

Glowforge Incorporated GFD200

FCC 15.247:2023 RSS-247 Issue 2:2017 RSS-Gen Issue 5:2018+A1:2019+A2:2021

Bluetooth radio with 1 antenna type(s) and 1 antenna port(s)

Report: GLOW0038.1 Rev. 2, Issue Date: May 1, 2023

CERTIFICATE OF TEST

Last Date of Test: April 18, 2023 Glowforge Incorporated EUT: GFD200

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2023	ANSI C63.10:2013, FCC KDB 558074 v05r02:2019
FCC 15.247:2023	ANSI C63.10:2013, FCC KDB 558074 v05r02:2019
RSS-247 Issue 2:2017	ANSI C63.10:2013
RSS-Gen Issue 5:2018+A1:2019+A2:2021	ANSI C63.10:2013

Results

Test Description	Result	Specification Section(s)	Method Section(s)	Comments
Powerline Conducted Emissions	Pass	15.207, RSS-Gen 8.8	6.2	
Spurious Radiated Emissions	Pass	15.247(d), RSS-247 5.5	6.5, 6.6	
Duty Cycle	Pass	15.247, RSS-Gen 3.2	7.5	
Carrier Frequency Separation	Pass	15.247(a)(1), RSS-247 5.1(b)	7.8.2	
Number of Hopping Frequencies	Pass	15.247(a)(1)(iii), RSS-247 5.1(d)	7.8.3	
Dwell Time	Pass	15.247(a)(1)(iii), RSS-247 5.1(d)	7.8.4	
Output Power	Pass	15.247(b)(1), RSS-247 5.4(b)	7.8.5	
Equivalent Isotropic Radiated Power	Pass	15.247(b)(1) , RSS-247 5.4(b)	7.8.5	
Band Edge Compliance	Pass	15.247(d), RSS-247 5.5	7.8.6	
Band Edge Compliance – Hopping Mode	Pass	15.247(d), RSS-247 5.5	7.8.6	
Spurious Conducted Emissions	Pass	15.247(d), RSS-247 5.5	7.8.8	
Occupied Bandwidth (99%)	Pass	RSS-Gen 6.7	6.9.3	

Deviations From Test Standards

None

Approved By:

Chuck Heller, Department Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
01	Added Band Edge Compliance (Single Channel)	2023-04-19	68-72
02	Updated last testing date	2023-05-03	10
02	Added the test setup method	2023-05-03	101

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

		SCOPE				
For details on the Scopes of our Accreditations, please visit:						
<u>California</u>	<u>Minnesota</u>	<u>Oregon</u>	<u>Texas</u>	Washington		

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600				
		A2LA						
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06				
Innovation, Science and Economic Development Canada								
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1				
	BSMI							
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R				
VCCI								
A-0029	A-0109	A-0108	A-0201	A-0110				
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA								
US0158	US0175	US0017	US0191	US0157				

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	3.1 dB	-3.1 dB

TEST SETUP BLOCK DIAGRAMS

Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

Measured Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6

Near Field Test Fixture Measurements

71.2

=

42.6

+

28.6

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

Sample Calculation (logarithmic units)

Radiated Emissions:

				Factor								
Measured Level (Amplitude)		Antenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation		Field Strength
42.6	+	28.6	+	3.1	-	40.8	+	0.0	+	0.0	=	33.5

Conducted Emissions:

Radiated Power (ERP/EIRP) – Substitution Method:

Measured Level into Substitution Antenna (Amplitude dBm)		Substitution Antenna Factor (dBi)		EIRP to ERP (if applicable)		Measured power (dBm ERP/EIRP)
10.0	+	6.0	-	2.15	=	13.9/16.0

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment under Test (EUT) Information

Company Name:	Glowforge Incorporated
Address:	1938 Occidental Avenue S Suite C
City, State, Zip:	Seattle, WA 98134
Test Requested By:	Nick Woolger
EUT:	GFD200
First Date of Test:	January 27, 2023
Last Date of Test:	April 18, 2023
Receipt Date of Samples:	January 27, 2023
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

3D Laser Printer with Bluetooth and Wi-Fi radios.

Testing Objective:

To demonstrate compliance of the Bluetooth radio to FCC 15.247/RSS-247 requirements.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information. The power settings below reflect the maximum power that the EUT is allowed to transmit at during normal operation.

ANTENNA GAIN (dBi)

PIFA ProAnt 2400 – 2500 4.9	Туре	Provided by:	Frequency Range (MHz)	Gain (dBi)
	PIFA	ProAnt	2400 – 2500	4.9

The EUT was tested using the power settings provided by the manufacturer which were based upon:

 \boxtimes Test software settings

Test software/firmware installed on EUT: ______emitest-v0.9.4a

 \Box Rated power settings

SETTINGS FOR ALL TESTS IN THIS REPORT					
Modulation Types	Туре	Channel	Position	Frequency (MHz)	Power Setting
		0 or 1	Low Channel	2402	34
DH5 GFSK	FHSS	39	Mid Channel	2440 or 2441	34
		78 or 79	High Channel	2480	34
	FHSS	0 or 1	Low Channel	2402	34
2DH5 pi/4-DQPSK		39	Mid Channel	2440 or 2441	34
		78 or 79	High Channel	2480	34
		0 or 1	Low Channel	2402	34
3DH5 8-DPSK	FHSS	39	Mid Channel	2440 or 2441	34
		78 or 79	High Channel	2480	34

CONFIGURATIONS

Configuration GLOW0038-1

Software/Firmware Running During Test				
Description	Version			
Firmware provided by manufacturer	emitest-v0.9.4a			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Laser Printer	Glowforge	GFD200	MB2-398

Remote Equipment Outside of Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Laptop	Dell	XPS	N/A		
Manufactured interface board	Glowforge	GF-ECA-01595	N/A		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC cable	None	3 m	None	EUT	AC power	
USB-C-to-USB-C	None	1 m	None	Manufactured interface board	Laptop	
White EEC cable	None	1 m	Nono		Manufactured	
	None	1 111	none	EUT	interface board	

Configuration GLOW0038-2

Software/Firmware Running During Test				
Description	Version			
Firmware provided by manufacturer	emitest-v0.9.4a			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Laser Printer	Glowforge	GFD200	XB2-839

Peripherals in Test Setup Boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Laptop	Dell	XPS	N/A			
Manufactured interface board	Glowforge	GF-ECA-01595	N/A			

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC cable	None	3 m	None	EUT	AC power	
USB-C-to-USB-C	None	1 m	None	Manufactured interface board	Laptop	
White FFC cable	None	1 m	None	EUT	Manufactured interface board	

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
			Tested as	No EMI suppression	EUT remained at
1	2023-01-27	Duty Cycle	delivered to	devices were added or	Element following
			test Station.	modified during this test.	the test.
		Sourious Padiated	Tested as	No EMI suppression	EUT remained at
2	2023-01-27	Emissione	delivered to	devices were added or	Element following
			test Station.	modified during this test.	the test.
		Emissions	Tested as	No EMI suppression	EUT remained at
3	2023-01-27	Randwidth (20 dR)	delivered to	devices were added or	Element following
		Danuwiutii (20 UD)	test Station.	modified during this test.	the test.
		Equivalent	Tested as	No EMI suppression	EUT remained at
4	2023-01-27	Isotropic Radiated	delivered to	devices were added or	Element following
		Power	test Station.	modified during this test.	the test.
		Occupied	Tested as	No EMI suppression	EUT remained at
5	2023-01-27	Bandwidth (00%)	delivered to	devices were added or	Element following
		Danuwiutii (9976)	test Station.	modified during this test.	the test.
			Tested as	No EMI suppression	EUT remained at
6	2023-01-27	Output Power	delivered to	devices were added or	Element following
			test Station.	modified during this test.	the test.
		Spurious	Tested as	No EMI suppression	EUT remained at
7	2023-01-27	Conducted	delivered to	devices were added or	Element following
		Emissions	test Station.	modified during this test.	the test.
		Band Edge	Tested as	No EMI suppression	EUT remained at
8	2023-02-01	Compliance –	delivered to	devices were added or	Element following
		Hopping Mode	Test Station.	modified during this test.	the test.
			Tested as	No EMI suppression	EUT remained at
9	2023-02-01	Dwell Time	delivered to	devices were added or	Element following
			test Station.	modified during this test.	the test.
		Powerline	Tested as	No EMI suppression	EUT remained at
10	2023-02-03	Conducted	delivered to	devices were added or	Element following
		Emissions	test Station.	modified during this test.	the test.
		Corrier Frequency	Tested as	No EMI suppression	EUT remained at
11	2023-02-08	Carrier Frequency	delivered to	devices were added or	Element following
	Separation	Test Station.	modified during this test.	the test.	
		Number of	Tested as	No EMI suppression	EUT remained at
12	2023-02-08	Hopping	delivered to	devices were added or	Element following
		Frequencies	Test Station.	modified during this test.	the test.
		Bond Edgo	Tested as	No EMI suppression	Schodulod tooting
13	2023-04-18	Compliance	delivered to	devices were added or	
		Compliance	Test Station.	modified during this test.	was completed.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 500hm measuring port is terminated by a 500hm EMI meter or a 500hm resistive load. All 500hm measuring ports of the LISN are terminated by 500hm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESCI	ARE	2022-11-02	2023-11-02
LISN	Solar Electronics	9252-50-R-24-BNC	LIM	2022-07-05	2023-07-05
Cable - Conducted Cable Assembly	Northwest EMC	NC4, HHF, TYL	NC4A	2022-02-16	2023-02-16

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	3.1 dB	-3.1 dB

CONFIGURATIONS INVESTIGATED

GLOW0038-1

MODES INVESTIGATED

Transmitting Bluetooth classic. Channel 39 = 2441 MHz, DH5, power setting = 34

FUT.					Mark Orders		
EUI:	GFD200			Work Order:	GLOW0038		
Serial Number:	MB2-398	MB2-398			Date:	2023-02-03	
Customer:	Glowforge Ir	Glowforge Incorporated			Temperature:	20.5°C	
Attendees:	Jason Bluhn	Jason Bluhm			Relative Humidity:	28.6%	
Customer Project:	None				Bar. Pressure (PMSL):	1012 mb	
Tested By:	Harry Zhao				Job Site:	NC05	
Power:	120VAC/60	Ηz			Configuration:	GLOW0038-1	
TEST SPECIFICATIONS							
Specification: Equi	cation: Equipment Class B Method:						
FCC 15.207:2023	207:2023 ANSI C6			ANSI C63	3.10:2013		
RSS-247 Issue 2:2	S-247 Issue 2:2017 ANSI C63			ANSI C63	3.10:2013		
RSS-Gen Issue 5:	RSS-Gen Issue 5:2018+A1:2019+A2:2021 ANSI C63			.10:2013			
TEST PARAME	TERS						
Run #: 12		Line:	High Line		Add. Ext. Attenuation (dE	3): 0	
COMMENTS							
None							
EUT OPERATIN	IG MODES						
Transmitting Bluete	ooth classic. C	hannel 39	= 2441 MHz, DH5, pov	ver setting =	: 34		
DEVIATIONS FI	ROM TEST	STAND	ARD				
None							

