

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202403236F01

TEST Report

Applicant: Shenzhen Information Infinity Co., Ltd

Address of Applicant: 1st Floor, Building B, Clean Sunshine Park, No.15, Keji North

2nd Road, Songpingshan Community, Xili Street, Nanshan

District, Shenzhen, China

Manufacturer: Shenzhen Information Infinity Co., Ltd

Address of 1st Floor, Building B, Clean Sunshine Park, No.15, Keji North

Manufacturer: 2nd Road, Songpingshan Community, Xili Street, Nanshan

District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Wireless gaming mouse

Model No.: Monster Airmars X1

Series model: N/A

Trade Mark:

FCC ID: 2A8PV-QSMX1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Mar. 07, 2024

Date of Test: Mar. 07, 2024~Mar. 13, 2024

Date of report issued: Mar. 13, 2024

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Mar. 13, 2024	Original

Tested/ Prepared By	Heber He	Date:	Mar. 13, 2024
	Project Engineer		
Check By:	Bruce 2hu	Date:	Mar. 13, 2024
	Reviewer		
Approved By :	Kein Yang HTT	Date:	Mar. 13, 2024
	Authorized Signature		

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS	
5. TEST INSTRUMENTS LIST	8
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 6.3. CHANNEL BANDWIDTH 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGES 6.5.1 Conducted Emission Method 6.5.2 Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1 Conducted Emission Method 6.6.2 Radiated Emission Method 6.6.2 Radiated Emission Method 6.7. ANTENNA REQUIREMENT	
7. TEST SETUP PHOTO	33
8. EUT CONSTRUCTIONAL DETAILS	33

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	30~1000MHz	3.45 dB	(1)			
Radiated Emission	1~6GHz	3.54 dB	(1)			
Radiated Emission	6~40GHz	5.38 dB	(1)			
Conducted Disturbance 0.15~30MHz 2.66 dB						
Note (1): The measurement unce	Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

4. General Information

4.1. General Description of EUT

Product Name:	Wireless gaming mouse
Model No.:	Monster Airmars X1
Series model:	N/A
Test sample(s) ID:	HTT202403236-1(Engineer sample) HTT202403236-2(Normal sample)
Operation frequency	2402~2480 MHz
Number of Channels	40
Modulation Type	GFSK
Channel separation	1MHz,2MHz
Antenna Type:	PCB antenna
Antenna Gain:	2.95 dBi
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit
Adapter Information (Auxiliary test provided by the lab):	Mode: GS-0500200 Input: AC100-240V, 50/60Hz, 0.3A max Output: DC 5V, 2A

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

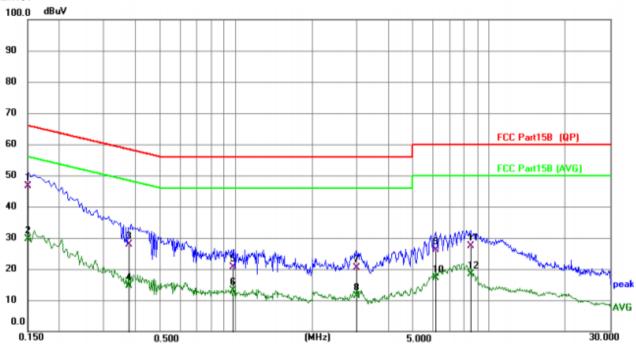
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

