

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: Fax: Website:

+86-755-26648640 +86-755-26648637 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

Report No.: Applicant: Address of Applicant:	CQASZ20221001747E-01 Acenew technolongy(Shenzhen) limited company Room 706, 7th floor building G 2 , TCLlinternational City E, No.1001, Zhongshanyuan Road, Xili Street, Nanshan District, Shenzhen		
Equipment Under Test (E	UT):		
Product:	Neutron 1200 Portable Power Station		
Model No.:	AN12-10, AN12-20, AN12-30, AN12-40, AN12-50, AN12-60, AN12-70, AN12-80, AN12-90		
Test Model No.:	AN12-10		
Brand Name:	acenew		
FCC ID:	2A84T-AN12-10		
Standards:	47 CFR Part 15, Subpart C		
Date of Receipt:	2022-10-13		
Date of Test:	2022-10-13 to 2022-11-21		
Date of Issue:	2023-01-14		
Test Result:	PASS*		

*In the configuration tested, the EUT complied with the standards specified above.

Tested By:	lewis zhou
	(Lewis Zhou)
Reviewed By:	Timo Loj
	(Timo Lei)
Approved By:	Janus
	(Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

1 Version

Revision History Of Report

Report No.	Version Description		Issue Date
CQASZ20221001747E-01	Rev.01	Initial report	2023-01-14

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2) ANSI C63.10		PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

3 Contents

Page

1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 Client Information	
4.2 GENERAL DESCRIPTION OF EUT	
4.3 Additional Instructions	
4.4 Test Environment	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.7 Test Location 4.8 Test Facility	
4.8 TEST FACILITY	
4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.11 EQUIPMENT LIST	
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 ANTENNA REQUIREMENT	
5.2 Conducted Emissions	
5.3 CONDUCTED PEAK OUTPUT POWER	
5.4 6DB OCCUPY BANDWIDTH	
5.5 POWER SPECTRAL DENSITY	-
5.6 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.7 Spurious RF Conducted Emissions	
5.8 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS 5.8.1 Spurious Emissions	
6 PHOTOGRAPHS - EUT TEST SETUP	
6.1 RADIATED SPURIOUS EMISSION	
6.2 CONDUCTED EMISSION	
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

4 General Information

4.1 Client Information

Applicant:	Acenew technolongy(Shenzhen) limited company
Address of Applicant:Room 706, 7th floor building G 2 , TCLIinternational City E, No. Zhongshanyuan Road, Xili Street, Nanshan District, Shenzhen	
Manufacturer:	Acenew technolongy(Shenzhen) limited company
Address of Manufacturer:	Room 706, 7th floor building G 2 , TCLlinternational City E, No.1001, Zhongshanyuan Road, Xili Street, Nanshan District, Shenzhen
Factory:	Huizhou blueway electronics co., Itd
Address of Factory:	No.101, West Hechang 5th Road, Zhongkai High-Tech Development Zone, Huizhou, Guangdong, P.R.China

4.2 General Description of EUT

Product Name:	Neutron 1200 Portable Power Station				
Model No.:	AN12-10, AN12-20, AN12-30, AN12-40, AN12-50, AN12-60, AN12-70, AN12-80, AN12-90				
Test Model No.:	AN12-10				
Trade Mark:	acenew				
Software Version:	V1.0				
Hardware Version:	V1.0				
Operation Frequency:	2402MHz~2480MHz				
Bluetooth Version:	V5.0				
Modulation Type:	GFSK				
Transfer Rate:	1Mbps, 2Mbps				
Number of Channel:	40				
Product Type:	Mobile Dertable Fix Location				
Antenna Type:	Chip antenna				
Antenna Gain:	1.8dBi				
EUT Power Supply:	Power by AC 110V				

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Additional Instructions

EUT Test Software Settings:					
Mode:	\boxtimes Special software is used.				
		Through engineering command into the engineering mode. engineering command: *#*#3646633#*#*			
EUT Power level:	Class2 (Power level is built-in set para selected)	ameters and cannot be changed and			
Use test software to set the l	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep				
transmitting of the EUT.		1			
Mode	Mode Channel Frequency(MHz)				
	CH0 2402				
GFSK	CH19 2440				
	CH39 2480				

4.4 Test Environment

Operating Environment	Operating Environment:		
Temperature:	24.5°C		
Humidity:	59% RH		
Atmospheric Pressure:	1009mbar		
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.		

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
/	/	/	/	/
2) Cable				

Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
/	1	/		1

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8°C
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Hereafter the best measurement capability for CQA laboratory is reported:

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Deviation from Standards

None.

4.10Other Information Requested by the Customer

None.

4.11Equipment List

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2022/9/9	2023/9/8
Spectrum analyzer	R&S	FSU26	CQA-038	2022/9/9	2023/9/8
Spectrum analyzer	R&S	FSU40	CQA-075	2022/9/9	2023/9/8
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2022/9/9	2023/9/8
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2022/9/9	2023/9/8
Preamplifier	EMCI	EMC184055SE	CQA-089	2022/9/9	2023/9/8
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2021/09/16	2024/09/15
Bilog Antenna	R&S	HL562	CQA-011	2021/09/16	2024/09/15
Horn Antenna	R&S	HF906	CQA-012	2021/09/16	2024/09/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/09/16	2024/09/15
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2022/9/9	2023/9/8
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2022/9/9	2023/9/8
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2022/9/9	2023/9/8
Antenna Connector	CQA	RFC-01	CQA-080	2022/9/9	2023/9/8
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2022/9/9	2023/9/8
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2022/9/9	2023/9/8
Power meter	R&S	NRVD	CQA-029	2022/9/9	2023/9/8
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2022/9/9	2023/9/8
EMI Test Receiver	R&S	ESR7	CQA-005	2022/9/9	2023/9/8
LISN	R&S	ENV216	CQA-003	2022/9/9	2023/9/8
Coaxial cable	CQA	N/A	CQA-C009	2022/9/9	2023/9/8
DC power	KEYSIGHT	E3631A	CQA-028	2022/9/9	2023/9/8

Note:

The temporary antenna connector is soldered on the pcb board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

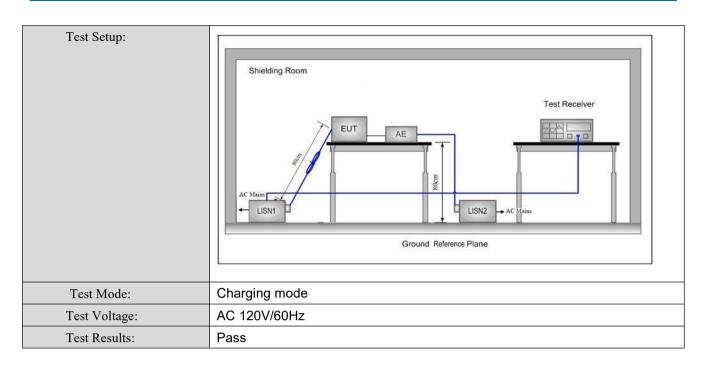
5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

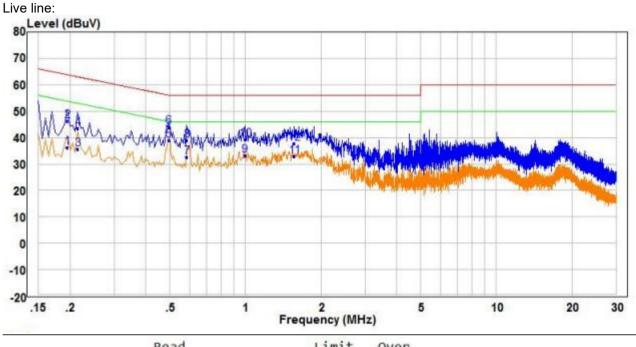
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

