
7FCC TEST REPORT FCC ID:2A8JV-FM520

Report Number	ZKT-2310097652E
Date of Test	. Sep 10, 2023 to Nov. 27, 2023
Date of issue	: Nov. 27, 2023
Total number of pages	. 39
Test Result	PASS
Testing Laboratory	Shenzhen ZKT Technology Co., Ltd.
Address	1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name	Guangzhou Munbyn Information Technology Co, Ltd.
Address	: Unit L3A01-4,No.31-6 Xicha Road,Baiyun District,Guangzhou
Manufacturer's name	Guangzhou Munbyn Information Technology Co, Ltd.
Address	Unit L3A01-4,No.31-6 Xicha Road,Baiyun District,Guangzhou
Test specification:	
Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.247 ANSI C63.10:2013
Test procedure	
Non-standard test method	: N/A
Test Report Form No	TRF-EL-111_V0
Test Report Form(s) Originator	ZKT Testing
Master TRF	
This device described above has bee test (EUT) is in compliance with the F identified in the report. This report shall not be reproduced e	en tested by ZKT, and the test results show that the equipment under FCC requirements. And it is applicable only to the tested sample except in full, without the written approval of ZKT, this document may al only, and shall be noted in the revision of the document.
Product name	Thermal Label Printer
Trademark	N/A
Model/Type reference:	FM520
	M521, FM522, FM523, FM524
Ratings	Input: DC 5V Battery: DC 3.7V, 1200mAh
	,

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

7		Project No.: ZKT-231 Pa	0097652E age 3 of 39
	Table of Contents		Page
	1.VERSION		5
	2.SUMMARY OF TEST RESULTS		6
	2.1 TEST FACILITY		7
	2.2 MEASUREMENT UNCERTAINTY		7
	3. GENERAL INFORMATION		8
	3.1 GENERAL DESCRIPTION OF EUT		8
	3.2 DESCRIPTION OF TEST MODES		9
	3.3 BLOCK DIGRAM SHOWING THE CONFIGURATIO		9
	3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTE	D MODE)	9
	3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS		10
	4. EMC EMISSION TEST		12
	4.1 CONDUCTED EMISSION MEASUREMENT 4.1.1 1POWER LINE CONDUCTED EMISSION LIM	ITS	12 12
	4.1.2 TEST PROCEDURE		12
	4.1.3 DEVIATION FROM TEST STANDARD 4.1.4 TEST SETUP		12 13
	4.1.5 EUT OPERATING CONDITIONS		13
	4.1.6 TEST RESULTS		13
	4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS		14 16
	4.2.2 TEST PROCEDURE		17
	4.2.3 DEVIATION FROM TEST STANDARD 4.2.4 TEST SETUP		17 17
	4.2.5 EUT OPERATING CONDITIONS		18
	5.RADIATED BAND EMISSION MEASUREMENT		23
	5.1 TEST REQUIREMENT:		23
	5.2 TEST PROCEDURE 5.3 DEVIATION FROM TEST STANDARD		23 23
	5.4 TEST SETUP		24
	5.5 EUT OPERATING CONDITIONS 5.6 TEST RESULT		24 25
	6.POWER SPECTRAL DENSITY TEST		26
	6.1 APPLIED PROCEDURES / LIMIT		26
	6.2 TEST PROCEDURE		26
	6.3 DEVIATION FROM STANDARD 6.4 TEST SETUP		26 26

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

🕄 www.zkt-lab.com

Table of Contents	Page
6.5 EUT OPERATION CONDITIONS 6.6 TEST RESULTS	26 27
7. CHANNEL BANDWIDTH 7.1 APPLIED PROCEDURES / LIMIT 7.2 TEST PROCEDURE 7.3 DEVIATION FROM STANDARD 7.4 TEST SETUP 7.5 EUT OPERATION CONDITIONS 7.6 TEST RESULTS	29 29 29 29 29 29 29 30
8.PEAK OUTPUT POWER TEST 8.1 APPLIED PROCEDURES / LIMIT 8.2 TEST PROCEDURE 8.3 DEVIATION FROM STANDARD 8.4 TEST SETUP 8.5 EUT OPERATION CONDITIONS 8.6 TEST RESULTS	32 32 32 32 32 32 32 33
 9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION 9.1 APPLICABLE STANDARD 9.2 TEST PROCEDURE 9.3 DEVIATION FROM STANDARD 9.4 TEST SETUP 9.5 EUT OPERATION CONDITIONS 	34 34 34 34 34 34
10.ANTENNA REQUIREMENT	38
11. TEST SETUP PHOTO	39
12. EUT CONSTRUCTIONAL DETAILS	39

1.VERSION

Report No.	Version	Description	Approved
ZKT-2310097652E	Rev.01	Initial issue of report	Nov. 27, 2023
Ģ			

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C			
Standard Section	Test Item	Judgment	Remark
FCC part 15.203/15.247 (c)	Antenna requirement	PASS	
FCC part 15.207	AC Power Line Conducted Emission	PASS	
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS	
FCC part 15.247 (a)(2)	Channel Bandwidth& 6dB OBW	PASS	
FCC part 15.247 (e)	Power Spectral Density	PASS	
FCC part 15.247(d)	Band Edge	PASS	
FCC part 15.205/15.209	Spurious Emission	PASS	

NOTE:

(1)"N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ± U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 \cdot providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	3m camber Radiated spurious emission(9KHz-30MHz)	U=4.5dB
2	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.8dB
3	3m chamber Radiated spurious emission(1GHz-6GHz)	U=4.9dB
4 3m chamber Radiated spurious emission(6GHz-40GHz)		U=5.0dB
5	Conducted disturbance	U=3.2dB
6	RF Band Edge	U=1.68dB
7	RF power conducted	U=1.86dB
8 RF conducted Spurious Emission		U=2.2dB
9 RF Occupied Bandwidth		U=1.8dB
10	RF Power Spectral Density	U=1.75dB
11	humidity uncertainty	U=5.3%
12	Temperature uncertainty	U=0.59°C

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Thermal Label Printer
Model No.:	FM520 M521, FM522, FM523, FM524
Model Different.:	All the model are the same circuit and RF module, except for model name.
Serial No.:	N/A
Hardware Version:	H1.0
Software Version:	S1.0
Sample(s) Status:	Engineer sample
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna gain:	2.58 dBi
Power supply:	Input: DC 5V
	Battery: DC 3.7V, 1200mAh

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

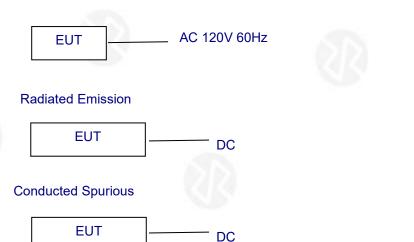
Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China



3.2 DESCRIPTION OF TEST MODES

Transmitting mode	e Keep the EUT in continuously transmitting mode
	he test, the test voltage was tuned from 85% to 115% of the nominal rated supply d that the worst case was under the nominal rated supply condition. So the report just tion's data.
Test Software	BLE Test Tool
Power level setup <0dBm	

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	No. Note
E-1 EUT N/A FM520 N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note
1				

Note:

(1) The support equipment was authorized by Declaration of Confirmation.

(2) For detachable type I/O cable should be specified the length in cm in [®] Length [』] column.

Conducted emissions Test

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	N/A	Nov. 14, 2023	Nov. 13, 2024
2	LISN	CYBERTEK	EM5040A	E1850400149	N/A	Nov. 02, 2023	Nov. 01, 2024
3	Test Cable	N/A	C-01	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
4	Test Cable	N/A	C-02	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
5	Test Cable	N/A	C-03	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
6	EMI Test Receiver	R&S	ESCI3	101393	4.42 SP3	Nov. 02, 2023	Nov. 01, 2024
7	Triple-Loop Antenna	N/A	RF300	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
8	Absorbing Clamp	DZ	ZN23201	15034	N/A	Nov. 07, 2023	Nov. 06, 2024
9	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	N/A		\

Radiation emissions& Radio Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY55370835	A.17.05	Nov. 02, 2023	Nov. 01, 2024
2	Spectrum Analyzer (10kHz-39.9GHz)	R&S	FSV40-N	100363	1.71 SP2	Nov. 02, 2023	Nov. 01, 2024
3	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	100969	4.32	Nov. 02, 2023	Nov. 01, 2024
4	Bilog Antenna (30MHz-1500MHz)	Schwarzbeck	VULB9168	N/A	N/A	Nov. 13, 2023	Nov. 12, 2024
5	Horn Antenna (1GHz-18GHz)	Agilent	AH-118	071145	N/A	Nov. 13, 2023	Nov. 12, 2024
6	Horn Antenna (15GHz-40GHz)	A.H.System	SAS-574	588	N/A	Nov. 13, 2023	Nov. 12, 2024
7	Loop Antenna	TESEQ	HLA6121	58357	N/A	Nov. 16, 2023	Nov. 15, 2024
8	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	60747	N/A	Nov. 02, 2023	Nov. 01, 2024
9	Amplifier (1GHz-26.5GHz)	HuiPu	8449B	3008A00315	N/A	Nov. 02, 2023	Nov. 01, 2024
10	Amplifier (500MHz-40GHz)	QuanJuDa	DLE-161	097	N/A	Nov. 02, 2023	Nov. 01, 2024
11	Test Cable	N/A	R-01	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
12	Test Cable	N/A	R-02	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
13	Test Cable	N/A	R-03	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
14	Test Cable	N/A	RF-01	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
15	Test Cable	N/A	RF-02	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
16	Test Cable	N/A	RF-03	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
17	ESG Signal	Agilent	E4421B	N/A	B.03.84	Nov. 02, 2023	Nov. 01, 2024

1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Project No.: ZKT-2310097652E Page 11 of 39

						гауе	110139
	Generator					-	
18	Signal Generator	Agilent	N5182A	N/A	A.01.87	Nov. 02, 2023	Nov. 01, 2024
19	Magnetic Field Probe Tester	Narda	ELT-400	0-0344	N/A	Nov. 16, 2023	Nov. 15, 2024
20	Wideband Radio Communication Test	R&S	CMW500	106504	V 3.7.22	Nov. 02, 2023	Nov. 01, 2024
21	MWRF Power Meter Test system	MW	MW100-RF CB	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
22	D.C. Power Supply	LongWei	TPR-6405D	N/A	N/A	N	N
23	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	N/A	١	λ
24	RF Software	MW	MTS8310	V2.0.0.0	N/A	١	١
25	Turntable	MF	MF-7802BS	N/A	N/A	\	\
26	Antenna tower	MF	MF-7802BS	N/A	N/A	\	\
				-	-		

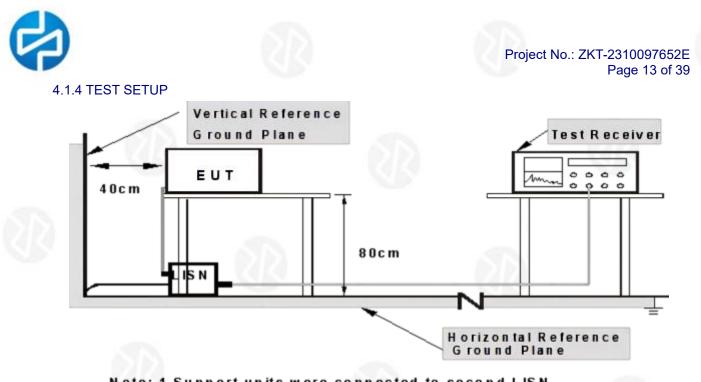
4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

