

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT INTENTIONAL RADIATOR CERTIFICATION TO FCC PART 15 SUBPART C REQUIREMENT

0F

Wireless Bluetooth headset

Model No.: GDA889K, GDA889W

Trademark: ToGo, iStore, BlueDiamond

FCC ID: 2A82XGDA889K

Report No.: E01A22090815F00101

Issue Date: October 26, 2022

Prepared for

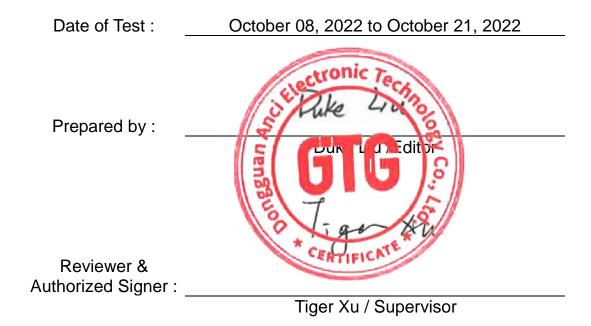
Tomauri Inc. 2750 John Street, Unit 2, Markham, Ontario, L3R 2W4, Canada

Prepared by

Dong Guan Anci Electronic Technology Co., Ltd.

1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hi-tech Industrial Development Zone, Dongguan City, Guangdong Pr., China.

This report shall not be reproduced, except in full, without the written approval of Dong Guan Anci Electronic Technology Co., Ltd.


TRF No.: 01-R001-3A-BT TRF Originator: GTG TRF Date: 2022-06-29 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

VERIFICATION OF COMPLIANCE

Applicant:	Tomauri Inc. 2750 John Street, Unit 2, Markham, Ontario, L3R 2W4, Canada					
Manufacturer:	Shenzhen Kingree Electronic Co.,Ltd Floor 3, Bohua Technology Building, Shangwei Industrial Pa Shangkeng Community, Guanhu Street, Longhua District, Shenzhe					
Product Description:	Wireless Bluetooth headset					
Trademark:	ToGo, iStore, BlueDiamond					
Model Number:	GDA889K, GDA889W					

We hereby certify that:

The above equipment was tested by Dong Guan Anci Electronic Technology Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.247(2021).

Modified Information

Version	Summary	Revision Date	Report No.
Ver.1.0	Original Report	/	E01A22090815F00101

Table of Contents

1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION	6
1.2 TEST METHODOLOGY	
1.3 TEST FACILITY	7
2. SYSTEM TEST CONFIGURATION	8
2.1 EUT CONFIGURATION	8
2.2 EUT EXERCISE	
2.3 Test Procedure	8
2.4 CONFIGURATION OF TESTED SYSTEM	9
3. SUMMARY OF TEST RESULTS	
4. DESCRIPTION OF TEST MODES	11
5. TEST SYSTEM UNCERTAINTY	
6. CONDUCTED EMISSIONS TEST	
6.1 MEASUREMENT PROCEDURE:	13
6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	13
6.3 MEASUREMENT EQUIPMENT USED:	13
6.4 MEASUREMENT RESULT:	13
6.5 CONDUCTED MEASUREMENT PHOTOS:	16
7. RADIATED EMISSION TEST	
7.1 MEASUREMENT PROCEDURE	17
7.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	19
7.3 MEASUREMENT EQUIPMENT USED:	20
7.4 RADIATED EMISSION LIMIT	
7.5 MEASUREMENT RESULT	
7.5 RADIATED MEASUREMENT PHOTOS:	
8. CHANNEL SEPARATION TEST	30
8.1 MEASUREMENT PROCEDURE	
8.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
8.3 MEASUREMENT EQUIPMENT USED:	
8.4 MEASUREMENT RESULTS:	
9. 20DB BANDWIDTH TEST	
9.1 MEASUREMENT PROCEDURE	
9.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
9.3 MEASUREMENT EQUIPMENT USED:	
9.4 MEASUREMENT RESULTS:	
10. QUANTITY OF HOPPING CHANNEL TEST	40
10.1 MEASUREMENT PROCEDURE	
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
10.3 MEASUREMENT EQUIPMENT USED:	
10.4 MEASUREMENT RESULTS:	40

11. TIME OF OCCUPANCY (DWELL TIME) TEST	41
11.1 Test Description	41
11.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
11.3 MEASUREMENT EQUIPMENT USED:	41
11.4 TEST REQUIREMENTS / LIMITS	41
11.5 TEST RESULT	42
12. MAXIMUM PEAK OUTPUT POWER TEST	44
12.1 Measurement Procedure	44
12.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	44
12.3 MEASUREMENT EQUIPMENT USED:	44
12.4 MEASUREMENT RESULTS:	45
13. BAND EDGE TEST	49
13.1 MEASUREMENT PROCEDURE	49
13.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	50
13.3 MEASUREMENT EQUIPMENT USED:	50
13.4 MEASUREMENT RESULTS:	51
14. ANTENNA PORT EMISSION	56
14.1 TEST EQUIPMENT	56
14.2 MEASURING INSTRUMENTS AND SETTING	
14.3 Test Procedures	56
14.4 BLOCK DIAGRAM OF TEST SETUP	56
14.5 Test Result	56
15. ANTENNA APPLICATION	60
15.1 ANTENNA REQUIREMENT	60
15.2 Result	60