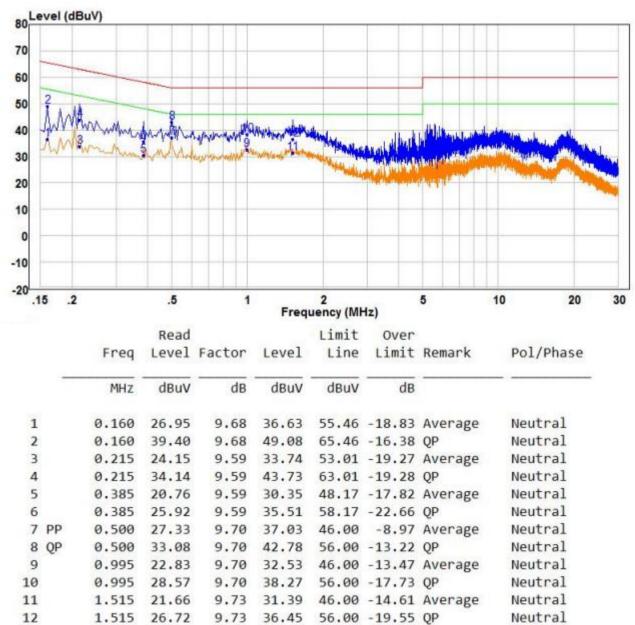
15.247(b) (4) requirement:


The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is Chip antenna. The best case gain of the antenna is 1.8 dBi.


Test Requirement:	47 CFR Part 15C Section 15.207		
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150kHz to 30MHz		
Limit:		Limit (c	lBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm of	f the frequency.	
Test Procedure:	1) The mains terminal disturt room.	oance voltage test was	s conducted in a shielded
	 2) The EUT was connected to Impedance Stabilization Na- impedance. The power call connected to a second LIS reference plane in the sam measured. A multiple sock power cables to a single LI exceeded. 3) The tabletop EUT was place ground reference plane. An placed on the horizontal gr 4) The test was performed with of the EUT shall be 0.4 m f vertical ground reference p reference plane. The LISN unit under test and bonded mounted on top of the grou between the closest points the EUT and associated ec 5) In order to find the maximu equipment and all of the int ANSI C63.10: 2013 on con 	etwork) which provides oles of all other units of N 2, which was bonde e way as the LISN 1 for et outlet strip was used SN provided the rating and for floor-standing ar ound reference plane, th a vertical ground ref from the vertical ground ref from the vertical ground ref and to a ground reference and reference plane. The of the LISN 1 and the quipment was at least (an emission, the relative terface cables must be	a 50Ω/50µH + 5Ω linear f the EUT were d to the ground or the unit being d to connect multiple g of the LISN was not c table 0.8m above the rangement, the EUT was erence plane. The rear d reference plane. The e horizontal ground om the boundary of the e plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2. re positions of

Measurement Data

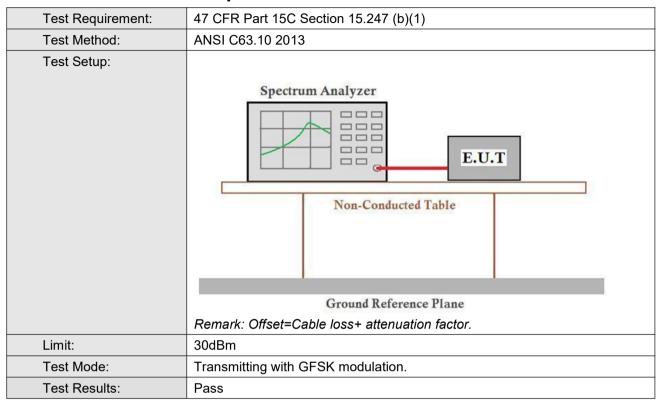

			Read			Limit	Over		
		Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
	_	MHz	dBuV	dB	dBuV	dBuV	dB		
1		0.195	26.50	9.62	36.12	53.82	-17.70	Average	Line
2		0.195	36.79	9.62	46.41	63.82	-17.41	QP	Line
3		0.215	25.96	9.59	35.55	53.01	-17.46	Average	Line
4		0.215	34.05	9.59	43.64	63.01	-19.37	QP	Line
5	PP	0.495	29.22	9.70	38.92	46.08	-7.16	Average	Line
6	QP	0.495	34.50	9.70	44.20	56.08	-11.88	QP	Line
7		0.585	22.67	9.79	32.46	46.00	-13.54	Average	Line
8		0.585	29.33	9.79	39.12	56.00	-16.88	QP	Line
9		0.995	23.65	9.70	33.35	46.00	-12.65	Average	Line
10		0.995	29.55	9.70	39.25	56.00	-16.75	QP	Line
11		1.565	21.92	10.96	32.88	46.00	-13.12	Average	Line
12		1.565	26.93	10.96	37.89	56.00	-18.11	QP	Line

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

Remark:


1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

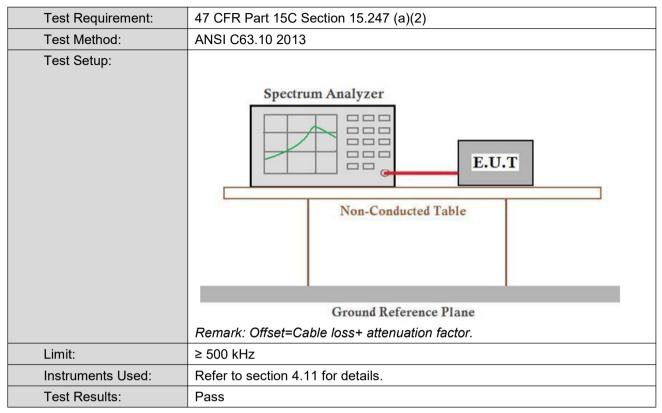
3. If the Peak value under Average limit, the Average value is not recorded in the report.

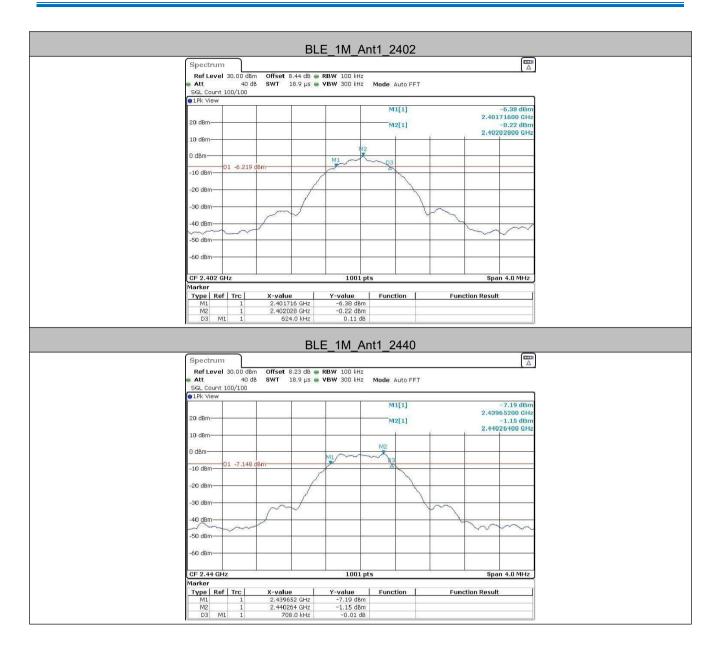
5.3 Conducted Peak Output Power


Measurement Data

	GFSK mode (1	Mbps)	
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	0.06	30.00	Pass
Middle	0.1	30.00	Pass
Highest	-1.24	30.00	Pass
	GFSK mode (21	Mbps)	
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	0.13	30.00	Pass
Middle	0.1	30.00	Pass
Highest	-1.23	30.00	Pass