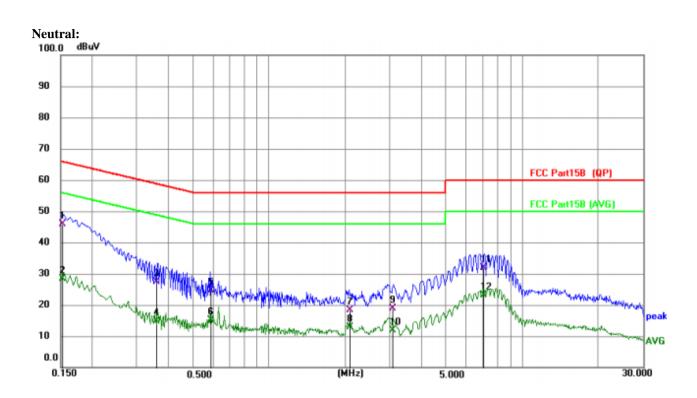
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date
		<u> </u>		No.	(mm-dd-yy)	(mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2021	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2021	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2023	Apr. 25 2024
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2023	Apr. 25 2024
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2023	Apr. 25 2024
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2023	Apr. 25 2024
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2023	Apr. 25 2024
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2023	Apr. 25 2024
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2023	May. 20 2024
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2023	May. 19 2024
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2023	Apr. 25 2024
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2023	Apr. 25 2024
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2023	Apr. 25 2024
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2023	Apr. 25 2024
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2023	Apr. 25 2024
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2023	Apr. 25 2024
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2023	May. 22 2024
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2023	May. 22 2024
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2023	Apr. 25 2024
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2023	Apr. 25 2024
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2023	Apr. 25 2024
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2021	Aug. 09 2024
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2023	Apr. 25 2024
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2023	Apr. 25 2024
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2023	Apr. 25 2024
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2023	Apr. 25 2024
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2023	Apr. 25 2024
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2023	Apr. 27 2024
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz, S	Sweep time=auto		
Limit:	Fraguenov range (MHz)	Limit	(dBuV)	
	Frequency range (MHz)	Quasi-peak	Aver	
	0.15-0.5	66 to 56*	56 to	
	0.5-5	56	46	
	* Decreases with the logarith	m of the frequency	50)
Test setup:	Reference Plan			
Test procedure:	AUX Equipment E.U.T Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			а
	50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be change according to ANSI C63.10:2013 on conducted measurement. Refer to section 6.0 for details			
Test Instruments:				
Test mode:				
Test environment:	Temp.: 25 °C Hu	mid.: 52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz			
Test results:	PASS			
	1			

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Measurement data:

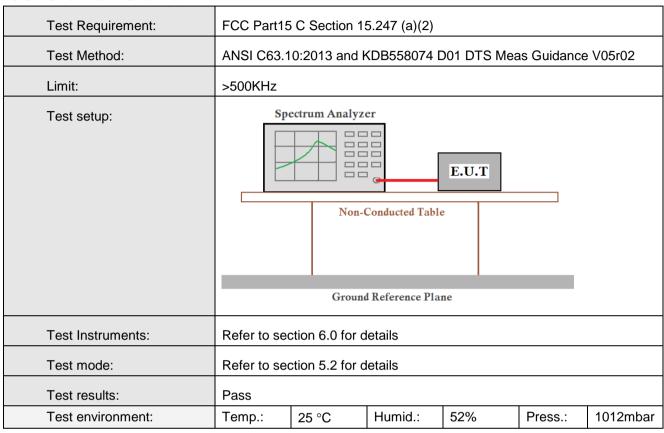
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	2070.	dB	dBuV	dBuV	dB	Detector
1 *	0.1503	36.42	10.16	46.58	65.98	-19.40	QP
2	0.1503	19.37	10.16	29.53	55.98	-26.45	AVG
3	0.3772	17.64	10.26	27.90	58.34	-30.44	QP
4	0.3772	4.38	10.26	14.64	48.34	-33.70	AVG
5	0.9823	10.28	10.41	20.69	56.00	-35.31	QP
6	0.9823	2.69	10.41	13.10	46.00	-32.90	AVG
7	2.9819	9.92	10.50	20.42	56.00	-35.58	QP
8	2.9819	0.96	10.50	11.46	46.00	-34.54	AVG
9	6.1503	15.49	10.61	26.10	60.00	-33.90	QP
10	6.1503	6.63	10.61	17.24	50.00	-32.76	AVG
11	8.4402	16.81	10.65	27.46	60.00	-32.54	QP
12	8.4402	7.84	10.65	18.49	50.00	-31.51	AVG

Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
MHz		dB	dBuV	dBuV	dB	Detector
0.1527	35.62	10.16	45.78	65.85	-20.07	QP
0.1527	18.12	10.16	28.28	55.85	-27.57	AVG
0.3571	17.18	10.25	27.43	58.80	-31.37	QP
0.3571	4.64	10.25	14.89	48.80	-33.91	AVG
0.5904	14.25	10.33	24.58	56.00	-31.42	QP
0.5904	4.88	10.33	15.21	46.00	-30.79	AVG
2.0819	8.08	10.40	18.48	56.00	-37.52	QP
2.0819	2.36	10.40	12.76	46.00	-33.24	AVG
3.0954	8.35	10.45	18.80	56.00	-37.20	QP
3.0954	1.51	10.45	11.96	46.00	-34.04	AVG
7.0725	21.11	10.69	31.80	60.00	-28.20	QP
7.0725	12.39	10.69	23.08	50.00	-26.92	AVG
	MHz 0.1527 0.1527 0.3571 0.3571 0.5904 0.5904 2.0819 2.0819 3.0954 7.0725	Freq. Level MHz 0.1527 35.62 0.1527 18.12 0.3571 17.18 0.3571 4.64 0.5904 14.25 0.5904 4.88 2.0819 8.08 2.0819 2.36 3.0954 8.35 3.0954 1.51 7.0725 21.11	Freq. Level Factor MHz dB 0.1527 35.62 10.16 0.1527 18.12 10.16 0.3571 17.18 10.25 0.3571 4.64 10.25 0.5904 14.25 10.33 0.5904 4.88 10.33 2.0819 8.08 10.40 3.0954 8.35 10.45 3.0954 1.51 10.45 7.0725 21.11 10.69	Freq. Level Factor ment MHz dB dBuV 0.1527 35.62 10.16 45.78 0.1527 18.12 10.16 28.28 0.3571 17.18 10.25 27.43 0.3571 4.64 10.25 14.89 0.5904 14.25 10.33 24.58 0.5904 4.88 10.33 15.21 2.0819 8.08 10.40 18.48 2.0819 2.36 10.40 12.76 3.0954 8.35 10.45 18.80 3.0954 1.51 10.45 11.96 7.0725 21.11 10.69 31.80	Freq. Level Factor ment Limit MHz dB dBuV dBuV 0.1527 35.62 10.16 45.78 65.85 0.1527 18.12 10.16 28.28 55.85 0.3571 17.18 10.25 27.43 58.80 0.3571 4.64 10.25 14.89 48.80 0.5904 14.25 10.33 24.58 56.00 0.5904 4.88 10.33 15.21 46.00 2.0819 8.08 10.40 18.48 56.00 2.0819 2.36 10.40 12.76 46.00 3.0954 8.35 10.45 18.80 56.00 3.0954 1.51 10.45 11.96 46.00 7.0725 21.11 10.69 31.80 60.00	Freq. Level Factor ment Limit Over MHz dB dBuV dBuV dB 0.1527 35.62 10.16 45.78 65.85 -20.07 0.1527 18.12 10.16 28.28 55.85 -27.57 0.3571 17.18 10.25 27.43 58.80 -31.37 0.3571 4.64 10.25 14.89 48.80 -33.91 0.5904 14.25 10.33 24.58 56.00 -31.42 0.5904 4.88 10.33 15.21 46.00 -30.79 2.0819 8.08 10.40 18.48 56.00 -37.52 2.0819 2.36 10.40 12.76 46.00 -33.24 3.0954 8.35 10.45 18.80 56.00 -37.20 3.0954 1.51 10.45 11.96 46.00 -34.04 7.0725 21.11 10.69 31.80 60.00 -28.20

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

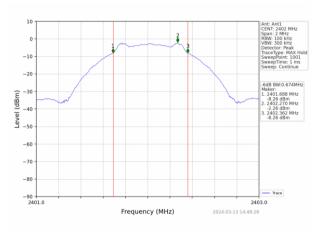
6.2. Conducted Output Power


Test Requirement: Test Method:	FCC Part15 C Section 15.247 (b)(3) ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02						
Limit:	30dBm	30dBm					
Test setup:	Power M.	Non-Conducted Tabl Ground Reference Pla		-			
Test Instruments:	Refer to sec	ction 6.0 for d	letails				
Test mode:	Refer to sec	ction 5.2 for d	letails				
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