1. GENERAL INFORMATION

1.1 Product Description

Characteristics	Description		
Product Name	Wireless Bluetooth headset		
Model number	GDA889K, GDA889W (There is no difference between the models except the appearance color. So all the test were performed on the mode GDA889K)		
Input rating	DC 5V, DC 3.7V		
Power Supply	DC 5V from Notebook computer and battery 3.7V		
Kind of Device	Bluetooth Ver. 5.1		
Modulation	GFSK, π/4-DQPSK		
Operating Frequency Range	2402-2480MHz		
Number of Channels	79		
Transmit Power Max(PK)	-4.17dBm(0.383mW)		
Antenna Type	Multilayer chip Antenna		
Antenna Gain	2.67dBi		
Sample Received Date	October 08, 2022		

1.2Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10-2013. Radiated testing was performed at an antenna to EUT distance 3 meters.

7 of 71 Report No.: E01A22090815F00101

1.3 Test Facility

Site Description

Name of Firm : Dong Guan Anci Electronic Technology Co., Ltd.

Site Location : 1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan,

Lake Hi-tech Industrial Development Zone, Dongguan City,

Guangdong Pr., China.

2. System Test Configuration

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The Tx frequency was fixed which was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode.

2.3.2 Radiated Emissions

Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of EUT was fixed in a particular direction according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013.

2.4 Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Table 2-1 Equipment Used in Tested System

Item	Equipment	Manufacturer Model No.		FCC ID	Note
1.	Wireless Bluetooth headset	N/A	GDA889K	2A82XGDA889K	EUT
2.	Notebook computer	Lenovo	WEI6 14 ITL	N/A	Support EUT

Note:

(1) Unless otherwise denoted as EUT in <code>[Remark]</code> column, device(s) used in tested system is a support equipment.

3. Summary of Test Results

FCC Rules	Description Of Test	Result
§15.207	AC Power Conducted Emission	Compliant
§15.247(d),§15.209, §15.205	Radiated Emission	Compliant
§15.247(a)(1)	Channel Separation test	Compliant
§15.247(a)(1)	20dB Bandwidth	Compliant
§15.247(a)(1)(iii)	Quantity of Hopping Channel	Compliant
§15.247(a)(1)(iii)	Time of Occupancy(Dwell Time)	Compliant
§15.247(b)	Max Peak output Power test	Compliant
§15.247(d)	Band edge test	Compliant
§15.203	Antenna Requirement	Compliant

4. Description of test modes

The EUT has been tested under its typical operating condition and fully-charged battery for EUT tested alone. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonics of the highest fundamental frequency or to 40 GHz, whichever is lower).

The EUT has been tested under TX operating condition.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting mode is programmed. EUT is connected by com port, and transimit the control instruction via test software(JL FCC Assist V2.4.exe). The test software power value is set to the maximum.

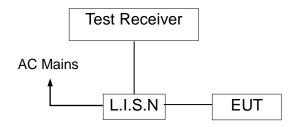
This EUT is a FHSS system, were conducted to determine the final configuration from all possible combinations. We use software control the EUT, Let EUT hopping on and transmit with highest power, all the modes GFSK, π /4-DQPSK have been tested. 79 Channels are provided by EUT. The 3 channels of lower, medium and higher were chosen for test.

Channel	Frequency(MHz)
1	2402
40	2441
79	2480

5. TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test(150KHz-30MHz)	±2.0dB
Radiated Emission Test (30MHz-1000MHz)	±2.0dB
Radiated Emission Test (1GHz-18GHz)	±2.5dB
Radiated Emission Test (18GHz-25GHz)	±3.2dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%


Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%

6. Conducted Emissions Test

6.1 Measurement Procedure:

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

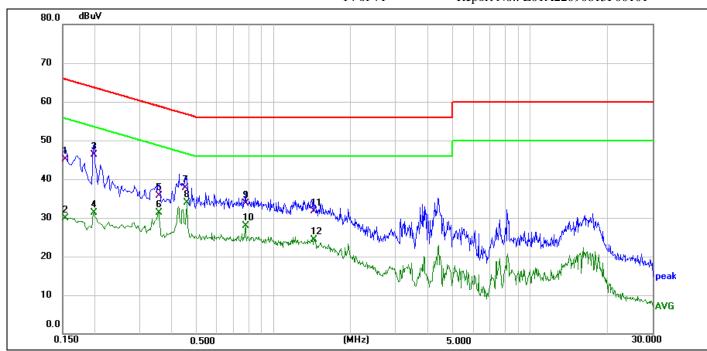
6.2 Test SET-UP (Block Diagram of Configuration)

6.3 Measurement Equipment Used:

EQUIPMENT TYPE		MFR	MODEL NUMBER	SERIAL NUMBER	Calibrated until	
6	L.I.S.N	S.N SCHWARZBECK NS		8127-669	2023-05-12	
	10 db attenuator	r JFW 50FP-010-H4 4360846-		4360846-427-1	2023-05-12	
	RF Cable	RF Cable N/A		2#	2023-05-12	
	EMI Test Receiver	ceiver ROHDE&SCHWAR Z ESCI		101358	2023-05-12	
	4 est Software	Farad	EZ-EMC (Ver.ANCI-3A1)	N/A	N/A	

Measurement Result:

Operation Mode: TX Test Date: September 27, 2022


Frequency Range: $0.15 MHz \sim 30 MHz$ Temperature: $26 ^{\circ}C$ Test Result: PASS Humidity: 54 %

Test By: Sunshine

All the modulation modes were tested the data of the worst mode (Pi/4-DQPSK TX 2402MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.