Average Data - vs - Average Limit

RESULTS - Run #12

Quasi Peak Data - vs	- Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.155	25.5	20.8	46.3	65.7	-19.4
14.765	14.4	21.3	35.7	60.0	-24.3
16.225	11.2	21.4	32.6	60.0	-27.4
4.750	2.9	20.8	23.7	56.0	-32.3
0.511	2.0	20.5	22.5	56.0	-33.5
2.925	0.6	20.7	21.3	56.0	-34.7

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.155	18.1	20.8	38.9	55.7	-16.8
14.765	7.5	21.3	28.8	50.0	-21.2
16.225	4.8	21.4	26.2	50.0	-23.8
0.511	-2.0	20.5	18.5	46.0	-27.5
4.750	-2.4	20.8	18.4	46.0	-27.6
2.925	-4.2	20.7	16.5	46.0	-29.5

CONCLUSION

Pass

Ale

Tested By

GFD200 MB2-398				Work Order	GLOW/0038	
MB2-398		GFD200			OLOWO000	
MB2-398				Date:	2023-02-03	
Glowforge Incorporated			Temperature:	20.5°C		
Jason Bluhm			Relative Humidity:	28.6%		
None				Bar. Pressure (PMSL):	1012 mb	
Harry Zhao				Job Site:	NC05	
120VAC/60F	lz			Configuration:	GLOW0038-1	
TEST SPECIFICATIONS						
Specification: Equipment Class B Method:						
FCC 15.207:2023 ANSI 0			ANSI C63	3.10:2013		
RSS-247 Issue 2:2017 ANSI C63			ANSI C63	3.10:2013		
RSS-Gen Issue 5:2018+A1:2019+A2:2021 ANSI C63.			.10:2013			
ERS						
	Line:	Neutral		Add. Ext. Attenuation (dE	3): 0	
G MODES						
oth classic. Cl	nannel 39 =	= 2441 MHz, DH5, pov	ver setting =	34		
OM TEST	STANDA	RD				
	Glowforge In Jason Bluhm None Harry Zhao 120VAC/60H ATIONS ment Class B 017 018+A1:2019 ERS G MODES oth classic. Ch COM TEST	Glowlorge Incorporated Jason Bluhm None Harry Zhao 120VAC/60Hz ATIONS ment Class B 017 018+A1:2019+A2:2021 ERS Line: G MODES oth classic. Channel 39 =	Jason Bluhm None Harry Zhao 120VAC/60Hz ATIONS ment Class B 017 018+A1:2019+A2:2021 TERS Line: Neutral G MODES oth classic. Channel 39 = 2441 MHz, DH5, povester STANDARD	Jason Bluhm None Harry Zhao 120VAC/60Hz ATIONS ment Class B Method: ANSI C63 017 ANSI C63 018+A1:2019+A2:2021 ANSI C63 TERS Line: Neutral G MODES oth classic. Channel 39 = 2441 MHz, DH5, power setting = COM TEST STANDARD	Jason Bluhm Relative Humidity: None Bar. Pressure (PMSL): Harry Zhao Job Site: 120VAC/60Hz Configuration: ATIONS ment Class B Method: ANSI C63.10:2013 017 ANSI C63.10:2013 018+A1:2019+A2:2021 ANSI C63.10:2013 TERS Line: Neutral Add. Ext. Attenuation (defined on the context of	

Average Data - vs - Average Limit

RESULTS - Run #13

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.153	25.3	20.8	46.1	65.9	-19.8
14.817	14.6	21.3	35.9	60.0	-24.1
16.214	13.5	21.4	34.9	60.0	-25.1
18.329	11.7	21.4	33.1	60.0	-26.9
0.232	14.5	20.5	35.0	62.4	-27.4
0.599	5.8	20.5	26.3	56.0	-29.7

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.153	18.3	20.8	39.1	55.9	-16.8
14.817	7.7	21.3	29.0	50.0	-21.0
16.214	6.7	21.4	28.1	50.0	-21.9
18.329	5.0	21.4	26.4	50.0	-23.6
0.232	8.0	20.5	28.5	52.4	-23.9
0.599	0.9	20.5	21.4	46.0	-24.6

CONCLUSION

Pass

Tested By

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies (in no-hop, single channel mode) and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements within 2 MHz of the allowable band may have been taken using the integration method from ANSI C63.10 clause 11.13.3. This procedure uses the channel power feature of the spectrum analyzer to integrate the power of the emission within a 1 MHz bandwidth.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10*log(1/dc).

RMS measurements taken for a FHSS radio also may have a duty cycle correction subtracted using the formula 10*log(DC), where DC is the worst-case dwell time of the radio while in a hopping mode in a 100 ms period.

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Antenna - Double Ridge	EMCO	3115	AHM	2022-07-13	2024-07-13
Cable	Northwest EMC	3115 Horn Cable	NC2	2022-04-14	2023-04-14
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVZ	2022-04-14	2023-04-14
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAT	2022-11-03	2023-11-03
Antenna - Standard Gain	EMCO	3160-07	AHP	NCR	NCR
Cable	High Speed Interconnects	EW292A-NGNG-300	NC3	2022-08-30	2023-08-30
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOK	2022-08-04	2023-08-04
Antenna - Standard Gain	EMCO	3160-08	AHO	NCR	NCR
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AOJ	2022-08-04	2023-08-04
Antenna - Standard Gain	ETS Lindgren	3160-09	AIY	NCR	NCR
Cable	Northwest EMC	N/A	NC8	2022-03-21	2023-03-21
Amplifier - Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOD	2022-03-21	2023-03-21
Filter - Low Pass	Micro-Tronics	LPM50004	LFF	2022-11-01	2023-11-01
Antenna - Biconilog	Teseq	CBL 6141B	AYL	2021-10-05	2023-10-05
Cable	Northwest EMC	Bilog Cables	NC1	2023-01-29	2024-01-29
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	PAB	2023-01-29	2024-01-29
Filter - High Pass	Micro-Tronics	HPM50111	HHI	2022-10-03	2023-10-03
Attenuator	Fairview Microwave	SA18E-20	AQV	2022-07-28	2023-07-28

TEST EQUIPMENT

MEASUREMENT UNCERTAINTY

Description

Expanded k=2

5.2 dB

-5.2 dB

FREQUENCY RANGE INVESTIGATED

30 MHz TO 26.5 GHz

POWER INVESTIGATED

120VAC/60Hz

CONFIGURATIONS INVESTIGATED

GLOW0038-1

MODES INVESTIGATED

Transmitting BT classic. Channel 0 = 2402 MHz, Channel 39 = 2441 MHz, Channel 78 = 2480 MHz, power setting (34)

EUT:	GFD200	Work Order:	GLOW0038
Serial Number:	MB2-398	Date:	2023-01-26
Customer:	Glowforge Incorporated	Temperature:	20.7°C
Attendees:	Jason Bluhm	Relative Humidity:	37.7%
Customer Project:	None	Bar. Pressure (PMSL):	1037 mb
Tested By:	Harry Zhao	Job Site:	NC01
Power:	120VAC/60Hz	Configuration:	GLOW0038-1

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2023	ANSI C63.10:2013
RSS-247 Issue 2:2017	ANSI C63.10:2013
RSS-Gen Issue 5:2018+A1:2019+A2:2021	ANSI C63.10:2013

TEST PARAMETERS

Run #:	31	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)

COMMENTS

The test mode operates at 93.7% duty cycle (DC), an upward duty cycle correction factor(DCCF) of $10*\log(1/0.937) = 0.2826$ dB was applied to average measurements. See data comments for EUT orientations, channel and data rate