	Test Requirement:	FCC Part15 C Section 15.207
	Test Method:	ANSI C63.10:2013
18	Test Frequency Range:	150KHz to 30MHz
-	Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

	Limit (Standard	
FREQUENCY (MHz)	Quas-peak	Average	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC


Note:

(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE

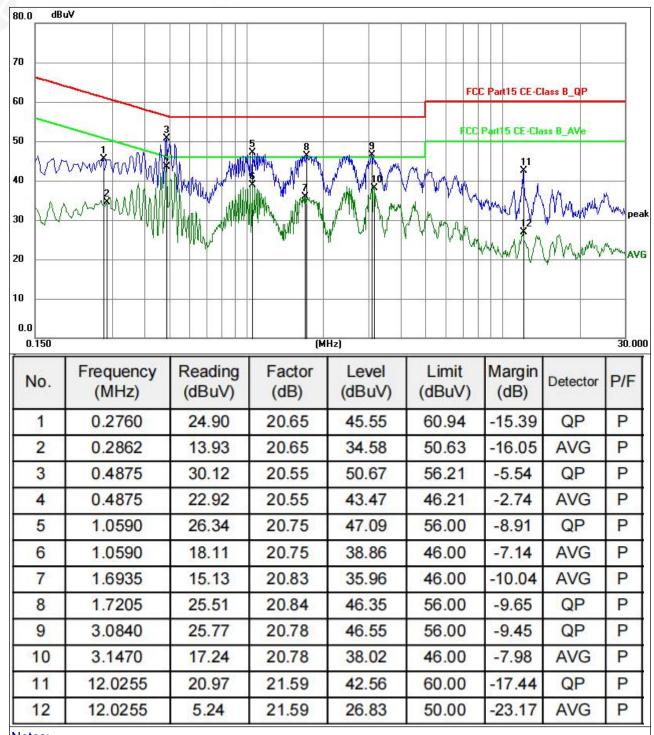
- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD No deviation

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to Charging during test. This operating condition was tested and used to collect the included data.

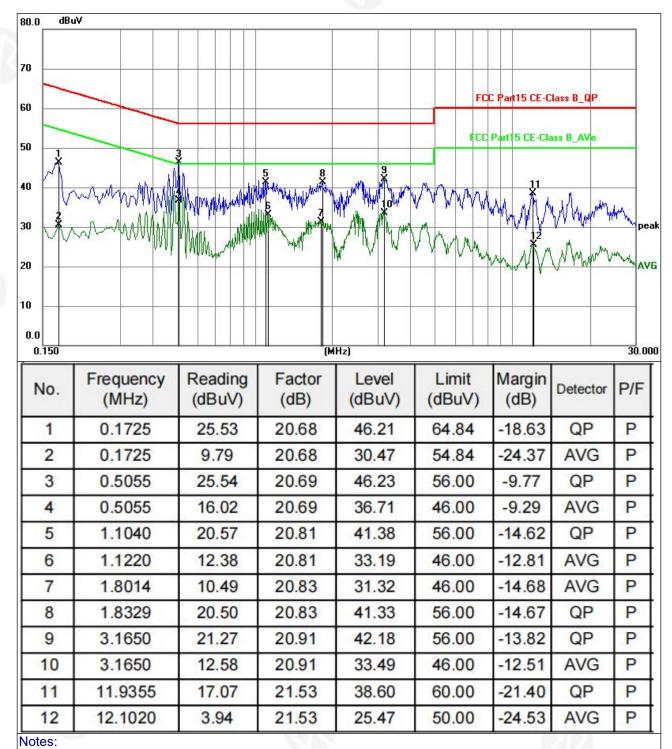

🔊 www.zkt-lab.com

4.1.6 Test Result

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Model:	GFSK 2402MHz

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.


2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	N
Test Voltage :	AC 120V/60Hz	Model:	GFSK 2402MHz

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

4.2 RADIATED EMISSION MEASUREMENT

	Test Requirement:	FCC Part15 C Sect	ion 15.209					
	Test Method:	ANSI C63.10:2013	ANSI C63.10:2013					
	Test Frequency Range:	9kHz to 25GHz						
	Test site:	Measurement Dista	Measurement Distance: 3m					
	Receiver setup:	Frequency	Detector	RBW	VBW	Value		
		9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak		
		150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak		
		30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak		
			Peak	1MHz	3MHz	Peak		
		Above 1GHz	Peak	1MHz	10Hz	Average		

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

	Limit (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

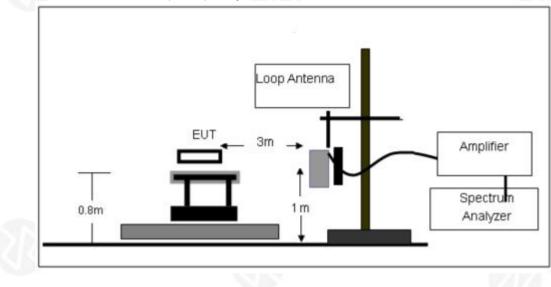
Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

🔊 www.zkt-lab.com

4.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- g. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