Please refer to the following data.

TRF No.: 01-R001-3A-BT Global Testing, Great Quality.

Site: 843 Phase:L1 Temperature(C):26(C)

Limit: FCC Part 15 C Conduction(QP) Humidity(%):54% EUT: Wireless Bluetooth headset Test Time: 2022/10/08 8:57:20

M/N.: GDA889K Power Rating: DC 5V From Laptop Input AC

120V/60Hz

Mode: TX2402 Test Engineer: Sunshine

Note:

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Margin (dB)	Detector	Comment
1	0.1539	35.65	9.50	45.15	65.79	-20.64	QP	
2	0.1539	20.35	9.50	29.85	55.79	-25.94	AVG	
3	0.1980	36.87	9.47	46.34	63.69	-17.35	QP	
4	0.1980	21.89	9.47	31.36	53.69	-22.33	AVG	
5	0.3540	26.09	9.52	35.61	58.87	-23.26	QP	
6	0.3540	21.82	9.52	31.34	48.87	-17.53	AVG	
7	0.4500	27.84	9.77	37.61	56.88	-19.27	QP	
8 *	0.4580	24.20	9.76	33.96	46.73	-12.77	AVG	
9	0.7780	23.91	9.71	33.62	56.00	-22.38	QP	
10	0.7780	18.15	9.71	27.86	46.00	-18.14	AVG	
11	1.4340	21.85	9.95	31.80	56.00	-24.20	QP	
12	1.4340	14.41	9.95	24.36	46.00	-21.64	AVG	
1	0.1539	35.65	9.50	45.15	65.79	-20.64	QP	
2	0.1539	20.35	9.50	29.85	55.79	-25.94	AVG	

^{*:}Maximum data x:Over limit !:over margin

Site: 843 Phase:N Temperature(C):26(C)

Limit: FCC Part 15 C Conduction(QP) **Humidity(%):54%** Wireless Bluetooth headset

EUT: **Test Time:** 2022/10/08 8:59:36 M/N.: GDA889K **Power Rating:** DC 5V From Laptop Input AC

120V/60Hz

Mode: TX2402 **Test Engineer:** Sunshine

Note:

No.	Frequency	Reading	Factor	Measure-	Limit	Margin	Detector	Comment
	(MHz)	Level(dBuV)	(dB)	ment(dBuV)	(dBuV)	(dB)		
1 *	0.1580	41.88	9.49	51.37	65.57	-14.20	QP	
2	0.1580	29.34	9.49	38.83	55.57	-16.74	AVG	
3	0.1780	32.67	9.46	42.13	64.58	-22.45	QP	
4	0.1780	19.90	9.46	29.36	54.58	-25.22	AVG	
5	0.2540	28.69	9.72	38.41	61.63	-23.22	QP	
6	0.2540	19.15	9.72	28.87	51.63	-22.76	AVG	
7	0.4540	27.73	9.76	37.49	56.80	-19.31	QP	
8	0.4540	22.43	9.76	32.19	46.80	-14.61	AVG	
9	0.7780	23.51	9.71	33.22	56.00	-22.78	QP	
10	0.7780	17.90	9.71	27.61	46.00	-18.39	AVG	
11	1.2660	21.54	9.89	31.43	56.00	-24.57	QP	
12	1.2660	13.76	9.89	23.65	46.00	-22.35	AVG	

^{*:}Maximum data x:Over limit !:over margin

6.5 Conducted Measurement Photos:

7. Radiated Emission Test

7.1 Measurement Procedure

- 1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
 - Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
 - 2) Change the antenna polarization and repeat 1) with vertical polarization.
 - 3) Make a hardcopy of the spectrum.
 - 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
 - 5) Change the analyser mode to Clear/ Write and found the cone of emission.
 - 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
 - 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
 - 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

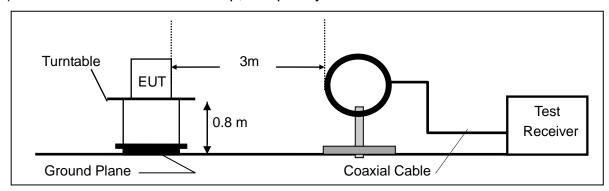
Use the following spectrum analyzer settings:

When spectrum scanned from 30MHz to 1GHz setting resolution bandwidth 120KHz

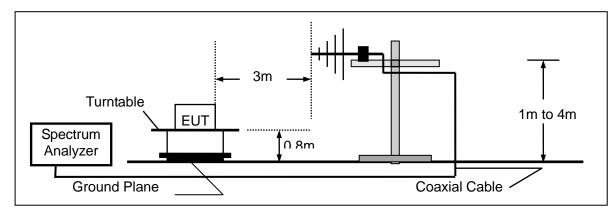
and video bandwidth 300KHz:

EMI Test Receiver	Setting
Attenuation	Auto
RB	120KHz
VB	300KHz
Detector	QP
Trace	Max hold

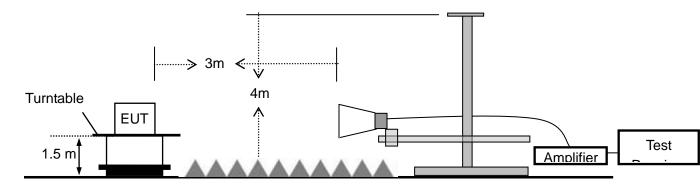
When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:


EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	3MHz
Detector	Peak
Trace	Max hold

When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 10Hz:


EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	10Hz
Detector	Average
Trace	Max hold

7.2 Test SET-UP (Block Diagram of Configuration)


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

7.3 Measurement Equipment Used:

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	Calibration interval
1.	EMI Test Receiver	Rohde & Schwarz	ESPI	100502	2022-11-12	1 year
2.	Pre-Amplifier	HP	8447D	2727A06172	2023-05-13	1 year
3.	Bilog Antenna	Schwarzbeck	VULB9163	VULB9163-588	2023-05-13	1 year
4.	Loop Antenna	Schwarzbeck	FMZB 1516	1516-141	2022-11-12	1 year
5.	Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12	1 year
6.	Low noise Amplifiers	A-INFO	LA1018N4009	J101313052400 1	2023-05-13	1 year
7.	Horn antenna	A-INFO	LB-10180-SF	J203109061212 3	2023-05-13	1 year
8.	Broadband RF Power Amplifier	AEROFLEX	AEROFLEX10 0KHz-40GHz	J101313052400 1	2022-11-12	1 year
9.	DRG Horm Antenna	A.H.SYSTEMS	SAS-574	J203109061212 3	2022-11-12	1 year
10.	RF Cable	Gigalink Microwave	ZT40-2.92J-2. 92J-2m	N/A	2022-11-12	1 year
11.	RF Cable	Gigalink Microwave	ZT40-2.92J-2. 92J-0.3m	N/A	2022-11-12	1 year
12.	RF Cable	N/A	N/A	6#	2023-05-13	1 year
13.	RF Cable	N/A	N/A	1-1#	2023-05-13	1 year
14.	RF Cable	N/A	N/A	1-2#	2023-05-13	1 year
15.	RF Cable	N/A	N/A	7#	2023-05-13	1 year
16.	3m Semi-anechoic Chamber	chengyu	9m*6m*6m	N/A	2023-05-13	3 year
17.	Test Software	Farad	EZ-EMC Ver:ANCI-3A1	N/A	N/A	N/A

20 of 71

7..4 Radiated Emission Limit

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

21 of 71

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

15.205 Restricted bands of operation

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

Remark 1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of ξ 15.205, and the emissions located in restricted bands also comply with 15.209 limit.

22 of 71 Report No.: E01A22090815F00101

7.5 Measurement Result

Test Date: Operation Mode: TX October 09, 2022

Test By: Sunshine Temperature: **26**℃ **PASS** Test Result: Humidity: 54 %

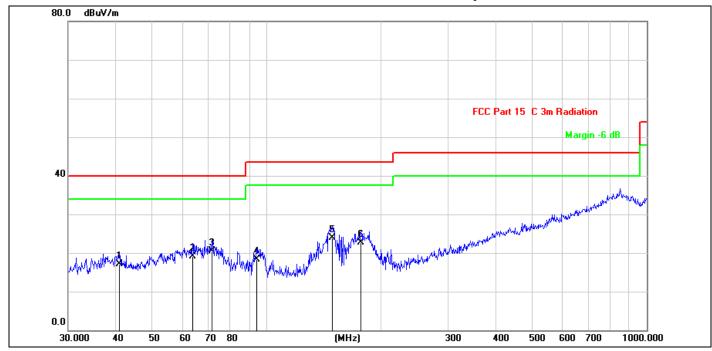
Measured Distance: 3m

Below 30MHz:

Freq.	Ant.Pol.	Emission	Limit 3m	Over
		Level		
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)

Note: The low frequency, which started from 9KHz-30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Below 1000MHz:


Pass.

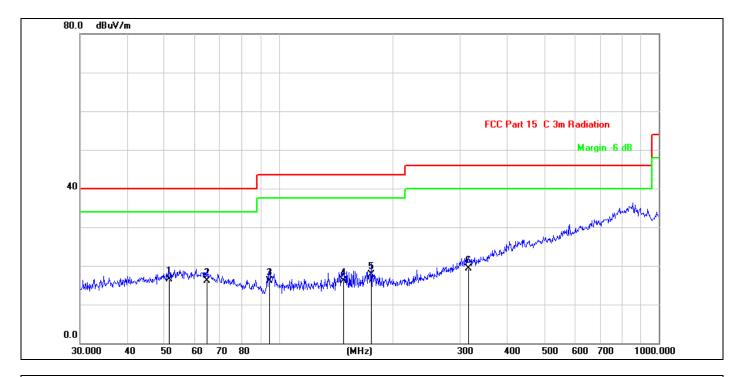
TRF No.:

01-R001-3A-BT

All the modulation modes were tested the data of the worst mode ((Pi/4-DQPSK TX 2402MHz)) are recorded in the following pages and the others modulation methods do not exceed the limits.

