

Page 1 of 25 Tel: +886 2 26099301 Fax: +886 2 26099303

FCC 15.407 NII DFS Test Report

for

LEADER ELECTRONICS INC.

8F., No. 138, Ln.235, Baoqiao Rd., Xindian Dist.,New Taipei City 23145, Taiwan

Product Name	:	Skylight
Model Name	:	(1)100-FRM (2)100-CAL
Brand		Skylight
FCC ID	:	2A85W-100

Prepared by: : AUDIX Technology Corporation, EMC Department

The test report is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo.

File Number: C1M2212159

Report Number: EM-F230096

Page 2 of 25 Tel: +886 2 26099301 Fax: +886 2 26099303

TABLE OF CONTENTS

De	scrip	tion	Page
TE	ST RE	EPORT	
1.	REV	ISION RECORD OF TEST REPORT	
2.		IMARY OF TEST RESULTS	
<u> </u>		VERAL INFORMATION	
5.	3.1.	Description of Application	
	3.2.	Description of EUT	
	3.3.	Reference Test Guidance	
	3.4.	Antenna Information	
	3.5.	EUT Specifications Assessed in Current Report	
	3.6.	Descriptions of Key Components	
	3.7.	Test Configuration	
	3.8.	Tested Supporting System List	
	3.9.	Description of Test Facility	
	3.10.	Measurement Uncertainty	10
4.	MEA	ASUREMENT EQUIPMENTLIST	11
5.		RKING MODES AND REQUIREMENT TEST ITEM	
	5.1.	Applicability of DFS Requirements Prior to Use of a Channel	
	5.2.	Applicability of DFS Requirements during Normal Operation	
6.	DFS	DETECTION THRESHOLOS AND RADAR TEST WAVEFORMS	
	6.1.	Interference Threshold Value, Master or Client Incorporating In-Service Monitoring	
	6.2.	Radar Test Waveform Minimum Step.	
	6.3.	Short Pulse Radar Test Waveforms	
	6.4.	Long Pulse Radar Test Waveforms	
	6.5.	Frequency Hopping Pulse Radar Test Waveforms	17
	6.6.	Conducted Calibration Setup	19
	6.7.	Radar Waveform Calibration Procedure	
	6.8.	Calibration Deviation	19
	6.9.	Radar Waveform Calibration Result	20
7.	TES	T SETUP AND TEST RESULT	21
	7.1.	Test Setup	21
	7.2.	Channel Move Time, Channel Closing Transmission Time, Non-Occupancy Period,	
	Non-	Associated Client Beacon Measurement	23

APPENDIX A TEST PHOTOGRAPHS

File Number: C1M2212159

Report Number: EM-F230096

Page 3 of 25 Tel: +886 2 26099301 Fax: +886 2 26099303

TEST REPORT

Applicant	:	LEADER ELECTRONICS INC.
Manufacturer	:	LEADER ELECTRONICS INC.
EUT Description		
(1) Product	:	Skylight
(2) Model	:	(1)100-FRM (2)100-CAL
(3) Brand	:	Skylight
(4) Power Supply	/:	DC 5V, 2.0A

Applicable Standards:

47 CFR FCC Part 15 Subpart E

Audix Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. *Audix Technology Corp.* does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Report:	2023. 02. 01	
Reviewed by:	Amin Li	(Annie Yu/Administrator)
Approved by:	Johnny Huleh	(Johnny Hsueh/Section Manager)

Report Number: EM-F230096

1. REVISION RECORD OF TEST REPORT

Edition No	Issued Date	Revision Summary	Report Number
0	2023. 02. 01	Original Report	EM-F230096

File Number: C1M2212159

Report Number: EM-F230096

2. SUMMARY OF TEST RESULTS

Description	Results	
Channel Availability Check Time	N/A	
Channel Move Time	PASS	
Non-Occupancy Period	PASS	
Non-Associated Client Beacon	PASS	
Channel Closing Transmission Time	PASS	
U-NII Detection Bandwidth	N/A	
N/A is an abbreviation for Not Applicable, sine the product is client without radar detection function Note: The uncertainties value is not used in determining the result.		