EUT OPERATING MODES

DEVIATIONS FROM TEST STANDARD

None

RESULTS - Run #31

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Heighi (meters)	Azimuth (degrees)	Duty Cycle Correction Factor	External Attenuation (dB)	Polarity/ Transducer	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7440.017	30.4	15.1	1.3	125.0	0.3	0.0	Vert	AV	0.0	45.8	54.0	-8.2	Ch. 78, EUT Horizontal, DH5
7440.050	30.1	15.1	3.8	121.0	0.3	0.0	Horz	AV	0.0	45.5	54.0	-8.5	Ch. 78, EUT lying on side, DH5
7440.133	29.1	15.1	3.8	121.0	0.3	0.0	Horz	AV	0.0	44.5	54.0	-9.5	Ch. 78, EUT lying on side, 2DH5
7440.092	28.9	15.1	3.8	121.0	0.3	0.0	Horz	AV	0.0	44.3	54.0	-9.7	Ch. 78, EUT lying on side, 3DH5
7439.992	27.9	15.1	2.0	360.0	0.3	0.0	Vert	AV	0.0	43.3	54.0	-10.7	Ch. 78, EUT front facing down, DH5
7439.600	27.7	15.1	1.3	98.0	0.3	0.0	Horz	AV	0.0	43.1	54.0	-10.9	Ch. 78, EUT Horizontal, DH5
7440.008	27.5	15.1	1.3	179.0	0.3	0.0	Vert	AV	0.0	42.9	54.0	-11.1	Ch. 78, EUT lying on side, DH5
7323.092	28.0	14.5	1.5	359.0	0.3	0.0	Vert	AV	0.0	42.8	54.0	-11.2	Ch. 39, EUT front facing down, DH5
7322.567	28.0	14.5	1.6	234.0	0.3	0.0	Horz	AV	0.0	42.8	54.0	-11.2	Ch. 39, EUT lying on side, DH5
7440.200	27.2	15.1	1.7	236.0	0.3	0.0	Horz	AV	0.0	42.6	54.0	-11.4	Ch. 78, EUT Horizontal, DH5
7440.283	27.2	15.1	1.5	295.0	0.3	0.0	Vert	AV	0.0	42.6	54.0	-11.4	Ch. 78, EUT Horizontal, DH5
7441.792	27.1	15.1	1.5	21.0	0.3	0.0	Horz	AV	0.0	42.5	54.0	-11.5	Ch. 78, EUT front facing down, DH5
4880.792	26.8	10.1	1.5	42.0	0.3	0.0	Horz	AV	0.0	37.2	54.0	-16.8	Ch. 39, EUT lying on side, DH5
4881.092	26.7	10.1	1.5	163.0	0.3	0.0	Vert	AV	0.0	37.1	54.0	-16.9	Ch. 39, EUT front facing down, DH5
4806.367	27.0	9.7	1.4	195.0	0.3	0.0	Horz	AV	0.0	37.0	54.0	-17.0	Ch. 0, EUT lying on side, DH5
4801.842	26.9	9.7	3.9	246.0	0.3	0.0	Vert	AV	0.0	36.9	54.0	-17.1	Ch. 0, EUT front facing down, DH5
4957.633	26.3	10.0	2.2	14.0	0.3	0.0	Horz	AV	0.0	36.6	54.0	-17.4	Ch. 78, EUT lying on side, DH5
4959.700	26.2	10.0	1.5	153.0	0.3	0.0	Vert	AV	0.0	36.5	54.0	-17.5	Ch. 78, EUT front facing down, DH5
19215.620	35.8	0.3	1.5	93.0	0.3	0.0	Horz	AV	0.0	36.4	54.0	-17.6	Ch. 0, EUT lying on side, DH5
19215.090	35.8	0.3	1.5	48.0	0.3	0.0	Vert	AV	0.0	36.4	54.0	-17.6	Ch. 0, EUT front facing down, DH5
7440.033	40.1	15.1	1.3	125.0	0.0	0.0	Vert	PK	0.0	55.2	74.0	-18.8	Ch. 78, EUT Horizontal, DH5
7440.333	39.9	15.1	3.8	121.0	0.0	0.0	Horz	PK	0.0	55.0	74.0	-19.0	Ch. 78, EUT lying on side, DH5
12399.400	36.6	-2.4	4.0	140.0	0.3	0.0	Vert	AV	0.0	34.5	54.0	-19.5	Ch. 78, EUT front facing down, DH5
7439.742	39.0	15.1	3.8	121.0	0.0	0.0	Horz	PK	0.0	54.1	74.0	-19.9	Ch. 78, EUT lying on side, 2DH5
7440.350	39.0	15.1	3.8	121.0	0.0	0.0	Horz	PK	0.0	54.1	74.0	-19.9	Ch. 78, EUT lying on side, 3DH5
7324.508	39.1	14.5	1.6	234.0	0.0	0.0	Horz	PK	0.0	53.6	74.0	-20.4	Ch. 39, EUT lying on side, DH5
7439.600	38.2	15.1	1.3	98.0	0.0	0.0	Horz	PK	0.0	53.3	74.0	-20.7	Ch. 78, EUT Horizontal, DH5
7439.025	38.2	15.1	1.5	295.0	0.0	0.0	Vert	PK	0.0	53.3	74.0	-20.7	Ch. 78, EUT Horizontal, DH5
7442.483	38.0	15.1	2.0	360.0	0.0	0.0	Vert	PK	0.0	53.1	74.0	-20.9	Ch. 78, EUT front facing down, DH5
7438.158	37.9	15.1	1.5	21.0	0.0	0.0	Horz	PK	0.0	53.0	74.0	-21.0	Ch. 78, EUT front facing down, DH5
7441.192	37.9	15.1	1.3	179.0	0.0	0.0	Vert	PK	0.0	53.0	74.0	-21.0	Ch. 78, EUT lying on side, DH5
7324.125	38.5	14.5	1.5	359.0	0.0	0.0	Vert	PK	0.0	53.0	74.0	-21.0	Ch. 39, EUT front facing down, DH5
7440.992	37.5	15.1	1.7	236.0	0.0	0.0	Horz	PK	0.0	52.6	74.0	-21.4	Ch. 78, EUT Horizontal, DH5
12010.780	34.3	-2.7	3.8	157.0	0.3	0.0	Vert	AV	0.0	31.9	54.0	-22.1	Ch. 0, EUT front facing down, DH5
12399.480	34.0	-2.4	1.5	227.0	0.3	0.0	Horz	AV	0.0	31.9	54.0	-22.1	Ch. 78, EUT lying on side, DH5
12205.890	33.7	-2.1	1.0	222.0	0.3	0.0	Horz	AV	0.0	31.9	54.0	-22.1	Ch. 39, EUT lying on side, DH5
12010.740	33.7	-2.7	1.5	318.0	0.3	0.0	Horz	AV	0.0	31.3	54.0	-22.7	Ch. 0, EUT lying on side, DH5
12204.530	31.8	-2.1	1.5	204.0	0.3	0.0	Vert	AV	0.0	30.0	54.0	-24.0	Ch. 39, EUT front facing down, DH5
4883.967	37.8	10.1	1.5	163.0	0.0	0.0	Vert	PK	0.0	47.9	74.0	-26.1	Ch. 39, EUT front facing down, DH5
4803.850	38.2	9.7	1.4	195.0	0.0	0.0	Horz	PK	0.0	47.9	74.0	-26.1	Ch. 0, EUT lying on side, DH5
4882.117	37.4	10.1	1.5	42.0	0.0	0.0	Horz	PK	0.0	47.5	74.0	-26.5	Ch. 39, EUT lying on side, DH5
19215.860	47.2	0.3	1.5	93.0	0.0	0.0	Horz	PK	0.0	47.5	74.0	-26.5	Ch. 0, EUT lying on side, DH5

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor	External Attenuation (dB)	Polarity/ Transducer	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4801.867	37.6	9.7	3.9	246.0	0.0	0.0	Vert	PK	0.0	47.3	74.0	-26.7	Ch. 0, EUT front facing down, DH5
4960.608	36.9	10.0	2.2	14.0	0.0	0.0	Horz	PK	0.0	46.9	74.0	-27.1	Ch. 78, EUT lying on side, DH5
19216.620	46.5	0.3	1.5	48.0	0.0	0.0	Vert	PK	0.0	46.8	74.0	-27.2	Ch. 0, EUT front facing down, DH5
4957.583	36.6	10.0	1.5	153.0	0.0	0.0	Vert	PK	0.0	46.6	74.0	-27.4	Ch. 78, EUT front facing down, DH5
12399.330	45.8	-2.4	4.0	140.0	0.0	0.0	Vert	PK	0.0	43.4	74.0	-30.6	Ch. 78, EUT front facing down, DH5
12399.630	44.6	-2.4	1.5	227.0	0.0	0.0	Horz	PK	0.0	42.2	74.0	-31.8	Ch. 78, EUT lying on side, DH5
12206.160	43.3	-2.1	1.0	222.0	0.0	0.0	Horz	PK	0.0	41.2	74.0	-32.8	Ch. 39, EUT lying on side, DH5
12010.730	43.1	-2.7	1.5	318.0	0.0	0.0	Horz	PK	0.0	40.4	74.0	-33.6	Ch. 0, EUT lying on side, DH5
12009.380	43.0	-2.7	3.8	157.0	0.0	0.0	Vert	PK	0.0	40.3	74.0	-33.7	Ch. 0, EUT front facing down, DH5
12205.770	41.8	-2.1	1.5	204.0	0.0	0.0	Vert	PK	0.0	39.7	74.0	-34.3	Ch. 39, EUT front facing down, DH5

CONCLUSION

Pass

Tested By

EUT:	GFD200	Work Order:	GLOW0038
Serial Number:	MB2-398	Date:	2023-01-27
Customer:	Glowforge Incorporated	Temperature:	20.5°C
Attendees:	Jason Bluhm	Relative Humidity:	41.3%
Customer Project:	None	Bar. Pressure (PMSL):	1024 mb
Tested By:	Harry Zhao	Job Site:	NC01
Power:	120VAC/60Hz	Configuration:	GLOW0038-1

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2023	ANSI C63.10:2013
RSS-247 Issue 2:2017	ANSI C63.10:2013
RSS-Gen Issue 5:2018+A1:2019+A2:2021	ANSI C63.10:2013

TEST PARAMETERS

Run #:	37	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)

COMMENTS

All measurements are noise floor; no duty cycle correction factor applied to the average measurement. See data comments for EUT orientations, channel and data rate

EUT OPERATING MODES

Transmitting BT classic. Channel 0 = 2402 MHz, Channel 39 = 2441 MHz, Channel 78 = 2480 MHz, power setting (34)

DEVIATIONS FROM TEST STANDARD

None

RESULTS - Run #37

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2484.743	29.2	1.2	1.5	36.0	3.0	20.0	Horz	AV	0.0	50.4	54.0	-3.6	Ch. 78, EUT lying on side, DH5
2483.717	29.2	1.2	1.5	286.0	3.0	20.0	Horz	AV	0.0	50.4	54.0	-3.6	Ch. 78, EUT front facing down, DH5
2483.553	29.2	1.2	1.5	306.0	3.0	20.0	Vert	AV	0.0	50.4	54.0	-3.6	Ch. 78, EUT front facing down, DH5
2484.050	29.2	1.2	1.5	328.0	3.0	20.0	Horz	AV	0.0	50.4	54.0	-3.6	Ch. 78, EUT Horizontal, DH5
2485.173	29.2	1.2	1.5	151.0	3.0	20.0	Vert	AV	0.0	50.4	54.0	-3.6	Ch. 78, EUT Horizontal, DH5
2484.733	29.2	1.2	1.5	36.0	3.0	20.0	Horz	AV	0.0	50.4	54.0	-3.6	Ch. 78, EUT lying on side, 2DH5
2484.803	29.2	1.2	1.5	36.0	3.0	20.0	Horz	AV	0.0	50.4	54.0	-3.6	Ch. 78, EUT lying on side, 3DH5
2484.153	29.1	1.2	1.5	231.0	3.0	20.0	Vert	AV	0.0	50.3	54.0	-3.7	Ch. 78, EUT lying on side, DH5
2389.223	29.0	1.0	1.5	49.0	3.0	20.0	Horz	AV	0.0	50.0	54.0	-4.0	Ch. 0, EUT lying on side, DH5
2388.407	29.0	1.0	1.5	256.0	3.0	20.0	Vert	AV	0.0	50.0	54.0	-4.0	Ch. 0, EUT lying on side, DH5
2388.183	29.0	1.0	1.5	256.0	3.0	20.0	Vert	AV	0.0	50.0	54.0	-4.0	Ch. 0, EUT lying on side, 2DH5
2388.173	29.0	1.0	1.5	256.0	3.0	20.0	Vert	AV	0.0	50.0	54.0	-4.0	Ch. 0, EUT lying on side, 3DH5
2484.363	41.3	1.2	1.5	286.0	3.0	20.0	Horz	PK	0.0	62.5	74.0	-11.5	Ch. 78, EUT front facing down, DH5
2389.960	41.0	1.0	1.5	256.0	3.0	20.0	Vert	PK	0.0	62.0	74.0	-12.0	Ch. 0, EUT lying on side, 3DH5
2483.740	40.7	1.2	1.5	36.0	3.0	20.0	Horz	PK	0.0	61.9	74.0	-12.1	Ch. 78, EUT lying on side, 2DH5
2484.953	40.6	1.2	1.5	36.0	3.0	20.0	Horz	PK	0.0	61.8	74.0	-12.2	Ch. 78, EUT lying on side, DH5
2485.273	40.5	1.2	1.5	328.0	3.0	20.0	Horz	PK	0.0	61.7	74.0	-12.3	Ch. 78, EUT Horizontal, DH5
2389.467	40.6	1.0	1.5	256.0	3.0	20.0	Vert	PK	0.0	61.6	74.0	-12.4	Ch. 0, EUT lying on side, DH5
2485.160	40.2	1.2	1.5	231.0	3.0	20.0	Vert	PK	0.0	61.4	74.0	-12.6	Ch. 78, EUT lying on side, DH5
2484.767	40.2	1.2	1.5	36.0	3.0	20.0	Horz	PK	0.0	61.4	74.0	-12.6	Ch. 78, EUT lying on side, 3DH5
2389.273	40.3	1.0	1.5	256.0	3.0	20.0	Vert	PK	0.0	61.3	74.0	-12.7	Ch. 0, EUT lying on side, 2DH5
2484.270	40.0	1.2	1.5	151.0	3.0	20.0	Vert	PK	0.0	61.2	74.0	-12.8	Ch. 78, EUT Horizontal, DH5
2485.013	39.9	1.2	1.5	306.0	3.0	20.0	Vert	PK	0.0	61.1	74.0	-12.9	Ch. 78, EUT front facing down, DH5
2389.967	39.6	1.0	1.5	49.0	3.0	20.0	Horz	PK	0.0	60.6	74.0	-13.4	Ch. 0, EUT lying on side, DH5

CONCLUSION

Pass

W

Tested By

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	S.M. Electronics	SA18H-20	REK	2022-02-15	2023-02-15
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	2023-01-19	2024-01-19
Cable	Micro-Coax	UFD150A-1-0720-200200	NCW	2023-01-18	2024-01-18
Block - DC	Weinschel Corp.	7006	AMS	2023-01-18	2024-01-18
Generator - Signal	Agilent	N5183A	TIA	2022-06-25	2024-06-25

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

If the transmit duty cycle < 98 percent, burst gating may have been used during some of the other tests in this report to only take the measurement during the burst duration.