Please refer to the following data.

Site: LAB Antenna::Vertical Temperature(C):26(C)


Limit: FCC Part 15 C 3m Radiation(QP) Humidity(%):54% EUT: Wireless Bluetooth headset Test Time: 2022/10/08 7:15:22

M/N.: GDA889K Power Rating: DC 3.7V Mode: TX2402 Test Engineer: Sunshine

Note:

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.	Height	Azimuth	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)	
1	40.9881	27.68	-10.54	17.14	40.00	-22.86	QP			
2	63.7588	28.27	-9.07	19.20	40.00	-20.80	QP			
3	71.5806	31.27	-10.81	20.46	40.00	-19.54	QP			
4	94.0979	30.69	-12.43	18.26	43.50	-25.24	QP			
5 *	148.9625	35.26	-11.26	24.00	43.50	-19.50	QP			
6	176.8878	34.24	-11.61	22.63	43.50	-20.87	QP			

^{*:}Maximum data x:Over limit !:over margin

Site: LAB Antenna::Horizontal Temperature(C):26(C)
Limit: FCC Part 15C 3m Radiation(QP) Humidity(%):54%

EUT: Wireless Bluetooth headset Test Time: 2022/10/08 7:16:24

M/N.: GDA889K Power Rating: DC 3.7V Mode: TX2402 Test Engineer: Sunshine

Note:

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.	Height	Azimuth	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)	
1	56.7916	25.98	-9.14	16.84	40.00	-23.16	QP			
2	108.6470	26.50	-11.63	14.87	43.50	-28.63	QP			
3	175.0367	25.64	-11.24	14.40	43.50	-29.10	QP			
4	304.6099	25.83	-6.68	19.15	46.00	-26.85	QP			
5	394.8544	25.68	-3.15	22.53	46.00	-23.47	QP			
6 *	645.1195	26.41	2.22	28.63	46.00	-17.37	QP			

^{*:}Maximum data x:Over limit !:over margin

Above 1000MHz~10th Harmonics:

Please refer to the following data.

Operation Mode: GFSK (CH1: 2402MHz) Test Date: October 09, 2022

Freq.	Ant. Pol.	Rea Level(d	0	Correct Factor	1 13m(dBuV/		mission 3m(dBu)//m Margin(dB)		B)	
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4804	V	96.25	75.14	-32.3	63.95	42.84	74	54	-10.05	-11.16
7206	V	94.36	76.69	-37.25	57.11	39.44	74	54	-16.89	-14.56
9608	V	97.58	78.17	-39.8	57.78	38.37	74	54	-16.22	-15.63
12010	V	95.74	77.64	-40.5	55.24	37.14	74	54	-18.76	-16.86
14412	V	97.24	77.65	-41.7	55.54	35.95	74	54	-18.46	-18.05
16814	V	95.13	76.14	-40	55.13	36.14	74	54	-18.87	-17.86
4804	Η	95.66	74.87	-31.4	64.26	43.47	74	54	-9.74	-10.53
7206	Η	95.81	76.38	-35.5	60.31	40.88	74	54	-13.69	-13.12
9608	Η	96.14	77.25	-38.3	57.84	38.95	74	54	-16.16	-15.05
12010	Н	94.67	75.66	-39	55.67	36.66	74	54	-18.33	-17.34
14412	Н	97.36	77.68	-42	55.36	35.68	74	54	-18.64	-18.32
16814	Н	94.37	75.65	-39.3	55.07	36.35	74	54	-18.93	-17.65

Operation Mode: GFSK (CH40: 2441MHz) Test Date: October 09, 2022

(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4882	٧	96.58	75.36	-32.3	64.28	43.06	74	54	-9.72	-10.94
7323	V	98.24	78.24	-37.2	61.04	41.04	74	54	-12.96	-12.96
9764	٧	97.865	77.27	-39.6	58.26	37.67	74	54	-15.74	-16.33
12205	V	96.387	77.53	-40.5	55.88	37.03	74	54	-18.12	-16.97
14646	٧	96.57	78.04	-41	55.57	37.04	74	54	-18.43	-16.96
17087	٧	96.24	77.25	-41.1	55.14	36.15	74	54	-18.86	-17.85
4882	Τ	95.37	72.67	-31.6	63.77	41.07	74	54	-10.23	-12.93
7323	Τ	97.04	78.07	-35.7	61.34	42.37	74	54	-12.66	-11.63
9764	Ι	97.28	77.09	-38.3	58.98	38.79	74	54	-15.02	-15.21
12205	Τ	96.31	76.07	-39	57.31	37.07	74	54	-16.69	-16.93
14646	Ι	98.36	79.14	-42	56.36	37.14	74	54	-17.64	-16.86
17087	Н	96.69	77.34	-41.5	55.19	35.84	74	54	-18.81	-18.16

