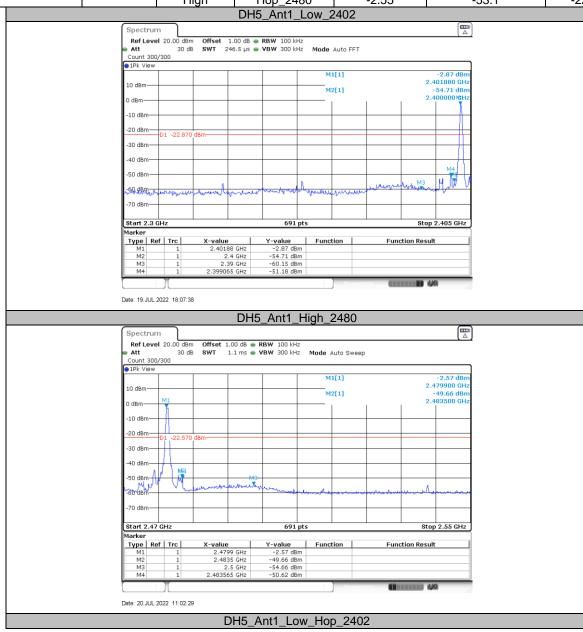




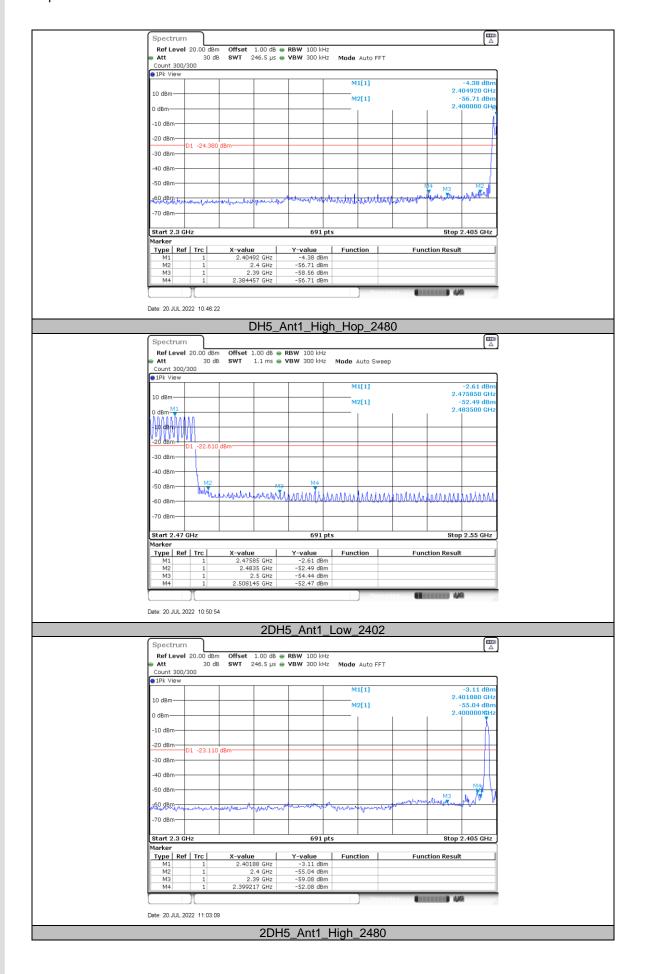
9.8 Band Edge Testing

Test Method

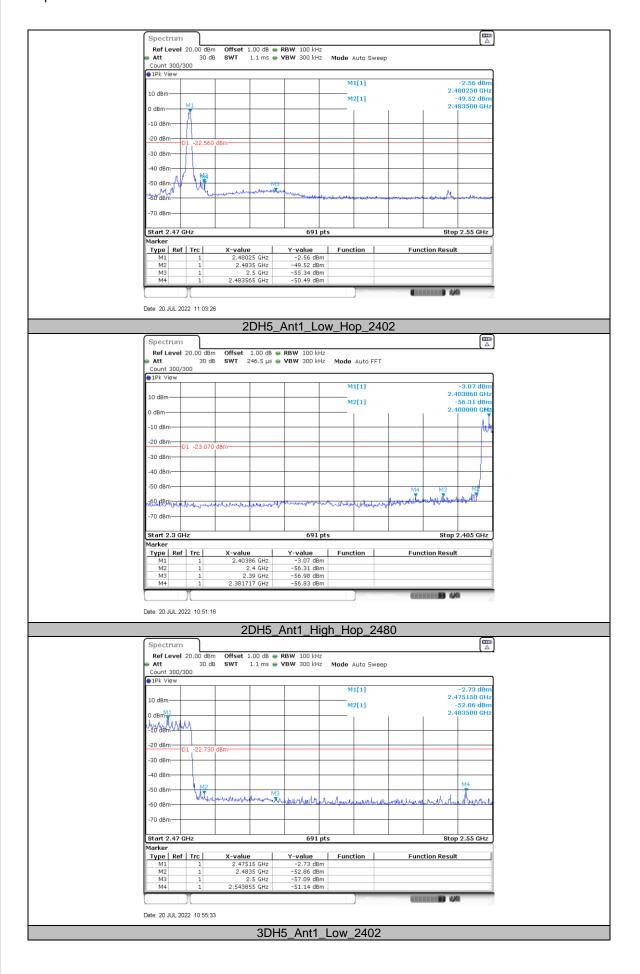
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency
- 6. Set to the maximum power setting and enable the EUT hopping mode, repeat the test.