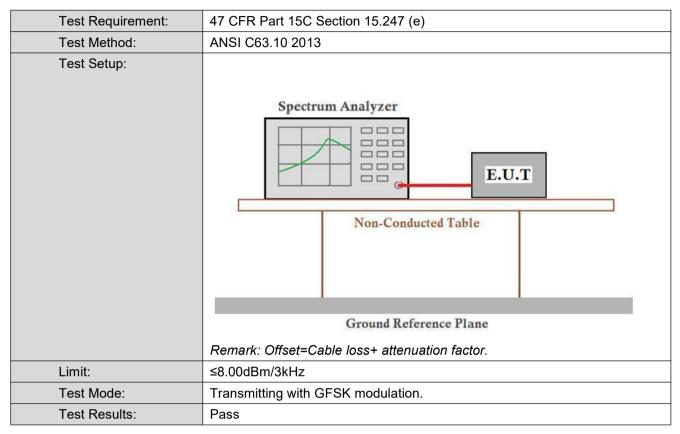
Spectrum	BLE_1M	_Ant1_2402			
RefLevel 30.00 dBm C Att 40 dB S	Offset 8.44 dB ⊜ RBW 2 M WT 936 ns ● VBW 5 M	IHz IHZ Mode Auto FFT			
SGL Count 100/100 SGL View					
20 dBm		M1[1]	2.40226	0.06 dBm 33220 GHz	
10 dBm					
D dBm		M1			
-10 dBm					
-20 dBm-		0			
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm	e	0	а		
CF 2.402 GHz	8	001 pts	Spar	6.0 MHz	
	BLE_1M	_Ant1_2440			
	07ffset 8.23 dB				
●1Pk View		M1[1]		0.10 dBm	
20 dBm			2.44026	57720 GHz	
10.40			1.		
10 dBm					
0 dBm-		M1.			
		M1			
0 dBm		MI			
0 dBm		M1 •			
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm		M1 V			
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm		M1			
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm		M1		6.0 MHz	



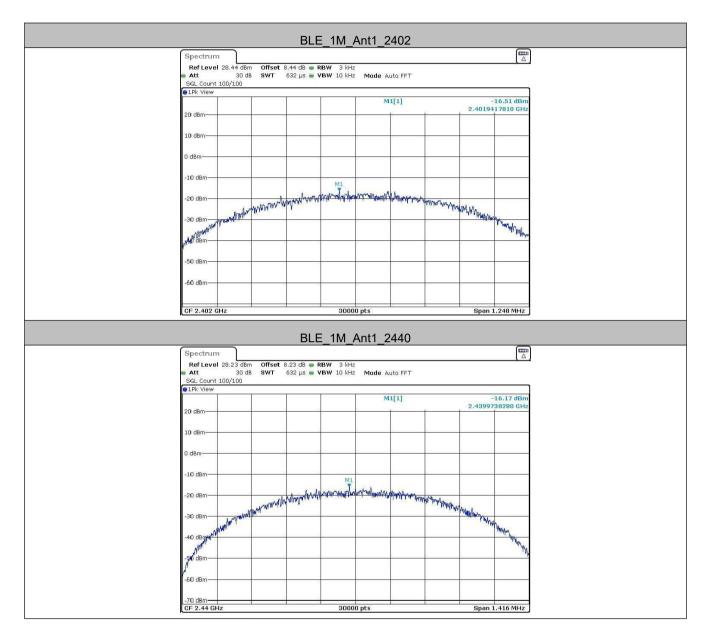

5.4 6dB Occupy Bandwidth

Measurement Data

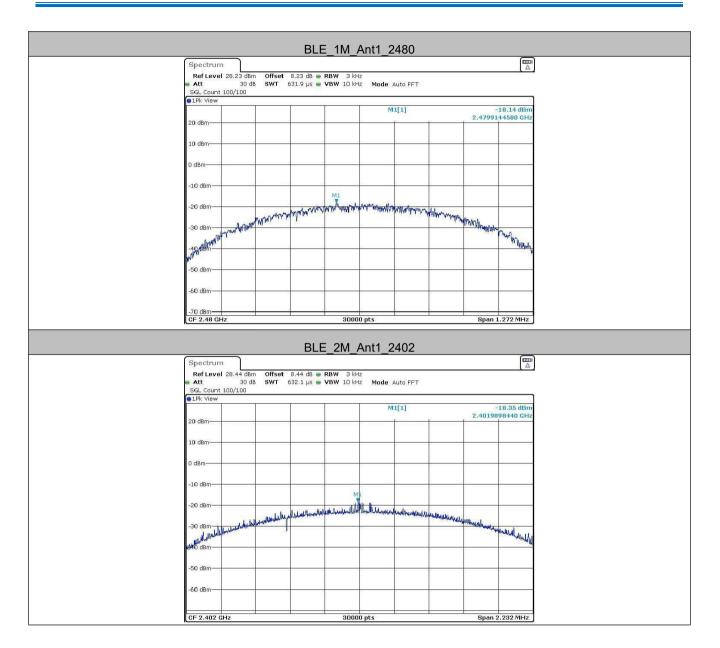
	GFSK mode (1Mbps)		
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	0.624	≥500	Pass
Middle	0.708	≥500	Pass
Highest	0.636	≥500	Pass
	GFSK mode (2Mbps)		
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	1.116	≥500	Pass
Middle	1.144	≥500	Pass
Highest	1.124	≥500	Pass

