

Report No.: DL-20221115033E

# FCC Part 15C Test Report FCC ID: 2A88Y-M82

| Applicant:               | SHEN ZHEN VIMAI TECHNOLOGY CO.,LTD                                                                                                          |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Address:                 | Floor 3, building B, no. 5 huating road, tongsheng community, dalang street, longhua district, shenzhen                                     |
| Manufacturer:            | SHEN ZHEN VIMAI TECHNOLOGY CO.,LTD                                                                                                          |
| Address:                 | Floor 3, building B, no. 5 huating road, tongsheng community, dalang street, longhua district, shenzhen                                     |
| EUT:                     | Wireless Microphone                                                                                                                         |
| Trade Mark:              | VIMAI                                                                                                                                       |
| Model Number:            | M8-2<br>M8-2-C, M8-2-L                                                                                                                      |
| Date of Receipt:         | Nov. 05, 2022                                                                                                                               |
| Test Date:               | Nov. 05, 2022 - Nov. 15, 2022                                                                                                               |
| Date of Report:          | Nov. 15, 2022                                                                                                                               |
| Prepared By:             | Shenzhen DL Testing Technology Co., Ltd.                                                                                                    |
| Address:                 | 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong Street, Longgang District, Shenzhen, Guangdong, China |
| Applicable<br>Standards: | FCC PART 15 C 15.249<br>ANSI C63.10:2013                                                                                                    |
| Test Result:             | Pass                                                                                                                                        |
| Report Number:           | DL-20221115033E                                                                                                                             |
|                          |                                                                                                                                             |
| Prepared (Test Engir     | neer): Pxing Huang                                                                                                                          |
| Reviewer (Superviso      | neer): Pxing Huang                                                                                                                          |
| Approved (Manager)       | : Jade Yang                                                                                                                                 |
|                          |                                                                                                                                             |

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.



Report No.: DL-20221115033E

Table of Contents

Page

5

5

6

8

9

9

9

q

9

10

10

10

13

13

14

14

14

15

16

17

19

20

20

20

20

21

21

23

23

23

23

23

23

- **1. SUMMARY OF TEST RESULTS** 
  - 1.1 MEASUREMENT UNCERTAINTY
- 2. GENERAL INFORMATION
  - 2.1 GENERAL DESCRIPTION OF EUT
  - 2.2 DESCRIPTION OF TEST MODES
  - 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED
  - 2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)
  - 2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING
  - 2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

# 3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS
3.1.2 TEST PROCEDURE
3.1.3 DEVIATION FROM TEST STANDARD
3.1.4 TEST SETUP
3.1.5 EUT OPERATING CONDITIONS
3.1.6 TEST RESULTS

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

- 3.2.1 RADIATED EMISSION LIMITS 3.2.2 TEST PROCEDURE 3.2.3 DEVIATION FROM TEST STANDARD 3.2.4 TEST SETUP 3.2.5 EUT OPERATING CONDITIONS 3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ) 3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ) 3.2.8 TEST RESULTS (1GHZ~25GHZ)
- 3.3 RADIATED BAND EMISSION MEASUREMENT
  - 3.3.1 TEST REQUIREMENT:
  - 3.3.2 TEST PROCEDURE
  - 3.3.3 DEVIATION FROM TEST STANDARD
  - 3.3.4 TEST SETUP

3.3.5 EUT OPERATING CONDITIONS

4. BANDWIDTH TEST

4.1 APPLIED PROCEDURES / LIMIT

- 4.1.1 TEST PROCEDURE
  - 4.1.2 DEVIATION FROM STANDARD
  - 4.1.3 TEST SETUP
  - 4.1.4 EUT OPERATION CONDITIONS



Shenzhen DL Testing Technology Co., Ltd. Report No.: DL-20221115033E

Table of Contents Page

24

25

25

25

26

28

- 4.1.5 TEST RESULTS
- 5. ANTENNA REQUIREMENT
  - 5.1 STANDARD REQUIREMENT
    - 5.2 EUT ANTENNA
- 6. TEST SEUUP PHOTO
- 7. EUT PHOTO



Report No.: DL-20221115033E

# 1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

|                                              | FCC Part15 (15.249) , Subpart C                        |          |                  |  |  |  |  |  |
|----------------------------------------------|--------------------------------------------------------|----------|------------------|--|--|--|--|--|
| Standard<br>Section                          | Test Item                                              | Judgment | Remark           |  |  |  |  |  |
| 15.207                                       | Conducted Emission                                     | PASS     | б <sup>а</sup> х |  |  |  |  |  |
| 15.205(a), 15.209(a)<br>15.249(a), 15.249(c) | Fundamental &Radiated Spurious Emission<br>Measurement | PASS     |                  |  |  |  |  |  |
| 15.249(d)                                    | Band Edge Emission                                     | PASS     |                  |  |  |  |  |  |
| 15.215(c)                                    | 20dB Bandwidth                                         | PASS     |                  |  |  |  |  |  |
| 15.203                                       | Antenna Requirement                                    | PASS     | St. O            |  |  |  |  |  |

#### NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

#### 1.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                          | Uncertainty |
|-----|-------------------------------|-------------|
| 1   | Conducted Emission Test       | ±2.56dB     |
| 2   | RF power,conducted            | ±0.42dB     |
| 3 🔨 | Spurious emissions, conducted | ±2.76dB     |
| 4   | All emissions,radiated(<1G)   | ±3.65dB     |
| 5 0 | All emissions,radiated(>1G)   | ±4.89dB     |
| 6   | Temperature                   | ±0.5°C      |
| 7 🗸 | Humidity                      | ±2%         |



Report No.: DL-20221115033E

# 2. GENERAL INFORMATION

# 2.1 GENERAL DESCRIPTION OF EUT

| Product Name:          | Wireless Microphone                        |
|------------------------|--------------------------------------------|
| Trademark              | VIMAI                                      |
| Model No.:             | M8-2<br>M8-2-C, M8-2-L                     |
| Model Difference       | The product's different for model number.  |
| Operation Frequency:   | 2402~2480MHz                               |
| Channel numbers:       | 79 Channels                                |
| Channel separation:    |                                            |
| Modulation technology: | GFSK                                       |
| Antenna Type:          | Chip antenna                               |
| Antenna gain:          | 1.20dBi                                    |
| Power supply:          | DC 3.7V from battery<br>DC 5V from charger |

# Note:

1.For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. The EUT's all information provided by client.



3.

Shenzhen DL Testing Technology Co., Ltd.

# Report No.: DL-20221115033E

| X        | Q° c <sup>o</sup>  | Channe        | el List 📐          | Q' CO   |                   |
|----------|--------------------|---------------|--------------------|---------|-------------------|
| Channel  | Frequency<br>(MHz) | Channel       | Frequency<br>(MHz) | Channel | Frequenc<br>(MHz) |
| 00       | 2402               | 27            | 2429               | 54      | 2456              |
| 01       | 2403               | 28            | 2430               | 55      | 2457              |
| 02 💭     | 2404               | 29            | 2431               | 56      | 2458              |
| 03       | 2405               | 30            | 2432               | 57      | 2459              |
| 04       | 2406               | 31            | 2433               | 58      | 2460              |
| <u> </u> | 2407               | 32            | 2434               | 59_0    | 2461              |
| Ø 06     | 2408               | 33 🔿          | 2435               | 60      | × 2462            |
| 07       | 2409               | 34            | 2436               | 61      | 2463              |
| 08       | 2410               | 35            | 2437               | 62      | 2464              |
| 09       | 2411               | 6 36          | 2438               | 63      | 2465              |
| V 10 O   | 2412               | 37            | 2439               | 64      | 2466              |
| 11       | 2413               | 38            | 2440               | 65      | 2467              |
| 12       | 2414               | 39            | 2441               | 66      | 2468              |
| 13 🔿     | 2415               | 40 🔎          | 2442               | 67      | 2469              |
| 14       | 2416               | 41            | 2443               | 68      | 2470              |
| 15       | 2417               | 42            | 2444               | 69 0    | 2471              |
| 016      | 2418               | χ 43 🛇 ັ      | 2445               | 70      | 2472              |
| <u> </u> | 2419               | <i>⊘</i> ` 44 | 2446               | 71      | 2473              |
| 18       | 2420               | 45            | 2447               | 72      | 2474              |
| 19       | 2421               | <b>46</b>     | 2448               | × 73    | 2475              |
| 20 🖸     | 2422               | × 47 ×        | 2449               | 74      | 2476              |
| 21       | 2423               | 48            | 2450 📈             | 75      | 2477              |
| 22       | 2424               | 49            | 2451               | 76      | 2478              |
| 23 🤇     | 2425               | 50            | 2452               | 77 0    | 2479              |
| 24       | 2426               | 51            | 2453               | 78      | 2480 <            |
| 25       | 2427               | 52            | 2454               |         | 0.                |
| 26       | 2428               | × 53          | 2455               |         |                   |

#### 2.2 DESCRIPTION OF TEST MODES

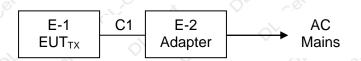
To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Pretest Mode    | Description                   |
|-----------------|-------------------------------|
| Mode 1          | CH00                          |
| Mode 2          | CH39 GFSK                     |
| Mode 3          | CH78                          |
| Mode 4          | Link Mode                     |
| Fo              | Conducted & Radiated Emission |
| Final Test Mode | Description                   |
| Mode 1          | CH00                          |
| Mode 2          | CH39 GFSK                     |
| Mode 3          | CH78                          |
| Mode 4          | Link Mode                     |

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.




