

TEST REPORT

Test Report No.: UL-RPT-RP-13935019-316-FCC

Applicant : UV Smart Technologies B.V.

Model No. : D60 V1

FCC ID : 2A8KOUVSMARTD60V1

Technology : RFID 13.56 MHz

Test Standard(s) : FCC Parts 15.207, 15.209(a) & 15.225

For details of applied tests refer to test result summary

1. This test report shall not be reproduced in full or partial, without the written approval of UL International Germany GmbH.

The results in this report apply only to the sample tested.

3. The test results in this report are traceable to the national or international standards.

4. Test Report Version 1.0

2.

5. Result of the tested sample: PASS

Prepared by: Sercan, Usta Title: Project Engineer

Date: 01 December 2022

Approved by: Rachid Acharkaoui

Title: Operations Manager Date: 01 December 2022

This laboratory is accredited by DAkkS. The tests reported herein have been performed in accordance with its' terms of accreditation.

This page has been left intentionally blank.

Table of Contents

1. Customer Information	4
1.1. Applicant Information	4
1.2. Manufacturer Information	4
2. Summary of Testing	5
2.1. General Information	5
Applied Standards	5
Location	5
Date information	5
2.2. Summary of Test Results	6
Note(s):	(
2.3. Methods and Procedures2.4. Deviations from the Test Specification	6
·	,
3. Equipment Under Test (EUT)	
3.1. Identification of Equipment Under Test (EUT)	-
3.2. Description of EUT3.3. Modifications Incorporated in the EUT	- /- /- /- /- /- /- /- /- /- /- /- /- /-
3.4. Additional Information Related to Testing	, 5
3.5. Support Equipment	8
A. Support Equipment (In-house)	8
B Support Equipment (Manufacturer supplied)	8
4. Operation and Monitoring of the EUT during Testing	ç
4.1. Operating Modes	Ç
4.2. Configuration and Peripherals	ç
5. Measurements, Examinations and Derived Results	10
5.1. General Comments	10
5.2. Test Results	11
5.2.1. Transmitter AC Conducted Spurious Emissions	11
5.2.2. Transmitter 20 dB Bandwidth	17
5.2.3. Transmitter Fundamental Field Strength & Spectrum Mask	19
5.2.4. Transmitter Radiated Spurious Emissions	25
5.2.5. Transmitter Frequency Stability (Temperature & Voltage Variation)	31
6. Measurement Uncertainty	35
7. Used equipment	36
8. Open-Area-Test Site comparison	37
9. Papart Pavisian History	11

1. Customer Information

1.1.Applicant Information

Company Name: UV Smart Technologies B.V.	
Company Address: Patrijsweg 74, Rijswijk, The Netherlands	
Contact Person: Koen van der Kouwe	
Contact E-Mail Address: koen.vanderkouwe@uvsmart.nl	
Contact Phone No.:	085 060 9800

1.2.Manufacturer Information

Company Name:	UV Smart Technologies B.V.
Company Address: Patrijsweg 74, Rijswijk, The Netherlands	
Contact Person: Koen van der Kouwe	
Contact E-Mail Address: koen.vanderkouwe@uvsmart.nl	
Contact Phone No.:	085 060 9800

2. Summary of Testing

2.1. General Information

Applied Standards

Specification Reference:	47CFR15.225
Specification Title: Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Radio Frequency Devices) - Section 15.225	
Specification Reference: 47CFR15.207 and 47CFR15.209	
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Sections 15.207 and 15.209

Location

Location of Testing:	UL International Germany GmbH Hedelfinger Str. 61 70327 Stuttgart Germany
Test Firm Registration:	399704

Date information

Order Date:	24 June 2022
EUT arrived:	13 September 2022
Test Dates:	23 September 2022 to 28 September 2022
EUT returned:	-/-

2.2.Summary of Test Results

Clause	Measurement		Did not comply	Not performed	Not applicable
Part 15.207	Transmitter AC Conducted Emissions	\boxtimes			
Part 15.215(c)	Transmitter 20 dB Bandwidth	\boxtimes			
Part 15.225(a)(b)(c)(d)	Transmitter Fundamental Field Strength & Spectrum Mask (continued)	\boxtimes			
Part 15.209(a)/ 15.225(d)	Transmitter Radiated Emissions	\boxtimes			
Part 15.225(e)	Transmitter Frequency Stability (Temperature & Voltage Variation)	\boxtimes			

Note(s):

2.3. Methods and Procedures

Reference:	ANSI C63.4-2014	
Title:	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.	
Reference:	ANSI C63.10-2013	
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices	
Reference:	KDB 414788 D01 Radiated Test Site v01r01	
Title:	TEST SITES FOR RADIATED EMISSION MEASUREMENTS	
Reference:	KDB 174176 D01 Line Conducted FAQ v01r01 June 3, 2015	
Title:	AC Power-Line Conducted Emissions Frequently Asked Questions	

2.4. Deviations from the Test Specification

As agreed with the FCC via two KDB inquiries, deviations to the specific test methods defined in ANSI C63.10 Section 6.8.1 and 6.8.2 for Frequency Stability were made. Refer to sections 3.3 and 5.2.5 of this report for full details

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name: UV Smart D60	
Model Name or Number:	D60 V1
Serial Number:	D60V100026 (Radiated test sample)
Hardware Version Number:	N/A
Software Version Number:	1.3.0
Firmware Version Number:	1.2.0
FCC ID:	2A8KOUVSMARTD60V1

Brand Name:	UV Smart D60	
Model Name or Number:	D60 V1	
Serial Number:	C1 EA RFID Reader v1.0 (Radiated test sample)	
Hardware Version Number:	N/A	
Software Version Number:	1.3.0	
Firmware Version Number:	1.2.0	
FCC ID:	2A8KOUVSMARTD60V1	

3.2. Description of EUT

The equipment under test was a disinfector which supporting RFID 13.56 MHz technology.

3.3. Modifications Incorporated in the EUT

Frequency stability testing whilst varying the temperature was performed with the 13.56 MHz RFID transceiver / antenna combination removed from the end product and placed in the environmental chamber whilst being powered by the end product. This approach was agreed with the FCC via a KDB Inquiry. Refer to section 5.2.5 of this test report for further details.

Frequency stability testing whilst varying the input voltage was performed with the 13.56 MHz RFID transceiver / antenna combination removed from the AC powered end product and instead, powered via an external DC variable power supply which supplied 4.25 V to 5.75V directly to the RFID transceiver PCB. This approach was agreed with the FCC via a separate KDB Inquiry. Refer to section 5.2.5 of this test report for further details.

3.4. Additional Information Related to Testing

Tested Technology:	RFID 13.56 MHz		
Category of Equipment:	Transceiver		
Channel Spacing:	Single channel device		
Transmit Frequency Range:	13.56 MHz		
Power supply Requirement(s):	120 V AC		
Tested Temperature Range:	Minimum -20 °C		
	Maximum +50 °C		
Modulation:	ASK		

3.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

A. Support Equipment (In-house)

Item	Description	Brand Name	Model Name or Number	Serial Number
1	-	-	-	-

B. . Support Equipment (Manufacturer supplied)

Item	Description	Brand Name	Model Name or Number	Serial Number
1	Power Cable	N/A	N/A	N/A
2	Antenna 50 Ohm Terminator	N/A	N/A	N/A

4. Operation and Monitoring of the EUT during Testing

4.1. Operating Modes

The EUT was tested in the following operating mode(s):

☑ Continuous transmitting modulated carrier at maximum power in RFID-13.56 MHz test mode.

