

Antenna specification

Name of material:	T40
Sample color:	Black
Sample type:	FPC: GPS/WIFI/BT
customer model:	
□0penii	ng piece Other

supplier: Shenzhen Maya communication equipment Co., LTD Address: Floor 202, Building 1, Guanghui Science Park, Minqing Road, Longhua Street, Longhua District, Shenzhen

Fictiones	structure	quality	ratify	datelanded
				2021. 8. 18

Customer: Yidao Information

department	notarize	date	state	sign and seal
electronic				
structure				
quality				
pro j ect				

目录

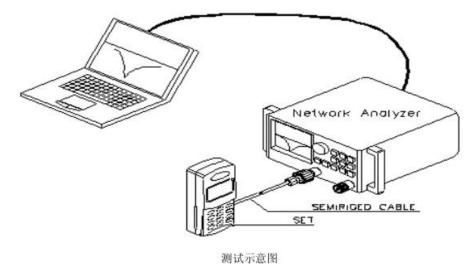
1. frequency band3	;
2. antenna pattern3	1
3. electrical property4	•
3. 1Test method description and data4	ŀ
3.2 Passive Test Report (无源测试报告)	1
3.3 Active Test Report(有源测试报告)	5
3. 4 Active OTA TRP/TIS6	1
3.5 passive(Passive Test)8	;
4. Environmental treatment10)
5.Matching circuit specification13	3
6. structural drawings14	1

1. frequency band

frequency	fre qu ency band
three-in-one	GPS/WIF12. 4-5. 8G/BT

2. antenna pattern

3. electrical property


implementor name	Use
Vector Network Analyzer	S11/Impedance/ Passive Test
Agilent 8960	
SP6010	contain GSM、 GPRS、 EDGE、 CDMA2000、 1xEV-DO
R&S CMU200	TD-SCDMA、 WCDMA、HSDPA test of mobile phone mobile communication equipment
R&S CMW500	contaifD-SCDMA、 WCDMA、
MT8820C	HSDPA、LTE、WIFI、GPS mobile phone mobile communication device test
Agilent E4438C	Testing active GPS
MVG Chamber	Passive Test / OTA active Test / Efficiency/Gain

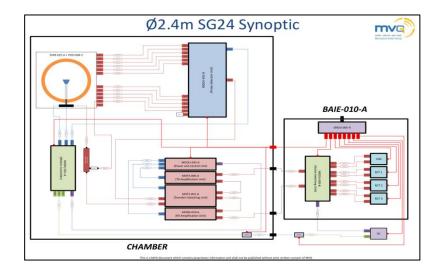
3.1 Test method description and data

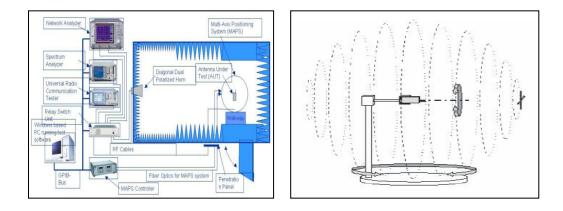
3.2 Passive Test Report

Test equipment: Network analyzer

Test method: A 50 ohm CABLE is exported from the instrument test port, and the SMA connector of the hand mechanism is connected after calibration with the calibration part. The data such as return loss or standing wave ratio corresponding to the relevant frequency points are recorded.

3.3 Active Test Report

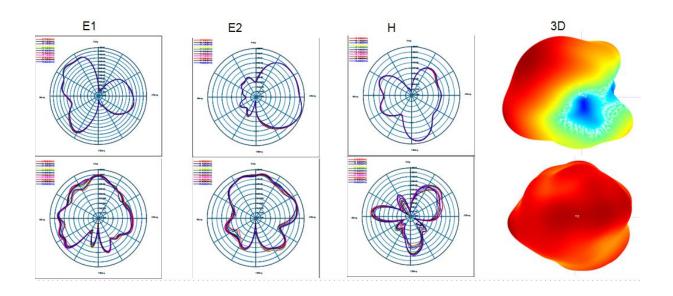

TRP/TIS


Test tools: integrated tester, network analyzer, all-wave far-field ETS, French MVGSG24LT (Satmio) near-field 3D microwave darkroom, high-precision positioning system and its controller and computer test environment with automatic test program: Temperature $22^{\circ} \pm 3^{\circ}$ C, humidity $60\% \pm 15\%$ Test Method: Test method of TRP by EST or Satimo24LT system software and calculation During TRP test, DUT(DeviceUnderTest) is in the state of maximum transmit power, and three channels of high, medium and low are selected for test. The position of DUT is controlled by positioning system, and the step length is 15 degrees. The effective radiated power (EIRP) of each point in the three-dimensional space is measured, and the average value on the sphere is calculated by integrating. The calculation formula is as follows:

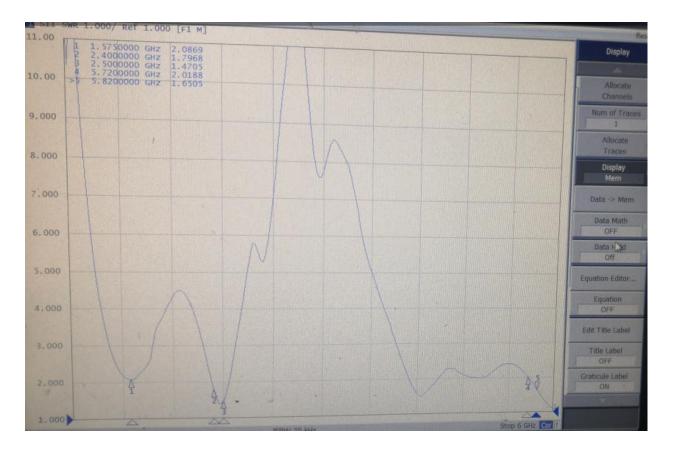
$$TRP \cong \frac{\pi}{2NM} \sum_{i=1}^{N-1} \sum_{j=0}^{M-1} \left[EiRP_{\theta}(\theta_i, \phi_j) + EiRP(\theta_i, \phi_j) \right] \sin(\theta_i)$$

During TIS test, DUT is in the maximum transmitting power state, and three channels of high, middle and low are selected for test. By controlling the position of DUT, the receiving sensitivity of each point in three-dimensional space is measured with the step length of 30 degrees, and the average value on the sphere is calculated by integrating. The calculation formula is as follows:

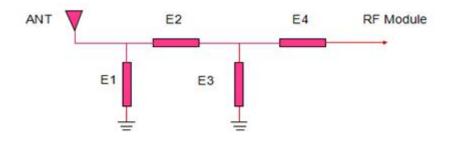
$$TIS \cong \frac{2NM}{\pi \sum_{i=1}^{N-1} \sum_{j=0}^{M-1} \left[\frac{1}{EIS_{\theta}(\theta_i, \phi_j)} + \frac{1}{EIS_{\phi}(\theta_i, \phi_j)} \right] \sin(\theta_i)}$$


3.4 OTA TRP/TIS

标准	BAND		2.4G-WIFI-B			2.4G-WIFI-G	
	CHANNAL	1	6	11	1	6	11
	TRP	11.8	11.79	11.69	9.82	9.84	9.19
	TIS			-80.17			-67.92
WIFI	BAND		2.4G-WIFI-N			5.8G-WIFI-A	
	CHANNAL	1	6	11	36	100	165
	TRP	10.28	10.05	9.73	7.82	8.04	8.25
	TIS			-63.45			-65.04


3.5 Passive Test

Freq (MHz)	Gain	Freq (MHz) 2470	Gain -0.109418745
1550	0.088061232	2480	-0. 406745239
1560	-0.083810032	2490	-0.702342456
1570	-0.219469595	2500	-1.014263093
1580	-0.347091895	5150	-0.014235331
1590	-0. 565923232	5200	0.364993366
		5250	0.501224168
1600	-0.543060612	5300	0.441667011
1610	-0.603162562	5350	0.500989427
1620	-0.686204975	5400	0.491930476
1630	-0.808989931	5450	0.54891734
		5500	0.399611316
1640	-0.863129215	5550	0.40857706
1650	-1.097927947	5600	1.008700816
2400	1.576046438	5650	1.488980344
2410	1.394252035	5700	1.889562487
		5750	1.64105013
2420	1.154601725	5800	1.982377222
2430	0.853946713	5850	2.479927995
2440	0.692799407	5900	2.701038017
2450	0.363772623		
2460	0.131833769		