Report No.: DL-20221115033E

# 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test



Conducted Spurious Emission Test



# 2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment           | Model/Type No. | Series No. | Note  |
|------|---------------------|----------------|------------|-------|
| E-1  | Wireless Microphone | M8-2           | N/A        | EUT 🔗 |
| E-2  | Adapter             | HW-0501000E    | N/A        |       |
| E-3  | Mobile phone        | Galaxy S21 5G  | N/A        |       |

| Item | Shielded Type   | Ferrite Core | Length | Note          |
|------|-----------------|--------------|--------|---------------|
| C1   | <sub>×</sub> No | No           | 0.5m   | Mini USB Line |

Note:

(1) For detachable type I/O cable should be specified the length in cm in <sup>®</sup>Length <sup></sup> column.

#### 2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the end product.

| Test software Version     | Test program: AXDN-0002.0 |          |          |  |
|---------------------------|---------------------------|----------|----------|--|
| Frequency                 | 2402 MHz                  | 2441 MHz | 2480 MHz |  |
| Power Setting of Softwave | 10                        | V 10 C   | 10       |  |



Report No.: DL-20221115033E

# 2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation test, Band-edge test and 20db bandwidth test equipment

| Item | Equipment                           | Manufacturer    | Type No.  | Serial No. | Last calibration | Calibrated until |
|------|-------------------------------------|-----------------|-----------|------------|------------------|------------------|
| Jer  | Spectrum Analyzer<br>(9kHz-26.5GHz) | Agilent         | E4408B    | MY50140780 | Nov. 06, 2022    | Nov. 05, 2023    |
| 2    | Test Receiver<br>(9kHz-7GHz)        | R&S             | ESRP7     | 101393     | Nov. 06, 2022    | Nov. 05, 2023    |
| 3    | Bilog Antenna<br>(30MHz-1GHz)       | R&S             | VULB9162  | 00306      | Nov. 06, 2022    | Nov. 05, 2023    |
| 4    | Horn Antenna<br>(1GHz-18GHz)        | Schwarzbeck     | BBHA9120D | 02139      | Nov. 06, 2022    | Nov. 05, 2023    |
| 5    | Horn Antenna<br>(18GHz-40GHz)       | A.H. Systems    | SAS-574   | 588        | Nov. 06, 2022    | Nov. 05, 2023    |
| 6    | Amplifier<br>(9KHz-6GHz)            | Schwarzbeck     | BBV9743B  | 00153      | Nov. 06, 2022    | Nov. 05, 2023    |
| 7    | Amplifier<br>(1GHz-18GHz)           | EMEC            | EM01G8GA  | 00270      | Nov. 06, 2022    | Nov. 05, 2023    |
| 8    | Amplifier<br>(18GHz-40GHz)          | Quanjuda        | DLE-161   | 97         | Nov. 06, 2022    | Nov. 05, 2023    |
| 9    | Loop Antenna<br>(9KHz-30MHz)        | Schwarzbeck     | FMZB1519B | 00014      | Nov. 06, 2022    | Nov. 05, 2023    |
| 10   | RF cables1<br>(9kHz-1GHz)           | ChengYu         | 966       | 004        | Nov. 06, 2022    | Nov. 05, 2023    |
| 11   | RF cables2<br>(1GHz-40GHz)          | ChengYu         | 966       | 003        | Nov. 06, 2022    | Nov. 05, 2023    |
| 12   | Antenna connector                   | Florida RF Labs | N/A       | RF 01#     | Nov. 06, 2022    | Nov. 05, 2023    |
| 13   | Power probe                         | KEYSIGHT        | U2021XA   | MY55210018 | Nov. 06, 2022    | Nov. 05, 2023    |
| 14   | Signal Analyzer<br>9kHz-26.5GHz     | Agilent         | N9020A    | MY55370280 | Nov. 06, 2022    | Nov. 05, 2023    |
| 15   | Test Receiver<br>20kHz-40GHz        | R&S             | ESU 40    | 100376     | Nov. 06, 2022    | Nov. 05, 2023    |
| 16   | D.C. Power Supply                   | LongWei         | PS-305D   | 010964729  | Nov. 06, 2022    | Nov. 05, 2023    |

#### Conduction Test equipment

| Item | Equipment         | Manufacturer | Type No. | Serial No. | Last calibration | Calibrated until |
|------|-------------------|--------------|----------|------------|------------------|------------------|
| _ 1  | 843 Shielded Room | ChengYu      | 843 Room | 843        | Nov. 25, 2019    | Nov. 24, 2022    |
| 2    | EMI Receiver      | R&S          | SR ESR   | 101421     | Nov. 06, 2022    | Nov. 05, 2023    |
| 3    | LISN              | R&S          | ENV216   | 102417     | Nov. 06, 2022    | Nov. 05, 2023    |
| 4    | 843 Cable 1#      | ChengYu      | CE Cable | 001        | Nov. 06, 2022    | Nov. 05, 2023    |

#### Other

| Item | Name                         | Manufacturer | Model   | Software version |
|------|------------------------------|--------------|---------|------------------|
| 1    | EMC Conduction Test System   | FALA         | EZ_EMC  | EMC-CON 3A1.1    |
| 2    | EMC radiation test system    | FALA         | EZ_EMC  | FA-03A2          |
| 3    | RF test system               | MAIWEI       | MTS8310 | 2.0.0.0          |
| 4    | RF communication test system | MAIWEI       | MTS8200 | 2.0.0.0          |



Report No.: DL-20221115033E

#### 3. EMC EMISSION TEST

#### 3.1 CONDUCTED EMISSION MEASUREMENT

#### 3.1.1 POWER LINE CONDUCTED EMISSION Limits

#### (Frequency Range 150KHz-30MHz)

| FREQUENCY (MHz)  | Limit (dł  | Stondard  |          |  |
|------------------|------------|-----------|----------|--|
| FREQUENCT (MIDZ) | Quasi-peak | Average   | Standard |  |
| 0.15 -0.5        | 66 - 56 *  | 56 - 46 * | FCC      |  |
| 0.50 -5.0        | 56.00      | 46.00     | FCC      |  |
| 5.0 -30.0        | 60.00      | 50.00     | FCC      |  |
| Matai            |            |           | -V       |  |

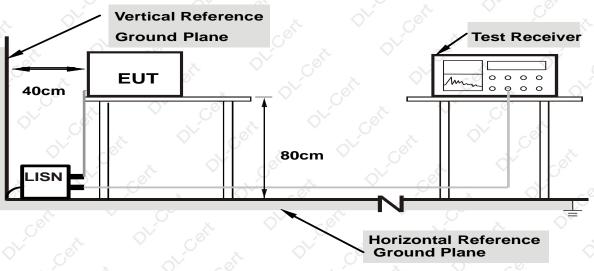
Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

#### The following table is the setting of the receiver

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

#### 3.1.2 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

#### 3.1.3 DEVIATION FROM TEST STANDARD No deviation



Report No.: DL-20221115033E

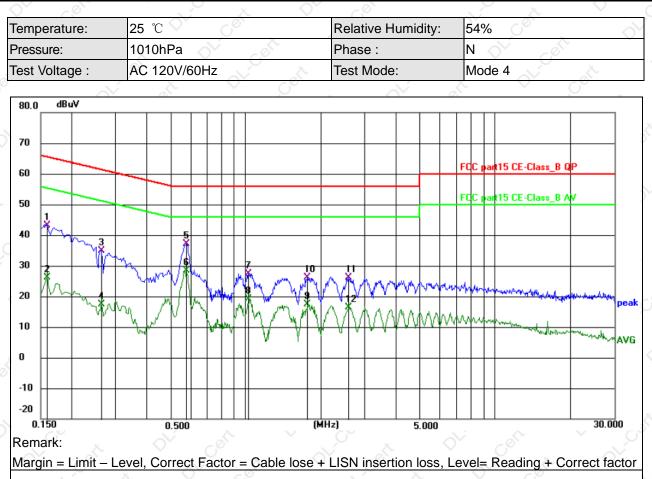
# 3.1.4 TEST SETUP



# Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

# 3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.


We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.