4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

 The customer supplied a document "1. Setup of the D60 (First use).pdf" and "2. Instructions how to use D60.pdf" Date:14.09.2022 containing the setup instructions were used to configure the device.

EUT Power supply:

 The EUT was configured to transmit a continuous modulated carrier with maximum power at 13.56 MHz by default

Test Mode Activations:

The RFID 13.56 MHz test mode was activated default

AC Conducted Measurements:

• In accordance with FCC KDB 174176 Q5, the EUT's RFID 13.56 MHz Antenna was removed and the output port was terminated with a 50Ω termination (dummy load).

Radiated Measurements:

- EUT was a floor standing equipment. All tests done in use case position.
- Radiated measurements below 30 MHz were performed with the EUT positioned on the turn table and rotating 360 degrees while the loop antenna height was set to 150 and 170 cm.
- Radiated measurements above 30 MHz were performed with the EUT positioned on the turn table and rotating 360 degrees while the antenna height varies from 1 to 4 m over the measurement frequency range.
- R&S®EMC32 Measurement Software V11.30.00 was used for the radiated spurious emission measurements.

5. Measurements, Examinations and Derived Results

5.1. General Comments

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to Section 6 *Measurement Uncertainty* for details.

In accordance with DAkkS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

5.2. Test Results

5.2.1. Transmitter AC Conducted Spurious Emissions

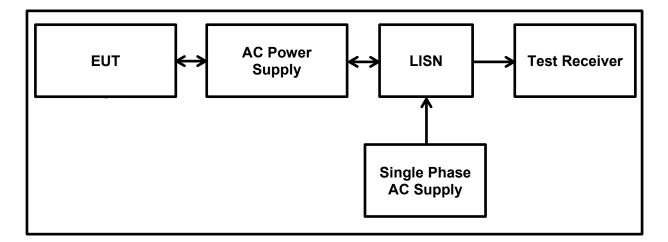
Test Summary:

Test Engineer:	Tobias Koch	Test Date:	28 September 2022
Test Sample Serial Number:	D60V100026		
Test Site Identification	SR 7/8		

FCC Reference:	Part 15.207
Test Method Used:	ANSI C63.10 Section 6.2 / FCC KDB 174176 and notes below

Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	48


Settings of the Instrument

Detector	Quasi Peak/ Average Peak
----------	--------------------------

Note(s):

- 1. The EUT was connected to 120 VAC / 60 Hz single phase supply via a LISN.
- 2. The EUT was configured on RFID 13.56 MHz: Single Channel.
- As mentioned in FCC KDB 174176 Q5 a suitable dummy load is a radio frequency termination used in place of the antenna, which has the same electrical properties as the intended antenna without radiated emissions.
- 4. Pre-scans were performed, and markers placed on the highest live and neutral measured levels. Final measurements were performed on the marker frequencies and the results entered into the tables below.
- 5. The final measured value, for the given emission, in the table below incorporates the cable loss.
- 6. All other emissions shown on the pre-scan plot were investigated. Only the highest 6 emissions have been reported in the tables below in accordance with ANSI C63.10 section 6.2.5.
- 7. Measurements were performed in shielded room (SR7/ 8 Asset Number 1603671). The EUT was placed on ground plane since it is floor standing equipment and in a distance of 40 cm from the vertical ground plane.
- 8. Measurement software used: Toyo EMI Software; CE measurement software EP5/CE Ver 4.0.1.

Test setup:

Results: Live / Quasi Peak / 120 VAC 60 Hz

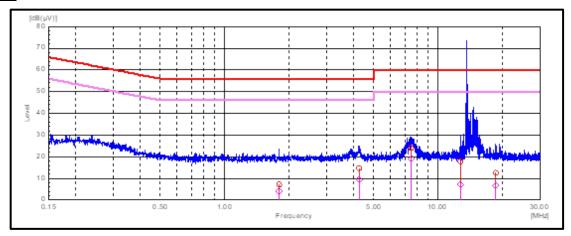
Frequency (MHz)	Line	Level (dBμV)	Limit (dB _µ V)	Margin (dB)	Result
0.15251	Live	16.6	65.9	49.3	Complied
0.25220	Live	16.4	61.7	45.3	Complied
3.62325	Live	8.9	56.0	47.1	Complied
13.56313	Live	71.1	60.0	-11.1	Complied
14.48497	Live	31.4	60.0	28.6	Complied

Results: Live / Average / 120 VAC 60 Hz

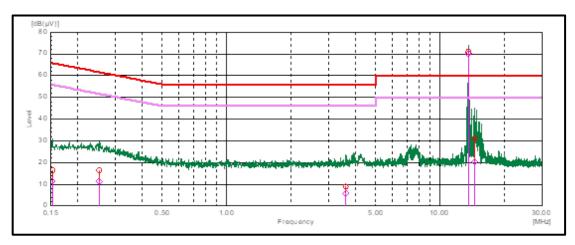
Frequency (MHz)	Line	Level (dBμV)	Limit (dBµV)	Margin (dB)	Result
0.15251	Live	11.4	55.9	44.5	Complied
0.25220	Live	11.4	51.7	40.3	Complied
3.62325	Live	5.9	46.0	40.1	Complied
13.56313	Live	70.2	50.0	-20.2	Complied
14.48497	Live	20.4	50.0	29.6	Complied

Results: Neutral / Quasi Peak / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dB _µ V)	Margin (dB)	Result
1.80381	Neutral	7.2	56.0	48.8	Complied
4.26653	Neutral	14.8	56.0	41.2	Complied
7.49299	Neutral	24.0	60.0	36.0	Complied
12.71142	Neutral	18.1	60.0	41.9	Complied
18.67134	Neutral	12.5	60.0	47.5	Complied


Results: Neutral / Average / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dBμV)	Margin (dB)	Result
1.80381	Neutral	4.2	46.0	41.8	Complied
4.26653	Neutral	9.5	46.0	36.5	Complied
7.49299	Neutral	19.1	50.0	30.9	Complied
12.71142	Neutral	7.4	50.0	42.6	Complied
18.67134	Neutral	6.8	50.0	43.2	Complied



Plot: Live and Neutral Line / 120 VAC 60 Hz

Natural

<u>Live</u>

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

Results: Live / Quasi Peak / 120 VAC 60 Hz / Dummy Load

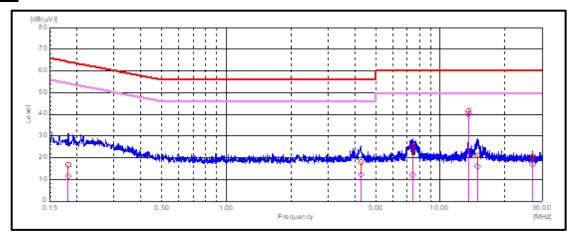
Frequency (MHz)	Line	Level (dBμV)	Limit (dBµV)	Margin (dB)	Result
0.24288	Live	16.40	62.00	45.60	Complied
4.20730	Live	16.70	56.00	39.30	Complied
7.67950	Live	24.30	60.00	35.70	Complied
13.56027	Live	41.90	60.00	18.10	Complied
14.90446	Live	19.70	60.00	40.30	Complied
19.34079	Live	19.30	60.00	40.70	Complied