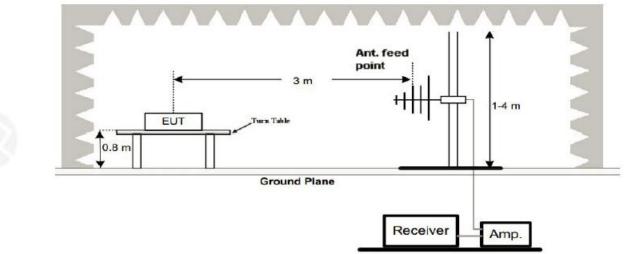

The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Note:

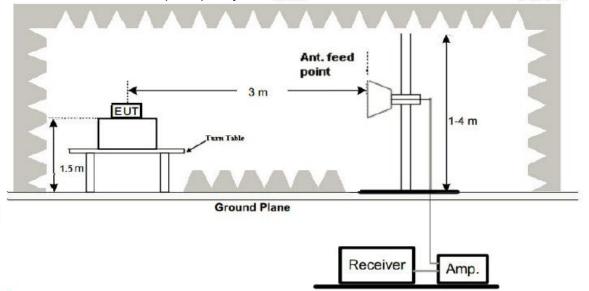
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD No deviation

4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz





(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

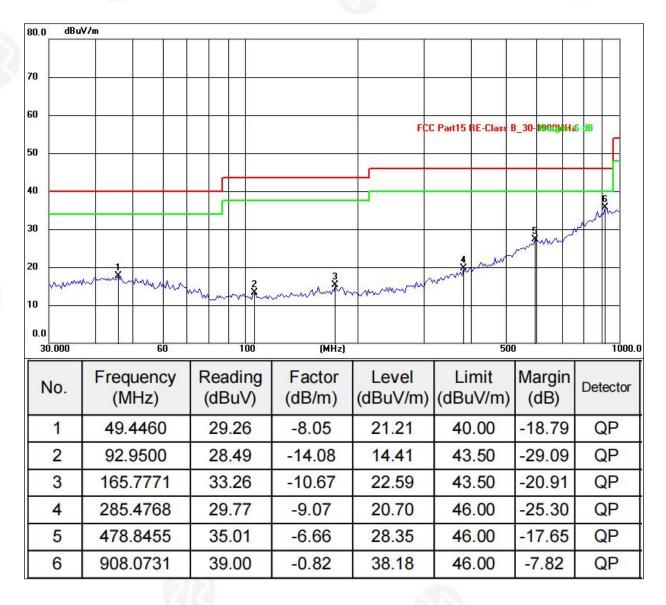
(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 EUT OPERATING CONDITIONS

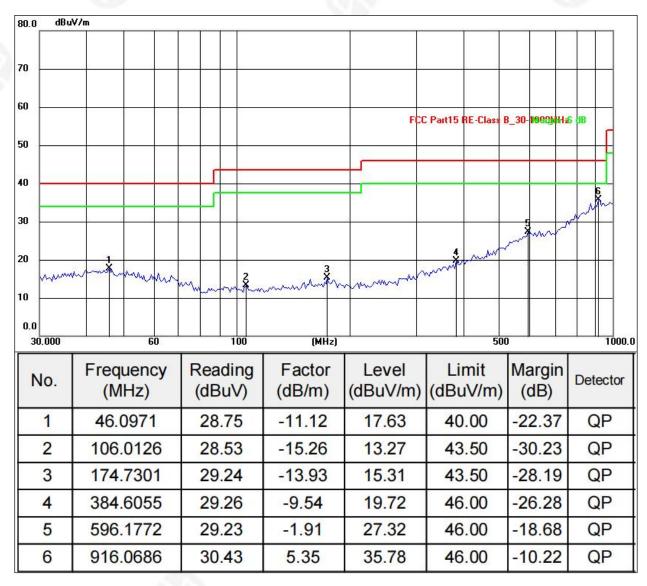
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.6 TEST RESULTS (Between 9KHz - 30 MHz)

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.



Between 30MHz - 1GHz


Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	DC 3.7V	7.4.2.	

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	DC 3.7V		2.2

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The test data specifically highlights the worst-case scenario in the GFSK 2402MHz mode.