Report Number: EM-F230096

3. GENERAL INFORMATION

3.1. Description of Application

Applicant	LEADER ELECTRONICS INC. 8F., No. 138, Ln.235, Baoqiao Rd., Xindian Dist.,New Taipei City 23145, Taiwan		
Manufacturer	LEADER ELECTRONICS INC. 8F., No. 138, Ln.235, Baoqiao Rd., Xindian Dist.,New Taipei City 23145, Taiwan		
Product	Skylight		
Model	(1)100-FRM (2)100-CAL The difference between models is as following, and the difference has no influence on RF function. The model 100-FRM was tested in this report.		he difference
	100-FRM 100-CAL	Black White	
Brand	Skylight		

Report Number: EM-F230096

Tel: +886 2 26099301 Fax: +886 2 26099303

Page 7 of 25

3.2. Description of EUT

Test Model	100-FRM		
Serial Number	N/A		
Power Rating	DC 5V, 2.0A		
Software Version	N/A		
RF Features	802.11 a/b/g/n/ac		
	2.4 GHz		
	802.11b	1T1R	
	802.11g	1T1R	
	802.11n-HT20	1T1R	
Transmit Type	U-NII Bands		
	802.11a	1T1R	
	802.11n-HT20/802.11ac-VHT20/	1T1R	
	802.11n-HT40/802.11ac-VHT40	1T1R	
	802.11ac-VHT80 1T1R		
Device Category	 Outdoor Access Point Fixed point-to-point Access Point Indoor Access Point Mobile and Portable client device 		
	Sample No. Test Item	Firmware	
Test Sample	Sample No.Test nem02DFS	N/A	
		1	
Sample Status	Trial sample		
Date of Receipt	2022. 12. 16		
Date of Test	2023. 01. 06		
Interface Ports of EUT	 One DC IN Port One Micro USB (only used for factory production testing) Port 		
Accessories Supplied	• I.T.E. Power Supply		

File Number: C1M2212159

Report Number: EM-F230096

Page 8 of 25 Tel: +886 2 26099301 Fax: +886 2 26099303

3.3. Reference Test Guidance

KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02 KDB 905462 D03 U-NII Clients Without Radar Detection New Rules v01r02

3.4. Antenna Information

No.	Antenna Part Number	Manufacture	Antenna Type	Frequency (MHz)	Gain(dBi)	
				2400	4.05	
				2450	4.34	
1	1. BQ003PBCMF00 TRONTEK	TDONTEV	РСВ	2500	3.87	
1.		reb	5150	5.88		
					5470	5.75
			5850	6.21		

3.5. EUT Specifications Assessed in Current Report

Mode	U-NII Band	Fundamental Range (MHz)	Channel Number	
202 11a	2A	5260-5320	4	
802.11a	2C	5500-5720	12	
802.11n-HT20/	2A	5260-5320	4	
802.11ac-VHT20	2C	5500-5720	12	
802.11n-HT40/	2A	5270-5310	2	
802.11ac-VHT40	2C	5510-5710	6	
802.11ac-VHT80	2A	5290	1	
	2C	5530-5690	3	
Remark: U-NII Band 2A and 2C (DES Function Slave/no In service monitor no Ad-Hoc mode)				

Remark: U-NII Band 2A and 2C (DFS Function, Slave/no In service monitor, no Ad-Hoc mode)

Mode	Modulation	Data Rate (Mbps)
802.11a	OFDM (BPSK/QPSK/16QAM/64QAM)	Up to 54
802.11n-HT20	OEDM (DDSV ODSV 1160 AM/640 AM)	Up to 72.0
802.11n-HT40	OFDM (BPSK/QPSK/16QAM/64QAM)	Up to 150
802.11ac-VHT20		Up to 86.7
802.11ac-VHT40	OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)	Up to 200
802.11ac-VHT80		Up to 433.3

File Number: C1M2212159

Report Number: EM-F230096

Tel: +886 2 26099301 Fax: +886 2 26099303

Page 9 of 25

3.6. Descriptions of Key Components

Item	Supplier	Model / Type	Character
LCD Panel	TopoVision Technology	YN1010HD052B	Max. Resolution: 1280*800/60Hz
I.T.E Power Supply	LEADER ELECTRONICS	MU10AG050200-A1	Input: 100-240V~, 50/60Hz, 0.3A Output: DC 5.0V, 2.0A (Wall-Mount 2C)
WLAN Module	AzureWave	AW-CM256SM	802.11a/b/g/n/ac