Results: Live / Average / 120 VAC 60 Hz

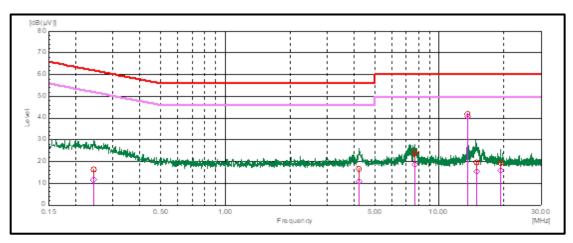
Frequency (MHz)	Line	Level (dBμV)	Limit (dB _µ V)	Margin (dB)	Result
0.24288	Live	11.70	52.00	40.30	Complied
4.20730	Live	10.90	46.00	35.10	Complied
7.67950	Live	18.80	50.00	31.20	Complied
13.56027	Live	40.70	50.00	9.30	Complied
14.90446	Live	15.40	50.00	34.60	Complied
19.34079	Live	15.90	50.00	34.10	Complied

Results: Neutral / Quasi Peak / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dB _µ V)	Margin (dB)	Result
0.18287	Neutral	16.80	64.40	47.60	Complied
4.27428	Neutral	17.90	56.00	38.10	Complied
7.42141	Neutral	24.70	60.00	35.30	Complied
13.56067	Neutral	41.40	60.00	18.60	Complied
14.97159	Neutral	21.20	60.00	38.80	Complied
27.11885	Neutral	20.50	60.00	39.50	Complied


Results: Neutral / Average / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dBμV)	Margin (dB)	Result
0.18287	Neutral	11.70	54.40	42.70	Complied
4.27428	Neutral	12.40	46.00	33.60	Complied
7.42141	Neutral	12.00	50.00	38.00	Complied
13.56067	Neutral	40.10	50.00	9.90	Complied
14.97159	Neutral	15.90	50.00	34.10	Complied
27.11885	Neutral	16.90	50.00	33.10	Complied



Plot: Live and Neutral Line / 120 VAC 60 Hz / Dummy Load

Natural

<u>Live</u>

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

5.2.2. Transmitter 20 dB Bandwidth

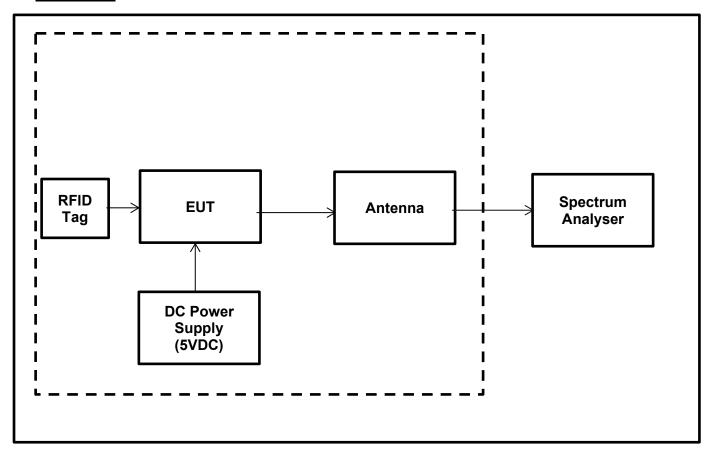
Test Summary:

Test Engineer:	Sercan, Usta	Test Dates:	27 September 2022
Test Sample Serial Number:	C1 EA RFID Reader v1.0		
Test Site Identification	SR 9		

FCC Reference:	Part 15.215(c)
Test Method Used:	ANSI C63.10 Section 6.9.2

Environmental Conditions:

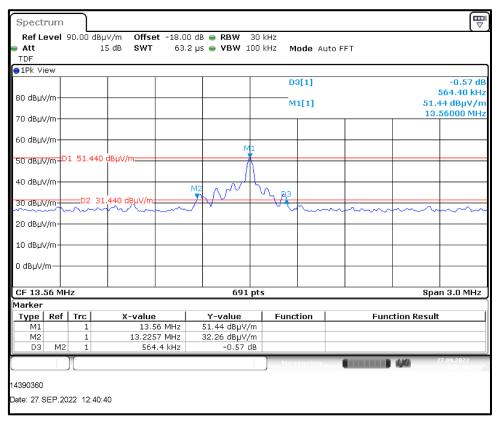
Temperature (°C):	23.1
Relative Humidity (%):	36.2


Settings of the Instrument:

RBW/VBW 30 kHz / 100 kHz	
Span	3 MHz
Sweep time	Auto
Detector	MaxPeak

Notes:

1. The n dB down function of the spectrum analyzer was set to 20 dB.


Test Setup:

Transmitter 20 dB Bandwidth (continued)

Results: DC Power Supply / RFID 13.56 MHz

RFID Channel	20 dB Bandwidth (kHz)
13.56 MHz	564.4

RFID 13.56 MHz

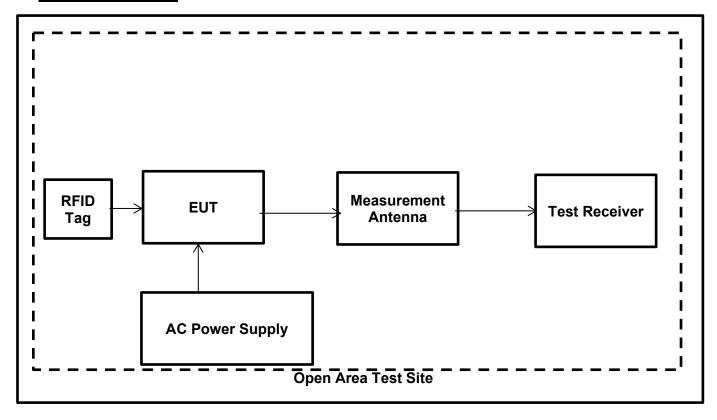
5.2.3. Transmitter Fundamental Field Strength & Spectrum Mask

Test Summary:

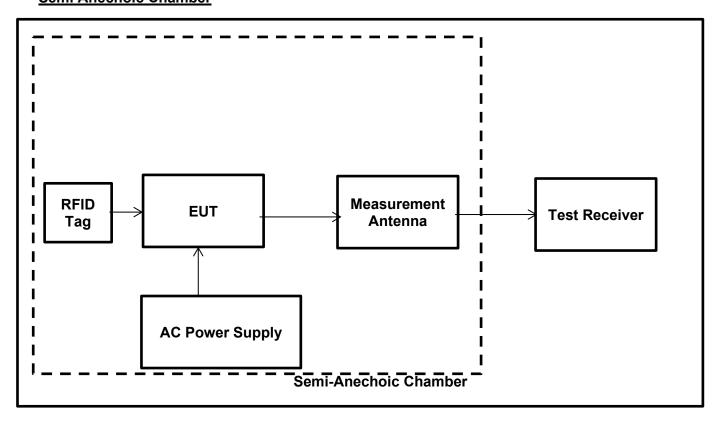
Test Engineer:	Sercan Usta	Test Date:	23 September 2022
Test Sample Serial Number:	D60V100026		
Test Site Identification	SR 1/2		