3.1.6 TEST RESULTS



|                                                                                   | ature:                                                                                                                             | <b>25</b> ℃                                                                                      | - dví                                                                                                       | e C                                                                                              |                                                                                         | Relative                                                                                                 | Humid                                                                           | lity:                                                      | 5        | 4%                            | _ é                  |                       |                  |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------|----------|-------------------------------|----------------------|-----------------------|------------------|
| Pressure                                                                          | e:                                                                                                                                 | 1010hPa                                                                                          | a                                                                                                           |                                                                                                  | x                                                                                       | Phase :                                                                                                  |                                                                                 |                                                            | L        | Ŷ                             | 2                    | X                     |                  |
| Fest Vol                                                                          | tage :                                                                                                                             | AC 120\                                                                                          | //60Hz 🔨                                                                                                    | $\mathcal{P}^{\mathbf{v}}$                                                                       | . O`                                                                                    | Test Mo                                                                                                  | de:                                                                             |                                                            | N        | 1ode 4 🔨                      | $)^{*}$              | CON                   |                  |
| <u></u>                                                                           | dBuV                                                                                                                               | C                                                                                                |                                                                                                             | Ń                                                                                                | al a                                                                                    | t.                                                                                                       | $\sim$                                                                          | 0                                                          | 0        |                               | $\sim$               | 1                     | a.               |
| 80.0                                                                              |                                                                                                                                    |                                                                                                  |                                                                                                             |                                                                                                  |                                                                                         |                                                                                                          |                                                                                 |                                                            |          |                               |                      |                       | 1                |
| 70                                                                                |                                                                                                                                    |                                                                                                  |                                                                                                             |                                                                                                  |                                                                                         |                                                                                                          |                                                                                 |                                                            |          |                               |                      |                       |                  |
| ″ 🗖                                                                               |                                                                                                                                    |                                                                                                  |                                                                                                             |                                                                                                  |                                                                                         |                                                                                                          |                                                                                 |                                                            |          |                               |                      |                       | 1                |
| 60 -                                                                              |                                                                                                                                    |                                                                                                  |                                                                                                             | _                                                                                                |                                                                                         |                                                                                                          |                                                                                 |                                                            | FCC      | part15 CE-C                   | Class_B Q            | Р                     | -                |
|                                                                                   |                                                                                                                                    |                                                                                                  |                                                                                                             |                                                                                                  |                                                                                         |                                                                                                          |                                                                                 |                                                            | FUC      | part15 CE-C                   | lass R A             | ~                     |                  |
| 50                                                                                |                                                                                                                                    |                                                                                                  |                                                                                                             |                                                                                                  |                                                                                         |                                                                                                          |                                                                                 |                                                            |          |                               | Jugos_D P            |                       | 1                |
| 40 🏷                                                                              |                                                                                                                                    |                                                                                                  |                                                                                                             |                                                                                                  |                                                                                         |                                                                                                          |                                                                                 |                                                            |          |                               |                      |                       |                  |
|                                                                                   | ma                                                                                                                                 |                                                                                                  | ×                                                                                                           |                                                                                                  |                                                                                         |                                                                                                          |                                                                                 |                                                            |          |                               |                      |                       |                  |
| 30                                                                                | - ''''                                                                                                                             |                                                                                                  |                                                                                                             | 5<br>× 7                                                                                         |                                                                                         | 9                                                                                                        | 1                                                                               |                                                            | $\vdash$ | +                             |                      |                       | -                |
| 20                                                                                | 1/1.                                                                                                                               | MMMMAY.                                                                                          |                                                                                                             | NM A                                                                                             | MM                                                                                      | THE HALLING                                                                                              | AMAN                                                                            | Monthen                                                    | and -    |                               | a sheld              | and the second second |                  |
| 20                                                                                | WWW.L                                                                                                                              |                                                                                                  | I'm With all                                                                                                | . <b>∦ ∀ </b> §                                                                                  | V V I                                                                                   | 10                                                                                                       |                                                                                 |                                                            |          | Contraction of the local data | 1 Mpr                | - Aryo                | <sup>#</sup> pea |
| 10                                                                                | - WW                                                                                                                               | M. LAN                                                                                           | I'm,                                                                                                        | AN A                                                                                             | MA                                                                                      | ችሐሉ                                                                                                      | A AND                                                                           | m                                                          | ww       | anne .                        |                      |                       | -                |
|                                                                                   |                                                                                                                                    | . WW                                                                                             | 1 M M                                                                                                       | V                                                                                                | VYI                                                                                     | י ייןען/                                                                                                 | יוייוי                                                                          | ' ''                                                       |          | 1.1                           | andered februar/east | and the stand         | AVE              |
| • –                                                                               |                                                                                                                                    |                                                                                                  |                                                                                                             |                                                                                                  |                                                                                         |                                                                                                          |                                                                                 |                                                            |          |                               |                      |                       | 1                |
| -10                                                                               |                                                                                                                                    |                                                                                                  |                                                                                                             |                                                                                                  |                                                                                         |                                                                                                          |                                                                                 |                                                            |          |                               |                      |                       |                  |