3.7. Test Configuration

Item	Bandwidth	Test Channel
Channel Move Time& Channel Closing Transmission Time	80MHz	58
Non-Occupancy Period & Non-associated Test	80MHz	58

3.8. Tested Supporting System List

Item	Item Manufacturer		Remark	
AP Server	ASUS	RT-AX88U	FCC ID: MSQ-RTAXHP00 IC: 3568A- RTAXHP00	

3.9. Description of Test Facility

Name of Test Firm	Audix Technology Corporation / EMC Department No. 491, Zhongfu Rd., Linkou Dist., New Taipei City 244, Taiwan Tel: +886-2-26092133 Fax: +886-2-26099303 Website : www.audixtech.com Contact e-mail: attemc_report@audixtech.com
Accreditations	 The laboratory is accredited by following organizations under ISO/IEC 17025:2017 (1) NVLAP(USA) NVLAP Lab Code 200077-0 (2) TAF(Taiwan) No. 1724
Test Facilities	FCC OET Designation Number under APEC MRA by NCC is : TW1724(1) RF Test Room

File Number: C1M2212159

Report Number: EM-F230096

Fax: +886 2 26099303

3.10.Measurement Uncertainty

Test Item	Uncertainty
DFS Measurement	±0.5ms
Threshold	±0.33dB

File Number: C1M2212159

Report Number: EM-F230096

Page 11 of 25 Tel: +886 2 26099301 Fax: +886 2 26099303

4. MEASUREMENT EQUIPMENTLIST

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Vector Signal Generation	R&S	SMU200A	104893	2022. 06. 07	1 Year
2.	Spectrum Analyzer	R&S	FSV30	101181	2022. 07. 11	1 Year
3.	Atteuator (10dB) X2	Worken	WK0602-10	0120A02208 001S	N.C.R	N.C.R
4.	Atteuator (30dB) X2	Worken	WK0602-30	0120A02208 002S	N.C.R	N.C.R
5.	Digital Thermo-Hygro Meter	iMax	HTC-1	RF-03	2022. 04. 14	1 Year

File Number: C1M2212159

Report Number: EM-F230096

5. WORKING MODES AND REQUIREMENT TEST ITEM

	Operational Mode				
Requirement	Master	Client Without Radar Detection	Client With Radar Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

5.2. Applicability of DFS Requirements during Normal Operation

	Operational Mode			
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices	Operational Mode			
Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection		
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required		
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link		
All other tests	Any single BW mode	Not required		

File Number: C1M2212159

Report Number: EM-F230096

6. DFS DETECTION THRESHOLOS AND RADAR TEST

WAVEFORMS

6.1. Interference Threshold Value, Master or Client Incorporating

In-Service Monitoring

Maximum Transmit Power	Value (See Notes 1 and 2)
\geq 200 milliwatt	-64dBm
< 200 milliwatt	-62dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

The radar Detection Threshold, lowest antenna gain is the parameter of interference radar DFS detection threshold.

6.2. Radar Test Waveform Minimum Step

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

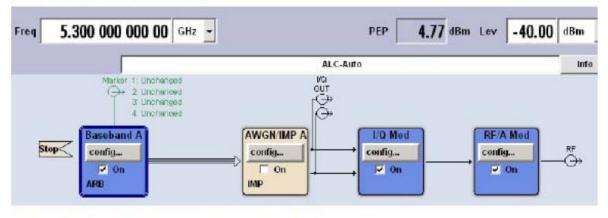
Report Number: EM-F230096

Tel: +886 2 26099301 *Fax:* +886 2 26099303

Page 14 of 25

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulse	Minimum Percentage of Successful Detection	Minimum number of Trials
0	1	1428	18	See Note 1	See Note 1
1A	1	15 unique PRI in KDB 905462 D02 Table 5a	$Roundup\left\{\left(\frac{1}{360}\right) \times \left(\frac{19 \times 10^{6}}{PRI}\right)\right\}$	60%	15
1B	1	15 unique PRI within 518-3066, Excluding 1A PRI		60%	15
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	200-500 12-16		30
Aggregate	(Radar Types	80%	120		
Note 1: Sho	ort Pulse Rada	ar Type 0 should b	e used for the detection ba	ndwidth test, c	hannel

6.3. Short Pulse Radar Test Waveforms


move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the short pulse radar types 2 through 4. For short pulse radar type 1, the same waveform is used a minimum of 30 times. If more than 30 waveforms are used for short pulse radar types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