FCC Reference: Part 15.225(a)(b)(c)(d)	
Test Method Used:	ANSI C63.10 Section 6.4

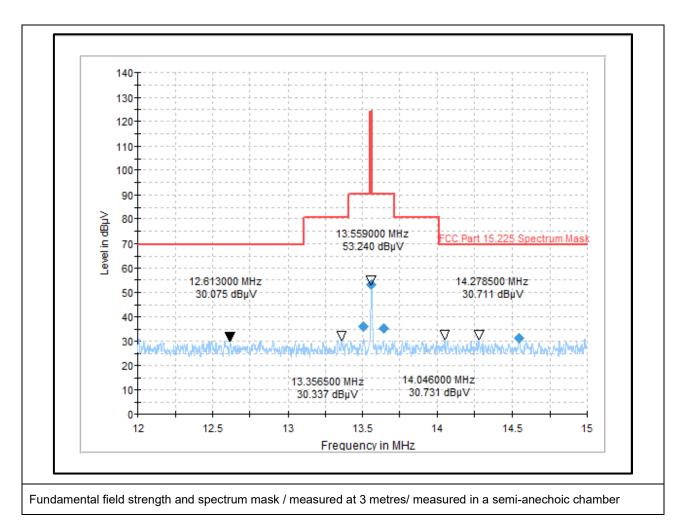
Environmental Conditions:


Temperature (°C):	21.8
Relative Humidity (%):	43.5

Note(s):


- 1. The limit is specified at a test distance of 30 metres. However, as specified by FCC Section 15.31 (f)(2), measurements may be performed at a closer distance and the measured level corrected to the specified measurement distance by using the square of an inverse linear distance extrapolation factor (40 dB/decade).
- 2. In accordance with FCC KDB 414788 D01 Radiated Test Site v01 an alternative Test Site was used. Instead of an OATS a Semi Anechoic Chamber was used where evidence was shown that the behaviour is the same. A maximum deviation of 1.38 dB for 13.56 MHz could be determined. This deviation is also taken into account to the result.
- 3. Therefore, applicable limits were extrapolated from 30 m to 3 m using a distance extrapolation factor of 40 dB/decade. The transducer factor on the measuring instrument was used to extrapolate the measured values from 30 m to 3 m using a distance extrapolation factor of 40 dB/decade.
- 4. Pre-scan measurements were performed using a spectrum analyser with a peak detector and measurement bandwidth of 10 kHz. The fundamental field strength was maximized by rotating the measurement antenna and EUT. The spectrum analyser was then switched to test receiver mode and the final measurement on the maximized level was performed.
- 5. Compliance with the spectrum mask is shown by final measurements performed in a semi-anechoic chamber. For the field strength measurements in a semi-anechoic chamber, a transducer factor on the measuring instrument was used to extrapolate the results at 3 m to a distance of 30 m. A distance extrapolation factor of 40 dB was used.
- 6. A transducer factor was used on the spectrum analyser during measurement. This factor includes correction between the fixed gain of the magnetic loop antenna and the calibration values. It also includes the value of the RF cable used to connect the antenna to the spectrum analyser which was incorporated into the annual calibration of the magnetic loop antenna.
- 7. For the emissions appearing within the 13.110-14.010 MHz band, compliance with the spectrum mask is shown in accordance with FCC Part 15.225(a)(b)(c)(d) limits.
- 8. The emissions shown at frequencies approximately at 13.56 MHz on the plot represent EUT's fundamental field strength for RFID 13.56 MHz.
- 9. For the emissions appearing outside of the 13.110-14.010 MHz band, compliance with the spectrum mask is shown in accordance with FCC Part 15.225(d) referencing FCC Part 15.209 general radiated emission limits.

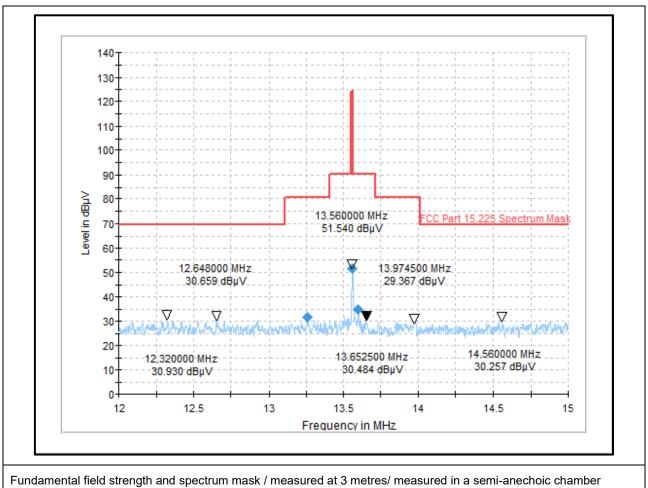
<u>Transmitter Fundamental Field Strength & Spectrum Mask(continued)</u> Open Area Test Site


Semi Anechoic Chamber

<u>Transmitter Fundamental Field Strength & Spectrum Mask (continued)</u> Results: AC Power supply / RFID 13.56 MHz / 150 cm

Frequency Band (MHz)	Emission Frequenc y (MHz)	Loop Anten -na Orient -ation	MaxPeak Emission Level at 3 m (dBμV/m)	Deviation from OATS to SAC) (dB)	Deviatio n Correcte d Level at 3 m (dBµV/m)	Limit at 3 m (dBµV/ m) Note 3	Margin (dB)	Result
12.000 to 13.110		All emissions were found to be below system noise floor					Complie d	
13.110 to 13.410	All emissions were found to be below system noise floor					Complie d		
13.410 to 13.553	13.51	90° to EUT	35.94	0.48	36.42	90.50	54.08	Complie d
13.553 to 13.567	13.56	90° to EUT	51.54	1.38	52.92	124	71.08	Complie d
13.567 to 13.710	13.64	90° to EUT	35.29	1.38	36.67	90.50	53.83	Complie d
13.710 to 14.010	All emissions were found to be below system noise floor					Complie d		
14.010 to 15.000	14.55	90° to EUT	31.34	0.70	32.04	69.50	37.46	Complie d

<u>Transmitter Fundamental Field Strength & Spectrum Mask (continued)</u> <u>Plot: AC Power supply / RFID 13.56 MHz / 150 cm</u>


TEST REPORT VERSION 1.0

<u>Transmitter Fundamental Field Strength & Spectrum Mask (continued)</u> <u>Results: AC Power supply / RFID 13.56 MHz / 170 cm</u>