Operation Mode: GFSK (CH79: 2480MHz) Test Date: October 09, 2022

Freq.	Ant.	Rea	ding	Correct	Emis	sion	Liı	mit	Marg	in(dB)
'	Pol.		BuV/m)	Factor	Level(d	BuV/m)	3m(dBuV/m)			()
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4960	V	96.28	75.236	-32.3	63.98	42.936	74	54	-10.02	-11.06
7440	V	98.35	78.22	-37.2	61.15	41.02	74	54	-12.85	-12.98
9920	V	97.04	77.27	-39.6	57.44	37.67	74	54	-16.56	-16.33
12400	V	96.58	77.87	-40.7	55.88	37.17	74	54	-18.12	-16.83
14880	V	96.51	78.57	-41	55.51	37.57	74	54	-18.49	-16.43
17360	V	96.05	77.24	-41.1	54.95	36.14	74	54	-19.05	-17.86
4960	Н	95.14	72.74	-31.6	63.54	41.14	74	54	-10.46	-12.86
7440	Н	97.27	77.08	-35.7	61.57	41.38	74	54	-12.43	-12.62
9920	Н	97.41	77.17	-38.1	59.31	39.07	74	54	-14.69	-14.93
12400	Н	96.27	75.37	-39	57.27	36.37	74	54	-16.73	-17.63
14880	Н	98.35	78.28	-42	56.35	36.28	74	54	-17.65	-17.72
17360	Н	96.15	76.02	-41.5	54.65	34.52	74	54	-19.35	-19.48

Operation Mode: Pi/4-DQPSK (CH1: 2402MHz) Test Date: October 09, 2022

Freq.	Ant. Pol.	Rea Level(d	•	Correct Factor	Emis Level(d			mit BuV/m)	Over	(dB)
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4804	V	95.31	74.65	-32.3	63.01	42.35	74	54	-10.99	-11.65
7206	V	97.65	76.24	-37.2	60.45	39.04	74	54	-13.55	-14.96
9608	V	97.05	77.85	-39.8	57.25	38.05	74	54	-16.75	-15.95
12010	V	96.25	75.61	-40.5	55.75	35.11	74	54	-18.25	-18.89
14412	V	97.31	76.31	-41.7	55.61	34.61	74	54	-18.39	-19.39
16814	V	94.68	74.28	-40	54.68	34.28	74	54	-19.32	-19.72
4804	Ι	96.27	73.57	-31.6	64.67	41.97	74	54	-9.33	-12.03
7206	Ι	96.39	77.01	-35.5	60.89	41.51	74	54	-13.11	-12.49
9608	Ι	97.36	76.98	-38.3	59.06	38.68	74	54	-14.94	-15.32
12010	Ι	97.33	76.34	-39.4	57.93	36.94	74	54	-16.07	-17.06
14412	Η	98.24	75.64	-42	56.24	33.64	74	54	-17.76	-20.36
16814	Н	96.37	74.92	-39.3	57.07	35.62	74	54	-16.93	-18.38

Operation Mode: Pi/4-DQPSK (CH40: 2441MHz) Test Date: October 09, 2022

Freq.	Ant. Pol.		ding BuV/m)	Correct Factor	Emis Level(dl		3m(dBuV/m		Over(dB)	
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4882	V	96.21	75.36	-32.3	63.91	43.06	74	54	-10.09	-10.94
7323	V	98.67	77.64	-37.2	61.47	40.44	74	54	-12.53	-13.56
9764	V	97.36	78.54	-39.8	57.56	38.74	74	54	-16.44	-15.26
12205	V	97.12	76.38	-40.5	56.62	35.88	74	54	-17.38	-18.12
14646	V	98.38	77.82	-41	57.38	36.82	74	54	-16.62	-17.18
17087	V	95.78	75.24	-41.1	54.68	34.14	74	54	-19.32	-19.86
4882	Η	96.34	74.68	-31.6	64.74	43.08	74	54	-9.26	-10.92
7323	Η	96.27	77.24	-35.5	60.77	41.74	74	54	-13.23	-12.26
9764	Η	97.04	77.61	-38.3	58.74	39.31	74	54	-15.26	-14.69
12205	Н	98.37	77.02	-39	59.37	38.02	74	54	-14.63	-15.98
14646	Н	97.39	76.34	-42	55.39	34.34	74	54	-18.61	-19.66
17087	Η	98.12	74.68	-41.4	56.72	33.28	74	54	-17.28	-20.72

Pi/4-DQPSK (CH79: 2480MHz) Test Date: October 09, 2022

Operation Mode:

Freq.	Ant. Pol.		ding BuV/m)	Correct Factor	Emis Level(dl			mit BuV/m)	Ove	r(dB)
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4960	V	96.58	76.59	-32.3	64.28	44.29	74	54	-9.72	-9.71
7440	V	97.25	76.69	-37.2	60.05	39.49	74	54	-13.95	-14.51
9920	V	98.02	79.21	-39.8	58.22	39.41	74	54	-15.78	-14.59
12400	V	98.14	77.36	-40.5	57.64	36.86	74	54	-16.36	-17.14
14880	V	96.37	78.31	-41	55.37	37.31	74	54	-18.63	-16.69
17360	V	95.68	76.54	-41.1	54.58	35.44	74	54	-19.42	-18.56
4960	Η	96.57	74.61	-31.6	64.97	43.01	74	54	-9.03	-10.99
7440	Η	96.27	77.68	-35.5	60.77	42.18	74	54	-13.23	-11.82
9920	Η	97.24	77.98	-38.3	58.94	39.68	74	54	-15.06	-14.32
12400	Η	98.25	77.28	-39	59.25	38.28	74	54	-14.75	-15.72
14880	Н	98.36	77.32	-42	56.36	35.32	74	54	-17.64	-18.68
17360	Н	98.39	75.34	-41.5	56.89	33.84	74	54	-17.11	-20.16

28 of 71 Report No.: E01A22090815F00101

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.
- (4) Measuring frequencies from 1GHz to 25GHz.