1GHz~25GHz

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
				Low Cha	nnel:2402N	/Hz			
V	4804.00	54.67	30.55	5.77	24.66	54.55	74.00	-19.45	Pk
V	4804.00	43.94	30.55	5.77	24.66	43.82	54.00	-10.18	AV
V	7206.00	51.38	30.33	6.32	24.55	51.92	74.00	-22.08	Pk
V	7206.00	43.65	30.33	6.32	24.55	44.19	54.00	-9.81	AV
V	9608.00	51.55	30.85	7.45	24.69	52.84	74.00	-21.16	Pk
V	9608.00	43.92	30.85	7.45	24.69	45.21	54.00	-8.79	AV
V	12010.00	50.39	31.02	8.99	25.57	53.93	74.00	-20.07	Pk
V	12010.00	43.47	31.02	8.99	25.57	47.01	54.00	-6.99	AV
Н	4804.00	53.61	30.55	5.77	24.66	53.49	74.00	-20.51	Pk
Н	4804.00	43.84	30.55	5.77	24.66	43.72	54.00	-10.28	AV
Н	7206.00	53.30	30.33	6.32	24.55	53.84	74.00	-20.16	Pk
Н	7206.00	43.89	30.33	6.32	24.55	44.43	54.00	-9.57	AV
Н	9608.00	50.72	30.85	7.45	24.69	52.01	74.00	-21.99	Pk
Н	9608.00	43.07	30.85	7.45	24.69	44.36	54.00	-9.64	AV
Н	12010.00	54.55	31.02	8.99	25.57	58.09	74.00	-15.91	Pk
Н	12010.00	43.69	31.02	8.99	25.57	47.23	54.00	-6.77	AV
Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	•		N	liddle Ch	annel:2440	MHz			
V	4880.00	54.47	30.55	5.77	24.66				
V	4880.00	40.04			21.00	54.35	74.00	-19.65	Pk
V		43.21	30.55	5.77	24.66	54.35 43.09	74.00 54.00	-19.65 -10.91	AV
	7320.00	43.21 52.30	30.55 30.33	5.77 6.32					
V	7320.00 7320.00				24.66	43.09	54.00	-10.91	AV
V V		52.30	30.33	6.32	24.66 24.55	43.09 52.84	54.00 74.00	-10.91 -21.16	AV Pk
	7320.00	52.30 43.96	30.33 30.33	6.32 6.32	24.66 24.55 24.55	43.09 52.84 44.50	54.00 74.00 54.00	-10.91 -21.16 -9.50	AV Pk AV
V	7320.00 9760.00	52.30 43.96 50.23	30.33 30.33 30.85	6.32 6.32 7.45	24.66 24.55 24.55 24.69	43.09 52.84 44.50 51.52	54.00 74.00 54.00 74.00	-10.91 -21.16 -9.50 -22.48 -9.66	AV Pk AV Pk
V V	7320.00 9760.00 9760.00 12200.00	52.30 43.96 50.23 43.05 54.86	30.33 30.33 30.85 30.85 31.02	6.32 6.32 7.45 7.45 8.99	24.66 24.55 24.55 24.69 24.69	43.09 52.84 44.50 51.52 44.34 58.40	54.00 74.00 54.00 74.00 54.00 74.00	-10.91 -21.16 -9.50 -22.48 -9.66 -15.60	AV Pk AV Pk AV
V V V	7320.00 9760.00 9760.00	52.30 43.96 50.23 43.05	30.33 30.33 30.85 30.85	6.32 6.32 7.45 7.45	24.66 24.55 24.55 24.69 24.69 25.57	43.09 52.84 44.50 51.52 44.34	54.00 74.00 54.00 74.00 54.00	-10.91 -21.16 -9.50 -22.48 -9.66	AV Pk AV Pk AV Pk
V V V V	7320.00 9760.00 9760.00 12200.00 12200.00	52.30 43.96 50.23 43.05 54.86 43.98	30.33 30.33 30.85 30.85 31.02 31.02	6.32 6.32 7.45 7.45 8.99 8.99	24.66 24.55 24.55 24.69 24.69 25.57 25.57	43.09 52.84 44.50 51.52 44.34 58.40 47.52	54.00 74.00 54.00 74.00 54.00 74.00 54.00	-10.91 -21.16 -9.50 -22.48 -9.66 -15.60 -6.48	AV Pk AV Pk AV Pk AV
V V V V H	7320.00 9760.00 9760.00 12200.00 12200.00 4880.00	52.30 43.96 50.23 43.05 54.86 43.98 53.76	30.33 30.33 30.85 30.85 31.02 31.02 30.55	6.326.327.457.458.998.995.77	24.66 24.55 24.55 24.69 24.69 25.57 25.57 24.66	43.09 52.84 44.50 51.52 44.34 58.40 47.52 53.64	54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	-10.91 -21.16 -9.50 -22.48 -9.66 -15.60 -6.48 -20.36	AV Pk AV Pk AV Pk AV Pk
V V V H H	7320.00 9760.00 9760.00 12200.00 12200.00 4880.00 4880.00	52.30 43.96 50.23 43.05 54.86 43.98 53.76 43.31	30.33 30.33 30.85 30.85 31.02 31.02 30.55 30.55	6.326.327.457.458.998.995.775.77	24.66 24.55 24.69 24.69 25.57 25.57 24.66 24.66	43.09 52.84 44.50 51.52 44.34 58.40 47.52 53.64 43.19	54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	-10.91 -21.16 -9.50 -22.48 -9.66 -15.60 -6.48 -20.36 -10.81	AV Pk AV Pk AV Pk AV Pk AV
V V V H H H	7320.00 9760.00 9760.00 12200.00 12200.00 4880.00 4880.00 7320.00 7320.00	52.30 43.96 50.23 43.05 54.86 43.98 53.76 43.31 52.17 43.99	30.33 30.33 30.85 30.85 31.02 30.55 30.55 30.33	6.32 6.32 7.45 8.99 8.99 5.77 6.32 6.32 6.32	24.66 24.55 24.69 24.69 25.57 25.57 24.66 24.66 24.55 24.55	43.09 52.84 44.50 51.52 44.34 58.40 47.52 53.64 43.19 52.71 44.53	54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	-10.91 -21.16 -9.50 -22.48 -9.66 -15.60 -6.48 -20.36 -10.81 -21.29 -9.47	AV Pk AV Pk AV Pk AV Pk AV Pk AV
V V V H H H	7320.00 9760.00 9760.00 12200.00 12200.00 4880.00 4880.00 7320.00	52.30 43.96 50.23 43.05 54.86 43.98 53.76 43.31 52.17 43.99 54.25	30.33 30.33 30.85 30.85 31.02 30.55 30.55 30.33 30.33 30.33 30.85	6.32 6.32 7.45 8.99 8.99 5.77 6.32 6.32 7.45	24.66 24.55 24.69 24.69 25.57 25.57 24.66 24.66 24.66 24.55 24.55 24.69	43.09 52.84 44.50 51.52 44.34 58.40 47.52 53.64 43.19 52.71	54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	-10.91 -21.16 -9.50 -22.48 -9.66 -15.60 -6.48 -20.36 -10.81 -21.29 -9.47 -18.46	AV Pk AV Pk AV Pk AV Pk AV Pk AV Pk
V V V H H H H	7320.00 9760.00 9760.00 12200.00 4880.00 4880.00 7320.00 7320.00 9760.00	52.30 43.96 50.23 43.05 54.86 43.98 53.76 43.31 52.17 43.99	30.33 30.33 30.85 30.85 31.02 30.55 30.55 30.33	6.32 6.32 7.45 8.99 8.99 5.77 6.32 6.32 6.32	24.66 24.55 24.69 24.69 25.57 25.57 24.66 24.66 24.55 24.55	43.09 52.84 44.50 51.52 44.34 58.40 47.52 53.64 43.19 52.71 44.53 55.54	54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	-10.91 -21.16 -9.50 -22.48 -9.66 -15.60 -6.48 -20.36 -10.81 -21.29 -9.47	AV Pk AV Pk AV Pk AV Pk AV Pk AV