Frequency Band (MHz)	Emission Frequenc y (MHz)	Loop Anten -na Orient -ation	MaxPeak Emission Level at 3 m (dBμV/m)	Deviation from OATS to SAC) (dB)	Deviatio n Correcte d Level at 3 m (dBµV/m)	Limit at 3 m (dBµV/ m) Note 3	Margin (dB)	Result
12.000 to 13.110		All emissions were found to be below system noise floor						Complie d
13.110 to 13.410	13.26	90° to EUT	31.68	0.48	32.16	80.50	48.34	Complie d
13.410 to 13.553	All emissions were found to be below system noise floor						Complie d	
13.553 to 13.567	13.56	90° to EUT	51.54	1.38	52.92	124	71.08	Complie d
13.567 to 13.710	13.60	90° to EUT	34.99	1.38	36.37	90.5	54.13	Complie d
13.710 to 14.010	All emissions were found to be below system noise floor						Complie d	
14.010 to 15.000	All emissions were found to be below system noise floor						Complie d	

TEST REPORT VERSION 1.0

<u>Transmitter Fundamental Field Strength & Spectrum Mask (continued)</u> <u>Plot: AC Power supply / RFID 13.56 MHz / 170 cm</u>

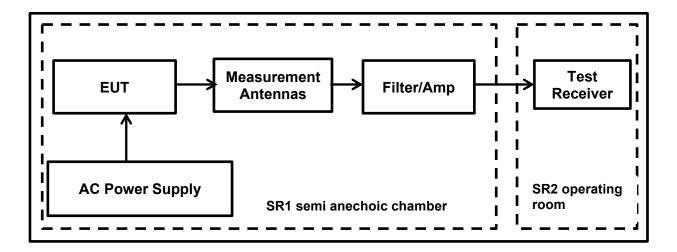
5.2.4. Transmitter Radiated Spurious Emissions

Test Summary:

Test Engineer:	Sercan Usta	Test Date:	23 September 2022
Test Sample Serial Number:	D60V100026		
Test Site Identification	SR 1/2		

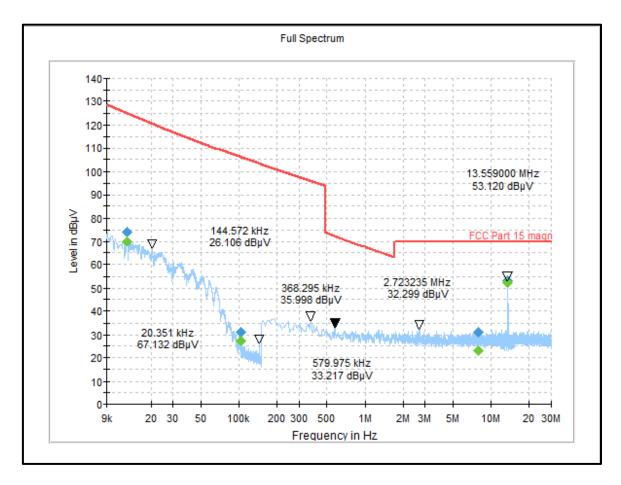
FCC Reference:	Parts 15.225(d) & 15.209(a)	
Test Method Used:	ANSI C63.10:2013 Sections 6.3 and 6.4	
Frequency Range:	9 kHz to 30 MHz	

Environmental Conditions:

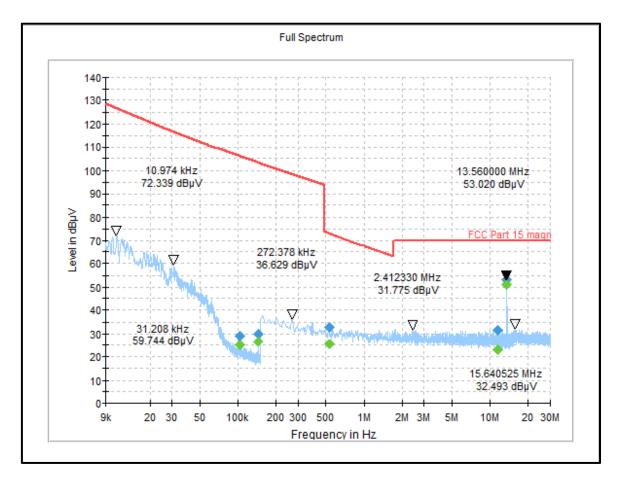

Temperature (°C):	21.8
Relative Humidity (%):	43.6

Note(s):

- 1. In accordance with FCC KDB 414788, an alternative test site may be used for the measurement below 30 MHz (The OATS / SAC comparison data is available upon request). Therefore the result from the semi-anechoic chamber tests is shown in this section of the test report.
- 2. The limits are specified at a test distance of 30 m & 300 m. However, as specified by FCC Section 15.31 (f)(2), measurements may be performed at a closer distance and the measured level corrected to the specified measurement distance by using the square of an inverse linear distance extrapolation factor.
- 3. Therefore the limit values are extrapolated to a measurement distance of 3 m where field strength of X $dB\mu V/m$ was measured.
 - 9 kHz- 490 kHz: limits extrapolated from 300 m to 3 m adding 80 dB at 40 dB /decade.
 - 490 kHz-1705 kHz: limits extrapolated from 30 m to 3 m by adding 40 dB at 40 dB /decade.
- 4. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 5. All emissions shown on the pre-scan plots were investigated and found to be ambient or > 20 dB below the appropriate limit.
- 6. Measurements below 30 MHz were performed in a semi-anechoic chamber SR1/2 (Asset Number 1603665) at a distance of 3 m. The EUT was floor standing equipment and placed at on ground plane in the centre of the chamber turntable. The measurement loop antenna height was 1.5 and 1.7 m.
- 7. Pre-scans were performed and markers placed on the highest measured levels. The test receiver was set to:
 - Frequency range: 9 kHz-150 kHz: RBW: 300 Hz /VBW: 1 kHz
 - Frequency range: 150 kHz 30 MHz: RBW: 10 kHz /VBW: 30 kHz
 - Detector: Max-Peak detector
 - Trace Mode: Max Hold
- 8. All emissions shown on the pre-scan plots were investigated and found to be measurement system noise floor.
- 9. The emissions shown at frequencies approximately 13.56 MHz on the 9 kHz to 30 MHz plots are the EUT RFID 13.56 MHz fundamental for the tested channel.



<u>Transmitter Radiated Spurious Emission test setup</u> <u>Test Setup:</u>


Results: AC Power supply / RFID 13.56 MHz / 150 cm

Frequency (MHz)	Loop Antenna Orientation	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Result
0.0123	90° to EUT	74.03	124.87	50.84	Complied
0.104	0° to EUT	31.01	105.95	74.94	Complied
7.946	0° to EUT	30.94	70	39.06	Complied

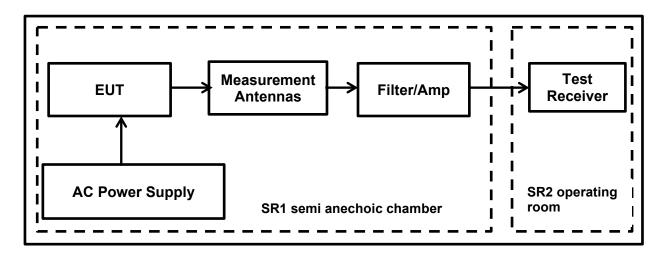
Results: AC Power supply / RFID 13.56 MHz / 170 cm