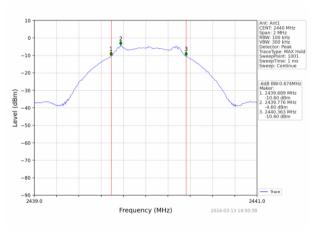
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit(dBm)	Result		
	Lowest	-1.97				
1M	Middle	-4.41	30.00	Pass		
	Highest	-6.04				
	Lowest	-1.93				
2M	Middle	-4.37	30.00	Pass		
	Highest	-6.01				

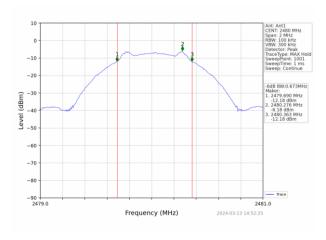
6.3. Channel Bandwidth


Measurement Data

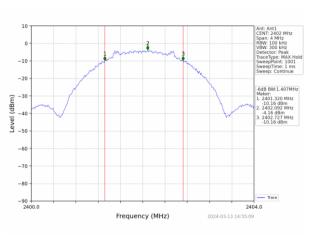
Mode	Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result	
	Lowest	0.674			
1M	Middle	0.674	>500	Pass	
	Highest	0.673			
	Lowest	1.407			
2M	Middle	1.410	>500	Pass	
	Highest	1.422			

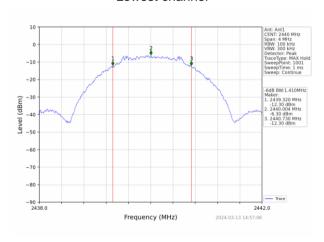


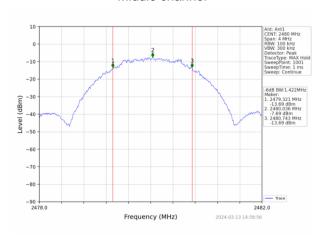
Test plot as follows:


1M:

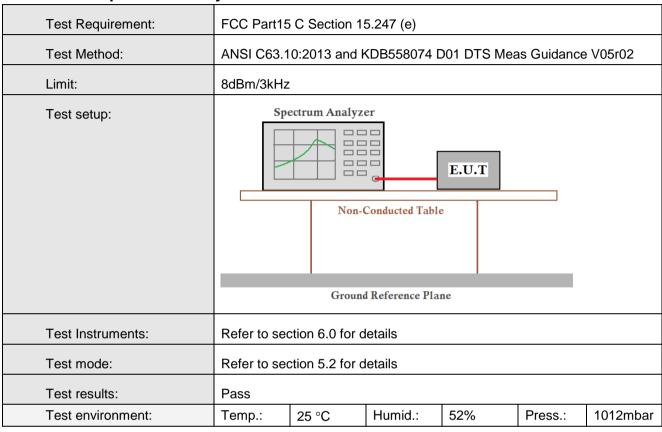
Lowest channel


Middle channel


Highest channel

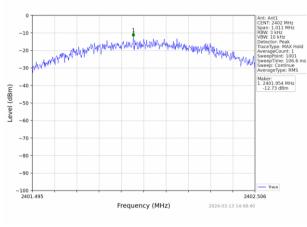

2M:

Lowest channel

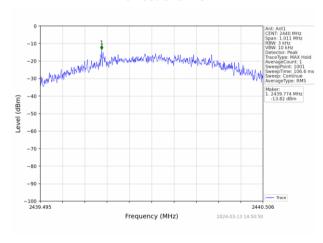

Middle channel

Highest channel

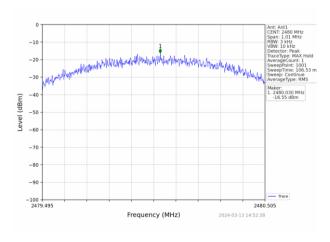
6.4. Power Spectral Density


Measurement Data

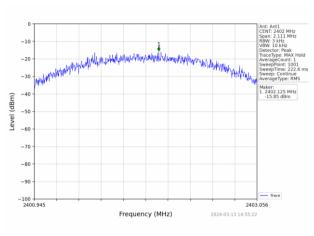
Mode	Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result	
	Lowest	-12.73			
1M	Middle	-13.82	8.00	Pass	
	Highest	-16.55			
	Lowest	-15.85			
2M	Middle	-19.00	8.00	Pass	
	Highest	-19.27			