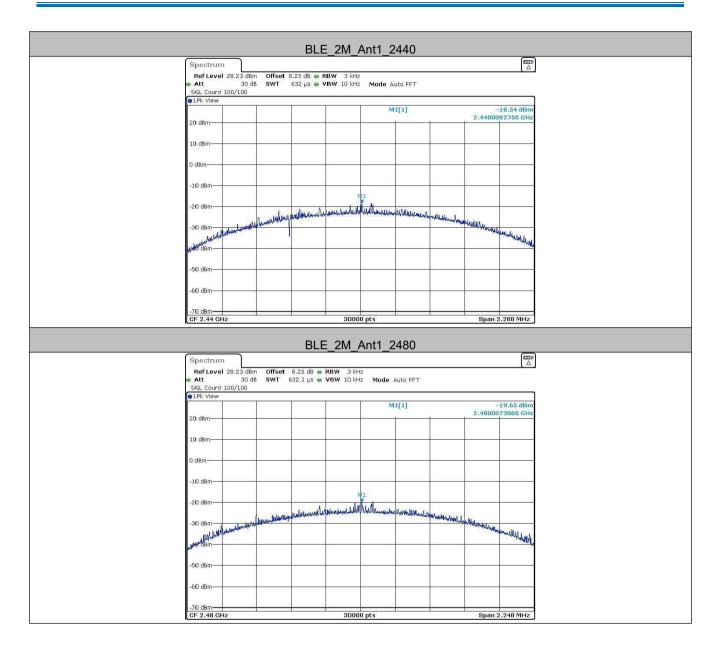


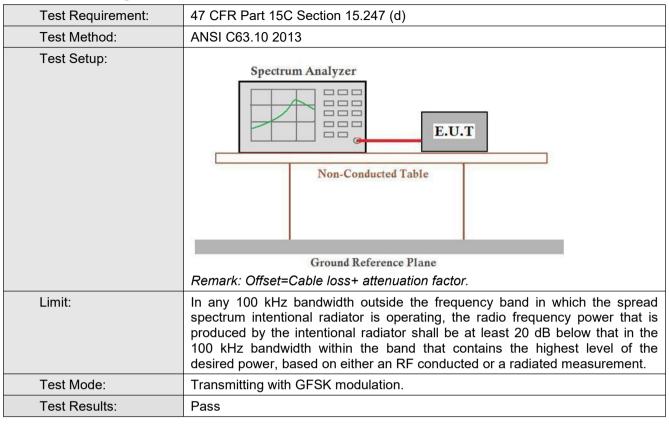
5.5 Power Spectral Density

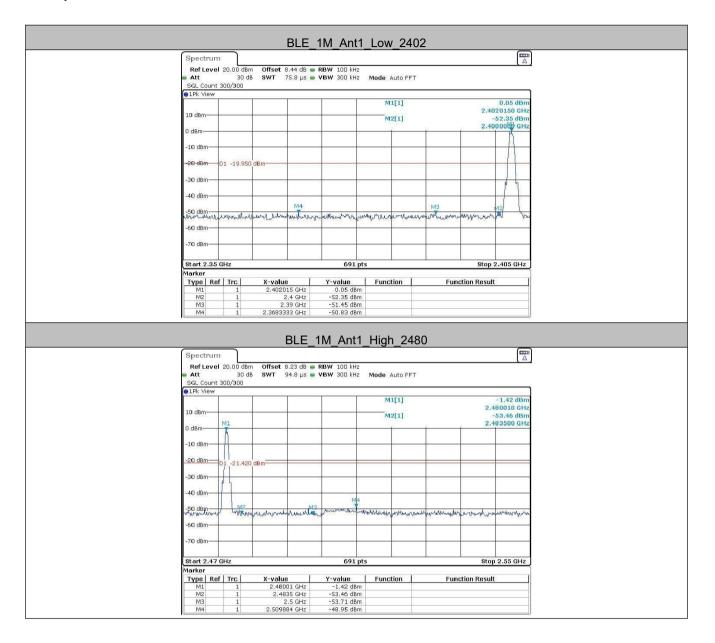


Measurement Data


	GFSK mode (1Mbps)		
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-16.51	≤8.00	Pass
Middle	-16.17	≤8.00	Pass
Highest	-18.14	≤8.00	Pass
	GFSK mode (2Mbps)		
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-18.35	≤8.00	Pass
Middle	-18.54	≤8.00	Pass
Highest	-19.65	≤8.00	Pass

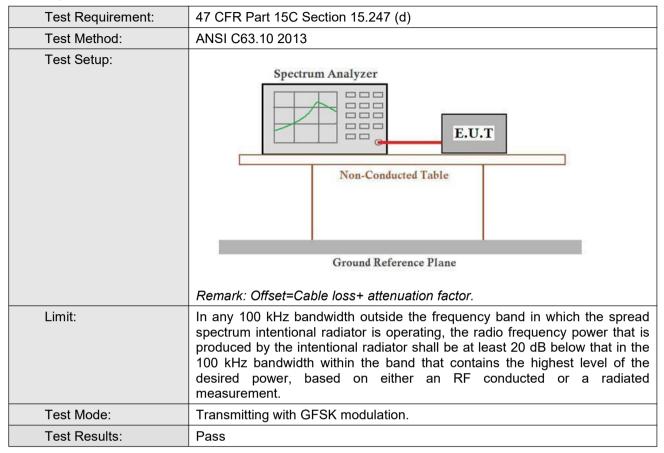

Test plot as follows:



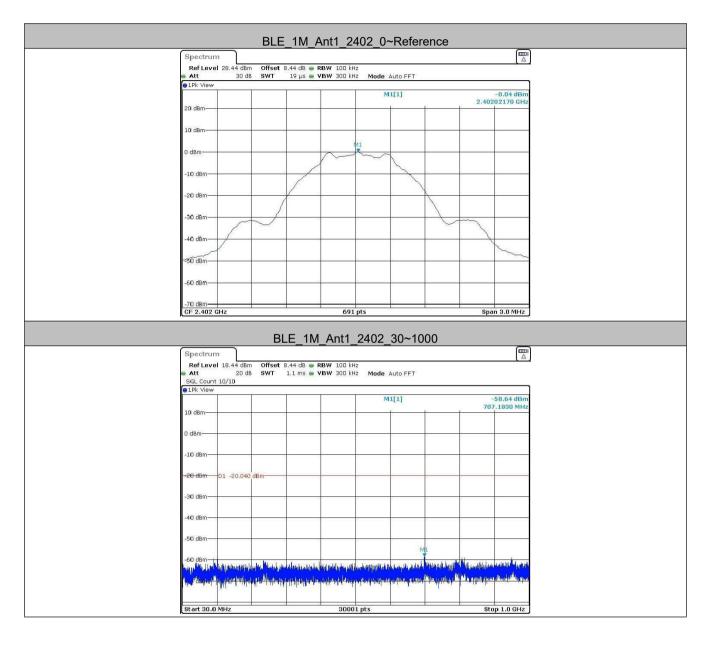

5.6 Band-edge for RF Conducted Emissions

TestMode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
		Low	2402	0.05	-50.83	≤-19.95	PASS
BLE_1M	Ant1	High	2480	-1.42	-48.95	≤-21.42	PASS
		Low	2402	-0.89	-34.56	≤-20.89	PASS
BLE_2M	Ant1	High	2480	-4.35	-49.65	≤-24.35	PASS

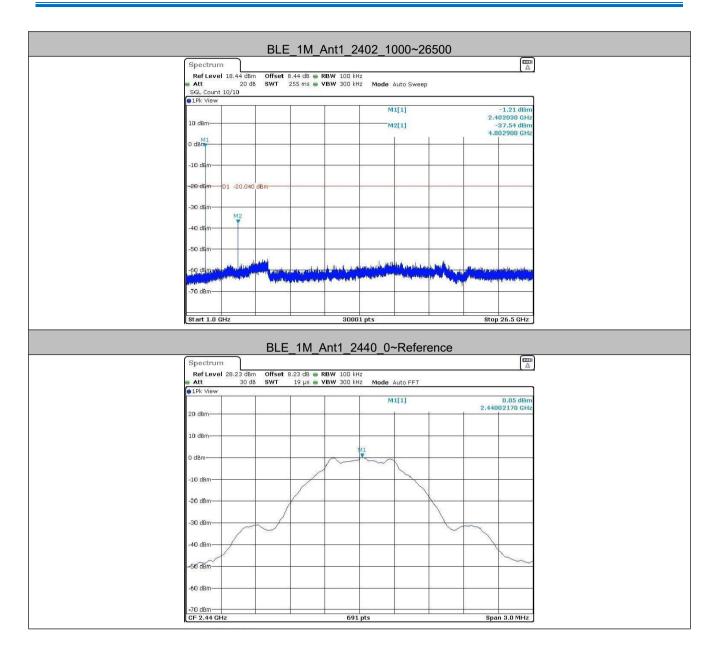
Test plot as follows:

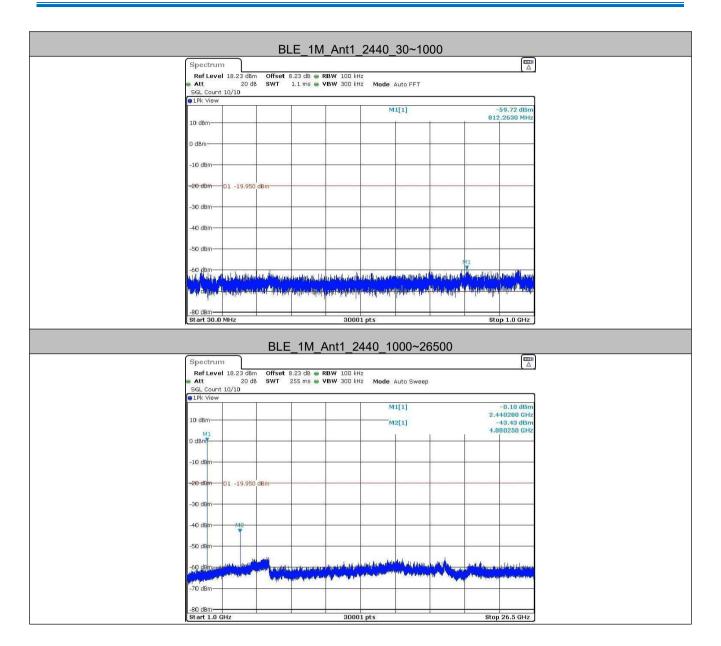


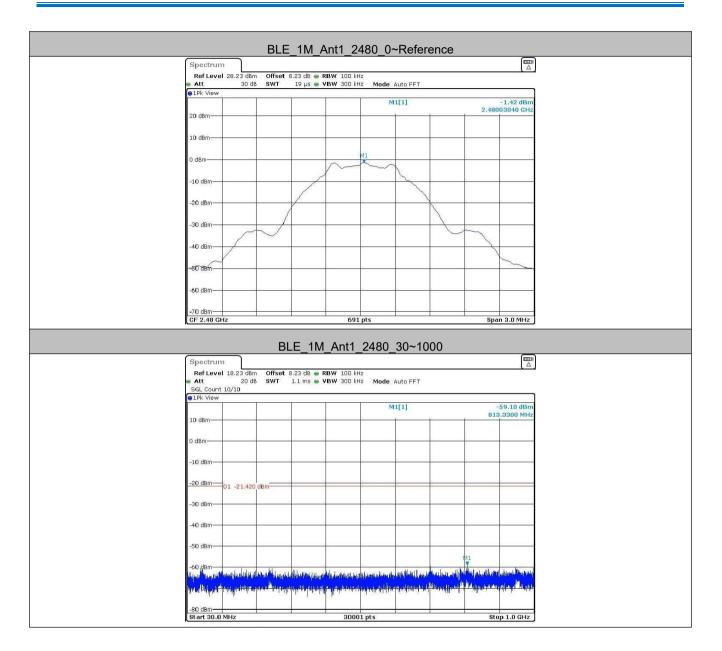
BLE_2M_Ant1_Low_2402		
Ref Level 20.00 dBm Offset 8.44 dB = REW 100 Hz * Att 30 dB 3WT 75.8 µ = VEW 300 Hz Mode Auto FFT SGL Count 300/300 ************************************		
B_1PE View 0.89 dbm 10 dbm -0.89 dbm 2.4020150 GHz -33.31 dbm -30.31 dbm -20.05m		
10 dBm 0.09 dBm 0 dBm 93.31 dBm 20.dBm 2.4000000 GHz 20.dBm 2.4000000 GHz 20.dBm 2.4000000 GHz 30 dBm 40 dBm 30 dBm 40 dBm 40 dBm 90 dBm 30 dBm 90 dBm 40 dBm 90 dBm		
10 dBm 2.4020135 GHz 0 dBm 2.4000000 GHz 10 dBm 2.4000000 GHz 20.4Bin 2.400000 GHz 40 dBm 40 dBm 50 dBm 50 dBm 70 dBm 40 dBm 11 2.402015 GHz 691 pts Stop 2.405 GHz Marker Marker <td <="" colspan="2" td=""></td>		
0 dBm		
0 dbm		
20.d8m 01 -20.380 d8m		
20.dBm 01 -20.890 dBm		
30 dbm 40 dbm 41 41 40 dbm 50		
-30 dBm -40 dBm -40 dBm -30 dBm -50 dBm -50 dBm -70 dBm -10 dBm -71 dBm -33.34 dBm M14 1 2.3999783 GHz -33.456 dBm -71 dBm -30 dB Spectrum -34.56 dBm Ref Level 20.00 dBm Offset 8.23 dB @ RBW 100 Hz -31 dBm -4.35 dBm -32 dBm -4.35 dBm -31 dBm		
40 d8m		
40 dBm M1 50 dBm M1 -60 dBm M1 -70 dBm M1 -70 dBm M1 11 2.402015 GHz Marker Type Ref TYpe Ref Trc X-value Function Marker -0.0 gbm M1 1 2.40 GHz -0.0 gbm Marker -0.0 gbm Type Ref Trc M3 1 2.3999783 GHz -33.31 dbm M4 1 2.3999783 GHz -34.56 dbm M4 1 2.3999783 GHz M3 1 2.3999783 GHz M4 1 2.3999783 GHz M3 1 2.3999783 GHz M4 1 2.3999783 GHz M3 1 2.4 GHz M4 1 2.3999783 GHz M4 1 2.3999783 GHz M3 1 2.4 GHz M4 3.0 db SWT SQL Count 300/300 M111 GL Co		
-50 dBm		
-60 dBm		
-60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm -60 dBm -60 dBm -60 dBm Start 2.35 GHz 69 tps Stop 2.405 GHz Marker -0.89 dBm -0.89 dBm -0.09 dBm M1 1 2.40215 GHz -0.89 dBm -0.09 dBm M1 1 2.40215 GHz -0.89 dBm -0.09 dBm M1 1 2.40 GHz -33.31 dBm -0.09 dBm M3 1 2.3999783 GHz -33.45 dBm -0.09 dBm M4 1 2.3999783 GHz -34.56 dBm -0.00 dBm Offset 8.23 dB RBW 100 kHz Ref Level 20.00 dBm Offset 8.23 dB RBW 100 kHz Mode Auto FFT SG. Count 300/300 -4.35 dBm 91Pk View -0.48 ys VBW 300 kHz Mode Auto FFT -4.35 dBm 0 dBm -0.00 dBm M1[1] -4.35 dBm -5.182 dBm 0 dBm -0.00 dBm M2[1] -5.182 dBm -5.182 dBm 0 dBm -0.00 dBm M2[1] -5.182 dBm -5.182 dBm		
-70 dBm -70 dBm -70 dBm -70 dBm Start 2.35 GHz 691 pts Stop 2.405 GHz Marker Type kef Trc X-value -0.69 dBm Function Result M1 1 2.402015 GHz -0.69 dBm M2 1 2.4 GHz -0.89 dBm M3 1 2.39 GHz -33.31 dBm M3 1 2.3999783 GHz -34.56 dBm M4 1 2.3999783 GHz -34.56 dBm M4 1 2.3999783 GHz -34.56 dBm M4 1 2.3999783 GHz -34.56 dBm Spectrum C C Ref Level 20.00 dBm Offset 8.23 dB • RBW 100 kHz Mode Auto FFT SGL Count 300/300 SWT 94.8 µS • VBW 300 kHz Mode Auto FFT SGL Count 300/300 M1[1] -4.35 dBm 0 dBm M2[1] -51.42 dBm 10 dBm M2[1] -51.42 dBm 0 dBm M3 1 2.480300 GHz		