Frequency (MHz)	Loop Antenna Orientation	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Result
0.104	0° to EUT	29.06	105.96	76.90	Complied
0.145	0° to EUT	29.97	103.26	73.29	Complied
0.530	90° to EUT	32.72	73.06	40.34	Complied
11.549	0° to EUT	31.56	70.00	38.44	Complied

Test Summary:

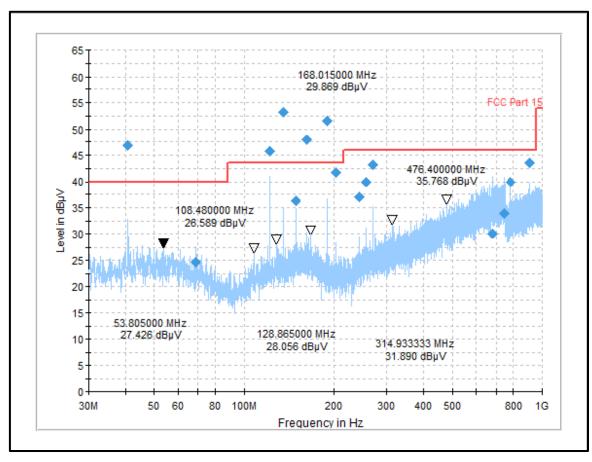
Test Engineer:	Sercan Usta	Test Date:	23 September 2022
Test Sample Serial Number:	D60V100026		
Test Site Identification	SR 1/2		

FCC Reference:	Parts 15.225(d) & 15.209(a)	
Test Method Used:	ANSI C63.10:2013 Sections 6.3 and 6.5	
Frequency Range:	30 MHz to 1000 MHz	


Environmental Conditions:

Temperature (°C):	21.8
Relative Humidity (%):	43.6

Note(s):


- 1. All emissions shown on the pre-scan plot were investigated and found to be ambient or >20 dB below the appropriate limit or below the measurement system noise floor.
- 2. Measurements below 30 MHz were performed in a semi-anechoic chamber SR1/2 (Asset Number 1603665) at a distance of 3 m. The EUT was floor standing equipment and placed at on ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 m to 4 m.
- 3. Pre-scans were performed and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.

Test Setup:

Results: AC Power supply / RFID 13.56 MHz

Frequency (MHz)	Antenna Polarization	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Result
40.665	Vertical	34.15	40.00	5.85	Complied
68.520	Horizontal	24.67	40.00	15.33	Complied
122.025	Horizontal	35.75	43.50	7.75	Complied
135.615	Horizontal	36.52	43.50	6.98	Complied
149.160	Horizontal	36.27	43.50	7.23	Complied
162.705	Horizontal	30.39	43.50	13.11	Complied
189.840	Vertical	38.06	43.50	5.46	Complied
203.430	Horizontal	41.82	43.50	1.68	Complied
244.065	Horizontal	37.04	46.00	8.96	Complied
257.655	Horizontal	39.90	46.00	6.10	Complied
271.245	Horizontal	43.25	46.00	2.75	Complied
682.708	Vertical	30.16	46.00	15.84	Complied
743.375	Horizontal	34.01	46.00	11.99	Complied
786.458	Horizontal	39.85	46.00	6.15	Complied
908.500	Horizontal	43.60	46.00	2.40	Complied

5.2.5. Transmitter Frequency Stability (Temperature & Voltage Variation)

Test Summary:

Test Engineer:	Sercan Usta	Test Dates:	26 September 2022
Test Sample Serial Number:	C1 EA RFID Reader v1.0		
Test Site Identification	SR 9		

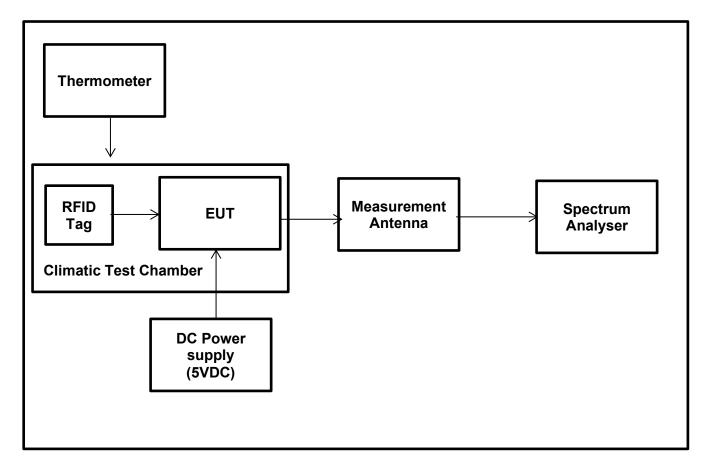
FCC Reference:	Part 15.225(e)
Test Method Used:	ANSI C63.10 Sections 6.8.1 and 6.8.2 deviations in accordance with FCC Inquiry

Environmental Conditions:

Ambient Temperature (°C):	24
Ambient Relative Humidity (%):	31

Settings of the Instrument

RBW/VBW	30 Hz/30 kHz
Span	4 kHz
Sweep Time	Auto
Sweep Mode	Single Sweep
Detector	Peak
Marker Function	Signal Count


Note(s):

- As agreed with the FCC via a KDB inquiry, testing of Frequency stability whilst varying the
 temperature was performed with the 13.56 MHz RFID transceiver / antenna combination removed
 from the end product and placed in the environmental chamber whilst being powered by the end
 product. This alternative method is considered a reasonable engineering judgement to represent the
 frequency stability performance due to temperature variation of the equipment being certified.
- 2. he temperature variations were monitored throughout the tests using a calibrated digital thermometer. The voltage variations were monitored throughout the tests using a calibrated digital multimeter.
- 3. For accurate measurement of frequency deviations, Signal Count / frequency counter function was activated on the spectrum analyser.
- 4. The applicant's declared operating frequency 13.560 MHz was used as reference frequency.
- 5. The difference between operating /reference frequency & measured frequency was reported as a frequency error.
- 6. The frequency tolerance of the carrier signal shall be maintained within ±0.01% or 100 ppm of the operating frequency
- 7. As agreed with the FCC via a second KDB inquiry, testing of frequency stability whilst varying the input voltage was performed with the 13.56 MHz RFID transceiver / antenna combination removed from the AC powered end product and instead, powered via an external DC variable power supply which supplied 4.25 V to 5.75V directly to the RFID transceiver PCB. The power supply to the internal RFID transceiver board is a regulated nominal 5.0 VDC, for practical reasons the RFID transceiver board was tested for voltage variation outside of the equipment being certified using an external DC regulated power supply connected directly to the RFID transceiver board. This was considered, using reasonable engineering judgement, more conservative than varying the AC power supply to the equipment being certified and, therefore, an acceptable deviation.