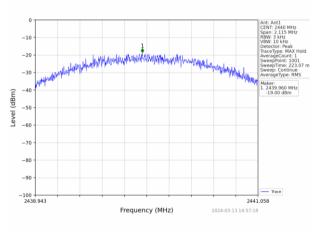


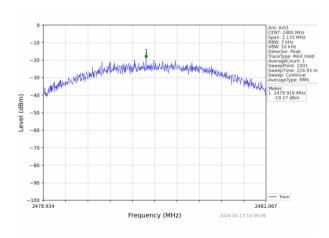
Test plot as follows:


1M:

Lowest channel


Middle channel


Highest channel

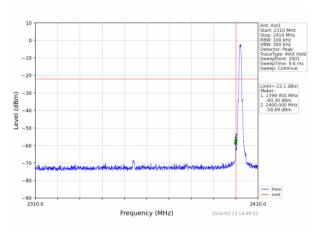

2M:

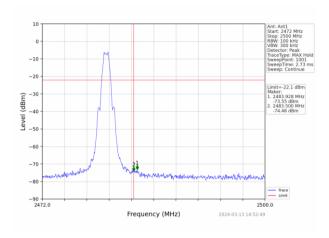
Lowest channel

Middle channel

Highest channel

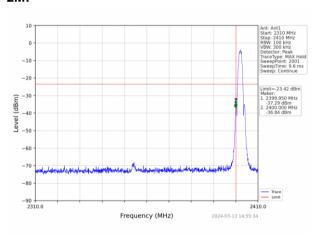
6.5. Band edges

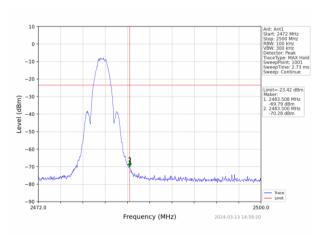

6.5.1 Conducted Emission Method


Test Requirement:	FCC Part15	C Section 1	5.247 (d)					
Test Method:	ANSI C63.1	10:2013 and I	KDB558074	D01 DTS Mea	as Guidance	v05r02		
Limit:	spectrum ir is produced the 100 kH: the desired	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Sp	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to se	ction 6.0 for c	letails					
Test mode:	Refer to se	ction 5.2 for c	letails					
Test results:	Pass	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Test plot as follows:

1M:





Lowest channel

Highest channel

2M:

Lowest channel

Highest channel

6.5.2 Radiated Emission Method

Test Requirement:		C Section 1	5 209 a	nd 15.2	205		
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	All of the re	strict bands lata was sho		ested, c	only the wor	st band's (2	2310MHz to
Test site:		nt Distance:					
Receiver setup:	Frequenc		-	RBV	V VBW	/ \	'alue
. tosonon cotap.		Pos		1MH			Peak
	Above 1GH	Hz RM		1MH			rerage
Limit:	Fre	quency			BuV/m @3m		'alue
					54.00		erage
	Abo	ve 1GHz			74.00		Peak
Test setup:	Turn Table- <150cm>	?	< 3m >	Test An	1		
Test Procedure:	1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.						
	antenna, tower. 3. The anter ground to horizonta measurer 4. For each and then and the rathe maxir 5. The test-Specified 6. If the emilimit specified the EUT 10dB ma average r 7. The radia And foun worst cas	suspected e the antenna ota table was num reading receiver syst l Bandwidth v ission level o cified, then te would be rep rgin would be method as sp ation measur d the X axis se mode is re	varied ne max polariz mission was turned turned em was vith Max f the El sting co orted. Ce e re-tes pecified ements position	from or imum varions on, the Ened to he from Constitution of the second of the control of the co	e top of a var ne meter to value of the for of the anten EUT was arraneights from degrees to Peak Detect Hold Mode. eak mode we stopped and see the emission en reported enformed in X ich it is wors	riable-heigh four meters field strengt na are set to anged to its 1 meter to 360 degree et Function a ras 10dB low d the peak v sions that d ng peak, qu in a data sh (, Y, Z axis	above the h. Both o make the worst case 4 meters es to find and wer than the values of id not have asi-peak or neet.
Test Instruments:		tion 6.0 for d					
Test mode:		tion 5.2 for d	etails				
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humic	d.:	52%	Press.:	1012mbar