EUT: GFD200 Work Order: GLOW0038 Date: 27-Jan-23 Temperature: 20.9 °C Humidity: 38.8% RH Serial Number: XB2-839 Customer: Glowforge Incorporated Attendees: Jason Bluhm Project: None Tested by: Harry Zhao TEST SPECIFICATIONS Barometric Pres.: 1029 mbar Power: 120VAC/60Hz Test Method Job Site: NC06 FCC 15.247:2023 ANSI C63.10:2013 RSS-247 Issue 2:2017 ANSI C63.10:2013 RSS-Gen Issue 5:2018+A1:2019+A2:2021 ANSI C63.10:2013 COMMENTS Reference offset connection between EUT and Spectrum analyzer: DC Block + 20 dB attenuator + measurement cable + patched coax cable = 22.63 dB. DEVIATIONS FROM TEST STANDARD None Configuration # 2 100 Signature Number of Value Limit Pulse Width Period Results Pulses (%) (%) DH5, GFSK Low Channel 2.878 ms 3.07 ms 93.7 N/A N/A 1 Low Channel N/A N/A 5 N/A N/A N/A N/A 2.878 ms Mid Channel 3.07 ms 93.7 N/A 1 Mid Channel N/A N/A N/A N/A N/A 5 High Channel 2.878 ms 3.07 ms 93.7 N/A N/A 1 High Channel N/A N/A 5 N/A N/A N/A 2DH5, pi/4-DQPSK Low Channel 2.889 ms 3.083 ms 93.7 N/A N/A 1 N/A 3.083 ms Low Channel N/A 5 N/A N/A N/A Mid Channel 2.889 ms 93.7 N/A N/A 1 Mid Channel N/A 5 N/A N/A N/A N/A High Channel 2.889 ms 3.083 ms 93.7 N/A N/A 1 High Channel N/A N/A 5 N/A N/A N/A 3DH5, 8-DPSK Low Channel 2.892 ms 3.087 ms 93.7 N/A N/A 1 Low Channel N/A N/A 5 N/A N/A N/A Mid Channel 2.892 ms 3.087 ms 93.7 N/A N/A 1 Mid Channel N/A N/A N/A N/A N/A 5 High Channel 2.892 ms 3.087 ms 93.7 N/A N/A 1 High Channel N/A N/A N/A 5 N/A N/A

DH5, GFSK, Low Channel											
			Number of	Value	Limit						
	Pulse Width	Period	Pulses	(%)	(%)	Results					
	N/A	N/A	5	N/A	N/A	N/A					

₩ А	gilent 14:	40:41 Ja	n 27,202	23				R 1	•			
Elemen [.] Dof 17	t Material dBm	s Technol	ogy +0+	+on 10 di	⇒							
#Peak			#HL		, 							
Log												
5												
aB∕ Nff∝+												
22.6 dB												
₩VAvg												
LI1 \$2												
S3 VS												
£ (†): FTun												
Center	2.402 00	00 GHz								S	pan 0 Hz	
Res BW	I 3 MHz_			#	VBW 3	30 kHz_		Sweep	Sweep 14.2 ms (8192 pts)			

		DH5	5, GFSK, Mid Cha	nnel		
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

₩ A	gilent 14:	47:56 Ja	n 27,202	23					RT			
Elemen [.] Ref 13	t Material dBm	s Technol	ogy #A+	ten 10 de	R							
#Peak					_							
Log												
5 dB7												
0ffst								<u></u>		<u> </u>		
22.6 dB					Í							
#VAvg												
114 00												
MI 52 S3 VS										+		
£ (f): FTun												
Center	2.441 00	00 GHz									S	oan 0 Hz
Res BW	I 3 MHz_			#	VBW	30 k	Hz		Sweep 14.2 ms (8192 pts)			

				DU		Chara							
				DH	5, GFSK, Hig Number	n Chanr of	Value		limit				
		Р	uleo Width	Period	Duleas	01	(%)		(%)		Pos	ulte	
			2.878 ms	3.07 ms	1		93.7		N/A		Nes	A/A	
🔆 👫 🗛	gilent	14:56:0	5 Jan 27,	2023				R	Т				
Element	Element Materials Technology Mkr3 3.171 ms												
Ref 13	3 dBm #Atten 10 dB -11.01 dBm												
#Peak ∣													
Log													
5													
dB/													
Offst													
22.6	1								+	3			
dВ	-								<u>}</u>	Y —			
									¥				
									ų –	1			
#VAvg													
W1 S2													
Center	2.480	0 000 G	iHz								0	òpan∣	0 Hz
Res BW	3 MH	z			#VBW 30	(Hz			Swee	p 4 i	ns (8	3192	pts)
Mark	er	Trace	Type	X	Axis		Ĥm	plitude					
		(1)	Time	1	00.6 µs		-12.	.77 dBm .07 dBm					
á l		(1)	Time	49	.970 ms .171 ms		-14.	.07 dBm .01 dBm					

		DH5	, GFSK, High Ch	annel			
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	N/A	N/A	5	N/A	N/A	N/A	

₩ A	gilent 14:	56:19 Ja	n 27,202	23					RT			
Elemen [.] Dof 12	t Material	s Technol	ogy •O•	ton 10 di	D							
негіз #Peak			#HI	ten re ut								
Log												
5												
dB/												
22.6 dB												
uр												
											ſ	
#VAvg												
14 00												
WI 52 S3 VS												
£ (f): FTun												
Center	2.480 00	00 GHz									S	oan 0 Hz
Res BW	I 3 MHz			#	ŧVBI	W 30 k	Hz		Sweep :	14.2 m:	6 (81	192 pts)_

		2DH5, p	i/4-DQPSK, Low	Channel		
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

		2DH5, p	oi/4-DQPSK, Mid	Channel		
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

2DH5, pi/4-DQPSK, High Channel									
			Number of	Value	Limit				
	Pulse Width	Period	Pulses	(%)	(%)	Results			
	N/A	N/A	5	N/A	N/A	N/A			

3DH5, 8-DPSK, Low Channel									
			Number of	Value	Limit				
	Pulse Width	Period	Pulses	(%)	(%)	Results			
	N/A	N/A	5	N/A	N/A	N/A			

		3DH5	, 8-DPSK, Mid Cl	nannel			
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	N/A	N/A	5	N/A	N/A	N/A	i

3DH5, 8-DPSK, High Channel									
			Number of	Value	Limit				
	Pulse Width	Period	Pulses	(%)	(%)	Results			
	N/A	N/A	5	N/A	N/A	N/A			

CARRIER FREQUENCY SEPARATION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIA	2022-06-25	2024-06-25
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	2023-01-19	2024-01-19
Block - DC	Weinschel Corp.	7006	AMS	2023-01-18	2024-01-18
Attenuator	S.M. Electronics	SA18H-20	REK	2022-02-15	2023-02-15
Cable	Micro-Coax	UFD150A-1-0720-200200	NCW	2023-01-18	2024-01-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The channel carrier frequencies in the 2400-2483.5MHz band must be separated by 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Or, if the output power is less than 125 mW, the channel separation can be 25 kHz or 2/3 of the 20dB bandwidth. The EUT was operated in pseudorandom hopping mode. The spectrum was scanned across two adjacent peaks. The separation between the peaks of these channels was measured.

CARRIER FREQUENCY SEPARATION

						TbtTx 2022.06.03.0	XMit 2022.02.07.
EUT:	GFD200				Work Order:	GLOW0038	
Serial Number:	XB2-839				Date:	8-Feb-23	
Customer:	Glowforge Incorporated				Temperature:	21 °C	
Attendees:	Jason Bluhm				Humidity:	34.2% RH	
Project:	None				Barometric Pres.:	1034 mbar	
Tested by:	Harry Zhao		Power:	120VAC/60Hz	Job Site:	NC06	
TEST SPECIFICAT	TIONS			Test Method			
FCC 15.247:2023				ANSI C63.10:2013			
RSS-247 Issue 2:2	017			ANSI C63.10:2013			
RSS-Gen Issue 5:2	2018+A1:2019+A2:2021			ANSI C63.10:2013			
COMMENTS							
Reference offset c	onnection between EUT a	nd Spectrum analyzer: DC Block + 2	20 dB attenu	ator + measurement cable + patch	ned coax cable = 22.63 o	dB. The largest meas	ured 20 dB
occupied bandwid	th for data rate is as follov	ved:					
DH5 = 925 kHz, 2/3	<u> 8*925 kHz = 617 kHz</u>						
DEVIATIONS FROM	M TEST STANDARD						
None							
Configuration #	2	Signature	NG				
						Limit	
					Value	(≥)	Results
DH5, GFSK							
	Mid Channel				1 MHz	617 kHz	Pass

CARRIER FREQUENCY SEPARATION

NUMBER OF HOPPING FREQUENCIES

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	NCW	2023-01-18	2024-01-18
Attenuator	S.M. Electronics	SA18H-20	REK	2022-02-15	2023-02-15
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	2023-01-19	2024-01-19
Block - DC	Weinschel Corp.	7006	AMS	2023-01-18	2024-01-18
Generator - Signal	Agilent	N5183A	TIA	2022-06-25	2024-06-25

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The number of hopping frequencies was measured across the authorized band. The hopping function of the EUT was enabled.