Report Number: EM-F230096

FCC Radar Types (1~4) System Diagram

Used R&S SMU200A (Vector SG with two ARB)

B11: Base-band Generator with ARB (16M samples) and Digital Modulation

B13: Base-band Main Module

B106: frequency range (100 kHz to 6 GHz)

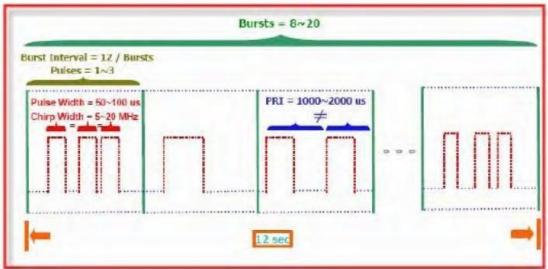
For selecting the waveform parameters from within the bounds of the signal type, system was random selection using uniform distribution.

6.4. Long Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulse Per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse radar test signal. If more 30 waveforms are used for the Long Pulse radar test signal, then each additional waveform must also be unique and not repeated from the previous waveforms. Each waveform is defined as following:

- (1) The transmission period for the Long Pulse Radar test signal is 12 seconds.
- (2) There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst_Count.
- (3) Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.
- (4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the some pulse width. Pulses in different Bursts may have different pulse widths.

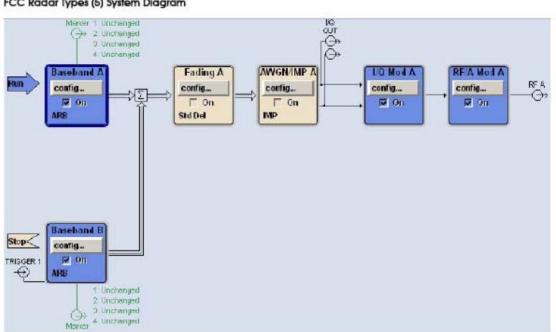

File Number: C1M2212159

Report Number: EM-F230096

- (5) Each pulse has a linear FM chirp between 5 and 20MHz, with the chirp width being randomly chosen. Each pulse within a Burst will have the same chirp width. Pulses in different Burst may have different chirp widths. The chirp is centered on the pulse. For example, with a radar frequency of 5300MHz and a 20MHz chirped signal, the chirp starts at 5290MHz and ends at 5310MHz.
- (6) If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- (7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst_Count. Each interval is of length (12000000/Burst_Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12000000/Burst_Count)-(Total Burst length)+(One Random PRI interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

A representative example of a Long Pulse radar test waveform:

- (1) The total test signal length is 12 seconds.
- (2) 8 Bursts are randomly generated for the Burst_Count.
- (3) Burst 1 has 2 randomly generated pulses.
- (4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- (5) The PRI is randomly selected to be at 1213 microseconds.
- (6) Bursts 2 through 8 are generated using steps 3-5.
- (7) Each Burst is contained in even intervals of 1500000 microseconds. The starting location for Pulse 1. Burst 1 is randomly generated (1 to 1500000 minus the total Burst 1 length + 1 random PRI interval) at the 325001 microsecond step. Bursts 2 through 8 randomly fall in successive 1500000 microsecond intervals (i.e. Burst 2 falls in the 1500001-3000000 microsecond range).


File Number: C1M2212159

Report Number: EM-F230096

Audix Technology Corp. No. 491, Zhongfu Rd., Linkou Dist., New Taipei City244,Taiwan *Tel:* +886 2 26099301 *Fax:* +886 2 26099303

FCC Radar Types (5) System Diagram

Used R&S SMU200A (Vector SG with two ARB)

Path A/Path B Two B11: Base-band Generator with ARB (16M samples) and Digital Modulation

B13: Base-band Main Module

B106: frequency range (100 kHz to 6 GHz)

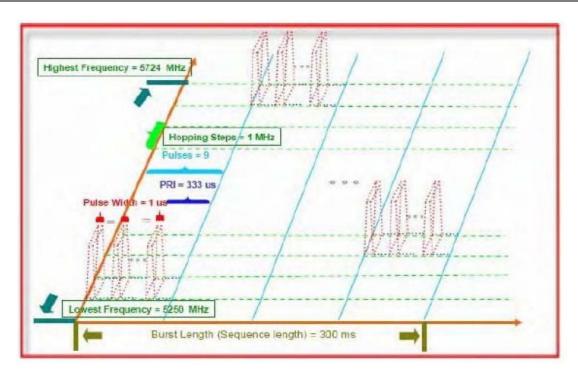
For selecting the waveform parameters from within the bounds of the signal type, system was random selection using uniform distribution.