F	
	2

Project No.: ZKT-2310097652E Page 22 of 39

								, rag	5 22 01 00
Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			ŀ	- ligh Cha	nnel:2480N	1Hz		100	
V	4960.00	52.16	30.55	5.77	24.66	52.04	74.00	-21.96	Pk
V	4960.00	43.70	30.55	5.77	24.66	43.58	54.00	-10.42	AV
V	7440.00	50.06	30.33	6.32	24.55	50.60	74.00	-23.40	Pk
V	7440.00	43.35	30.33	6.32	24.55	43.89	54.00	-10.11	AV
V	9920.00	50.39	30.85	7.45	24.69	51.68	74.00	-22.32	Pk
V	9920.00	43.51	30.85	7.45	24.69	44.80	54.00	-9.20	AV
V	12400.00	54.42	31.02	8.99	25.57	57.96	74.00	-16.04	Pk
V	12400.00	43.34	31.02	8.99	25.57	46.88	54.00	-7.12	AV
Н	4960.00	53.14	30.55	5.77	24.66	53.02	74.00	-20.98	Pk
Н	4960.00	43.77	30.55	5.77	24.66	43.65	54.00	-10.35	AV
Н	7440.00	53.11	30.33	6.32	24.55	53.65	74.00	-20.35	Pk
Н	7440.00	43.21	30.33	6.32	24.55	43.75	54.00	-10.25	AV
Н	9920.00	54.96	30.85	7.45	24.69	56.25	74.00	-17.75	Pk
Н	9920.00	43.02	30.85	7.45	24.69	44.31	54.00	-9.69	AV
Н	12400.00	54.60	31.02	8.99	25.57	58.14	74.00	-15.86	Pk
Н	12400.00	43.28	31.02	8.99	25.57	46.82	54.00	-7.18	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.10:	ANSI C63.10: 2013			
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.				
Test site:	Measurement Distance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	Above	Peak	1MHz	3MHz	Peak
	1GHz	Average	1MHz	3MHz	Average

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

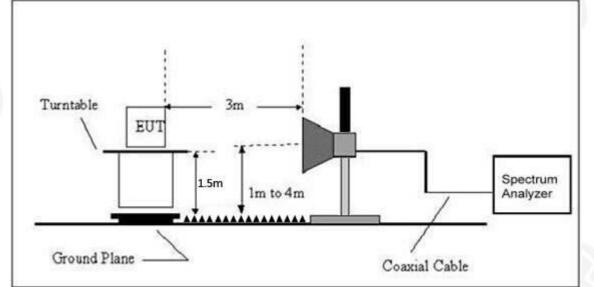
- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported


5.3 DEVIATION FROM TEST STANDARD No deviation

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

	Polar (H/V)	Frequenc y (MHz)	Meter Reading (dBuV)	Pre- amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV /m)	Detec tor Type	Result
		Low Channel: 2402MHz								
	Н	2390.00	53.29	30.22	4.85	23.98	51.90	74.00	PK	PASS
	Н	2390.00	44.29	30.22	4.85	23.98	42.90	54.00	AV	PASS
1.1	H	2400.00	54.40	30.22	4.85	23.98	53.01	74.00	PK	PASS
	Н	2400.00	44.68	30.22	4.85	23.98	43.29	54.00	AV	PASS
	V	2390.00	53.35	30.22	4.85	23.98	51.96	74.00	PK	PASS
	V	2390.00	44.04	30.22	4.85	23.98	42.65	54.00	AV	PASS
	V	2400.00	54.17	30.22	4.85	23.98	52.78	74.00	PK	PASS
GFSK	V	2400.00	44.88	30.22	4.85	23.98	43.49	54.00	AV	PASS
GFSK	High Channel: 2480MHz									
	Н	2483.50	53.90	30.22	4.85	23.98	52.51	74.00	PK	PASS
	Н	2483.50	44.53	30.22	4.85	23.98	43.14	54.00	AV	PASS
	Н	2500.00	54.38	30.22	4.85	23.98	52.99	74.00	PK	PASS
	Н	2500.00	44.44	30.22	4.85	23.98	43.05	54.00	AV	PASS
	V	2483.50	53.50	30.22	4.85	23.98	52.11	74.00	PK	PASS
	V	2483.50	44.33	30.22	4.85	23.98	42.94	54.00	AV	PASS
	V	2500.00	54.85	30.22	4.85	23.98	53.46	74.00	PK	PASS
	V	2500.00	44.19	30.22	4.85	23.98	42.80	54.00	AV	PASS

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS	

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation.