NUMBER OF HOPPING FREQUENCIES

-						TbtTx 2022.06.03.0	XMit 2022.02.07.0
EUT:	GFD200				Work Order:	GLOW0038	
Serial Number:	GF-225000037				Date:	8-Feb-23	
Customer:	Glowforge Incorporated				Temperature:	21.1 °C	
Attendees:	Jason Bluhm				Humidity:	34.6% RH	
Project:	None				Barometric Pres.:	1035 mbar	
Tested by:	Harry Zhao		Power:	120VAC/60Hz	Job Site:	NC0A	
TEST SPECIFICATI	IONS			Test Method			
FCC 15.247:2023				ANSI C63.10:2013			
RSS-247 Issue 2:20)17			ANSI C63.10:2013			
RSS-Gen Issue 5:2	018+A1:2019+A2:2021			ANSI C63.10:2013			
COMMENTS							
Reference offset co	onnection between EUT a	nd Spectrum analyzer: DC Block + 20	dB attenuat	or + measurement cable + patched	coax cable = 22.63 dB.		
DEVIATIONS FROM	I TEST STANDARD						
None							
Configuration #	2	Signature	N				
					Number of	Limit	
					Channels	(≥)	Results
DH5, GFSK							
	Mid Channel				79	15	Pass

NUMBER OF HOPPING FREQUENCIES

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIA	2022-06-25	2024-06-25
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	2023-01-19	2024-01-19
Block - DC	Weinschel Corp.	7006	AMS	2023-01-18	2024-01-18
Attenuator	S.M. Electronics	SA18H-20	REK	2022-02-15	2023-02-15
Cable	Micro-Coax	UFD150A-1-0720-200200	NCW	2023-01-18	2024-01-18

TEST DESCRIPTION

> The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

≻

The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The hopping function of the EUT was enabled.

The dwell time limit is based on the Number of Hopping Channels * 400 mS. For Bluetooth this would be 79 Channels * 400mS = 31.6 Sec.

≻

> On Time During 31.6 Sec = Pulse Width * Average Number of Pulses * Scale Factor

- Average Number of Pulses is based on 4 samples.
- Scale Factor = 31.6 Sec / Screen Capture Sweep Time = 31.6 Sec / 6.32 Sec = 5

۶

TbtTx 2022.06.03 XMit 2022.02.07.0 EUT: GFD200 Work Order: GLOW0038 Serial Number: XB2-839 Date: 1-Feb-23 Temperature: 21.5 °C Customer: Glowforge Incorporated Humidity: 38.1% RH Barometric Pres.: 1029 mba Attendees: Jason Bluhm Project: None Power: 120VAC/60Hz Tested by: Harry Zhao TEST SPECIFICATIONS Job Site: NC06 Test Method FCC 15.247:2023 ANSI C63.10:2013 RSS-247 Issue 2:2017 ANSI C63.10:2013 RSS-Gen Issue 5:2018+A1:2019+A2:2021 ANSI C63.10:2013 COMMENTS Reference offset connection between EUT and Spectrum analyzer: DC Block + 20 dB attenuator + measurement cable + patched coax cable = 22.63 dB. DEVIATIONS FROM TEST STANDARD None Configuration # 2 Signature Average No. of Pulses On Time (ms) During 31.6 s Pulse Width Number of Scale Limit Pulses Factor Results (ms) (ms) DH5, GFSK Mid Channel 2.895 N/A N/A N/A N/A N/A N/A N/A N/A 23 24 N/A Mid Channel Mid Channel Mid Channel N/A 33 N/A N/A N/A N/A N/A Mid Channel N/A 25 N/A N/A N/A N/A N/A Mid Channel 2.895 N/A 26.25 379.97 400 5 Pass 2DH5, pi/4-DQPSK Mid Channel Mid Channel N/A N/A N/A N/A N/A N/A 2.898 N/A N/A N/A N/A 24 N/A N/A Mid Channel N/A 20 N/A N/A N/A N/A N/A Mid Channel N/A 17 N/A N/A N/A N/A N/A N/A 16 N/A N/A N/A Mid Channel N/A N/A Mid Channel 19.25 278.93 2.898 N/A 400 Pass 5 3DH5, 8-DPSK Mid Channel 2.901 N/A N/A N/A N/A N/A N/A N/A N/A Mid Channel N/A 12 N/A N/A N/A Mid Channel N/A 14 N/A N/A N/A N/A N/A 12 13 Mid Channel N/A N/A N/A N/A N/A N/A Mid Channel N/A N/A N/A N/A N/A N/A Mid Channel 2.901 N/A 12.75 5 184.94 400 Pass

#VBW 30 kHz

Res BW 510 kHz

Sweep 6.32 s (8192 pts)

			DH	5 GESK Mid Cha	annel			
	Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit		
	(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results	
	N/A	25	N/A	N/A	N/A	N/A	N/A	
*	Agilent 12:2	2:56 Feb 1,	2023			RT		
Elem	nent Materials	Technology						
Ref	20 dBm		#Atten 10 d	B				
#Pea	ak 👘 👘							
Log								
5								
dB/								
Offs	st 🔚 🚽							
22.6) (
dB								
	I I I I I I I I I I I I I I I I I I I		i				I	
#VA	vg							
W1	S2							
\$3	VS							
£ (f)):							
FTu	n 🛛							
Con	tor 2 1/11-00	0 647					Span 0 Hz	
Cen	RU 510 LU-	0 012		#UBU 20 LU-		Sucon 61	22 o (8192 oto)	
Kes	DM JIU KHZ			*VDW JU KHZ		Sweep 6.	o <u>z s (oraz p</u> ts)_	
			DH	5, GFSK, Mid Cha	annel			
	Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit		
	(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results	
	2.895	N/A	26.25	5	379.97	400	Pass	

Calculation Only

No Screen Capture Required

#VBW 30 kHz

Center 2.441 000 GHz

Res BW 510 kHz

Span 0 Hz

Sweep 6 s (8192 pts)

	_								_	2	DH	5 pi	/4-D() PS	KI	Mid (Char	inel											
	Ρι	ulse Wi	idth		Nur	nber	of	A	ver	age	Nc), p.).		Sca	le	vii a v	On	Tin	ne (ms))		Limit							
		(ms)			Ρι	ulse	s		of I	Puls	ses		F	Fact	or		Du	ring	g 31.6 s			(ms)			R	lesu	ılts		
		N/A				16				N/A				N//	4			Ν	I/A			N/A				N//	4		
_		_				_							_	_		_	_		_	_		_	_			_	_		_
莱				, 20	23												R	Т											
Eler	ment	Mate	eria	ls T	ech	nol	ogy																						
Ref	F 21_	dBm						#f	ltt	en	10	dE	3																
#Pe	eak																												
Log	, [
د ما	,																												
dB7	4.																												
011	st [
22. dB																													
#UC	2																												
* 01	109																												
.11	\$2																												
C.2	08																												
	•°-																												
£ (f	<u>в</u> .																												
FT	un																												
																				1.1									
C	_ 	2 1 1 1		00																						~		<u>a 11</u>	
Cer	nter - DII	2.441	יש I בוו-	00	GHZ								прп	- 20	a L	<u>ц_</u>						c		- (701	pan Loo	H U	Z
Res	S DW	510	KHZ									-	VDW	38	ĴК	ΗZ						ЗW	eet) (5	(0.	192	pts	2
										2	DH	5, pi	/4-D0	QPS	K, I	Mid (Char	inel											
	P	ilse Wi	idth		Nur	nber	of	A	ver	ade	No			Sca	le		On	Tin	ne (ms))		l imit							

ZDH5, pi/4-DQF3K, Mild Charliner										
Pulse Width	Pulse Width Number of Average No. Scale On Time (ms) Limit									
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results				
2.898	N/A	19.25	5	278.93	400	Pass				

Calculation Only

No Screen Capture Required

#VBW 30 kHz

Res BW 510 kHz

Sweep 3.76 s (8192 pts)

		3DH5	, 8-DPSK, Mid C	hannel			
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit	Baculto	
N/A	13	N/A	N/A	N/A	N/A	N/A	Ì
· · · ·						<u>. </u>	
🗰 Agilent 12:4	1:39 Feb 1,	2023			RT		
Element Material	s Technology						1
Ref 21 dBm		#Atten 10 d	B				1
#Peak							
5							
dB/							
Offst							
22.6 JR							
#VAvg							
	هر کار						
W1 S2	<u>مر مما ال</u>						
S3 VS							
f(f)							
FTun							
البي بي الانتقا	ه وراد						
	ک کر پال					و روز الکار	
	ک کر چو					و زور ز وو گ	
	ک کا یا ۵						
Center 2.441 00	0 GHz					Span 0 Hz	ĺ
Res BW 510 kHz			₩VBW 30 kHz		Sweep 3.	76 s (8192 pts)	i
		3DH5	, 8-DPSK, Mid C	hannel			
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit	_	
(ms) 2 901	Pulses N/A	of Pulses 12.75	Factor 5	During 31.6 s 184.94	(ms) 400	Results Pass	

Calculation Only

No Screen Capture Required

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	S.M. Electronics	SA18H-20	REK	2022-02-15	2023-02-15
Block - DC	Weinschel Corp.	7006	AMS	2023-01-18	2024-01-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCW	2023-01-18	2024-01-18
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	2023-01-19	2024-01-19
Generator - Signal	Agilent	N5183A	TIA	2022-06-25	2024-06-25

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The peak output power was measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting in a no hop mode at the data rate(s) listed in the datasheet.

The method found in ANSI C63.10:2013 Section 7.8.5 was used for a FHSS radio.