|                                                                                   |                                                                                                                                    |                                                                                                  |                                                                                                             |                                                                                                  |                                                                                         |                                                                                                          |                                                                                 |                                                            |          |                               |                      |                       |                  |
|                                                                                   | 1 1                                                                                                                                |                                                                                                  |                                                                                                             |                                                                                                  |                                                                                         |                                                                                                          |                                                                                 |                                                            |          |                               |                      |                       |                  |
| -20                                                                               |                                                                                                                                    | 0.50                                                                                             |                                                                                                             |                                                                                                  | (MHz)                                                                                   |                                                                                                          | 5.0                                                                             | 00                                                         |          |                               |                      | 30.0                  |                  |
| 0.150                                                                             |                                                                                                                                    | 0.50                                                                                             | 00<br>00                                                                                                    |                                                                                                  | (MHz)                                                                                   |                                                                                                          | 5.0                                                                             | 00                                                         |          | ļ ļ                           | ~                    | 30.0                  |                  |
| 0.150<br>Remark                                                                   |                                                                                                                                    |                                                                                                  |                                                                                                             | = Cable                                                                                          |                                                                                         | ISN inse                                                                                                 |                                                                                 |                                                            |          | <br> = Readir                 | na + C               |                       |                  |
| 0.150<br>Remark                                                                   | ::<br>= Limit – Le                                                                                                                 |                                                                                                  |                                                                                                             | = Cable                                                                                          |                                                                                         | ISN inse                                                                                                 |                                                                                 |                                                            |          | <br>I= Readir                 | ng + C               |                       |                  |
| 0.150<br>Remark                                                                   |                                                                                                                                    |                                                                                                  |                                                                                                             | = Cable                                                                                          |                                                                                         | ISN inse                                                                                                 |                                                                                 |                                                            |          | I= Readii                     | ng + C               |                       |                  |
| 0.150<br>Remark<br>Margin :                                                       |                                                                                                                                    |                                                                                                  |                                                                                                             | = Cable                                                                                          |                                                                                         | ISN inse                                                                                                 | ertion lo                                                                       | oss, L                                                     | -        | 0 <sup>1</sup>                | ng + C               |                       |                  |
| 0.150<br>Remark<br>Aargin :                                                       | = Limit – Le                                                                                                                       | evel, Corre                                                                                      | ect Factor                                                                                                  | , cer                                                                                            | lose + Ll                                                                               |                                                                                                          |                                                                                 |                                                            | -        | I= Readin                     | ng + C               |                       |                  |
| 0.150<br>Remark<br>Aargin :                                                       | = Limit – Le<br>Frequency                                                                                                          | evel, Corre                                                                                      | ect Factor<br>Factor                                                                                        | Level                                                                                            | lose + Ll                                                                               | Margin                                                                                                   | ertion lo                                                                       | oss, L                                                     | -        | 0 <sup>1</sup>                | ng + C               |                       |                  |
| 0.150<br>Remark<br><u>Aargin :</u><br>No.                                         | <u>= Limit – Le</u><br>Frequency<br>(MHz)                                                                                          | Reading<br>(dBuV)                                                                                | Factor<br>(dB)                                                                                              | Level<br>(dBuV)                                                                                  | lose + Ll<br>Limit<br>(dBuV)                                                            | Margin<br>(dB)                                                                                           | Detector                                                                        | P/F                                                        | -        | 0 <sup>1</sup>                | ng + C               |                       |                  |
| 0.150<br>Remark<br><u>Aargin :</u><br>No.                                         | E Limit – Le<br>Frequency<br>(MHz)<br>0.150000                                                                                     | Reading<br>(dBuV)<br>33.50                                                                       | Factor<br>(dB)<br>10.50                                                                                     | Level<br>(dBuV)<br>44.00                                                                         | Limit<br>(dBuV)<br>66.00                                                                | Margin<br>(dB)<br>-22.00                                                                                 | Detector<br>QP                                                                  | P/F                                                        | -        | 0 <sup>1</sup>                | ng + C               |                       |                  |
| 0.150<br>Remark<br>Margin :<br>No.                                                | E Limit – Le<br>Frequency<br>(MHz)<br>0.150000<br>0.150000                                                                         | Reading<br>(dBuV)<br>33.50<br>13.83                                                              | Factor<br>(dB)<br>10.50                                                                                     | Level<br>(dBuV)<br>44.00<br>24.33                                                                | Limit<br>(dBuV)<br>66.00<br>56.00                                                       | Margin<br>(dB)<br>-22.00<br>-31.67                                                                       | Detector<br>QP<br>AVG                                                           | P/F<br>P                                                   | -        | 0 <sup>1</sup>                | ng + C               |                       |                  |
| 0.150<br>Remark<br>/largin =<br>No.<br>1<br>2<br>3 *                              | E Limit – Le<br>Frequency<br>(MHz)<br>0.150000<br>0.150000<br>0.577500                                                             | Reading<br>(dBuV)<br>33.50<br>13.83<br>26.61                                                     | Factor<br>(dB)<br>10.50<br>9.29                                                                             | Level<br>(dBuV)<br>44.00<br>24.33<br>35.90                                                       | Limit<br>(dBuV)<br>66.00<br>56.00<br>56.00                                              | Margin<br>(dB)<br>-22.00<br>-31.67<br>-20.10                                                             | Detector<br>QP<br>AVG<br>QP                                                     | P/F<br>P<br>P                                              | -        | 0 <sup>1</sup>                | ng + C               |                       |                  |
| 0.150<br>Remark<br><u>Aargin =</u><br>No.<br>1<br>2<br>3 *<br>4                   | E Limit – Le<br>Frequency<br>(MHz)<br>0.150000<br>0.577500<br>0.577500                                                             | Reading<br>(dBuV)<br>33.50<br>13.83<br>26.61<br>15.71                                            | Factor<br>(dB)<br>10.50<br>10.50<br>9.29<br>9.29                                                            | Level<br>(dBuV)<br>44.00<br>24.33<br>35.90<br>25.00                                              | Limit<br>(dBuV)<br>66.00<br>56.00<br>56.00<br>46.00                                     | Margin<br>(dB)<br>-22.00<br>-31.67<br>-20.10<br>-21.00                                                   | Detector<br>QP<br>AVG<br>QP<br>AVG                                              | P/F<br>P<br>P<br>P<br>P                                    | -        | 0 <sup>1</sup>                | ng + C               |                       |                  |
| 0.150<br>Remark<br>Margin :<br>No.<br>1<br>2<br>3 *<br>4<br>5                     | E Limit – Le<br>Frequency<br>(MHz)<br>0.150000<br>0.150000<br>0.577500<br>0.577500<br>1.018400                                     | Reading<br>(dBuV)<br>33.50<br>13.83<br>26.61<br>15.71<br>17.79                                   | Factor<br>(dB)<br>10.50<br>10.50<br>9.29<br>9.29<br>9.29                                                    | Level<br>(dBuV)<br>44.00<br>24.33<br>35.90<br>25.00<br>27.08                                     | Limit<br>(dBuV)<br>66.00<br>56.00<br>56.00<br>46.00<br>56.00                            | Margin<br>(dB)<br>-22.00<br>-31.67<br>-20.10<br>-21.00<br>-28.92                                         | Detector<br>QP<br>AVG<br>QP<br>AVG<br>QP                                        | P/F<br>P<br>P<br>P<br>P                                    | -        | 0 <sup>1</sup>                | ng + C               |                       |                  |
| 0.150<br>Remark<br>Aargin :<br>No.<br>1<br>2<br>3 *<br>4<br>5<br>6                | E Limit – Le<br>Frequency<br>(MHz)<br>0.150000<br>0.577500<br>0.577500<br>1.018400<br>1.018400                                     | Reading<br>(dBuV)<br>33.50<br>13.83<br>26.61<br>15.71<br>17.79<br>6.54                           | Ect Factor<br>(dB)<br>10.50<br>9.29<br>9.29<br>9.29<br>9.29<br>9.29                                         | Level<br>(dBuV)<br>44.00<br>24.33<br>35.90<br>25.00<br>27.08<br>15.83                            | Limit<br>(dBuV)<br>66.00<br>56.00<br>46.00<br>56.00<br>46.00                            | Margin<br>(dB)<br>-22.00<br>-31.67<br>-20.10<br>-21.00<br>-28.92<br>-30.17                               | Detector<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG                                 | P/F<br>P<br>P<br>P<br>P<br>P<br>P                          | -        | 0 <sup>1</sup>                | ng + C               |                       |                  |
| 0.150<br>Remark<br><u>Aargin =</u><br>No.<br>1<br>2<br>3 *<br>4<br>5<br>6<br>7    | E Limit – Le<br>Frequency<br>(MHz)<br>0.150000<br>0.577500<br>0.577500<br>1.018400<br>1.018400<br>1.455000                         | Reading<br>(dBuV)<br>33.50<br>13.83<br>26.61<br>15.71<br>17.79<br>6.54<br>15.90                  | Factor<br>(dB)<br>10.50<br>10.50<br>9.29<br>9.29<br>9.29<br>9.29<br>9.29<br>9.29<br>9.54                    | Level<br>(dBuV)<br>44.00<br>24.33<br>35.90<br>25.00<br>27.08<br>15.83<br>25.44                   | Limit<br>(dBuV)<br>66.00<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00                   | Margin<br>(dB)<br>-22.00<br>-31.67<br>-20.10<br>-21.00<br>-28.92<br>-30.17<br>-30.56                     | Detector<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP                           | P/F<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P                | -        | 0 <sup>1</sup>                | ng + C               |                       |                  |
| 0.150<br>Remark<br>Margin :<br>No.<br>1<br>2<br>3 *<br>4<br>5<br>6<br>7<br>8      | E Limit – Le<br>Frequency<br>(MHz)<br>0.150000<br>0.577500<br>0.577500<br>1.018400<br>1.455000<br>1.455000                         | Reading<br>(dBuV)<br>33.50<br>13.83<br>26.61<br>15.71<br>17.79<br>6.54<br>15.90<br>4.63          | Ect Factor<br>(dB)<br>10.50<br>10.50<br>9.29<br>9.29<br>9.29<br>9.29<br>9.29<br>9.54<br>9.54                | Level<br>(dBuV)<br>44.00<br>24.33<br>35.90<br>25.00<br>27.08<br>15.83<br>25.44<br>14.17          | Limit<br>(dBuV)<br>66.00<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00<br>46.00          | Margin<br>(dB)<br>-22.00<br>-31.67<br>-20.10<br>-21.00<br>-28.92<br>-30.17<br>-30.56<br>-31.83           | Detector<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG       | P/F<br>P/F<br>P<br>P<br>P<br>P<br>P<br>P                   | -        | 0 <sup>1</sup>                | ng + C               |                       |                  |
| 0.150<br>Remark<br>Aargin :<br>No.<br>1<br>2<br>3 *<br>4<br>5<br>6<br>7<br>8<br>9 | E Limit – Le<br>Frequency<br>(MHz)<br>0.150000<br>0.577500<br>0.577500<br>1.018400<br>1.018400<br>1.455000<br>1.455000<br>2.553000 | Reading<br>(dBuV)<br>33.50<br>13.83<br>26.61<br>15.71<br>17.79<br>6.54<br>15.90<br>4.63<br>15.65 | Ect Factor<br>(dB)<br>10.50<br>9.29<br>9.29<br>9.29<br>9.29<br>9.29<br>9.29<br>9.54<br>9.54<br>9.54<br>9.15 | Level<br>(dBuV)<br>44.00<br>24.33<br>35.90<br>25.00<br>27.08<br>15.83<br>25.44<br>14.17<br>24.80 | Limit<br>(dBuV)<br>66.00<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00<br>46.00<br>56.00 | Margin<br>(dB)<br>-22.00<br>-31.67<br>-20.10<br>-21.00<br>-28.92<br>-30.17<br>-30.56<br>-31.83<br>-31.20 | Detector<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP | P/F<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P | -        | 0 <sup>1</sup>                | ng + C               |                       |                  |





| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|-------------------|----------------|-----------------|-----------------|----------------|----------|-----|--------|
| 1   | 0.159000           | 33.09             | 10.08          | 43.17           | 65.52           | -22.35         | QP       | Ρ   |        |
| 2   | 0.159000           | 16.00             | 10.08          | 26.08           | 55.52           | -29.44         | AVG      | Ρ   |        |
| 3   | 0.262500           | 25.85             | 8.98           | 34.83           | 61.35           | -26.52         | QP       | Р   |        |
| 4   | 0.262500           | 8.32              | 8.98           | 17.30           | 51.35           | -34.05         | AVG      | Ρ   |        |
| 5   | 0.577500           | 27.89             | 9.28           | 37.17           | 56.00           | -18.83         | QP       | Ρ   |        |
| 6 * | 0.577500           | 19.13             | 9.28           | 28.41           | 46.00           | -17.59         | AVG      | Р   |        |
| 7   | 1.022900           | 18.07             | 9.42           | 27.49           | 56.00           | -28.51         | QP       | Ρ   |        |
| 8   | 1.022900           | 9.73              | 9.42           | 19.15           | 46.00           | -26.85         | AVG      | Р   |        |
| 9   | 1.765000           | 7.64              | 9.74           | 17.38           | 46.00           | -28.62         | AVG      | Р   |        |
| 10  | 1.765500           | 16.48             | 9.74           | 26.22           | 56.00           | -29.78         | QP       | Р   |        |
| 11  | 2.575400           | 16.41             | 9.83           | 26.24           | 56.00           | -29.76         | QP       | Ρ   |        |
| 12  | 2.575400           | 6.47              | 9.83           | 16.30           | 46.00           | -29.70         | AVG      | Ρ   |        |
|     | $\sim$             | <u> </u>          | . V.           | 0               |                 | $\sim$         | 20       |     | ÷      |



#### 3.2 RADIATED EMISSION MEASUREMENT 3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequency (MHz) | Field Strength (micorvolts/meter) | Measurement Distance (meters) |
|-----------------|-----------------------------------|-------------------------------|
| 0.009~0.490     | 2400/F(KHz)                       | 300                           |
| 0.490~1.705     | 24000/F(KHz)                      | 30                            |
| 1.705~30.0      | 30                                | 30                            |
| 30~88           | 100                               | × 3 0°                        |
| 88~216          | 150                               | 3 0 00                        |
| 216~960         | 200                               | 3                             |
| Above 960       | 500                               |                               |

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

| Fundamental       | Field Strength of Fundamental | Field Strength of Harmonics |  |  |
|-------------------|-------------------------------|-----------------------------|--|--|
| Frequency         | (millivolts/meter)            | (microvolts/meter)          |  |  |
| 902 - 928 MHz     | 50                            | 500                         |  |  |
| 2400 - 2483.5 MHz | 50                            | 500                         |  |  |
| 5725 - 5875 MHz   | 50                            | 500                         |  |  |
| 24.0 - 24.25 GHz  | 250                           | 2500                        |  |  |

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

| FREQUENCY (MHz) | Limit (dBuV/m) (at 3M) |         |  |  |  |  |
|-----------------|------------------------|---------|--|--|--|--|
|                 | PEAK                   | AVERAGE |  |  |  |  |
| Above 1000      | 74                     | 54      |  |  |  |  |
|                 |                        |         |  |  |  |  |

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

#### Receiver setup:

|   | civer setup. | X          |        |        | X. V       |
|---|--------------|------------|--------|--------|------------|
|   | Frequency    | Detector   | RBW    | VBW    | Value      |
|   | 9KHz-150KHz  | Quasi-peak | 200Hz  | 600Hz  | Quasi-peak |
| Ģ | 150KHz-30MHz | Quasi-peak | 9KHz   | 30KHz  | Quasi-peak |
|   | 30MHz-1GHz   | Quasi-peak | 100KHz | 300KHz | Quasi-peak |
| < |              | Peak       | 1MHz   | 3MHz   | Peak       |
|   | Above 1GHz   | Peak       | 1MHz o | 10Hz   | Average    |



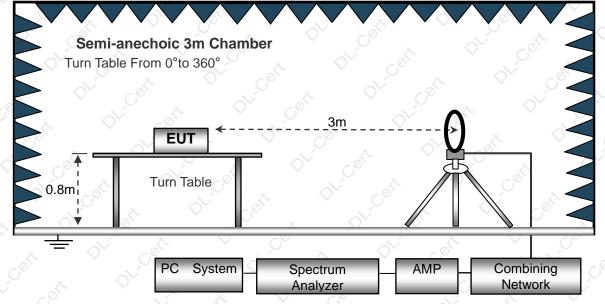
#### 3.2.2 TEST PROCEDURE

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

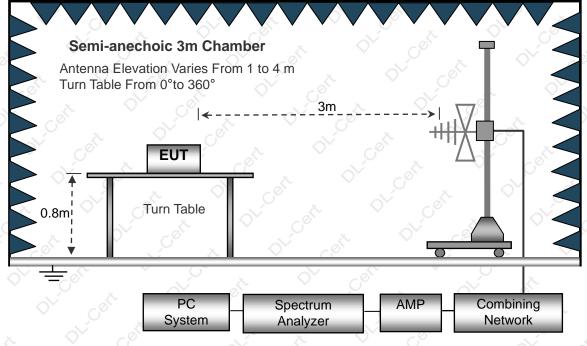
- g. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. (Above 18GHz the distance is 3 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel Note:
  - Both horizontal and vertical antenna polarities were tested


and performed pretest to three orthogonal axis. The worst case emissions were reported

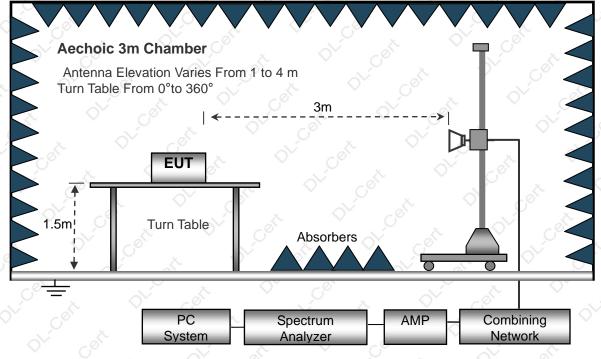
#### 3.2.3 DEVIATION FROM TEST STANDARD

No deviation

#### 3.2.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz






Report No.: DL-20221115033E

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz



(C) Radiated Emission Test-Up Frequency Above 1GHz



# 3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

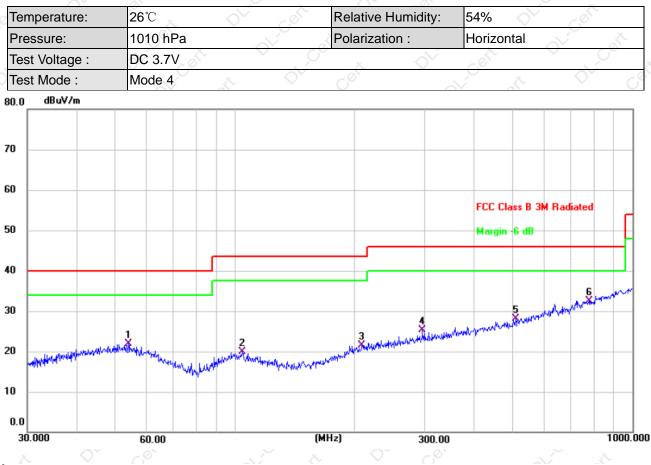


Report No.: DL-20221115033E

# 3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)

| Temperature: | 20°C     | Relative Humidtity: | 48%     |
|--------------|----------|---------------------|---------|
| Pressure:    | 1010 hPa | Test Voltage :      | DC 3.7V |
| Test Mode :  | Mode 4   | Polarization :      |         |

| Freq. | Reading      | Limit    | Margin    | State |
|-------|--------------|----------|-----------|-------|
| (MHz) | (dBuV/m)     | (dBuV/m) | (dB)      | P/F   |
| e e d | s <u>-</u> , | <u> </u> | <u>es</u> | PASS  |
|       | Col          |          | Or - Col  | PASS  |


# NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.



Report No.: DL-20221115033E

# 3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ)



| 1   |                    | =                 |                  |                   |                   |                |          |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|
| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
| 1   | 53.8818            | 33.69             | -11.85           | 21.84             | 40.00             | -18.16         | QP       |
| 2   | 104.1701           | 33.90             | -13.91           | 19.99             | 43.50             | -23.51         | QP       |
| 3   | 208.5803           | 34.15             | -12.60           | 21.55             | 43.50             | -21.95         | QP       |
| 4   | 296.1836           | 35.47             | -10.18           | 25.29             | 46.00             | -20.71         | QP       |
| 5   | 508.2582           | 34.53             | -6.49            | 28.04             | 46.00             | -17.96         | QP       |
| 6 * | 776.8778           | 34.55             | -2.00            | 32.55             | 46.00             | -13.45         | QP       |

# Remark: 🛇

Correct Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading Level + Correct Factor; Margin = Level - Limit;



Report No.: DL-20221115033E

| emperature:                    | <b>26</b> ℃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     | Relative Humi              | dity:                            | 54%                     |              |        |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|----------------------------------|-------------------------|--------------|--------|
| Pressure:                      | 1010 hPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     | Polarization :             |                                  | Vertical                |              |        |
| Test Voltage :                 | DC 3.7V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Or Cor                                              |                            |                                  |                         | , CO         |        |
| Test Mode :                    | Mode 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $x$ $0^{V}$                                         | - 0                        |                                  | X                       | Q            | C.O.C. |
| ).0dBu∀/m                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                            |                                  |                         |              |        |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                            |                                  |                         |              |        |
| 1                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                            |                                  |                         |              |        |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                            |                                  |                         |              |        |
| ı                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                            |                                  |                         |              |        |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                            |                                  | FCC Class B             | 3M Radiated  | ſ      |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                            |                                  | Margin -6 dB            |              |        |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                            |                                  |                         |              |        |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                            |                                  |                         |              |        |
| ,                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + <b>J</b>                                          |                            |                                  |                         | 6 martine    | Manan  |
| 1 1                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                            | 5                                | Mary Mary Markell       | Carl Charles |        |
| promotion while and            | hund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                   | and hat have been and have | which is the party of the second | new along a surface the |              |        |
| Authorited in such as a second | and the state of t | have all bour and an and an and a share and a share | NON MARKET                 |                                  |                         |              |        |
| 1                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                            |                                  |                         |              |        |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                            |                                  |                         |              |        |
| 30.000                         | 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | (MHz)                      | 300.00                           |                         |              | 1000   |

| . ÷ |     |                    |                   |                  |                   |                   |                |          |
|-----|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|
|     | No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
|     | 1 * | 50.5860            | 37.06             | -11.47           | 25.59             | 40.00             | -14.41         | QP       |
| ľ   | 2   | 60.2801            | 35.78             | -12.65           | 23.13             | 40.00             | -16.87         | QP       |
|     | 3   | 103.4421           | 34.10             | -13.83           | 20.27             | 43.50             | -23.23         | QP       |
|     | 4   | 199.2855           | 34.82             | -12.95           | 21.87             | 43.50             | -21.63         | QP       |
|     | 5   | 324.4561           | 34.67             | -9.66            | 25.01             | 46.00             | -20.99         | QP       |
|     | 6   | 614.2142           | 34.67             | -4.46            | 30.21             | 46.00             | -15.79         | QP       |

# Remark:

Correct Factor = Cable loss + Antenna factor - Preamplifier;

Level = Reading Level + Correct Factor; Margin = Level - Limit;



Report No.: DL-20221115033E

# 3.2.8 TEST RESULTS (1GHZ~25GHZ)

GFSK

| 5              |           | Matar            | Pre-      | Cable     | Antenna    | Emission          | $\lambda$ $\nabla$   | C.     |         |
|----------------|-----------|------------------|-----------|-----------|------------|-------------------|----------------------|--------|---------|
| Polar          | Frequency | Meter<br>Reading | amplifier | Loss      | Factor     | Emission<br>Level | Limits               | Margin | Detecto |
| (H/V)          | (MHz)     | (dBuV)           | (dB)      | (dB)      | (dB/m)     | (dBuV/m)          | (dBuV/m)             | (dB)   | Туре    |
|                | 0         | 0 <sup>V</sup>   | op 🔨      | eration f | requency:  | 2402              | V _or                | $\sim$ | , Ç     |
| V              | 2402.00   | 113.33           | 52.16     | 2.78      | 27.41      | 91.36             | 114                  | -22.64 | PK      |
| V              | 2402.00   | 0103.28 🛇        | 52.16     | 2.78      | 27.41      | 81.31             | 94                   | -12.69 | AV      |
| V              | 4804.00   | 77.25            | 51.74     | 3.08      | 31.25      | 59.84             | 74                   | -14.16 | PK      |
| V              | 4804.00   | 60.16            | 51.74     | 3.08      | 31.25 <    | 42.75             | 54                   | -11.25 | , AV    |
| V              | 16132.00  | 54.24            | 51.56     | 7.36      | 41.57      | 51.61             | 74 🔨                 | -22.39 | 🤊 PK    |
| Н              | 2402.00   | 112.83           | 52.16     | 2.78      | 27.41      | 90.86             | 114                  | -23.14 | PK      |
| H,             | 2402.00   | 105.31           | 52.16     | 2.78      | 27.41      | 83.34             | 94                   | -10.66 | AV      |
| Ĥ              | 4804.00   | 76.68            | 51.74     | 3.08      | 31.25      | 59.27             | 74                   | -14.73 | PK 🤇    |
| Нζ             | 4804.00   | 59.46            | 51.74     | 3.08      | 31.25      | 42.05             | 54                   | -11.95 | AV      |
| Н              | 16132.00  | 55.93            | 51.56     | 7.36      | 41.57      | 53.3              | 74                   | -20.7  | PK      |
| N.             |           |                  | óp        | eration f | requency:2 | 2441              | . 0                  | × - 0  | , C     |
| V×             | 2441.00   | 112.25           | 52.11     | 2.82      | 27.47      | 90.43             | 114                  | -23.57 | PK      |
| V.             | 2441.00   | 105.36           | > 52.11   | 2.82      | 27.47      | 83.54             | 94                   | -10.46 | AV      |
| V              | 4882.00   | 77.19            | 51.77     | 3.03      | 31.34      | 59.79             | 9 74 x               | -14.21 | PK @    |
| V              | 4882.00   | 60.84            | 51.77     | 3.03      | 31.34      | 🔪 43.44 🛇         | 54                   | -10.56 | AV      |
| v              | 16132.00  | 54.23            | 51.56     | 7.36      | 41.57      | 51.6              | 74                   | -22.4  | РК      |
| Н              | 2441.00   | 112.35           | 52.11     | 2.82      | 27.47      | 90.53             | 114                  | -23.47 | PK      |
| Н              | 2441.00   | 104.56           | 52.11     | 2.82      | 27.47      | 82.74             | 94                   | -11.26 | AV      |
| Щ              | 4882.00   | 76.84            | 51.77     | 3.03      | 31.34      | 59.44             | 74                   | -14.56 | S PK    |
| Н              | 4882.00   | 59.53            | 51.77     | 3.03      | 31.34      | 42.13             | 54                   | -11.87 | AV      |
| HG             | 16132.00  | 55.48            | 51.56     | 7.36      | 41.57      | 52.85             | 74                   | -21.15 | PK      |
| 0 <sup>V</sup> | - St      |                  | op،       | eration f | requency:2 | 2480              | 0                    | x      | OV .    |
| V              | 2480.00   | 113.36           | 52.23     | 2.86      | 27.44      | 91.43             | ° 114 ⊖ <sup>©</sup> | -22.57 | PK      |
| v              | 2480.00   | 106.71           | 52.23     | 2.86      | 27.44      | 84.78             | 94                   | -9.22  | AV      |
| V V            | 4960.00   | 78.26            | 51.69     | 3.05      | 31.39      | 61.01             | 74                   | -12.99 | PK      |
| V              | 4960.00   | 60.97            | 51.69     | 3.05      | 31.39      | 43.72             | 54 🛇                 | -10.28 | AV      |
| VX             | 16132.00  | 54.66            | 51.56     | 7.36      | 41.57      | 52.03             | 74                   | -21.97 | PK      |
| H              | 2480.00   | 113.13           | 52.23     | 2.86      | 27.44      | 91.2              | 114                  | -22.8  | PK      |
| Н              | 2480.00   | 105.65           | 52.23     | 2.86      | 27.44      | 83.72             | 94                   | -10.28 | AV      |
| НV             | 4960.00   | 77.67            | 51.69     | 3.05      | 31.39      | 60.42             | 74                   | -13.58 | PK      |
| н              | 4960.00   | 59.26 🛇          | 51.69     | 3.05      | 31.39      | 42.01             | 54                   | -11.99 | AV      |
| Н              | 16132.00  | 54.32            | 51.56     | 7.36      | 41.57      | 51.69             | 74                   | -22.31 | РК      |

# Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.



Report No.: DL-20221115033E

# 3.3 RADIATED BAND EMISSION MEASUREMENT 3.3.1 TEST REQUIREMENT:

FCC Part15 C Section 15.209 and 15.205

# LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

| FREQUENCY (MHz) | Limit (dBuV/m) (at 3M) |         |  |  |  |  |
|-----------------|------------------------|---------|--|--|--|--|
|                 | PEAK                   | AVERAGE |  |  |  |  |
| Above 1000      | 74                     | 54 0    |  |  |  |  |

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

| Spectrum Parameter                    | Setting                                          |
|---------------------------------------|--------------------------------------------------|
| Attenuation                           | Auto                                             |
| Start Frequency                       | 2300MHz                                          |
| Stop Frequency                        | 2520                                             |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average |

#### 3.3.2 TEST PROCEDURE

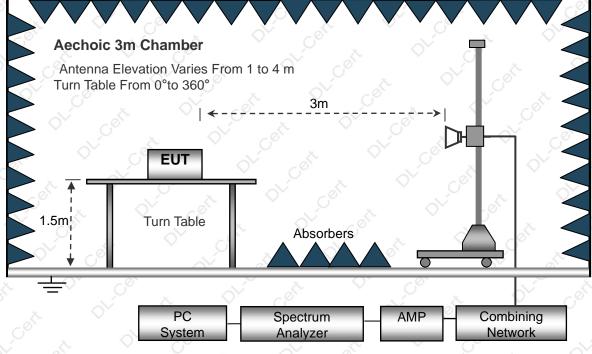
Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

#### 3.3.3 DEVIATION FROM TEST STANDARD


No deviation



Report No.: DL-20221115033E

# 3.3.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz



# **3.3.5 EUT OPERATING CONDITIONS**

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



Report No.: DL-20221115033E

# 3.3.6 TEST RESULT

#### GFSK

| Polar | Frequency                              | Meter<br>Reading      | Pre-<br>amplifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits   | Margin | Detector        |
|-------|----------------------------------------|-----------------------|-------------------|---------------|-------------------|-------------------|----------|--------|-----------------|
| (H/V) | (MHz)                                  | (dBuV)                | (dB)              | (dB)          | (dB/m)            | (dBuV/m)          | (dBuV/m) | (dB)   | Туре            |
|       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\bigcirc$ $^{\circ}$ | op op             | eration f     | requency:         | 2402              | G        |        |                 |
| V     | 2390.00                                | 76.69                 | 52.12             | 2.73          | 27.38             | 54.68             | 74       | -19.32 | PK              |
| V     | 2390.00                                | 65.23                 | 52.12             | 2.73          | 27.38             | 43.22             | 54       | -10.78 | AV              |
| V     | 2400.00                                | 76.04                 | 52.16             | 2.78          | 27.41 <           | 54.07             | 74       | -19.93 | <sub>∠</sub> PK |
| ٧ ر   | 2400.00                                | 64.32                 | 52.16             | 2.78          | 27.41             | 42.35             | 54       | -11.65 | AV              |
| H     | 2390.00                                | 76.69                 | 52.12             | 2.73          | 27.38             | 54.68             | 74       | -19.32 | PK              |
| _₽́   | 2390.00                                | 65.18                 | 52.12             | 2.73          | 27.38             | 43.17             | 54       | 10.83  | AV C            |
| н     | 2400.00                                | 76.26                 | 52.16             | 2.78          | 27.41             | 54.29             | 74 0     | -19.71 | PK              |
| Н     | 2400.00                                | 65.44                 | 52.16             | 2.78          | 27.41             | 43.47             | 54       | -10.53 | AV              |

| Polar | Frequency      | Meter<br>Reading | Pre-<br>amplifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits      | Margin | Detector |
|-------|----------------|------------------|-------------------|---------------|-------------------|-------------------|-------------|--------|----------|
| (H/V) | (MHz)          | (dBuV)           | (dB)              | (dB)          | (dB/m)            | (dBuV/m)          | (dBuV/m)    | (dB)   | Туре     |
|       | C <sup>o</sup> |                  | 👌 ор              | eration f     | requency:         | 2480              | V at        | $\vee$ | 0        |
| V     | 2483.50        | 76.63            | 52.23             | 2.86          | 27.44             | 54.7              | 74          | -19.3  | PK       |
| V     | 2483.50        | 65.31 🤇          | 52.23             | 2.86          | 27.44             | 43.38             | 54          | -10.62 | AV       |
| V     | 2500.00        | 76.85            | 52.26             | 2.88          | 27.49             | 54.96             | 74          | -19.04 | PK       |
| _У́`  | 2500.00        | 64.36            | 52.26             | 2.88          | 27.49             | 42.47             | 54          | -11.53 | AV       |
| Н     | 2483.50        | 76.43            | 52.23             | 2.86          | 27.44             | 54.5              | <i>9</i> 74 | -19.5  | PK       |
| H.C   | 2483.50        | 65.87            | 52.23             | 2.86          | 27.44             | 43.94             | 54          | -10.06 | AV       |
| Ĥ     | 2500.00        | 76.15            | 52.26             | 2.88          | 27.49             | 54.26             | 74          | -19.74 | РК 🤇     |
| н 🛇   | 2500.00        | 65.23            | 52.26             | 2.88×         | 27.49             | 43.34             | 54          | -10.66 | AV       |

#### Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier, Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.



Report No.: DL-20221115033E

# 4. BANDWIDTH TEST

# 4.1 APPLIED PROCEDURES / LIMIT

|         | FCC Part15 (15.215), Subpart C |           |          |  |  |  |  |
|---------|--------------------------------|-----------|----------|--|--|--|--|
| Section | No at                          | Test Item | Ohi cert |  |  |  |  |
| 15.215  |                                | Bandwidth | ON O     |  |  |  |  |

# 4.1.1 TEST PROCEDURE


- 1. Set RBW = 30 kHz.
- 2. Set the video bandwidth (VBW) ≥RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

# 4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP



# SPECTRUM ANALYZER

# 4.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



Report No.: DL-20221115033E

# 4.1.5 TEST RESULTS

|              |                           | $\bigcirc^{*}$ $-\bigcirc^{*}$ |         |
|--------------|---------------------------|--------------------------------|---------|
| Temperature: | 25°C                      | Relative Humidity:             | 60%     |
| Pressure:    | 1012 hPa                  | Test Voltage :                 | DC 3.7V |
| Test Mode :  | TX Mode /CH00, CH39, CH78 | x O <sup>V</sup>               |         |

| 0      | Frequency<br>(MHz) | 20dB Bandwidth<br>(MHz) | Result |
|--------|--------------------|-------------------------|--------|
| ON con | 2402               | 0.85                    | Pass   |
| GFSK   | 2441               | 0.871                   | Pass   |
|        | 2480               | 0.874                   | Pass   |