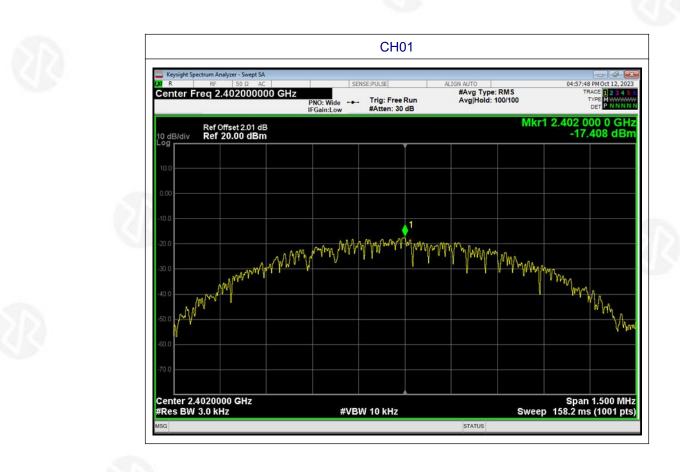
6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China



6.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

Frequency	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2402 MHz	-17.408	8	PASS
2440 MHz	-17.75	8	PASS
2480 MHz	-18.777	8	PASS



Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

7. CHANNEL BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS			

7.2 TEST PROCEDURE

- Ð
- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

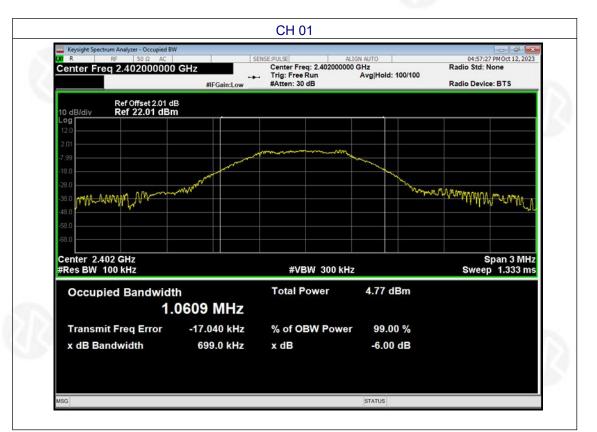
7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com



7.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

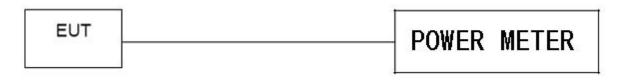
Test channel	6dB BW (MHz)	Limit(KHz)	Result
Lowest	0.700		
Middle	0.722	>500	Pass
Highest	0.712		

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS			


8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULT

Temperature :	26 °C	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

Test chan	el Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-0.651		
Middle	-1.19	30.00	Pass
Highest	-2.162		

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

- A) Set the RBW = 100KHz.
- B) Set the VBW = 300KHz.
- \dot{C}) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

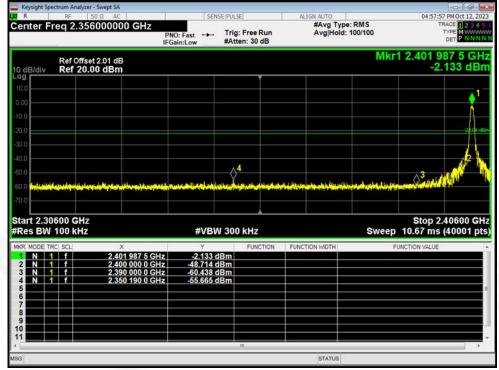
No deviation.

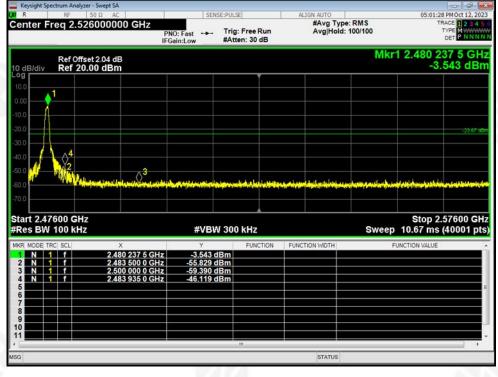
9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