Measurement Data

Operation Mode: GFSK (1M)

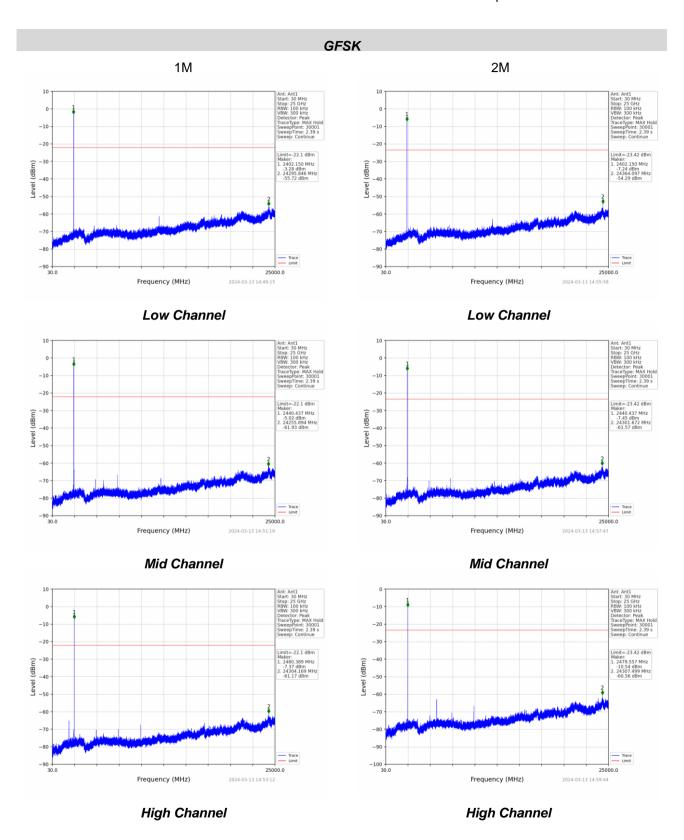
Freque	ncy(MHz)	:	24	02	Pola	arity:	H	ORIZONTA	L
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.65	PK	74	14.35	61.04	27.2	4.31	32.9	-1.39
2390.00	44.43	AV	54	9.57	45.82	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.19	PK	74	15.81	59.58	27.2	4.31	32.9	-1.39
2390.00	46.61	AV	54	7.39	48.00	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	80	P ola	arity:	HORIZONTAL		
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit Margin (dBuV/m) (dB)		Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	56.44	PK	74	17.56	57.37	27.4	4.47	32.8	-0.93
2483.50	45.18	AV	54	8.82	46.11	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le ^v (dBu [°]	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.93	PK	74	18.07	56.86	27.4	4.47	32.8	-0.93
2483.50	44.74	AV	54	9.26	45.67	27.4	4.47	32.8	-0.93

6.6. Spurious Emission

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass
Test environment:	Temp.:25 °CHumid.:52%Press.:1012mbar