Limit:

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.



Band Edge


Test Mode	Antenna	Channel	Channel (MHz)	Reference Level (dBm)	Result (dBm)	Limit (dBm)	Verdict
		Low	2402	-2.87	-51.18	<=-22.87	PASS
DH5	Ant0	High	2480	-2.57	-50.62	<=-22.57	PASS
Dilio		Low	Hop_2402	-4.38	-56.71	-24.38	PASS
		High	Hop_2480	-2.61	-52.47	-22.61	PASS
	Ant0	Low	2402	-3.11	-52.08	<=-23.11	PASS
2DH5		High	2480	-2.56	-50.49	<=-22.56	PASS
ZDHS	Anto	Low	Hop_2402	-3.07	-56.83	-23.07	PASS
		High	Hop_2480	-2.73	-51.14	-22.73	PASS
		Low	2402	-2.98	-51.39	<=-22.98	PASS
3DH5	Ant0	High	2480	-2.56	-50.57	<=-22.56	PASS
งบทอ		Low	Hop_2402	-3.31	-57.98	-23.31	PASS
		High	Hop_2480	-2.55	-53.1	-22.55	PASS





9.9 Spurious Radiated Emissions for Transmitter

Test Method

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. Use the following spectrum analyzer settings According to C63.10:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for f ≥1 GHz for peak measurement.

For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum

power control level for the tested mode of operation.

7. Repeat above procedures until all frequencies measured were complete.

Note:

- 1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.
- 3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)).
- 4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.

Spurious Radiated Emissions for Transmitter

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205 & RSS-GEN 8.10, must comply with the radiated emission limits specified in section 15.209 & RSS-Gen 6.13.

Frequency	Field Strength	Field Strength	Detector
MHz	uV/m	dBμV/m	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

The only worse case (which is subject to the maximum EIRP, 8DPSK mode, 2480MHz) test result is listed in the report.

Transmitting spurious emission test result as below:

DPSK Modulation 2480MHz Test Result

Frequency	Frequency	Emission Level	Polariz ation	Limit	Detector	Margin	Correct factor	Result
Band	MHz	dBuV/m		dBμV/m		dBuV/m	(dB/m)	
	50.531667	21.65	Н	40.00	QP	18.35	20.88	Pass
	100.702222	19.53	Н	40.00	QP	23.97	18.53	Pass
	201.743889	20.51	Н	40.00	QP	22.99	18.21	Pass
	269.482222	21.71	Н	43.50	QP	24.29	20.05	Pass
	583.816111	31.48	Н	46.00	QP	14.52	27.12	Pass
	883.222778	35.08	Н	46.00	QP	10.92	31.42	Pass
30-	Other Frequencies		Н		QP			Pass
1000MHz	55.705000	20.89	V	40.00	QP	19.11	20.32	Pass
	95.097778	20.31	V	40.00	QP	23.19	17.91	Pass
	194.361111	21.13	V	40.00	QP	22.37	18.53	Pass
	293.193333	23.07	V	40.00	QP	22.93	20.64	Pass
	365.458333	24.97	V	40.00	QP	21.03	22.27	Pass
	916.202778	35.92	V	43.50	QP	10.08	31.86	Pass
	Other Frequencies		V		QP			Pass
	4167.000000	47.02	Н	74	PK	26.98	2.07	Pass
	5275.500000	49.62	Н	74	PK	24.38	5.27	Pass
	9914.000000	46.41	Н	74	PK	27.59	13.14	Pass
4000	Other frequency		Н	74	PK			Pass
1000- 25000MHz	2992.000000	43.78	V	74	PK	30.22	-0.86	Pass
ZJUUUIVIITZ	5153.500000	49.54	V	74	PK	24.46	5.26	Pass
	10224.50000 0	45.90	V	74	PK	28.10	13.92	Pass
	Other frequency		V	74	PK			Pass

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205 & RSS-GEN 8.10.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Corrected Amplitude = Read level + Corrector factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