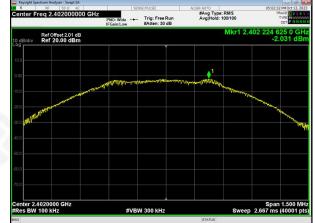
9.6 TEST RESULTS





GFSK: Band Edge, Left Side

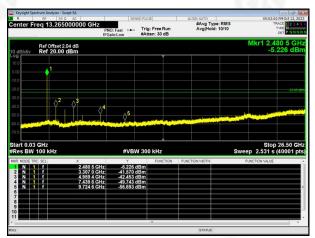
GFSK: Band Edge, Right Side


Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwel

Project No.: ZKT-2310097652E Page 36 of 39

Lowest channel

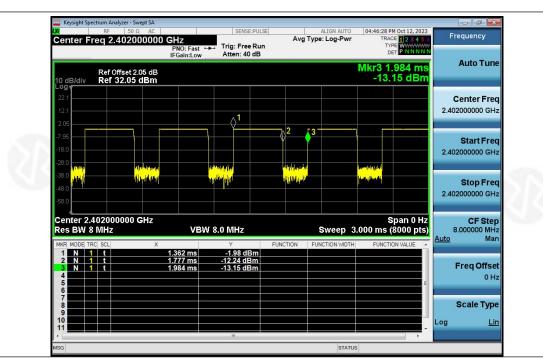
	2 AC	SENSE	EPULSE	ALIGN AUTO		05:03:01 PM Oct 12, TRACE
ter Freq 13.265	P	NO: Fast ↔ Gain:Low	Trig: Free Run #Atten: 30 dB	#Avg Type: Avg Hold: 1	RMS 0/10	TRACE 1 2 3 TYPE NWW DET P N N
Ref Offset 2. B/div Ref 20.00	01 dB dBm				M	kr1 2.401 7 G -2.024 dl
1						
\$ ²						
		\$			a tat an in the second second	- International Statements
and the second		-				
						Stop 26.50 C
t 0.03 GHz s BW 100 kHz		#VBW	300 kHz		Sweep	2.531 s (40001
S BW 100 KHZ	X	Y	FUNCTION	FUNCTION WIDTH		2.531 s (40001 TION VALUE
s BW 100 kHz	2.401 7 GHz 3.202 4 GHz	-2.024 dB -36.378 dB	FUNCTION	FUNCTION WIDTH		2.531 s (40001
S BW 100 KHZ MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	2.401 7 GHz 3.202 4 GHz 4.804 5 GHz 7.206 7 GHz	Y -2.024 dB -36.378 dB -40.607 dB -44.570 dB	FUNCTION Bm Bm Bm	FUNCTION WIDTH		2.531 s (40001
S BW 100 kHz MODE TRC SCL N 1 f N 1 f N 1 f	2.401 7 GHz 3.202 4 GHz 4.804 5 GHz	-2.024 dB -36.378 dB -40.607 dB	FUNCTION Bm Bm Bm	FUNCTION WIDTH		2.531 s (40001
S BW 100 KHZ MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	2.401 7 GHz 3.202 4 GHz 4.804 5 GHz 7.206 7 GHz	Y -2.024 dB -36.378 dB -40.607 dB -44.570 dB	FUNCTION Bm Bm Bm	FUNCTION WIDTH		2.531 s (40001
S BW 100 KHZ MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	2.401 7 GHz 3.202 4 GHz 4.804 5 GHz 7.206 7 GHz	Y -2.024 dB -36.378 dB -40.607 dB -44.570 dB	FUNCTION Bm Bm Bm	FUNCTION WIDTH		2.531 s (40001
S BW 100 KHZ MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	2.401 7 GHz 3.202 4 GHz 4.804 5 GHz 7.206 7 GHz	Y -2.024 dB -36.378 dB -40.607 dB -44.570 dB	FUNCTION Bm Bm Bm	FUNCTION WIDTH		2.531 s (40001


Middle channel

	wept SA					05:00:24 PM Oct 12.2
		SENSE:PL	JLSE	ALIGN AUTO #Avg Type: R	MS	05:00:24 PM Oct 12, 2 TRACE 12, 34
nter Freq 13.265	PNC		ig: Free Run Atten: 30 dB	Avg Hold: 10	10	TYPE MWWW DET P N N N
Ref Offset 2 B/div Ref 20.00	.02 dB dBm				М	kr1 2.440 1 GI -2.699 dB
<u></u>						
\diamond^2	∆ ³ ∆ ⁴					
	Y Y	∧5				Lasterich.
					and a section of the last	all and a second second
line and the second	I I I I I I I I I I I I I I I I I I I	1 million	and the strategies of the state	and the second s		the state of the s
-		-	an a			
		#VBW 3	00 KHZ		Sweep	Stop 26.50 G 2.531 s (40001 p
S BW 100 KHZ	X	Y	FUNCTION	FUNCTION WIDTH		Stop 26.50 G 2.531 s (40001 p TION VALUE
s BW 100 kHz	2.440 1 GHz	Y -2.699 dBm	FUNCTION			2.531 s (40001 p
S BW 100 KHZ	2.440 1 GHz 3.253 4 GHz 4.879 3 GHz	Y -2.699 dBm -38.079 dBm -41.851 dBm	FUNCTION			2.531 s (40001 p
N 1 f N 1 f N 1 f	2.440 1 GHz 3.253 4 GHz 4.879 3 GHz 7.319 2 GHz	Y -2.699 dBm -38.079 dBm -41.851 dBm -44.074 dBm	FUNCTION			2.531 s (40001 p
S BW 100 kHz MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	2.440 1 GHz 3.253 4 GHz 4.879 3 GHz	Y -2.699 dBm -38.079 dBm -41.851 dBm	FUNCTION			2.531 s (40001 p
S BW 100 kHz MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	2.440 1 GHz 3.253 4 GHz 4.879 3 GHz 7.319 2 GHz	Y -2.699 dBm -38.079 dBm -41.851 dBm -44.074 dBm	FUNCTION			2.531 s (40001 p
S BW 100 kHz MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	2.440 1 GHz 3.253 4 GHz 4.879 3 GHz 7.319 2 GHz	Y -2.699 dBm -38.079 dBm -41.851 dBm -44.074 dBm	FUNCTION			2.531 s (40001 p
S BW 100 kHz MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	2.440 1 GHz 3.253 4 GHz 4.879 3 GHz 7.319 2 GHz	Y -2.699 dBm -38.079 dBm -41.851 dBm -44.074 dBm	FUNCTION			2.531 s (40001 p
S BW 100 kHz MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	2.440 1 GHz 3.253 4 GHz 4.879 3 GHz 7.319 2 GHz	Y -2.699 dBm -38.079 dBm -41.851 dBm -44.074 dBm	FUNCTION			2.531 s (40001 p

Highest channel

Ð


D

Mode	Frequency (MHz)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	Result
GFSK	2402	89.6	0.48	Pass

Note: All channel have been tested, and the report only record the worst case data. Duty Cycle= Ton /Total*100%

Duty Cycle Correction Factor= 10log (1/Duty Cycle)

11.ANTENNA REQUIREMENT

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
-----------------------	-------------------------------------

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB Antenna, the best case gain of the antennas is 2.58 dBi, reference to the appendix II for details

Project No.: ZKT-2310097652E Page 39 of 39

12. TEST SETUP PHOTO

Reference to the appendix I for details.

13. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

***** END OF REPORT ****