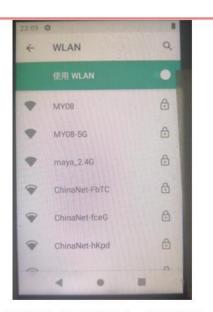

directivity diagram

Standing wave pattern

4. Matching circuit specification

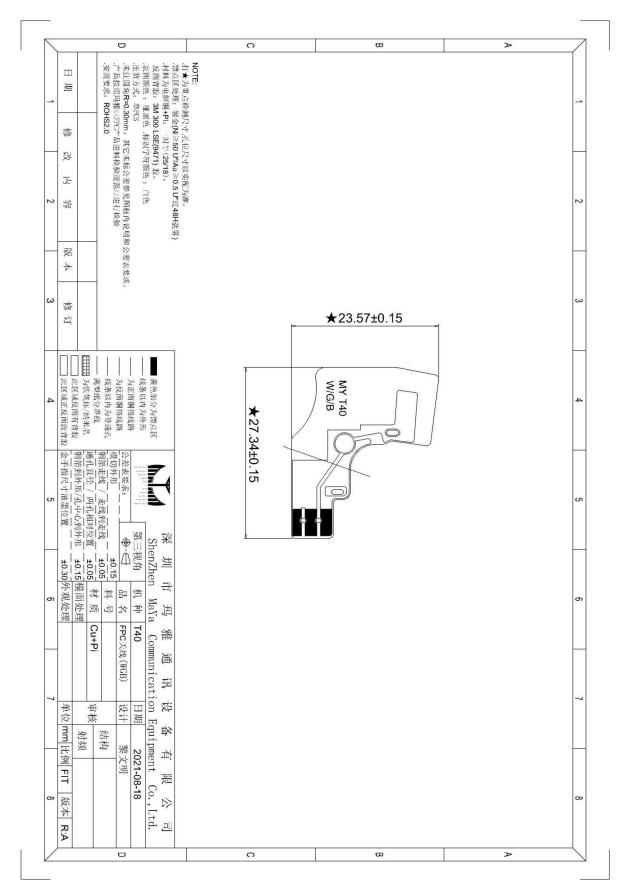
The matching circuit of WiFi is $\ensuremath{\mathsf{unchanged}}$

5.Placement position


6.GPS/WIFI

3:19 🗘	0	23:18 💠	0 🔒	23:18 🏚	
YGPS	1	YGPS	1	YGPS	
ATE SATE INF DITES LUTES MA CNR LOC N	TIO NIMEA DPS T		IFOR MARA OPS		TOR NMEA OPS
GPS R.GLN B.BD E.GAL	Q-QZS LL1S LIRNSS	G.GPS R.GLN B.BD E.GA	L Q'QZS L'LIS HIRNSS	GIGPS RIGLN BIBD EIGAL	Q.QZS LL1S LIRNSS
erage CNR 17.5- R.37.4A 8.33.3/ 9.3- 0.38.0- L.4- 1.4- 9.0-	Show in single page.	Average CNR 0.37.0/ R35.6/ 8:35.5/ E40.0/ 0.38.7/ 5/4 5/ 5.38.0/	Show in single page	Average CNR G38.6/- R35.2/- B35.6/- E34.2/- Q39.7/- L3/- 1:/- S34.0/-	Show in single par
ID Fq CNR	Elevatio Azimut	SVID Fq CNR	Elevatio Azimut	SVID Fq CNR	Elevatio Azimut
5 L1 38.3	9.00 122.00	5 L1 22 8	10.00 121.00	5 L1 34.0	n h 10.00 121.00
10 11 46.0	36.00 329.00	10 L1 41.3	36.00 329.90	10 L1 42.8	36.00 329.00
12.1.1 36.4	25.00 123.00	12.11 34.4	25.00 123.00	12 L1 38.4	25.00 123.00
1513 38.5	21.00 60.00	15 11 31.3	21.00 60.00	15 L1 31.8	21.00 60.00
18 L1 35.7	55.00 210.00	18 11 45.4	55.00 210.00	18 L1 46.1	55.00 210.00
23 11 43.1	64.00 7.00	23 11 42.4	64.00 7.00	23 1.1 37.8	64.00 7.00
24 L1 44.2	50,00 39.00	24 11 35.5	50.00 39.00	24 L1 38.3	50.00 39.00
4 •		4		and the second se	

WIFI


距离路由器5米测试,信号满格。 距离路由器15米,浏览网页播放视频流畅。

距离路由器10米测试,信号满格。

7. structural drawings