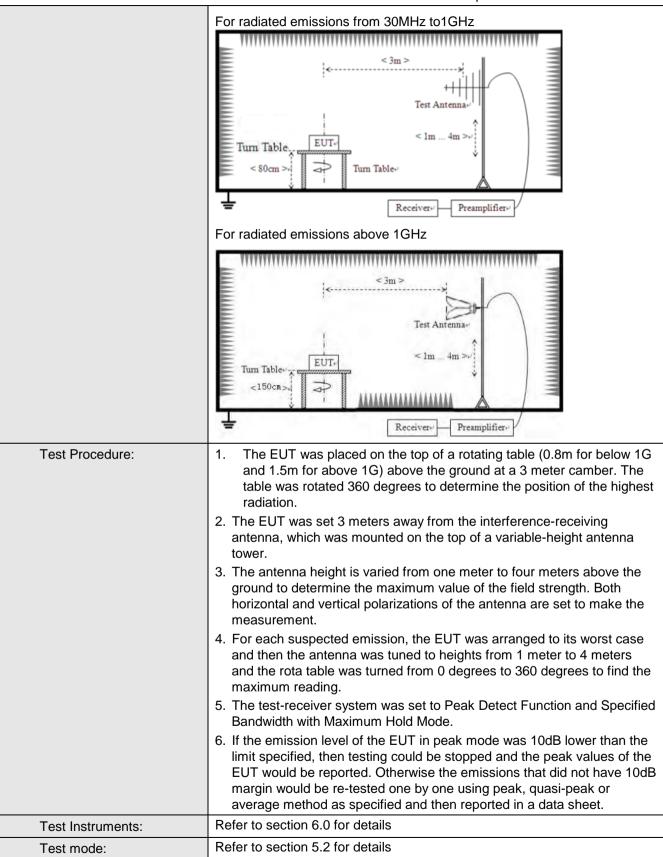
Test plot as follows:


Common State | Com

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

¹F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China



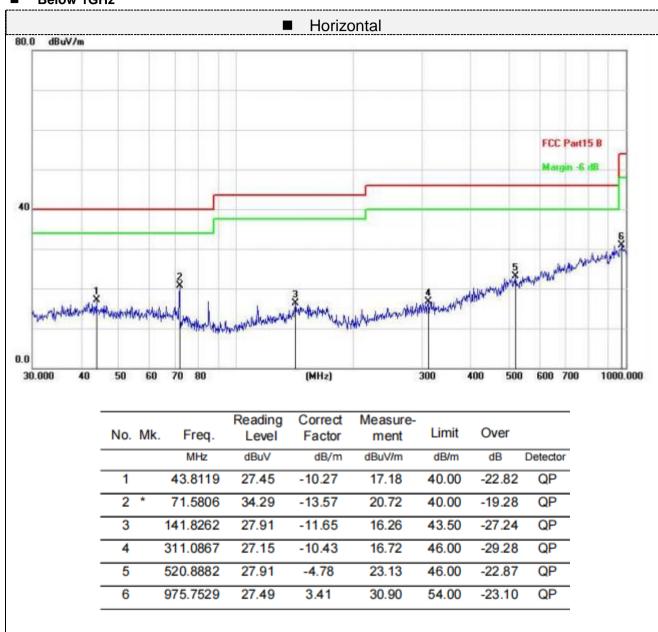
6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency		Detector	RB\	RBW		Value	
	9KHz-150KHz	Qı	uasi-peak	200	Hz	600Hz	z Quasi-peak	
	150KHz-30MHz	Qı	uasi-peak	9KF	Ηz	30KH	z Quasi-peak	
	30MHz-1GHz	Q	ıasi-peak	120K	Ήz	300KH	Iz Quasi-peak	
	Above 1GHz		Peak	1MF	Ηz	3MHz	z Peak	
	Above 10112		Peak	1MH	Ηz	10Hz	Average	
Limit:	Frequency		Limit (u\	//m)	V	'alue	Measurement Distance	
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m	
	0.490MHz-1.705M		24000/F(KHz)		QP	30m	
	1.705MHz-30MH		30		QP		30m	
	30MHz-88MHz		100		QP			
	88MHz-216MHz		150			QP		
	216MHz-960MH		200			QP	3m	
	960MHz-1GHz		500			QP		
	Above 1GHz		500		Average			
			5000)	F	Peak		
Test setup:	For radiated emissio	ns fr	om 9kHz to	30MH	Z			
	Turn Table E		< 3m > Tes	t Antenna 1m	Î			