<u>Transmitter Frequency Stability (Temperature & Voltage Variation) (continued)</u>

Results: DC Power Supply / RFID 13.56 MHz

<u>Transmitter Frequency Stability (Temperature & Voltage Variation) (continued)</u> <u>Results: DC Power supply / RFID 13.56 MHz / Temperature Variations</u>

Extreme Temperature	Time after EUT Power-	Measured Frequency	Frequency	Error	Frequ Error L		Result
(°C)	up	(MHz)	%	ppm	%	ppm	
	at 0 minutes	13.559837372	-0.001199322	-11.99	± 0.01	± 100	Complied
20	at 2 minutes	13.559832465	-0.001235509	-12.36	± 0.01	± 100	Complied
-20	at 5 minutes	13.559832412	-0.001235900	-12.36	± 0.01	± 100	Complied
	at 10 minutes	13.559833038	-0.001231283	-12.31	± 0.01	± 100	Complied
	at 0 minutes	13.559865896	-0.000988968	-9.89	± 0.01	± 100	Complied
-10	at 2 minutes	13.559862772	-0.001012006	-10.12	± 0.01	± 100	Complied
-10	at 5 minutes	13.559862125	-0.001016777	-10.17	± 0.01	± 100	Complied
	at 10 minutes	13.559861545	-0.001021055	-10.21	± 0.01	± 100	Complied
	at 0 minutes	13.559867137	-0.000979816	-9.80	± 0.01	± 100	Complied
	at 2 minutes	13.559867371	-0.000978090	-9.78	± 0.01	± 100	Complied
0	at 5 minutes	13.559867510	-0.000977065	-9.77	± 0.01	± 100	Complied
	at 10 minutes	13.559867680	-0.000975811	-9.76	± 0.01	± 100	Complied
	at 0 minutes	13.559855626	-0.001064705	-10.65	± 0.01	± 100	Complied
.40	at 2 minutes	13.559860350	-0.001029867	-10.30	± 0.01	± 100	Complied
+10	at 5 minutes	13.559856332	-0.001059499	-10.59	± 0.01	± 100	Complied
	at 10 minutes	13.559856872	-0.001055516	-10.56	± 0.01	± 100	Complied
	at 0 minutes	13.559831843	-0.001240096	-12.40	± 0.01	± 100	Complied
120	at 2 minutes	13.559836579	-0.001205170	-12.05	± 0.01	± 100	Complied
+20	at 5 minutes	13.559838273	-0.001192677	-11.93	± 0.01	± 100	Complied
	at 10 minutes	13.559837918	-0.001195295	-11.95	± 0.01	± 100	Complied
	at 0 minutes	13.559819035	-0.001334550	-13.35	± 0.01	± 100	Complied
130	at 2 minutes	13.559819922	-0.001328009	-13.28	± 0.01	± 100	Complied
+30	at 5 minutes	13.559819573	-0.001330583	-13.31	± 0.01	± 100	Complied
	at 10 minutes	13.559824189	-0.001296541	-12.97	± 0.01	± 100	Complied
	at 0 minutes	13.559807874	-0.001416858	-14.17	± 0.01	± 100	Complied
. 40	at 2 minutes	13.559808969	-0.001408783	-14.09	± 0.01	± 100	Complied
+40	at 5 minutes	13.559810144	-0.001400118	-14.00	± 0.01	± 100	Complied
	at 10 minutes	13.559809888	-0.001402006	-14.02	± 0.01	± 100	Complied
	at 0 minutes	13.559815667	-0.001359388	-13.59	± 0.01	± 100	Complied
150	at 2 minutes	13.559813813	-0.001373060	-13.73	± 0.01	± 100	Complied
+50	at 5 minutes	13.559809062	-0.001408097	-14.08	± 0.01	± 100	Complied
	at 10 minutes	13.559815629	-0.001359668	-13.60	± 0.01	± 100	Complied

<u>Transmitter Frequency Stability (Temperature & Voltage Variation) (continued)</u>

Results: DC Power supply / RFID 13.56 MHz / Voltage Variations

Extreme Voltage	Extreme DC	Measured Frequency	Frequency	Freq Error	Result		
Conditions	Voltage (V)	(MHz)	%	ppm	%	ppm	
85% of Rated Primary Supply Voltage	4.25	13.559826308	-0.001759	-17.59	± 0.01	± 100	Complied
Rated Primary Supply Voltage	5.00	13.559820366	-0.002127	-21.27	± 0.01	± 100	Complied
115% of Rated Primary Supply Voltage	5.75	13.559826153	-0.001688	-16.88	± 0.01	± 100	Complied

6. Measurement Uncertainty

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Confidence Level (%)	Calculated Uncertainty
AC Conducted Spurious Emissions	95%	±2.49 dB
20 dB Bandwidth	95%	±0.87 %
Fundamental Field Strength	95%	±3.10 dB
Radiated Spurious Emissions	95%	±3.10 dB
Frequency Stability	95%	±92 Hz

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

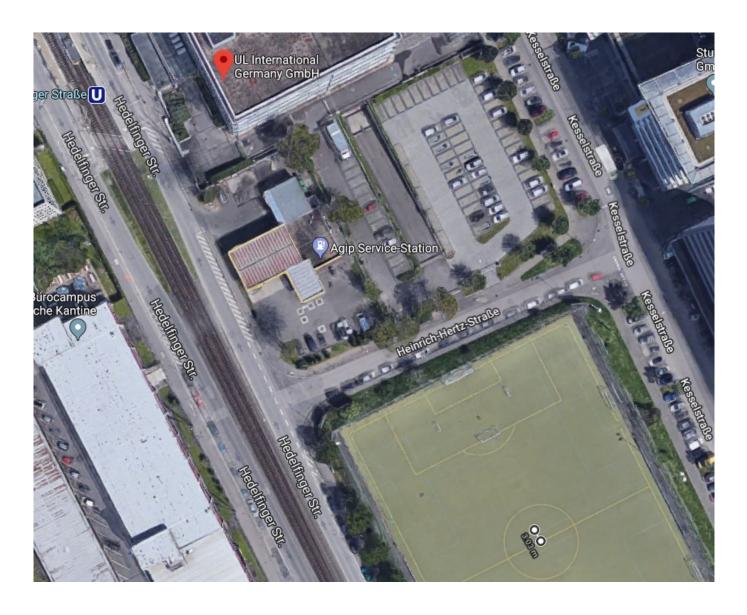
7. Used equipment

Test site: SR 1/2

ID	Manufacturer	Туре	Model	Serial	Calibration Date	Cal. Cycle (months)
1	Rohde & Schwarz	Antenna, Loop	HFH2-Z2	831247/012	10/07/2020	36
460	Deisl	Turntable	DT 4250 S	n/a	n/a	n/a
465	Schwarzbeck	Antenna, Trilog Broadband	VULB 9168	9168-240	02/09/2020	36
587	Maturo	antenna mast, tilting	TAM 4.0-E	011/7180311	n/a	n/a
588	Maturo	Controller	NCD	029/7180311	n/a	n/a
669	Rohde & Schwarz	EMI Test Receiver	ESW 44	103087	03/02/2022	12
608	Rohde & Schwarz	Switch Matrix	OSP 120	101227	lab verification	n/a
628	Maturo	Antenna mast	CAM 4.0-P	224/19590716	n/a	n/a
629	Maturo	Kippeinrichtung	KE 2.5-R-M	MAT002	n/a	n/a
-/-	Testo	Thermo-Hygrometer	608-H1	01	lab verification	n/a
328	SPS	AC/DC power distribution system	PAS 5000	A2464 00/2 0200	lab verification	n/a
1603665	Siemens Matsushita Components	semi-anechoic chamber SR1/ 2	-/-	B83117-A1421- T161	n/a	n/a