								TbtTx 2022.06.03.0	XMit 2022.02.07.0
EUT:	GFD200						Work Order:	GLOW0038	
Serial Number:	XB2-839						Date:	27-Jan-23	
Customer:	Glowforge Incorporated						Temperature:	21.1 °C	
Attendees:	Jason Bluhm						Humidity:	38.4% RH	
Project:	None						Barometric Pres.:	1029 mbar	
Tested by:	Harry Zhao			Power:	20VAC/60Hz		Job Site:	NC06	
TEST SPECIFICAT	IONS			1	est Method				
FCC 15.247:2023				ŀ	NSI C63.10:2013				
RSS-247 Issue 2:20	017			ŀ	NSI C63.10:2013				
RSS-Gen Issue 5:2	018+A1:2019+A2:2021			F	NSI C63.10:2013				
COMMENTS									
Reference offset co	onnection between EUT a	nd Spectrum analyzer: DC	Block + 20	dB attenua	or + measurement cable	+ patched coax	cable = 22.63 dB.		
DEVIATIONS FROM	M TEST STANDARD								
DEVIATIONS FROM None	M TEST STANDARD	-							
DEVIATIONS FROM	A TEST STANDARD			100					
DEVIATIONS FROM None Configuration #	1 TEST STANDARD	Signatura		M).	and the second se				
DEVIATIONS FROM None Configuration #	A TEST STANDARD	Signature		M.			Out Pwr	Limit	
DEVIATIONS FROM None Configuration #	1 TEST STANDARD	Signature		M).			Out Pwr (dBm)	Limit (dBm)	Result
DEVIATIONS FROM None Configuration # DH5. GFSK	2	Signature		N.C.			Out Pwr (dBm)	Limit (dBm)	Result
DEVIATIONS FROM None Configuration # DH5, GFSK	2	Signature		N.C.			Out Pwr (dBm)	Limit (dBm) 21	Result Pass
DEVIATIONS FROM None Configuration # DH5, GFSK	2 Low Channel Mid Channel	Signature		N.			Out Pwr (dBm) 3.764 3.423	Limit (dBm) 21 21	Result Pass Pass
DEVIATIONS FROM None Configuration # DH5, GFSK	2 Low Channel Mid Channel High Channel	Signature		NY.			Out Pwr (dBm) 3.764 3.423 2.895	Limit (dBm) 21 21 21	Result Pass Pass Pass
DEVIATIONS FROM None Configuration # DH5, GFSK 2DH5, pi/4-DQPSK	2 Low Channel Mid Channel High Channel	Signature		M)		_	Out Pwr (dBm) 3.764 3.423 2.895	Limit (dBm) 21 21 21 21	Result Pass Pass Pass Pass
DEVIATIONS FROM None Configuration # DH5, GFSK 2DH5, pi/4-DQPSK	2 Low Channel Mid Channel High Channel Low Channel	Signature		NØ.			Out Pwr (dBm) 3.764 3.423 2.895 4.773	Limit (dBm) 21 21 21 21 21	Result Pass Pass Pass Pass
DEVIATIONS FROM None Configuration # DH5, GFSK 2DH5, pi/4-DQPSK	2 Low Channel Mid Channel High Channel Low Channel Mid Channel	Signature		1.000			Out Pwr (dBm) 3.764 3.423 2.895 4.773 4.585	Limit (dBm) 21 21 21 21 21 21 21	Result Pass Pass Pass Pass Pass
DEVIATIONS FROM None Configuration # DH5, GFSK 2DH5, pi/4-DQPSK	2 Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel	Signature		NJ)			Out Pwr (dBm) 3.764 3.423 2.895 4.773 4.585 4.118	Limit (dBm) 21 21 21 21 21 21 21 21	Result Pass Pass Pass Pass Pass Pass Pass
DEVIATIONS FROM None Configuration # DH5, GFSK 2DH5, pi/4-DQPSK 3DH5, 8-DPSK	2 Low Channel Mid Channel High Channel Low Channel Mid Channel Mid Channel High Channel	Signature		100			Out Pwr (dBm) 3.764 3.423 2.895 4.773 4.585 4.118	Limit (dBm) 21 21 21 21 21 21 21 21 21	Result Pass Pass Pass Pass Pass Pass Pass
DEVIATIONS FROM None Configuration # DH5, GFSK 2DH5, pi/4-DQPSK 3DH5, 8-DPSK	2 Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel High Channel Low Channel	Signature		100			Out Pwr (dBm) 3.764 3.423 2.895 4.773 4.585 4.118 5.35	Limit (dBm) 21 21 21 21 21 21 21 21 21	Result Pass Pass Pass Pass Pass Pass Pass
DEVIATIONS FROM None Configuration # DH5, GFSK 2DH5, pi/4-DQPSK 3DH5, 8-DPSK	2 Low Channel Mid Channel High Channel Low Channel High Channel High Channel High Channel Mid Channel Mid Channel	Signature		<i>NØ</i> .			Out Pwr (dBm) 3.764 3.423 2.895 4.773 4.585 4.118 5.35 5.08	Limit (dBm) 21 21 21 21 21 21 21 21 21 21	Result Pass Pass Pass Pass Pass Pass Pass Pas
DEVIATIONS FROM None Configuration # DH5, GFSK 2DH5, pi/4-DQPSK 3DH5, 8-DPSK	2 Low Channel Mid Channel High Channel High Channel High Channel High Channel High Channel Mid Channel High Channel High Channel	Signature		- Marine Internet			Out Pwr (dBm) 3.764 3.423 2.895 4.773 4.585 4.118 5.35 5.08 4.653	Limit (dBm) 21 21 21 21 21 21 21 21 21 21 21	Result Pass Pass Pass Pass Pass Pass Pass Pas

			3DH5	8-DPSK Hig	h Channel					
			30110,	, o bi oit, riig	Out	Pwr	Limit			
					(dE	3m)	(dBm)	Resu	lt	
					4.6	653	21	Pass	S	
*	Agilent 15:3	9:34 Jan 27	, 2023				RT			
Eler	nent Materials	s Technology					Mkr	1 2.480	062 GHz	
Ref	22.63 dBm		#Atten 10 d	В				4.	.65 dBm	
#Pe	ak 🛛 👘									
Log										
10										
dB∕	′				\$					
Offs	st 🚽						+			
22.0	6									
dB										
#VA	vg									
M1	S2									
\$3	FS									
£ (f)):									
FTu	in 🛛									
Swp										
Cen	ter 2.480.00	0 GHz						Sna	n 4 MHz	
#Re	s RW 2 MH z	0112		#VBW 6 MH	17	<	Sween 1 00	ορα δ6 ms (10	00 nts)	
-100							2000 T.OC	70 III 0 (10	00 pt3/_	

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	S.M. Electronics	SA18H-20	REK	2022-02-15	2023-02-15
Block - DC	Weinschel Corp.	7006	AMS	2023-01-18	2024-01-18
Generator - Signal	Agilent	N5183A	TIA	2022-06-25	2024-06-25
Cable	Micro-Coax	UFD150A-1-0720-200200	NCW	2023-01-18	2024-01-18
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	2023-01-19	2024-01-19

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The peak output power was measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting in a no hop mode at the data rate(s) listed in the datasheet.

The method found in ANSI C63.10:2013 Section 7.8.5 was used for a FHSS radio.

Equivalent Isotropic Radiated Power (EIRP) = Max Measured Power + Antenna gain (dBi)

									1011X 2022.06.03.0	Aiviit 2022.02.07.0
EUT:	GFD200						We	ork Order:	GLOW0038	
Serial Number:	XB2-839							Date:	27-Jan-23	
Customer:	Glowforge Incorporated						Ten	perature:	21.7 °C	
Attendees:	Jason Bluhm							Humidity:	37.5% RH	
Project:	None						Barome	tric Pres.:	1029 mbar	
Tested by:	Harry Zhao			Pow	er: 120VAC/60Hz			Job Site:	NC06	
TEST SPECIFICAT	IONS				Test Method					
FCC 15.247:2023					ANSI C63.10:20	13				
RSS-247 Issue 2:2	017				ANSI C63.10:20	13				
RSS-Gen Issue 5:2	018+A1:2019+A2:2021				ANSI C63.10:20	13				
COMMENTS										
Reference offset c	onnection between EUT ar	nd Spectrum an	nalyzer: DC Blo	ck + 20 dB atte	nuator + measuren	nent cable + patched	l coax cable = 2	2.63 dB.		
DEVIATIONS EROI										
DETIATIONOTINO	I LEOT OTANDAND									
None										
None										
None Configuration #	2			14	2-2-2-	and a state of the				
None Configuration #	2	s	Signature	Ne	2	arminad arm				
None Configuration #	2	s	Signature	NG	222	Out Pwr	Antenna	EIRP	EIRP Limit	
None Configuration #	2	ક	Signature	M	22	Out Pwr (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Result
None Configuration # DH5, GFSK	2	S	Signature	M	2	Out Pwr (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Result
Configuration #	2 Low Channel	S	Signature	M	222	Out Pwr (dBm) 3.764	Antenna Gain (dBi) 4.9	EIRP (dBm) 8.664	EIRP Limit (dBm) 27	Result Pass
Configuration # DH5, GFSK	2 Low Channel Mid Channel	S	Signature	Ŋ		Out Pwr (dBm) 3.764 3.423	Antenna Gain (dBi) 4.9 4.9	EIRP (dBm) 8.664 8.323	EIRP Limit (dBm) 27 27	Result Pass Pass
Configuration #	2 Low Channel Mid Channel High Channel	S	Signature	N	2	Out Pwr (dBm) 3.764 3.423 2.895	Antenna Gain (dBi) 4.9 4.9 4.9 4.9	EIRP (dBm) 8.664 8.323 7.795	EIRP Limit (dBm) 27 27 27 27	Result Pass Pass Pass
Configuration # DH5, GFSK 2DH5, pi/4-DQPSK	2 Low Channel Mid Channel High Channel	5	Signature	Ŋ	2	Out Pwr (dBm) 3.764 3.423 2.895	Antenna Gain (dBi) 4.9 4.9 4.9	EIRP (dBm) 8.664 8.323 7.795	EIRP Limit (dBm) 27 27 27 27	Result Pass Pass Pass
Configuration # DH5, GFSK 2DH5, pi/4-DQPSK	2 Low Channel Mid Channel High Channel Low Channel	S	Signature	Ú	2	Out Pwr (dBm) 3.764 3.423 2.895 4.773	Antenna Gain (dBi) 4.9 4.9 4.9 4.9 4.9	EIRP (dBm) 8.664 8.323 7.795 9.673	EIRP Limit (dBm) 27 27 27 27 27 27	Result Pass Pass Pass Pass
Configuration # DH5, GFSK 2DH5, pi/4-DQPSK	2 Low Channel Mid Channel High Channel Low Channel Mid Channel	S	Signature	M	202	Out Pwr (dBm) 3.764 3.423 2.895 4.773 4.585	Antenna Gain (dBi) 4.9 4.9 4.9 4.9 4.9	EIRP (dBm) 8.664 8.323 7.795 9.673 9.485	EIRP Limit (dBm) 27 27 27 27 27 27 27	Result Pass Pass Pass Pass Pass
Configuration # DH5, GFSK 2DH5, pi/4-DQPSK	2 Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel	S	Signature	Ng	2	Out Pwr (dBm) 3.764 3.423 2.895 4.773 4.585 4.118	Antenna Gain (dBi) 4.9 4.9 4.9 4.9 4.9 4.9	EIRP (dBm) 8.664 8.323 7.795 9.673 9.485 9.018	EIRP Limit (dBm) 27 27 27 27 27 27 27 27 27 27	Result Pass Pass Pass Pass Pass Pass
Configuration # DH5, GFSK 2DH5, pi/4-DQPSK 3DH5, 8-DPSK	2 Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel	5	Signature	Ŋ	2	Out Pwr (dBm) 3.764 3.423 2.895 4.773 4.585 4.118	Antenna Gain (dBi) 4.9 4.9 4.9 4.9 4.9 4.9 4.9	EIRP (dBm) 8.664 8.323 7.795 9.673 9.485 9.018	EIRP Limit (dBm) 27 27 27 27 27 27 27 27 27	Result Pass Pass Pass Pass Pass Pass Pass
Configuration # DH5, GFSK 2DH5, pi/4-DQPSK 3DH5, 8-DPSK	2 Low Channel Mid Channel High Channel Low Channel High Channel Low Channel	5	Signature	-24	2022	Out Pwr (dBm) 3.764 3.423 2.895 4.773 4.585 4.118 5.35	Antenna Gain (dBi) 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	EIRP (dBm) 8.664 8.323 7.795 9.673 9.485 9.018 10.25	EIRP Limit (dBm) 27 27 27 27 27 27 27 27 27 27	Result Pass Pass Pass Pass Pass Pass Pass
DH5, GFSK 2DH5, pi/4-DQPSK 3DH5, 8-DPSK	2 Low Channel Mid Channel High Channel Mid Channel High Channel Low Channel Mid Channel	S	Signature	-14		Out Pwr (dBm) 3.764 3.423 2.895 4.773 4.585 4.118 5.35 5.08	Antenna Gain (dBi) 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	EIRP (dBm) 8.664 8.323 7.795 9.673 9.485 9.018 10.25 9.98	EIRP Limit (dBm) 27 27 27 27 27 27 27 27 27 27 27	Result Pass Pass Pass Pass Pass Pass Pass Pas
DH5, GFSK 2DH5, pi/4-DQPSK 3DH5, 8-DPSK	2 Low Channel Mid Channel High Channel Mid Channel High Channel Mid Channel Mid Channel High Channel	5	Signature	M	2	Out Pwr (dBm) 3.764 3.423 2.895 4.773 4.585 4.118 5.35 5.08 4.653	Antenna Gain (dBi) 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	EIRP (dBm) 8.664 8.323 7.795 9.673 9.485 9.018 10.25 9.98 9.553	EIRP Limit (dBm) 27 27 27 27 27 27 27 27 27 27 27 27 27	Result Pass Pass Pass Pass Pass Pass Pass Pas