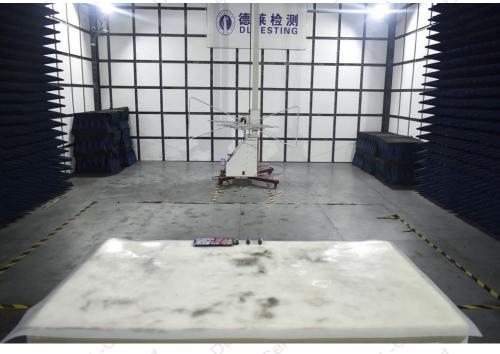
Report No.: DL-20221115033E

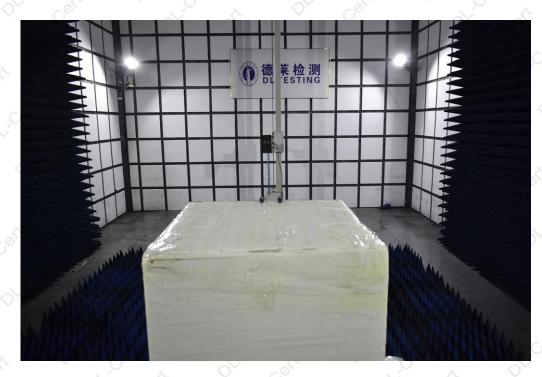
# 5. ANTENNA REQUIREMENT

#### 5.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

#### 5.2 EUT ANTENNA


The EUT antenna is Chip antenna. It comply with the standard requirement.




Report No.: DL-20221115033E

# 6. TEST SEUUP PHOTO

Radiated Measurement Photos

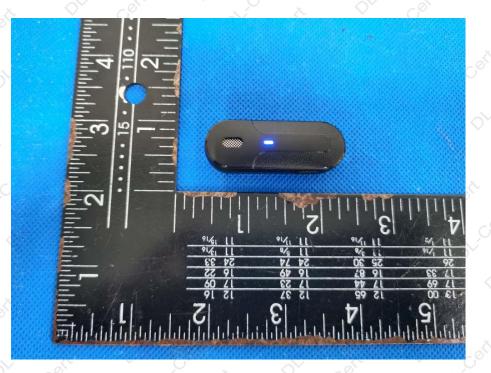






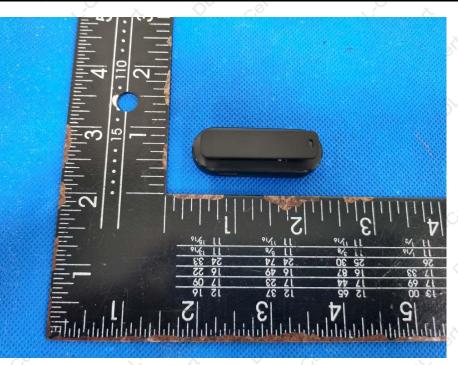
Report No.: DL-20221115033E




# **Conducted Measurement Photos**

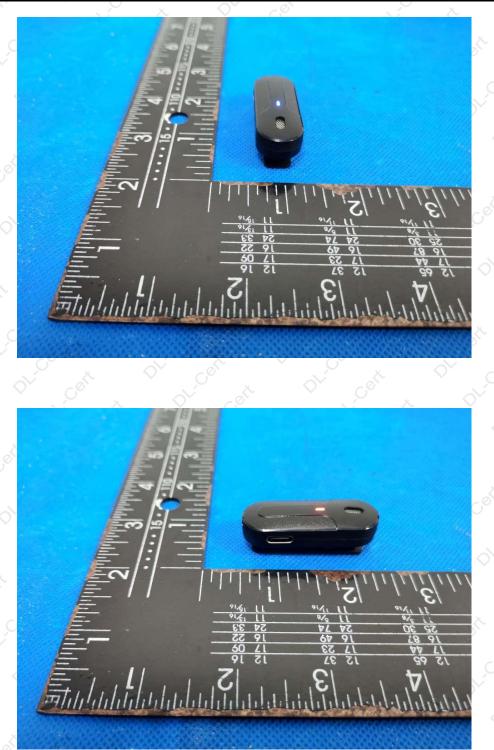


Report No.: DL-20221115033E

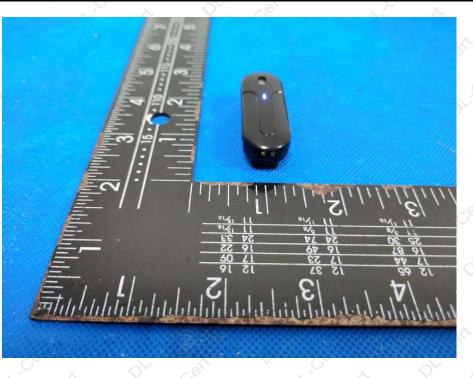

# 7. EUT PHOTO





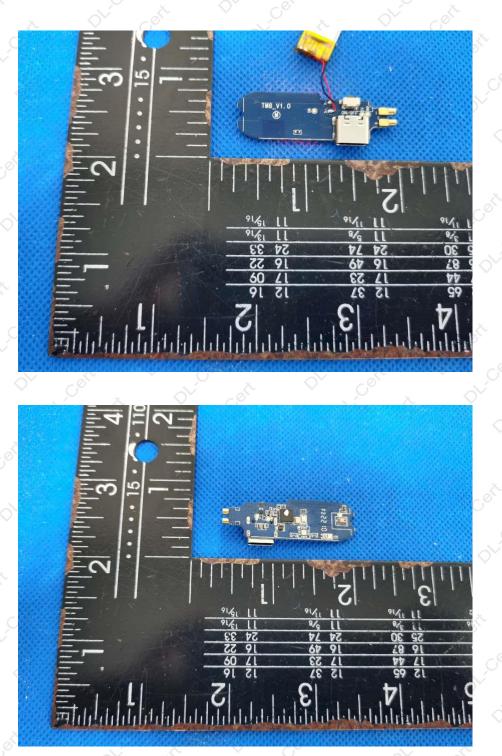

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 28 of 35



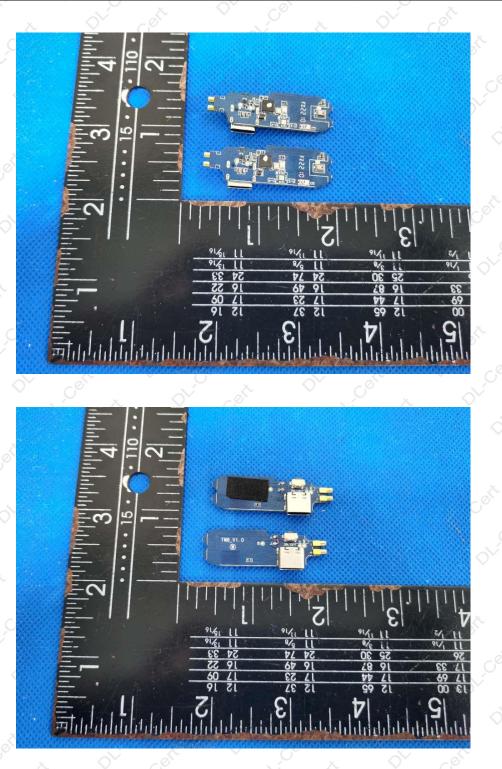




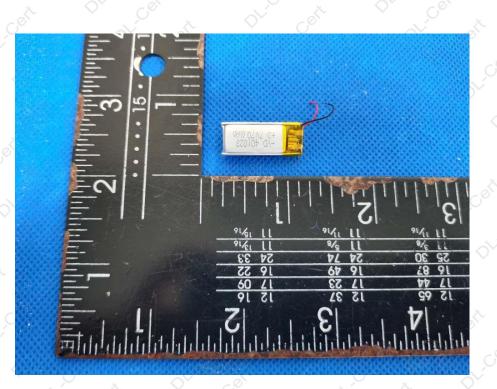


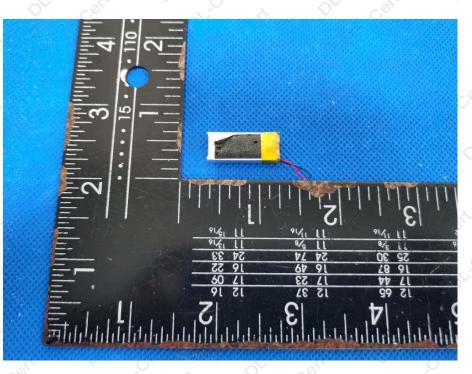




















Report No.: DL-20221115033E



**\*\*\*\*\* END OF REPORT \*\*\*\***