10 Test Equipment List

List of Test Instruments

Radiated Spurious Emission Test

adiated Spurious Emission rest						
DESCRIPTION	MANUFACTURE R	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	68-4-74-14-003	101031	1	2023-5-27
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	68-4-80-14-003	708	1	2023-6-20
Horn Antenna	Rohde & Schwarz	HF907	68-4-80-14-004	102295	1	2023-7-20
Wideband Horn Antenna	Q-PAR	QWH-SL- 18-40-K-SG	68-4-80-14-008	12827	1	2023-7-12
Loop Antenna	Rohde & Schwarz	HFH2-Z2	68-4-80-14-006	100398	1	2023-5-28
Pre-amplifier	Rohde & Schwarz	SCU 18	68-4-29-14-001	102230	1	2023-5-28
Pre-amplifier	Rohde & Schwarz	SCU 40A	68-4-29-14-002	100432	1	2023-7-27
Fully Anechoic Chamber	TDK	8X4X4	68-4-90-14-002		2	2023-9-2
Test software	Rohde & Schwarz	EMC32	68-4-90-14-002- A10	Version 9.15.00	N/A	N/A

Conducted Emission 2# Test

Conducted Emission 2# Test						
DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	68-4-74-19- 002	102590	1	2023-5-27
LISN	Rohde & Schwarz	ENV216	68-4-87-19- 001	102472	1	2023-5-27
ISN	Rohde & Schwarz	ENY81	68-4-87-14- 003	100177	1	2023-5-27
ISN	Rohde & Schwarz	ENY81- CA6	68-4-87-14- 004	101664	1	2023-5-27
High Voltage Probe	Schwarzbeck	TK9420(VT 9420)	68-4-27-14- 001	9420-584	1	2023-5-27
RF Current Probe	Rohde & Schwarz	EZ-17	68-4-27-14- 002	100816	1	2023-5-31
Attenuator	Shanghai Huaxiang	TS2-26-3	68-4-81-16- 003	080928189	1	2023-5-27
Test software	Rohde & Schwarz	EMC32	68-4-90-19- 005-A01	Version10.3 5.02	N/A	N/A
Shielding Room	TDK	CSR #2	68-4-90-19- 005		3	2022-11-07

Conducted RF Test System

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
Signal Generator	Rohde & Schwarz	SMB100A	68-4-48-14- 001	108272	1	2023-5-27
Vector Signal Generator	Rohde & Schwarz	SMBV100A	68-4-48-18- 001	262825	1	2023-5-27
Communication Synthetical Test Instrument	Rohde & Schwarz	CMW 270	68-4-48-18- 003	101251	1	2023-5-27
Signal Analyzer	Rohde & Schwarz	FSV40	68-4-74-14- 004	101030	1	2023-5-27
Vector Signal Generator	Rohde & Schwarz	SMU 200A	68-4-48-14- 003	105324	1	2023-5-27

RF Switch Module	Rohde & Schwarz	OSP120/O SP-B157	68-4-93-14- 003	101226/10 0851	1	2023-5-27
Power Splitter	Weinschel	1580	68-4-85-14- 001	SC319	1	2023-5-28
10dB Attenuator	Weinschel	4M-10	68-4-81-14- 003	43152	1	2023-5-28
10dB Attenuator	R&S	DNF	68-4-81-14- 004	DNF-001	1	2023-5-27
10dB Attenuator	R&S	DNF	68-4-81-14- 005	DNF-002	1	2023-5-27
10dB Attenuator	R&S	DNF	68-4-81-14- 006	DNF-003	1	2023-5-27
10dB Attenuator	R&S	DNF	68-4-81-14- 007	DNF-004	1	2023-5-27
Test software	Rohde & Schwarz	EMC32	68-4-48-14- 003-A10	Version 10.60.10	N/A	N/A
Test software	Tonscend	System for BT/WIFI	68-4-74-14- 006-A13	Version 2.6.77.051 8	N/A	N/A
Shielding Room	TDK	TS8997	68-4-90-19- 003		3	2022-11-07

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty						
Test Items	Extended Uncertainty					
Uncertainty for Conducted Emission in new shielding room	3.33dB					
(68-4-90-19-005)						
150kHz-30MHz (for test using AMN ENV216)						
Uncertainty for Radiated Spurious Emission 25MHz-	Horizontal: 4.32dB;					
3000MHz	Vertical: 4.40dB;					
Uncertainty for Radiated Spurious Emission 3000MHz-	Horizontal: 4.26dB;					
18000MHz	Vertical: 4.25dB;					
Uncertainty for Conducted RF test with TS 8997	RF Power Conducted: 1.30dB					
	Frequency test involved:					
	0.6×10 ⁻⁸ or 1%					

Measurement Uncertainty Decision Rule:

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2021, clause 4.4.3 and 4.5.1.

THE END