6.5. Frequency Hopping Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses Per Hop	Hopping Rate (kHz)	Hopping Sequence Length (ms)	Minimum Percentage of Successful Detection	Minimum of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies form 5250-5274MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of random frequency, the frequencies remaining within the group are always treated as equally likely.


File Number: C1M2212159

Report Number: EM-F230096

Page 18 of 25

Tel: +886 2 26099301 *Fax:* +886 2 26099303

FCC Radar Types (6) System Diagram

			ListMode, ALC	Auto		h
	Merker 1 Lb	- Augusta	NO		Inst	
	⊖+ z un	changed changed	OUT		THUS -	
	# Un	changed		1/Q Mod	CITATION	
Stop	7				RF/A Mod	CC.
Stol			config	config	config	-C
	🖉 On			i On	🔽 On	~
	ARE		IMP			
Edit	List Mode Data hop-474	1		lage	QZ	
	Frequency/	Power /	* State		Ori	1
-	HZ	dBm	Mode		Extern Step	1
1	5 706 000 000.00	-58.90	Mone		Extern Step	
_					and the second se	
2	5 568 000 000.00	-58.90		Res	et	
2	5 568 000 000.00 5 488 000 000.00	-58.90 -58.90				
2 3 4	5 568 000 000.00 5 488 000 000.00 5 308 000 000.00	-58.90 -58.90 -58.90	Dwell		10.000 ms	-
2 3 4 5	5 568 000 000.00 5 488 000 000.00 5 308 000 000.00 5 649 000 000.00	-58.90 -58.90 -58.90 -58.90		Пmə	10.000 ms	
2 3 4 5 6	5 568 000 000.00 5 488 000 000.00 5 308 000 000.00 5 649 000 000.00 5 435 000 000.00	-58.90 -58.90 -58.90 -58.90 -58.90	Curren	fime t Index	10.000 ms	0
2 3 4 5 6 7	5 568 000 000.00 5 488 000 000.00 5 308 000 000.00 5 649 000 000.00	-58.90 -58.90 -58.90 -58.90	Curren	Пmə	10.000 ms	0
2 3 4 5 6 7 8	5 568 000 000.00 5 488 000 000.00 5 308 000 000.00 5 649 000 000.00 5 435 000 000.00	-58.90 -58.90 -58.90 -58.90 -58.90	Curren Blank	fime t Index RF Output (Default	10.000 ms	0
2 3 4 5 6 7 8	5 568 000 000.00 5 488 000 000.00 5 308 000 000.00 5 649 000 000.00 5 435 000 000.00 5 559 000 000.00	-58.90 -58.90 -58.90 -58.90 -58.90 -58.90	Curren Blank	fime t Index	10.000 ms	0
2 3 4 5 6 7 8 9	5 568 000 000.00 5 488 000 000.00 5 308 000 000.00 5 649 000 000.00 5 435 000 000.00 5 559 000 000.00 5 508 000 000.00	-58.90 -58.90 -58.90 -58.90 -58.90 -58.90 -58.90 -58.90	Curren Blank I Lean	fime t Index RF Output (Default	10.000 ms	0
2 3 4 5 6 7 8 9 10	5 568 000 000.00 5 488 000 000.00 5 308 000 000.00 5 649 000 000.00 5 435 000 000.00 5 559 000 000.00 5 559 000 000.00 5 558 000 000.00	-58.90 -58.90 -58.90 -58.90 -58.90 -58.90 -58.90 -58.90 -58.90	Curren Blank Léan List	Fime t Index RF Output (Default h List Mode Data : Mode Data	10.000 ms _	0
2 3 4 5 6 7 8 9 10 11 12	5 568 000 000.00 5 488 000 000.00 5 308 000 000.00 5 649 000 000.00 5 435 000 000.00 5 559 000 000.00 5 508 000 000.00 5 651 000 000.00 5 463 000 000.00	-58.90 -58.90 -58.90 -58.90 -58.90 -58.90 -58.90 -58.90 -58.90 -58.90	Curren Blank Léan List	Fime t Index RF: Output (Default a List Mode Data	10.000 ms _	0

Used R&S SMU200A (Vector SG with two ARB)

B11: Base-band Generator with ARB (16M samples) and Digital Modulation

B13: Base-band Main Module

B106: frequency range (100 kHz to 6 GHz)


For selecting the waveform parameters from within the bounds of the signal type, system was random selection using uniform distribution.