Stop 2.405 GHz Stop 2.405 GHz Marker Yvolue Function Function Result M1 1 2.402015 GHz -0.69 dbm M1 1 2.402015 GHz -0.89 dbm M1 1 2.402015 GHz -0.89 dbm M1 1 2.405 GHz -0.89 dbm M1 1 2.405 GHz -0.89 dbm M3 1 2.39 GHz -53.34 dbm M4 1 2.3999783 GHz -34.56 dbm BLE 2M_Ant1_High_2480 Spectrum Ref Level 20.00 dbm Offset 8.23 db @ RBW 100 kHz Att 30 db SWT 94.8 µS @ VBW 300 kHz Mode Auto FFT SGL Count 300/300 SWT 94.8 µS @ VBW 300 kHz M1[1] -4.35 dbm 10 dbm M1[1] -51.82 dbm 0 dbm M1[1] -51.82 dbm 0 dbm M1 -51.82 dbm		
Marker Function Function Result M1 1 2.402015 GHz -0.89 dbm M2 1 2.4 GHz -33.31 dbm M3 1 2.399 GHz -33.33 dbm M4 1 2.3999783 GHz -34.56 dbm BLE 2M_Ant1 High_2480 Effected 20.00 dbm Offset 8.23 db @ RBW 100 kHz Att 300 8 BWT 94.8 µs @ VBW 300 kHz Att 300/300 ●1Pk View M1[1] -4.35 dbm 10 dbm M1 2.480010 GHz -51.82 dbm 0 dbm M1 2.480010 GHz -51.82 dbm		
Marker Function Function Result M1 1 2.402015 GHz -0.89 dbm M2 1 2.4 GHz -33.31 dbm M3 1 2.399 GHz -33.33 dbm M4 1 2.3999783 GHz -34.56 dbm BLE 2M_Ant1 High_2480 Effected 20.00 dbm Offset 8.23 db @ RBW 100 kHz Att 300 8 BWT 94.8 µs @ VBW 300 kHz Att 300/300 ●1Pk View M1[1] -4.35 dbm 10 dbm M1 2.480010 GHz -51.82 dbm 0 dbm M1 2.480010 GHz -51.82 dbm		
Type Ref Trc X-volue Y-volue Function Function Result M1 1 2.42015 GHz -0.89 dBm -0.99 dBm -0.93.31 dbm -0.93.35 dbm -0.93.35 dbm -0.93.35 dbm -0.93.35 dbm -0.93.35 dbm <td< td=""></td<>		
M1 1 2.402015 GHz -0.69 dbm M2 1 2.4 GHz -33.31 dbm M3 1 2.39 GHz -53.34 dbm M4 1 2.3999783 GHz -34.56 dbm BLE 2M_Ant1 High_2480 The first set of the set of		
M2 1 2.4 GHz -33.3 dbm M3 1 2.39 GHz -53.34 dbm M4 1 2.3999783 GHz -53.34 dbm BLE_2M_Ant1_High_2480 Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" Image		
M3 1 2.39 GHz -53.34 dbm M4 1 2.3999783 GHz -34.56 dbm BLE_2M_Ant1_High_2480 Colspan="2">Colspan="2" Secture Colspan="2" Sol Count 300/300 M1[1] -4.35 dBm M1[1] -4.35 dBm ID dBm M1[1] -4.35 dBm M1[1] -4.35 dBm M1[1] -4.35 dBm M1[1] -4.35 dBm M1[1] -4.35 dBm M1[1] -4.435 dBm O		
BLE_2M_Ant1_High_2480		
Spectrum Image: Constraint of the second seco		
SGL Count 300/300 @1Pk View M1[1] -4.35 dBm 10 dBm M2[1] -51.82 dBm 0 dBm M1 2.483500 GHz		
M1[1] -4.35 dBm 10 dBm 2.480010 GHz 0 dBm M2[1] -5.182 dBm 2.480010 GHz .5.182 dBm 0 dBm M2[1] -5.182 dBm		
10 dBm 2.480010 GHz 0 dBm 0 dBm 2.483500 GHz V dBm 0 dBm 2.483500 GHz		
0 dBm M2 2.483500 GHz		
0 dBm X		
-10 dBm		
-10 asm. //		
-20 dBm		
-30 dBm		
-40 dam		
M4		
M2 M3		
-60 dBm		
-70 dBm-		
Start 2.47 GHz 691 pts Stop 2.55 GHz		
(Start 2.+7 / Start 2.+3 GHz) Marker		
Type Ref Trc X-value Y-value Function Function Result		
M1 1 2.48001 GHz -4.35 dBm		
M2 1 2.4835 GHz -51.82 dBm		
M3 1 2.5 GHz -53.17 dBm		