			3DH5	, 8-DPSK, High	Channel			
			Out Pwr	Antenna	EIRP	EIRP Limit		
F		1	(dBm)	Gain (dBi)	(dBm)	(dBm)	Result	
			4.653	4.9	9.553	27	Pass	
** -	Agilent 15:3	39:34 Jan 27	, 2023			K I		
Eleme	nt Materials	s Technology				Mkr1	2.480 062 (GHz
Ref 2	2.63 dBm		#Atten 10 d	IB			4.65 dl	Bm
#Peak								
Log								
10				1				
dB/				<u> </u>	·			
0ffst 22.6								
22.0 dB								-
dD								
#UOuz	.							
*01105	'							
M1 S	2							
S3 E	s – – – – –							
00 1	ĭ I							
£ (f):								
FTun								
Swp								
				+				
Conto	r 2 480 00	I0 CU→					Span 4 M	
under the terms of terms	a 2.400 00 RU 2 MU-	0 OHZ		HURLI & MU-		Swoon 1 000	ວµan 4 ກ ລັກດ (1000 ໜ	inz
#Res	<u>שמי איס</u>			#VDM O MHZ		_Sweep I.000	ט שששבו) צחר כ	.5/

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	NCW	2023-01-18	2024-01-18
Attenuator	S.M. Electronics	SA18H-20	REK	2023-03-08	2024-03-08
Block - DC	Weinschel Corp.	7006	AMS	2023-01-18	2024-01-18
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAT	2022-11-03	2023-11-03
Generator - Signal	Agilent	N5183A	TIA	2022-06-25	2024-06-25

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet in a no hop mode. The channels closest to the band edges were selected.

The spectrum was scanned below the lower band edge and above the higher band edge.

					TbtTx 2022.06.0	3.0 XMit 2023.02.14.0
EUT:	GFD200			Work Order:	GLOW0038	
Serial Number:	XB2-839			Date:	04/18/23	
Customer:	Glowforge Incorporated			Temperature:	20.9°C	
Attendees:	Jason Bluhm			Humidity:	34.7%	
Project:	None			Barometric Pres.:	1012 mbar	
Tested by:	Harry Zhao		Power: 120VAC/60Hz	Job Site:	NC06	
TEST SPECIFICAT	IONS		Test Method			
FCC 15.247:2023			ANSI C63.10:2013			
RSS-247 Issue 2:2	017		ANSI C63.10:2013			
RSS-Gen Issue 5:2	2018+A1:2019+A2:2021		ANSI C63.10:2013			
COMMENTS						
Reference offset c	onnection between EUT a	and Spectrum analyzer: DC Block + 2	20 dB attenuator + measurement	cable + patched coax cable = 22.89 d	В.	
DEVIATIONS FROM	M TEST STANDARD					
None						
Configuration #	2		1000	320		
		Signature	C/			
				Value	Limit	
				(dBc)	≤ (dBc)	Result
DH5. GFSK					x <i>i</i>	
,	Low Channel, 2402 MHz			-58.4	-20	Pass
	High Channel, 2480 MHz			-59.46	-20	Pass
2DH5, pi/4-DQPSK						
	Low Channel, 2402 MHz			-53.38	-20	Pass
	High Channel, 2480 MHz			-60.03	-20	Pass
3DH5, 8-DPSK						
	Low Channel 2402 MHz			E2 96	-20	Pass
	LOW ONATION, 2402 10112			-00.00	-20	1 400
	High Channel, 2480 MHz			-53.80	-20	Pass

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	S.M. Electronics	SA18H-20	REK	2022-02-15	2023-02-15
Generator - Signal	Agilent	N5183A	TIA	2022-06-25	2024-06-25
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	2023-01-19	2024-01-19
Block - DC	Weinschel Corp.	7006	AMS	2023-01-18	2024-01-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCW	2023-01-18	2024-01-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

_					TbtTx 2022.06.03.0	XMit 2022.02.07.0			
EUT	: GFD200			Work Order:	GLOW0038				
Serial Number	: XB2-839			Date:	1-Feb-23				
Customer	: Glowforge Incorporated			Temperature:	20.7 °C				
Attendees	: Jason Bluhm			Humidity:	39.1% RH				
Project	None			Barometric Pres.:	1030 mbar				
Tested by	: Harry Zhao		Power: 120VAC/60Hz	Job Site:	Job Site: NC06				
TEST SPECIFICAT	FIONS		Test Method						
FCC 15.247:2023			ANSI C63.10:2013						
RSS-247 Issue 2:2	2017		ANSI C63.10:2013						
RSS-Gen Issue 5:	2018+A1:2019+A2:2021		ANSI C63.10:2013						
COMMENTS									
Reference offset of	connection between EUT a	nd Spectrum analyzer: DC Block + 20	dB attenuator + measurement cable + pat	tched coax cable = 22.63 dB.					
DEVIATIONS FRO	M TEST STANDARD								
None									
Configuration #	2		10						
		Signature							
				Value	Limit				
				(dBc)	≤ (dBc)	Result			
DH5, GFSK						_			
	Low Channel			-53.94	-20	Pass			
	High Channel			-53.7	-20	Pass			
2DH5, pi/4-DQPSK				50.50		_			
	Low Channel			-53.52	-20	Pass			
	High Channel			-54.49	-20	Pass			
3DH5, 8-DPSK				55.00	00	D			
	Low Channel			-55.92	-20	Pass			
	High Channel			-54.17	-20	Pass			

#VBW 300 kHz

Center 2.483 500 GHz

#Res BW 100 kHz

Span 10 MHz

Sweep 1.066 ms (1000 pts)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	S.M. Electronics	SA18H-20	REK	2022-02-15	2023-02-15
Cable	Micro-Coax	UFD150A-1-0720-200200	NCW	2023-01-18	2024-01-18
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	2023-01-19	2024-01-19
Block - DC	Weinschel Corp.	7006	AMS	2023-01-18	2024-01-18
Generator - Signal	Agilent	N5183A	TIA	2022-06-25	2024-06-25

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet in a no-hop mode. For each transmit frequency, the fundamental was measured with a 100 kHz resolution bandwidth and the highest value was recorded. The rest of the spectrum was then measured with a 100 kHz resolution bandwidth and the highest value was found. The difference between the value found on the fundamental and the rest of the spectrum was compared against the limit to determine compliance.

The reference level offset for the fundamental screen capture was based on a measured value of the loss between the spectrum analyzer and the EUT which was verified at the time of test. The remaining screen capture(s) use an internal transducer factor on the analyzer to correct the displayed trace based on the cable loss over frequency. The reference level offset for the additional screen capture(s) is then based on the expected attenuator value and any other losses.

Fundamental Offset = Ref LvI Offset showing measured composite factor of all losses

Remaining Screen capture(s) Offset = "Internal" cable loss factor not shown on screen capture + Ref LvI Offset showing expected attenuator value and any other losses

						TbtTx 2022.06.03.0	XMit 2022.02.07.0
EUT	GFD200				Work Order:	GLOW0038	
Serial Number	XB2-839				Date:	27-Jan-23	
Customer	Glowforge Incorporated			Г	emperature:	21 °C	
Attendees	Jason Bluhm				Humidity:	38.7% RH	
Project	None			Baro	metric Pres.:	1029 mbar	
Tested by	Harry Zhao		Power: 120VAC/60Hz		Job Site:	NC06	
TEST SPECIFICAT	IONS		Test Method				
FCC 15.247:2023			ANSI C63.10:2013				
RSS-247 Issue 2:2	017		ANSI C63.10:2013				
RSS-Gen Issue 5:2	2018+A1:2019+A2:2021		ANSI C63.10:2013				
COMMENTS							
Reference offset of	onnection between EUT a	and Spectrum analyzer: DC Block + 2	0 dB attenuator + measurement cable + pa	atched coax cal	ole = 22.63 dE	3.	
DEVIATIONS FRO	M TEST STANDARD						
None							
Configuration #	2	Signature	100 - Contraction of the second secon				
		olgnataro	Frequency	Measured	Max Value	l imit	
			Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
DH5 GESK					()	- (
	Low Channel		Fundamental	2402.2	N/A	N/A	N/A
	Low Channel		30 MHz - 12.5 GHz	7205.1	-48.26	-20	Pass
	Low Channel		12.5 GHz - 25 GHz	24246.1	-50.59	-20	Pass
	Mid Channel		Fundamental	2440.87	N/A	N/A	N/A
	Mid Channel		30 MHz - 12.5 GHz	7322.3	-48.65	-20	Pass
	Mid Channel		12.5 GHz - 25 GHz	24955.7	-49.09	-20	Pass
	High Channel		Fundamental	2480.2	N/A	N/A	N/A
	High Channel		30 MHz - 12.5 GHz	7439.5	-47.76	-20	Pass
	High Channel		12.5 GHz - 25 GHz	24501	-48.48	-20	Pass
2DH5, pi/4-DQPSK							
	Low Channel		Fundamental	2402.2	N/A	N/A	N/A
	Low Channel		30 MHz - 12.5 GHz	7205.1	-48.24	-20	Pass
	Low Channel		12.5 GHz - 25 GHz	22799.4	-50.14	-20	Pass
	Mid Channel		Fundamental	2440.87	N/A	N/A	N/A
	Mid Channel		30 MHz - 12.5 GHz	7323.8	-51.09	-20	Pass
	Mid Channel		12.5 GHz - 25 GHz	23341.2	-49.82	-20	Pass
	High Channel		Fundamental	2479.87	N/A	N/A	N/A
	High Channel		30 MHz - 12.5 GHz	7441.1	-48.6	-20	Pass
	High Channel		12.5 GHz - 25 GHz	13966.5	-49.51	-20	Pass
3DH5, 8-DPSK							
	Low Channel		Fundamental	2401.87	N/A	N/A	N/A
	Low Channel		30 MHz - 12.5 GHz	7206.6	-49.64	-20	Pass
	Low Channel		12.5 GHz - 25 GHz	24189.7	-50.12	-20	Pass
	Mid Channel		Fundamental	2440.87	N/A	N/A	N/A
	Mid Channel		30 MHz - 12.5 GHz	7322.3	-49.13	-20	Pass
	Mid Channel		12.5 GHz - 25 GHz	24034	-49.39	-20	Pass
	High Channel		Fundamental	2479.87	N/A	N/A	N/A
	High Channel		30 MHz - 12.5 GHz	7439.5	-47.16	-20	Pass
	High Channel		12.5 GHz - 25 GHz	23863.1	-48.5	-20	Pass