File Number: C1M2212159

Report Number: EM-F230096

6.6. Conducted Calibration Setup

6.7. Radar Waveform Calibration Procedure

The measured frequency is 5290MHz. The radar signal was the same as transmitted channels, and injected into the antenna port of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time. The calibrated conducted detection threshold level is set to -62dBm. The tested level is lower than required level hence it provides margin to the limit.

6.8. Calibration Deviation

There is no deviation with the original standard.

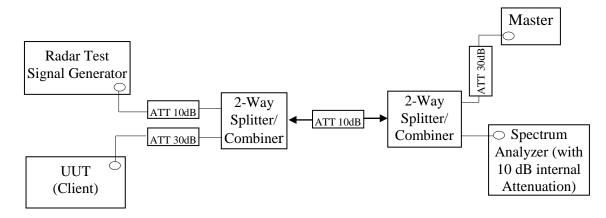
Report Number: EM-F230096

6.9. Radar Waveform Calibration Result

DFS detection threshold level and the burst of pulses on the Channel frequency

Test Date 2023/01/06		Temp./Hum.	18°C/69%				
	80MHz						
Spectrum	Spectrum						
RefLevel -20.00 dBm Att 0 dB 👄	● RBW 3 MHz SWT 100 ms ● VBW 3 MHz						
TRG: VID	3WI 100 00 - 10W 3 0002						
●1Pk Clrw	 	 					
-30 dBm							
-40 dBm							
-50 dBm							
_60 dBm							
	,m						
-70 dBm	. من شمار بيشين التركيم والمربو المربو		المراجع الم				
			ina jimu nu kamu nu kana kana kana kana kana kana kana				
	الم من الم الم الم الم الم الم الم الم الم	a hall a state of the state of	ويترجمها يستقين التنابين التراوي				
-90 dBm		+ +					
-100 dBm							
-110 dBm		+ +					
CF 5.29 GHz	320	101 pts Wait for Trigger 🔳	10.0 ms/ 06.01.2023 14:18:59				
			14:18:59				
Date: 6.JAN.2023	L4:18:59						

File Number: C1M2212159


Report Number: EM-F230096

7. TEST SETUP AND TEST RESULT

7.1. Test Setup

7.1.1. Test Setup Diagram

Following is the test setup for generated the radar waveforms and used to monitor U-NII device.

7.1.2. Test Setup Operation

System testing was performed with the designated MPEG test file that streams full motion video from the Access Point to Client in full motion video mode using the media player with the V2.61 Codec package. This file is used by IP and Frame based systems for loading the test channel during the in-service compliance testing of the U-NII device.

The waveform parameters from within the bounds of the signal type are selected randomly using uniform distribution.

A spectrum analyzer is used as a monitor to verify that the EUT has vacated the Channel within the (Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and Channel move. It is also used to monitor EUT transmissions during the Channel Availability Check Time.

Report Number: EM-F230096

Page 22 of 25 Tel: +886 2 26099301 Fax: +886 2 26099303

7.1.3. Test Setup for Data Traffic Plot

Test	Date
1000	Duit

2023/01/06

5 Temp./Hum.

18°C/69%

	Test Mode: 802.11ac, 80MHz							
	TX 5290MHz							
Spectrum	Γ							
	-40.00 dBm		-31.00 dB 🧉					<u>`</u>
Att SGL	10 dB	I SWT	12 s 🧉	● VBW ЗМ	lHz			
●1Pk Clrw							 	
-50 dBm								
-60 dBm				 				
-70 dBm								
							I	
ا المعند (1990) محمد			haine de residere en en de re					
-100 dBm—								
-110 dBm—								
-120 dBm—						 		
-130 dBm—								
CF 5.29 GH	Hz			3200	1 pts			1.2 s/
					Read	у 💷	 06.0 14	1.2023 1:22:12
Date: 6.3	JAN.2023	14:22:1	13					