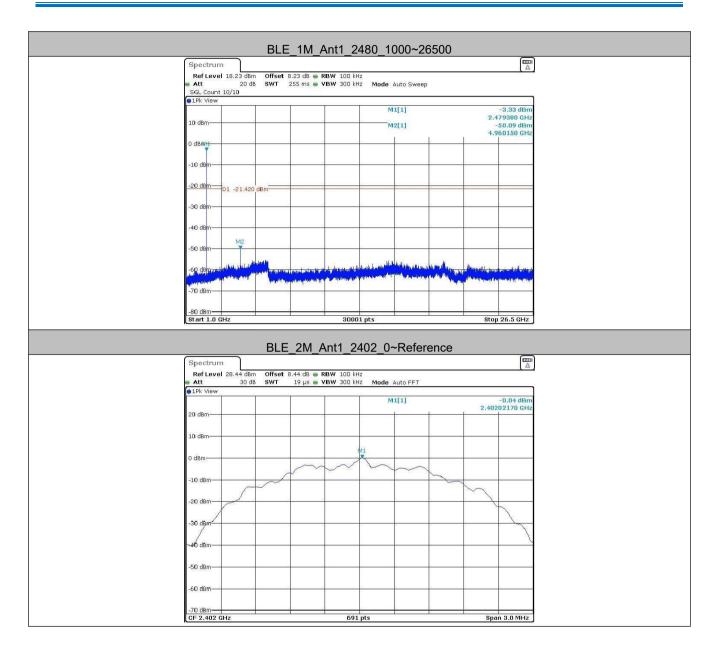


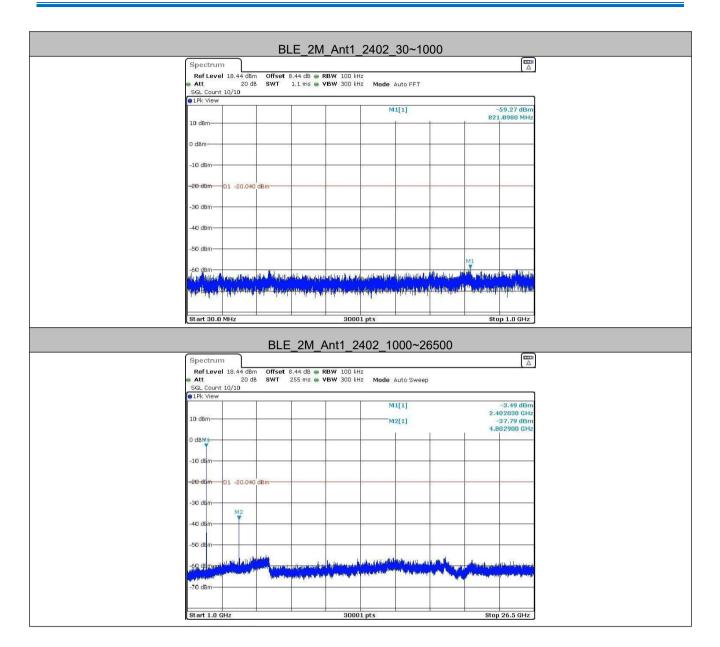
5.7 Spurious RF Conducted Emissions

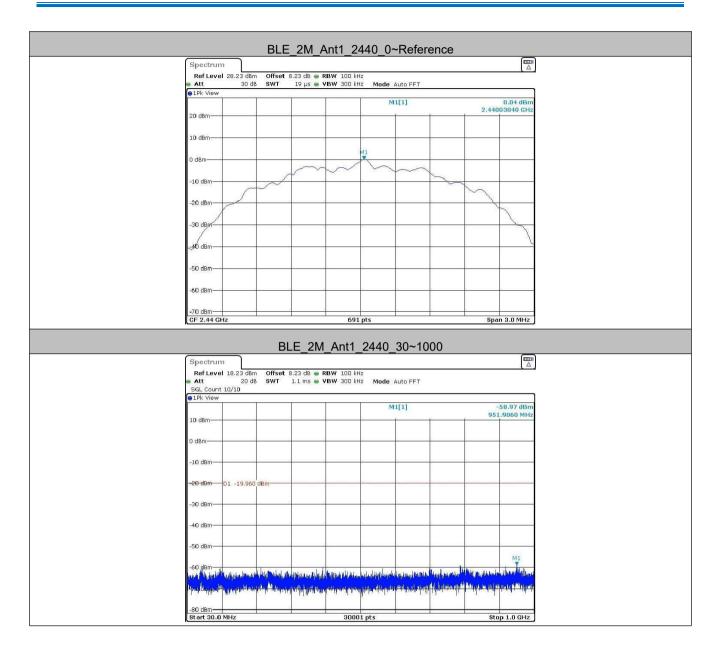


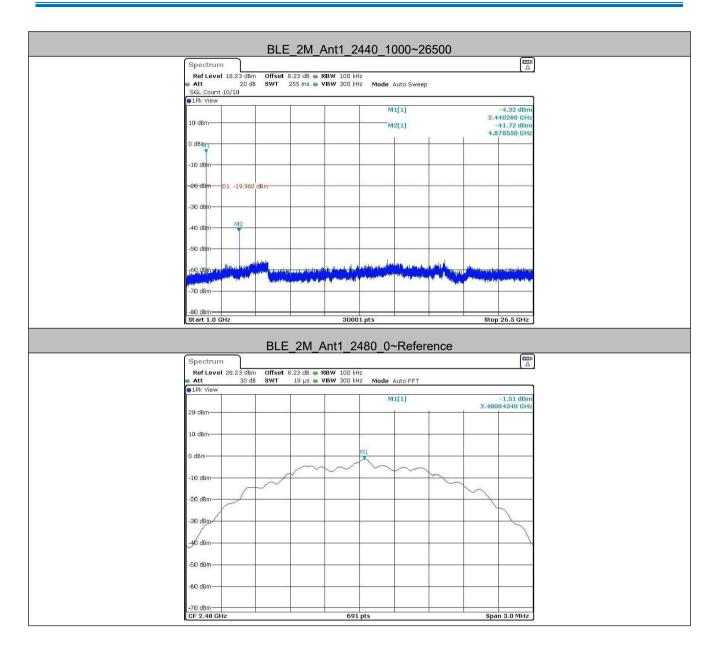

Test plot as follows:

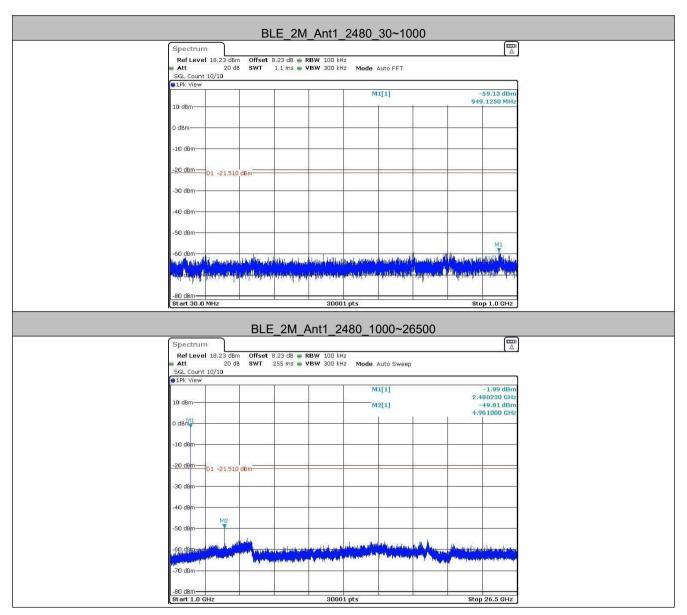






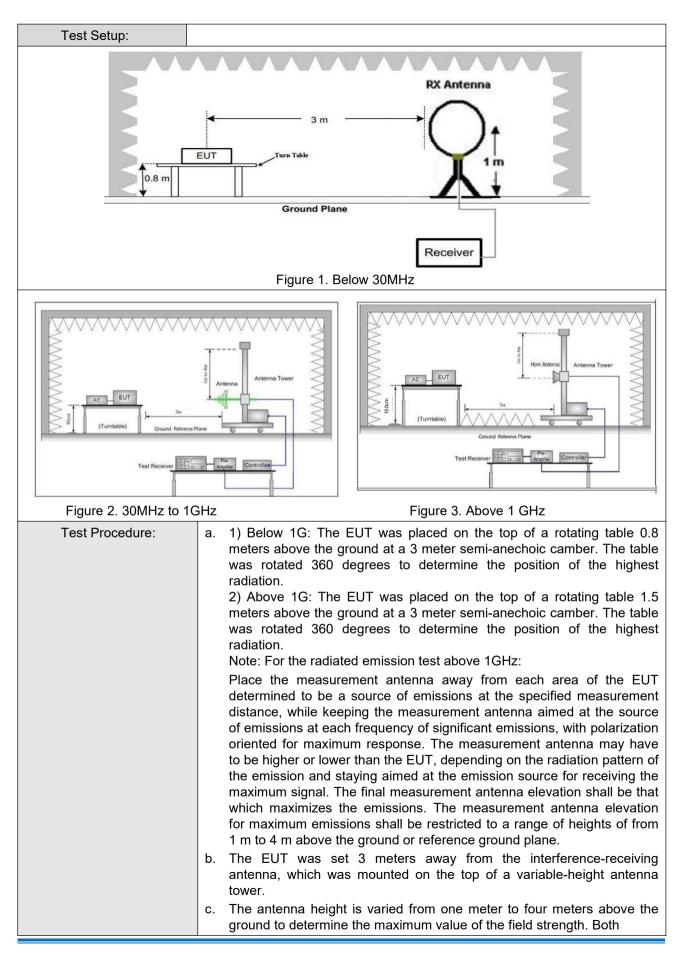






Remark:

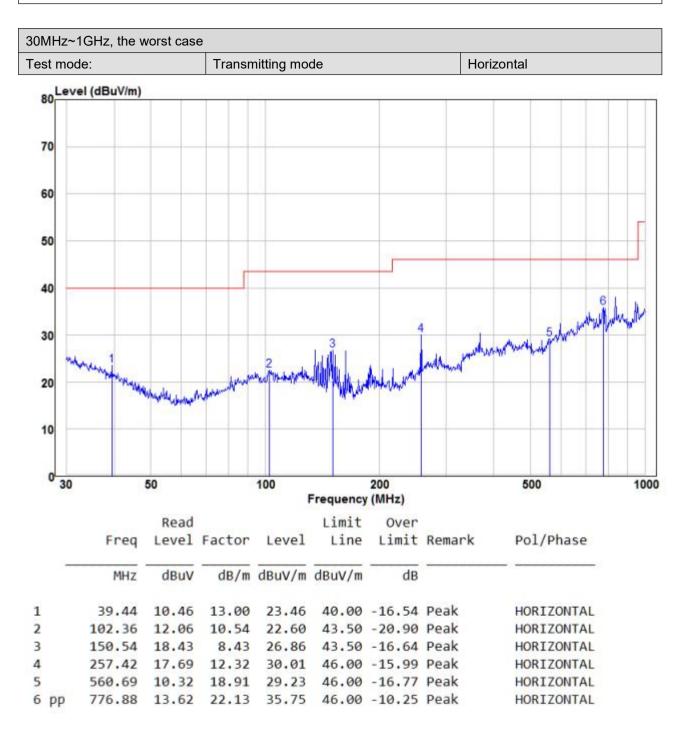
Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.



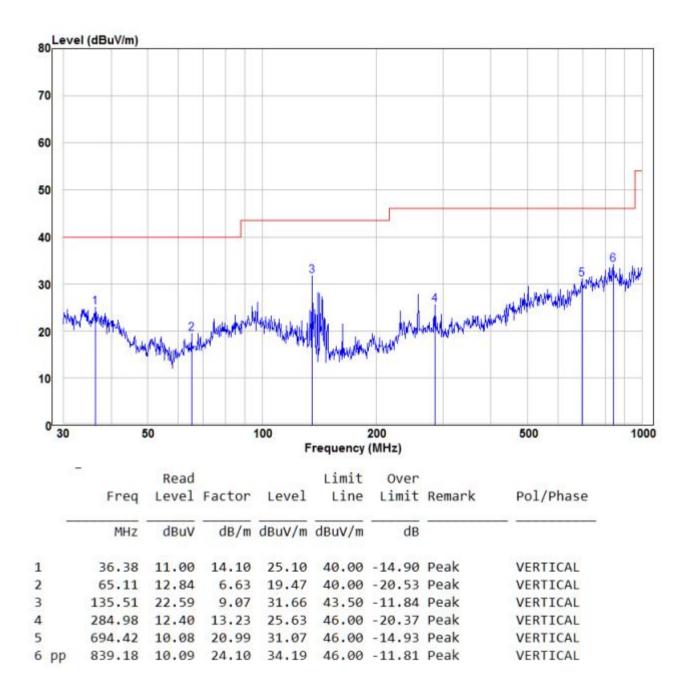
5.8 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section	on 1	5.209 and 15	.205							
Test Method:	ANSI C63.10 2013										
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)									
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark					
	0.009MHz-0.090MH	z	Peak	10kHz	z 30kHz	Peak					
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average					
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak					
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak					
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average					
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak					
	30MHz-1GHz		Quasi-peak	100 kH	lz 300kHz	Quasi-peak					
	Above 1GHz		Peak	1MHz	3MHz	Peak					
			Peak	1MHz	10Hz	Average					
Limit:	Frequency		eld strength rovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (r					
	0.009MHz-0.490MHz	2400/F(kHz)		-	-	300					
	0.490MHz-1.705MHz	24	000/F(kHz)	-	-	30					
	1.705MHz-30MHz		30	-	-	30					
	30MHz-88MHz		100	40.0	Quasi-peak	3					
	88MHz-216MHz		150	43.5	Quasi-peak	3					
	216MHz-960MHz		200	46.0	Quasi-peak	3					
	960MHz-1GHz		500	54.0	Quasi-peak	3					
	Above 1GHz		500	54.0	Average	3					
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.										

Г



	horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with GFSK modulation. Transmitting mode.
Final Test Mode:	Through Pre-scan, find the 1Mbps of data type and GFSK modulation is the worst case.
	For below 1GHz part, through pre-scan, the worst case is the highest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass


Radiated Emission below 1GHz

Shenzhen Huaxia Testing Technology Co., Ltd.

Transmitter Emission above 1GHz

Worse case mode:		GFSK(1Mbps)		Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	54.73	-9.2	45.53	74	-28.47	Peak	н
2400	54.71	-9.39	45.32	74	-28.68	Peak	Н
4804	51.36	-4.33	47.03	74	-26.97	Peak	Н
7206	49.53	1.01	50.54	74	-23.46	Peak	Н
2390	52.67	-9.2	43.47	74	-30.53	Peak	v
2400	51.25	-9.39	41.86	74	-32.14	Peak	V
4804	52.68	-4.33	48.35	74	-25.65	Peak	V
7206	49.49	1.01	50.50	74	-23.50	Peak	V

Worse case mode:		GFSK(1Mbps)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880	52.27	-4.11	48.16	74	-25.84	peak	Н
7320	50.24	1.51	51.75	74	-22.25	peak	Н
4880	53.40	-4.11	49.29	74	-24.71	peak	V
7320	50.05	1.51	51.56	74	-22.44	peak	V

Worse case mode:		GFSK(1Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	54.61	-9.29	45.32	74	-28.68	Peak	н
4960	51.11	-4.04	47.07	74	-26.93	Peak	Н
7440	48.31	1.57	49.88	74	-24.12	Peak	Н
2483.5	56.40	-9.29	47.11	74	-26.89	Peak	v
4960	50.24	-4.04	46.20	74	-27.80	Peak	V
7440	48.88	1.57	50.45	74	-23.55	Peak	V

Worse case mode:		GFSK(2Mbps)		Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	53.89	-9.2	44.69	74	-29.31	Peak	Н
2400	56.25	-9.39	46.86	74	-27.14	Peak	Н
4804	52.98	-4.33	48.65	74	-25.35	Peak	Н
7206	48.59	1.01	49.60	74	-24.40	Peak	Н
2390	55.03	-9.2	45.83	74	-28.17	Peak	v
2400	51.70	-9.39	42.31	74	-31.69	Peak	V
4804	53.37	-4.33	49.04	74	-24.96	Peak	V
7206	50.35	1.01	51.36	74	-22.64	Peak	V

Worse case mode:		GFSK(2Mbps)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880	51.31	-4.11	47.20	74	-26.80	peak	Н
7320	50.04	1.51	51.55	74	-22.45	peak	Н
4880	52.04	-4.11	47.93	74	-26.07	peak	V
7320	48.51	1.51	50.02	74	-23.98	peak	V

Worse case m	Vorse case mode:		GFSK(2Mbps)		Test channel:		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	55.72	-9.29	46.43	74	-27.57	Peak	н
4960	52.66	-4.04	48.62	74	-25.38	Peak	Н
7440	50.73	1.57	52.30	74	-21.70	Peak	Н
2483.5	55.79	-9.29	46.50	74	-27.50	Peak	V
4960	49.29	-4.04	45.25	74	-28.75	Peak	V
7440	50.10	1.57	51.67	74	-22.33	Peak	V

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

6 Photographs - EUT Test Setup

6.1 Radiated Spurious Emission

6.2 Conducted Emission