7.5 Radiated Measurement Photos:

8. Channel Separation test

8.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

8.2 Test SET-UP (Block Diagram of Configuration)

8.3 Measurement Equipment Used:

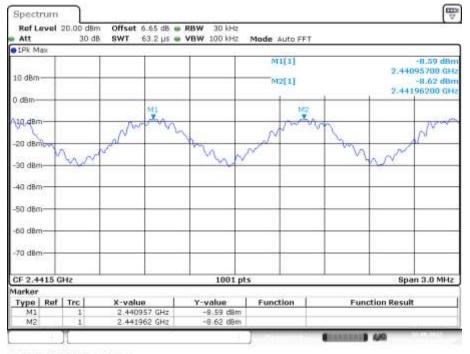
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL	Calibration interval
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12	1 year
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12	1 year
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12	1 year

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

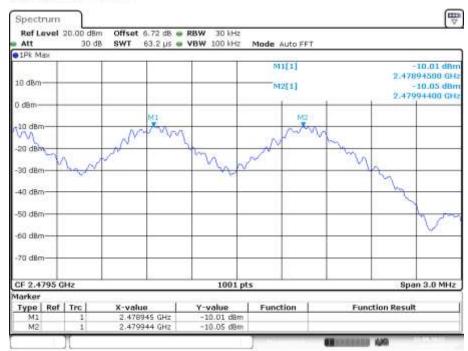
8.4 Measurement Results:

Refer to attached data chart.

31 of 71 Report No.: E01A22090815F00101


Spectrum Detector: PK Test Date : October 09, 2022

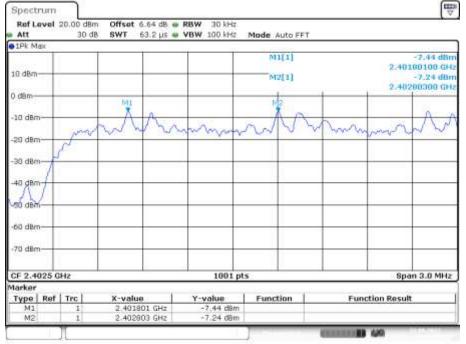
Test By: Jack Temperature : 24° C Test Result: PASS Humidity : 53° %


Modulation: GFSK

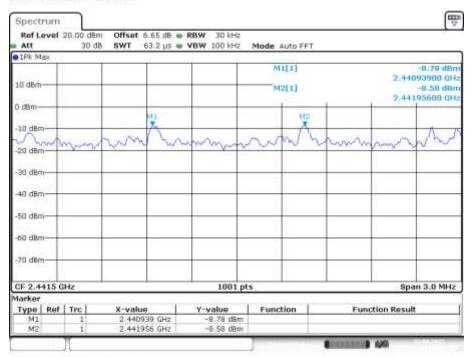
Channel number	Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit 2/3 20dB Down BW(kHz)
1	2402	1002	>635.3
40	2441	1005	>628
79	2480	999	>632.6

Date: 12.9EP.2022 14:06:43

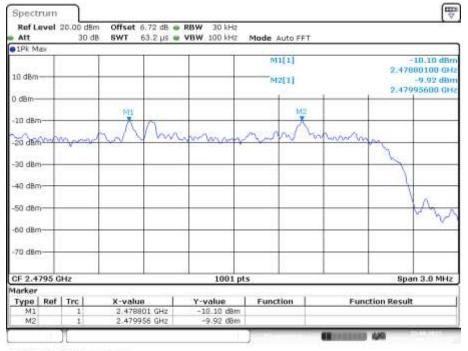
Date: 22.9EP.2022 14:07:48


33 of 71 Report No.: E01A22090815F00101

Spectrum Detector: PK Test Date: October 09, 2022


Test By: Jack Temperature : 24° C Test Result: PASS Humidity : 53° %

Modulation: $\Pi/4$ -DQPSK


Channel number	Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit 2/3 20dB Down BW(kHz)
1	2402	1002	>852
40	2441	1017	>846
79	2480	1155	>853

Date: 37.9EP.2022 14:15:04

Date: 37.9EP.2022 14:22:05

Date: 22.38F.2022 14:23:03

35 of 71 Report No.: E01A22090815F00101

9. 20dB Bandwidth test

9.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

9.2 Test SET-UP (Block Diagram of Configuration)

9.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL	Calibration interval
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12	1 year
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12	1 year
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12	1 year

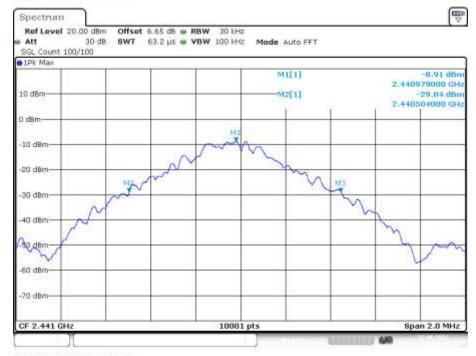
Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

9.4 Measurement Results:

Refer to attached data chart.