Test site: SR 7/8

ID	Manufacturer	Туре	Model	Serial	Calibration Date	Cal. Cycle (months)
23	Rohde & Schwarz	Artificial Mains	ESH3-Z5	831767/013	11/07/2022	12
28	Rohde & Schwarz	Passive Probe	ESH2-Z3	none	12/07/2022	36
349	Rohde & Schwarz	Receiver, EMI Test	ESIB7	836697/009	12/07/2022	12
351	Rohde & Schwarz	network, Artificial Mains	ESH3-Z5	862770/018	11/07/2022	12
564	Teseq	Impedance stabilisation network (ISN)	ISN T800	26076	14/07/2021	24
616	Rohde & Schwarz	ISN	ENY81-CA6	101656	07/07/2020	36
-/-	Testo	Thermo-Hygrometer	608-H1	08	lab verification	n/a
327	SPS	AC/DC power distribution system	PAS 5000	A2464 00/1 0200	lab verification	n/a


Test site: SR 9

ID	Manufacturer	Туре	Model	Serial	Calibration Date	Cal. Cycle (months)
625	Schwarzbeck	Antenna, H-field	HFSL 7101	109	lab verification only relative measurements	n/a
637	Rohde & Schwarz	Spectrum Analyser	FSV40	101587	15/07/2022	12
-/-	Testo	Thermo-Hygrometer	608-H1	07	lab verification	n/a
645	Weiss Umwelttechnik	Climatic Chamber	LabEvent T/110/70/3	5822619794 0010	lab verification	n/a
327	SPS	AC/DC power distribution system	PAS 5000	A2464 00/1 0200	lab verification	n/a

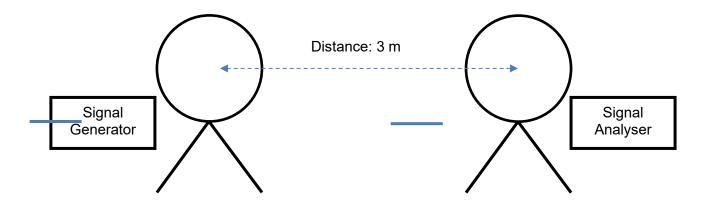
8. Open-Area-Test Site comparison

<u>GPS coordinates</u> Latitude: 48.765746, Longitude: 9.250684

Open-Area-Test Site comparison (continued)

The following listed equipment was used for the measurement:

Manufacturer	Туре	Model	Frequency Range
Rohde & Schwarz	Signal generator	SML03	9 kHz – 30 MHz
Rohde & Schwarz	Receiver, EMI Test	ESIB7	20 Hz – 7 GHz
Rohde & Schwarz	Antenna, Loop	HFH2-Z2	1 kHz – 30 MHz
ETS LINDGREN	Antenna, Loop	6512	1 kHz – 30 MHz
HUBER+SUHNER	RF Cable	-/-	-/-
Elspec	BNC Cable	-/-	-/-


The transmit signal to the ETS Lindgren loop antenna is supplied by the SML signal generator.

The distance of the transmit and receive antenna was 3 m. No other distances can be achieved in SR1 so 10 m and 30 m distances are not possible. Due to this no comparison is possible.

The Results are valid for equipment which is not larger as the loop antenna which represents in the comparison the EUT.

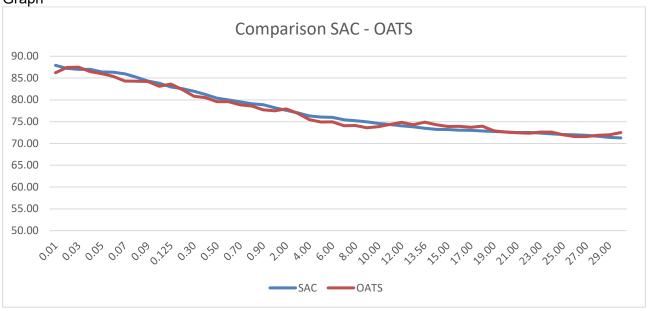
If an EUT is bigger measurements on an OATS are needed.

The measurement was performed on the lowest frequency 9 kHz and was increased by 10 kHz Steps up to 100 kHz. Then the step size was 100 kHz up to 1000 kHz. From 1 MHz up to the last frequency of 30 MHz the step size was 1 MHz. The HFH2-Z2 loop antenna placed at 80 cm height was used as the receive antenna. The intercepted RF signal from this antenna was measured with the ESIB7 Test Receiver and the values were recorded accordingly.

Open-Area-Test Site comparison (continued)

Numeric values:

Frequency (MHz)	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.125	0.20
SR1 Measured power (dBµV)	87.91	87.22	87.01	86.98	86.40	86.32	85.98	85.20	84.30	83.80	82.96	82.55
OATS Measured power (dBµV)	86.22	87.42	87.50	86.49	86.01	85.39	84.32	84.29	84.20	83.10	83.60	82.32
Delta (dB)	-1.69	0.20	0.49	-0.49	-0.39	-0.93	-1.66	-0.91	-0.10	-0.70	0.64	-0.23


Frequency (MHz)	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	2.00	3.00	4.00	5.00
SR1 Measured power (dBµV)	81.98	81.23	80.39	80.00	79.53	79.10	78.87	78.20	77.60	77.01	76.32	76.04
OATS Measured power (dBµV)	80.84	80.49	79.58	79.58	78.85	78.59	77.69	77.50	77.91	76.90	75.45	74.90
Delta (dB)	-1.14	-0.74	-0.81	-0.42	-0.68	-0.51	-1.18	-0.70	0.31	-0.11	-0.87	-1.14

Frequency (MHz)	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	13.56	14.00	15.00	16.00
SR1 Measured power (dBµV)	75.98	75.43	75.20	74.97	74.59	74.32	74.05	73.83	73.50	73.22	73.20	73.05
OATS Measured power (dBµV)	74.94	74.09	74.11	73.58	73.87	74.38	74.84	74.31	74.88	74.29	73.90	73.93
Delta (dB)	-1.04	-1.34	-1.09	-1.39	-0.72	0.06	0.79	0.48	1.38	1.07	0.70	0.88

Frequency (MHz)	17.00	18.00	19.00	20.00	21.00	22.00	23.00	24.00	25.00	26.00	27.00	28.00	29.00	30.00
SR1 Measured power (dBµV)	73.00	72.86	72.74	72.64	72.50	72.52	72.39	72.20	72.04	71.97	71.86	71.64	71.41	71.27
OATS Measured power (dBµV)	73.70	73.98	72.90	72.60	72.45	72.34	72.59	72.59	71.97	71.59	71.58	71.88	71.98	72.49
Delta (dB)	0.70	1.12	0.16	-0.04	-0.05	-0.18	0.20	0.39	-0.07	-0.38	-0.28	0.24	0.57	1.22

Open-Area-Test Site comparison (continued)

Graph

Conclusion: Maximum difference is 1.69 dB @ 9 kHz

9. Report Revision History

Version	Revision Det	ails	
Number	Page No(s)	Clause	Details
1.0	41	-	Initial Version

END of Test Report