File Number: C1M2212159

Report Number: EM-F230096

7.2. Channel Move Time, Channel Closing Transmission Time,

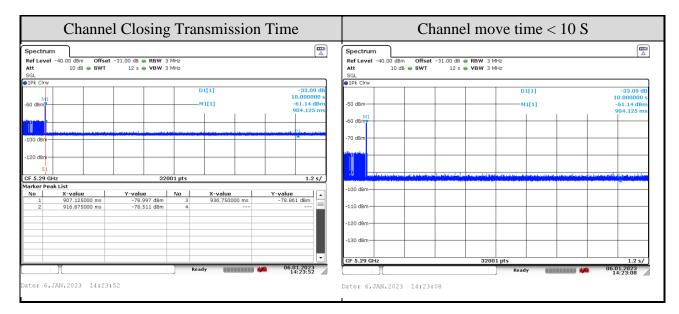
Non-Occupancy Period, Non-Associated Client Beacon Measurement

7.2.1. Limit

Parameter	Value
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
Non-Occupancy Period	Non-Occupancy Period time is 30 minute during which a Channel will not be utilized after a Radar Waveform is detected on that Channel
Non-Associated Client Beacon	The non-associated Client Beacon Test is during the 30 minutes observation time. The EUT should not make any transmissions in the DFS band after EUT power up.

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- a. For the Short Pulse Radar Test Signals this instant is the end of the Burst.
- b. For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- c. For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.
- Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.


7.2.2. Test Procedures

- When a radar Burst with a level equal to the DFS Detection Threshold + 1dB is generated on the operating channel of the U-NII device. A U-NII device operating as a Client Device will associate with the Master of channel. Stream the MPEG test file from the Master Device to the Client Device on the selected channel for entire period of the test. At time to the radar waveform generator sends a Burst of pulses for each of the radar types at Detection Threshold + 1dB.
- Observe the transmissions of the EUT at the end of the radar Burst on the Operating channel. Measure and record the transmissions from the EUT during the observation time [Channel Move Time, Channel closing Time]. One 12 Second plot need to be reported for short Pulse Radar Types 0.
- Measure the EUT for more than 30 minutes following the channel close/move time to verify that the EUT does not resume only transmissions on this channel.

Report Number: EM-F230096

7.2.3. Test Re	sult for Channel Clos	ing Transmission	n Time& Chan	nel Move Time
----------------	-----------------------	------------------	--------------	---------------

Test Date	2023/01/06	Temp./Hum.	18°C/69%
Test Mode	902 1100 90MHz	Frequency	TX 5290MHz
Test Widde	802.11ac, 80MHz	Tested By	Sam Chang

Channel Closing Transmission Time Calculated		
Sweep Time(S) sec	12	
Sweep points (P)	32001	
Number of Sweep points in 10 sec (N)	3	
Channel Closing Time (C) ms	1.12	

Channel closing time is calculated from $C=N^*$ dwell; where dwell is the occupancy time per sweep point calculated by the formula: dwell=S/P. N is the number of sweep points indicating transmission after S1; where S1 is the radar signal detected

Report Number: EM-F230096

7.2.4.	Test Result for Non-Occu	pancy Period, Non-associated Test
--------	--------------------------	-----------------------------------

Test Date	2023/01/06	Temp./Hum.	18°C/69%
Track Maria	202 1100 20MU	Frequency	TX 5290MHz
Test Mode	802.11ac, 80MHz	Tested By	Sam Chang

Non-Occupancy Period		Non-associated Test			
Spectrum Ref Level -40.00 dBm Offset -31.00 dB = RBW 3 MHz Att 10 dB = SWT 2000 s = VBW 3 MHz SGL	-31.92 dB	Spectrum Image: Constraint of the sector of th			
-50 dBm	1800.0000 s -60.63 dBm 13.5000 s	-50 dBm			
-80 dBm		-80 dBm			
-120 dBm	200.0 s/	-120 d8m -130 d8m -130 d8m CF 5.29 GHz 3200 l pts 200.0 s/			
Date: 6.JAN.2023 15:45:06	06.01.2023 15:45:06 ///	Ready 06.01.2023			

File Number: C1M2212159

Report Number: EM-F230096

APPENDIX A

Tel: +886 2 26099301 Fax: +886 2 26099303

APPDNDIX A

TEST PHOTOGRAPHS

(Model: (1)100-FRM (2)100-CAL)

File Number: C1M2212159

Report Number: EM-F230096