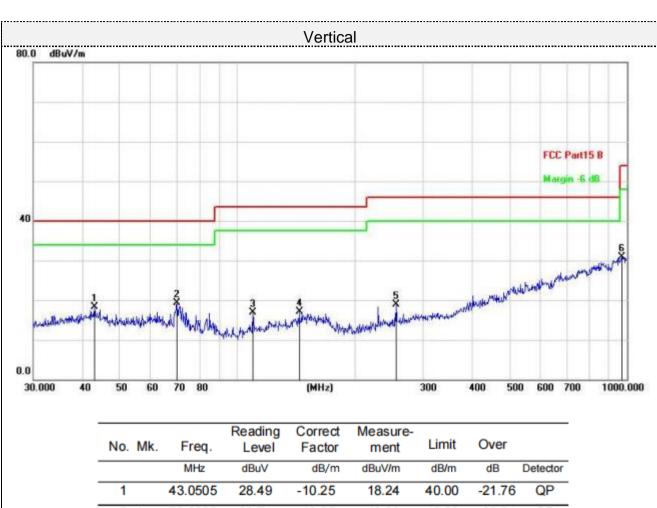
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

Measurement data:

Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		43.0505	28.49	-10.25	18.24	40.00	-21.76	QP
2	*	70.0903	32.71	-13.35	19.36	40.00	-20.64	QP
3		109.7960	30.98	-14.09	16.89	43.50	-26.61	QP
4		144.3348	28.34	-11.32	17.02	43.50	-26.48	QP
5		255.6231	30.40	-11.44	18.96	46.00	-27.04	QP
6		968.9338	27.56	3.34	30.90	54.00	-23.10	QP

Final Level =Receiver Read level + Correct Factor

■ Above 1-25GHz

Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	59.55	PK	74	14.45	53.85	31	6.5	31.8	5.7
4804.00	42.91	AV	54	11.09	37.21	31	6.5	31.8	5.7
7206.00	53.71	PK	74	20.29	41.06	36	8.15	31.5	12.65
7206.00	44.80	AV	54	9.20	32.15	36	8.15	31.5	12.65

Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	58.16	PK	74	15.84	52.46	31	6.5	31.8	5.7
4804.00	42.47	AV	54	11.53	36.77	31	6.5	31.8	5.7
7206.00	53.79	PK	74	20.21	41.14	36	8.15	31.5	12.65
7206.00	43.80	AV	54	10.20	31.15	36	8.15	31.5	12.65

Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.06	PK	74	12.94	54.90	31.2	6.61	31.65	6.16
4880.00	43.40	AV	54	10.60	37.24	31.2	6.61	31.65	6.16
7320.00	52.17	PK	74	21.83	39.22	36.2	8.23	31.48	12.95
7320.00	43.00	AV	54	11.00	30.05	36.2	8.23	31.48	12.95

Frequency(MHz):			2440		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level		Limit (dBuV/m)	Margin (dB)	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor
, ,	(dBuV/m)		(======================================	()	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4880.00	61.07	PK	74	12.93	54.91	31.2	6.61	31.65	6.16
4880.00	43.05	AV	54	10.95	36.89	31.2	6.61	31.65	6.16
7320.00	52.37	PK	74	21.63	39.42	36.2	8.23	31.48	12.95
7320.00	44.05	AV	54	9.95	31.10	36.2	8.23	31.48	12.95

Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	62.02	PK	74	11.98	55.36	31.4	6.76	31.5	6.66
4960.00	41.20	AV	54	12.80	34.54	31.4	6.76	31.5	6.66
7440.00	54.39	PK	74	19.61	41.09	36.4	8.35	31.45	13.3
7440.00	44.55	AV	54	9.45	31.25	36.4	8.35	31.45	13.3

Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	63.41	PK	74	10.59	56.75	31.4	6.76	31.5	6.66
4960.00	43.47	AV	54	10.53	36.81	31.4	6.76	31.5	6.66
7440.00	54.26	PK	74	19.74	40.96	36.4	8.35	31.45	13.3
7440.00	44.75	AV	54	9.25	31.45	36.4	8.35	31.45	13.3

Remark:

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 2.95 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