#VBW 300 kHz

€(f): f>50k Swp

Start 2.440 500 00 GHz

#Res BW 100 kHz

Stop 2.441 500 00 GHz

Sweep 1.092 ms (8192 pts)

Ref 20 dBm #Peak

Log 10 dB/ Offst 20 dB

#VAvg

V1 S3 S2 FC

A **£**(f):

FTun

Swp

20H3, p	1/4-DQF3R, LUW	Channel		
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
12.5 GHz - 25 GHz	22799.4	-50.14	-20	Pass

Ж А	gilent 15:	07:47 Ja	n 27,202	23				RT		
Elemen	t Material	s Technol	ogy					М	kr1 22.7	99 4 GHz
Ref 20	dBm		#At	ten 10 di	В				-46	6.68 dBm
#Peak										
Log										
10										
dB/										
Offst										
20 dB										
46										
#VAvg										
V1 S2										
\$3 FC									1	
A	الد الديو	and the last of the				1		مهرين الما	al del dineral	والمروا والمراجع
£ (f):	hinter and	and a second	M. J. Strategiere			n an an the state of the state	. In a statistical statist	a da a catalan	والحديم والعالمان أأر	And the state of the
FTun	18 March 19			and the second		the second second second		110110		
Swp										
Start 1	2.500 0	GHz							top 25.00	00 0 GHzî
#Res B	W 100 kH	z		#	VBW 300	kHz		Sweep 1.	195 s (8	192 pts)_

a des tra also

المرادة أمالا وأنأ وميالا

Stop 12.500 0 GHz

Sweep 1.192 s (8192 pts)

£(f):

Tun

Start 3<mark>0.0 MH</mark>z

#Res BW 100 kHz

Swp

وربارا فتراجيا أشغر وفرادا

a ta ba ta ta ang sang di ang sang di sang di sa

usel de

#VBW 300 kHz

in the second second

#VBW 300 kHz

Start 3<mark>0.0 MH</mark>z

#Res BW 100 kHz

Stop 12.500 0 GHz

Sweep 1.192 s (8192 pts)

#VBW 300 kHz

Sweep 1.192 s (8192 pts)

#Res BW 100 kHz

				3DH5	8-DPSK Hic	h Channel					
		Frequer	псу	02.10,	Measure	d Ma	x Value	Limit			
		Range	e		Freq (MHz	z) (dBc)	≤ (dBc)	Res	sult	
		12.5 GHz - 2	25 GHz		23863.1		48.5	-20	Pa	SS	
-¥	 Agilent 15: 	:42:20 Ja	n 27, 202	23				RT			
Eler	nent Materia	ls Technol	nav					М	kr1 23.8	363 1 G	Iz
Ref	20 dBm		#Att	ten 10 di	B				_4	5.91 dB	m
#Pe	ak										
Ing											
10											
dB	/										
0ff	st										
20											
dB											
#VA	iva l										
V1	\$2										
\$3	FC									1	
e e	' C									Ŷ	
e (f)• Je Je Je Mart	haddelet fielder, s	right to graph and		and the particular	riy billing the	a state a state of the	and a state of a state of the s	A LEVEL DE LEVEL	an diana ana ang ang ang ang ang ang ang ang	- 17 da -
ET	n the state	and developing the second	أعلى بالمدر والتأكوهي	International property in	within the set	وبالأحر بالدخل كر	- Alberta and	فطليطو والمعادي وألغه			
Swr											
0.16	′										
Sta	rt 12.500 0	GHz						5	}top 25.0	00 0 <u>G</u> H	lz
#Re	s BW 100 kH	lz		#	VBW 300 k	<hz< td=""><td></td><td>Sweep 1.</td><td>.195 s (8</td><td>192 pts</td><td>5)</td></hz<>		Sweep 1.	.195 s (8	192 pts	5)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIA	2022-06-25	2024-06-25
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	2023-01-19	2024-01-19
Block - DC	Weinschel Corp.	7006	AMS	2023-01-18	2024-01-18
Attenuator	S.M. Electronics	SA18H-20	REK	2022-02-15	2023-02-15
Cable	Micro-Coax	UFD150A-1-0720-200200	NCW	2023-01-18	2024-01-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The 20 dB emissions bandwidth was measured with the EUT set to low, medium and high transmit frequencies in the band. The EUT was transmitting at the data rate(s) listed in the datasheet in a no-hop mode. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

						1 Dt I X 2022.06.03.0	XMIT 2022.02.07.0
EUT	GFD200				Work Order:	GLOW0038	
Serial Number	r: XB2-839				Date:	27-Jan-23	
Customer	r: Glowforge Incorporated				Temperature:	21.8 °C	
Attendees	: Jason Bluhm				Humidity:	37.4% RH	
Project	t: None				Barometric Pres.:	1029 mbar	
Tested by	/: Harry Zhao		Power:	120VAC/60Hz	Job Site:	NC06	
TEST SPECIFICA	TIONS			Test Method			
FCC 15.247:2023				ANSI C63.10:2013			
RSS-247 Issue 2:2	2017			ANSI C63.10:2013			
RSS-Gen Issue 5:	2018+A1:2019+A2:2021			ANSI C63.10:2013			
COMMENTS							
Reference offset	connection between EUT a	nd Spectrum analyzer: DC Block + 20 d	B attenuat	or + measurement cable + patc	hed coax cable = 22.63	dB.	
	A TEAT OT AND ADD						
DEVIATIONS FRO	DMITEST STANDARD						
None							
Configuration #	2		10				
configuration #	-	Signaturo	100-	and the second se			
		Signature				Limit	
					Value	(<)	Result
DH5. GFSK						()	
,	Low Channel				924.514 kHz	1.5 MHz	Pass
	Mid Channel				925 kHz	1.5 MHz	Pass
	High Channel				923.087 kHz	1.5 MHz	Pass
2DH5, pi/4-DQPSk	<						
	Low Channel				1.28 MHz	1.5 MHz	Pass
	Mid Channel				1.274 MHz	1.5 MHz	Pass
	High Channel				1.303 MHz	1.5 MHz	Pass
3DH5, 8-DPSK	5						
	Low Channel				1.265 MHz	1.5 MHz	Pass
	Mid Channel				1.272 MHz	1.5 MHz	Pass
	High Channel				1.275 MHz	1.5 MHz	Pass
	-						

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	S.M. Electronics	SA18H-20	REK	2022-02-15	2023-02-15
Block - DC	Weinschel Corp.	7006	AMS	2023-01-18	2024-01-18
Cable	Micro-Coax	UFD150A-1-0720-200200	NCW	2023-01-18	2024-01-18
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	2023-01-19	2024-01-19
Generator - Signal	Agilent	N5183A	TIA	2022-06-25	2024-06-25

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer." at the beginning of the test description.

When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth as defined in RSS-Gen.

The 99% occupied bandwidth was measured with the EUT configured for continuous modulated operation.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) of the spectrum analyzer was set to the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) bandwidth was set to at least 3 times the resolution bandwidth. The analyzer sweep time was set to auto to prevent video filtering or averaging. A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

						TbtTx 2022.06.03.0	XMit 2022.02.07.0
EUT	GFD200				Work Order:	GLOW0038	
Serial Number	: XB2-839				Date:	27-Jan-23	
Customer	: Glowforge Incorporated				Temperature:	21.2 °C	
Attendees	: Jason Bluhm				Humidity:	38.8% RH	
Project	None				Barometric Pres.:	1029 mbar	
Tested by	: Harry Zhao		Power: 1	20VAC/60Hz	Job Site:	NC06	
TEST SPECIFICAT	TIONS		Т	est Method			
FCC 15.247:2023			A	NSI C63.10:2013			
RSS-247 Issue 2:2	2017		A	NSI C63.10:2013			
RSS-Gen Issue 5:	2018+A1:2019+A2:2021		A	NSI C63.10:2013			
COMMENTS							
Reference offset of	connection between EUT a	and Spectrum analyzer: DC Block + 20) dB attenuat	or + measurement cable +	patched coax cable	= 22.63 dB.	
					-		
DEVIATIONS FRO	M TEST STANDARD						
None							
Configuration #	2	<i>i</i>	~ <i>10</i> ?,				
		Signature					
					No.		B <i>K</i>
					value	Limit	Result
DH5, GFSK	Lew Chennel				004.055 kl la	N1/A	NI/A
	Low Channel				831.955 KHZ	N/A	N/A
	Mid Channel				832.11 KHZ	N/A	N/A
	High Channel				827.865 kHz	N/A	N/A
2DH5, pi/4-DQPSK							
	Low Channel				1.183 MHz	N/A	N/A
	Low Channel Mid Channel				1.183 MHz 1.188 MHz	N/A N/A	N/A N/A
	Low Channel Mid Channel High Channel				1.183 MHz 1.188 MHz 1.187 MHz	N/A N/A N/A	N/A N/A N/A
3DH5, 8-DPSK	Low Channel Mid Channel High Channel				1.183 MHz 1.188 MHz 1.187 MHz	N/A N/A N/A	N/A N/A N/A
3DH5, 8-DPSK	Low Channel Mid Channel High Channel Low Channel				1.183 MHz 1.188 MHz 1.187 MHz 1.189 MHz	N/A N/A N/A	N/A N/A N/A
3DH5, 8-DPSK	Low Channel Mid Channel High Channel Low Channel Mid Channel				1.183 MHz 1.188 MHz 1.187 MHz 1.189 MHz 1.189 MHz 1.191 MHz	N/A N/A N/A N/A	N/A N/A N/A N/A
3DH5, 8-DPSK	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel		_		1.183 MHz 1.188 MHz 1.187 MHz 1.189 MHz 1.191 MHz 1.191 MHz 1.182 MHz	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A

End of Test Report