Spectrum Detector: PK Test Date: October 09, 2022

Test By: Jack Temperature : 24° C Test Result: PASS Humidity : 53° %

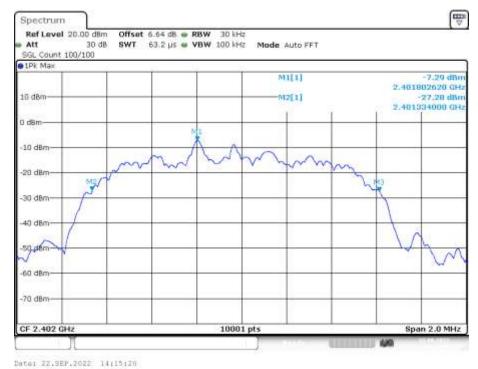

Modulation: GFSK

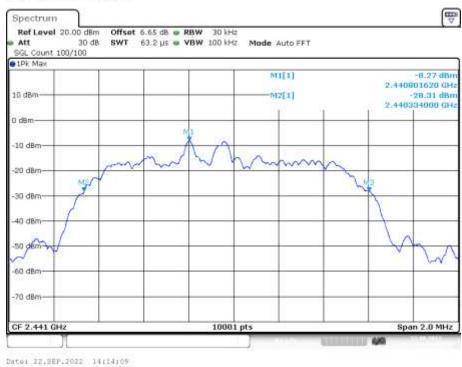
Channel number	Channel frequency (MHz)	20dB Down BW(MHz)		
1	2402	0.953		
40	2441	0.942		
79	2480	0.949		

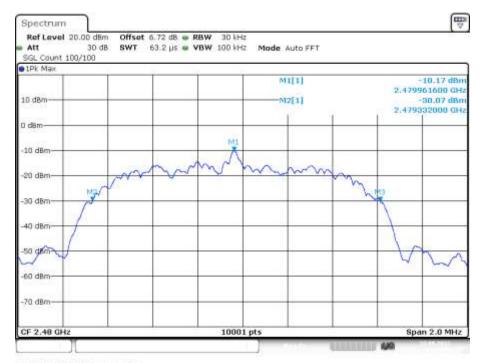
TRF No.: 01-R001-3A-BT Global Testing, Great Quality.

Date: 22.9EP.2022 13:55:43

Date: 22.9EF.2022 13:56:1)

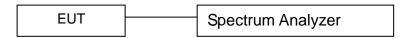

Date: 12.9EP.2022 13:55:39


Spectrum Detector: PK Test Date: October 09, 2022


Test By: Jack Temperature : 24° C Test Result: PASS Humidity : 53° %

Modulation: $\Pi/4$ -DQPSK

Channel number	Channel frequency (MHz) •	20dB Down BW(MHz)
1	2402	1.278
40	2441	1.269
79	2480	1.280



10. Quantity of Hopping Channel Test

10.1 Measurement Procedure

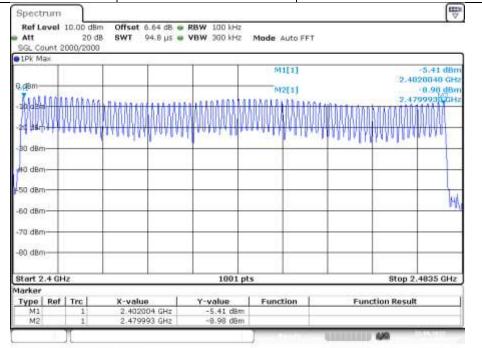
The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

10.2Test SET-UP (Block Diagram of Configuration)

10.3Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL	Calibration interval
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12	1 year
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12	1 year
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12	1 year

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.


10.4 Measurement Results:

Refer to attached data chart.

Worst Test Mode GFSK Test Date: October 09, 2022

Test By: Jack Temperature : 24 $^{\circ}$ C Test Result: PASS Humidity : 53 $^{\circ}$

Hopping Channel	Quantity of Hopping	Quantity of Hopping
Frequency Range	Channel	Channel
2402-2480	79	>15

Date: 22.9EP.2022 14:05:53

TRF No.: 01-R001-3A-BT Global Testing, Great Quality.

11. Time of Occupancy (Dwell Time) test

11.1 Test Description

The Equipment Under Test (EUT) was set up to perform the dwell time measurements. The EUT was connected to the spectrum analyzer via a short coax cable. The dwell time is calculated by:

Dwell time = time slot length * hop rate / number of hopping channels * 31.6s

with:

- hop rate = 1600 * 1/s for DH1 packets = $1600 s^{-1}$
- hop rate = 1600/3 * 1/s for DH3 packets = $533.33 s^{-1}$
- number of hopping channels = 79
- 31.6 s = 0.4 seconds multiplied by the number of hopping channels = 0.4 s * 79

The highest value of the dwell time is reported.

11.2 Test SET-UP (Block Diagram of Configuration)

EUT		Spectrum Analyzer
-----	--	-------------------

11.3 Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	CALIBRATED	Calibration interval
TYPE		NUMBER	NUMBER	UNTIL	
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12	1 year
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12	1 year
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12	1 year

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

11.4 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

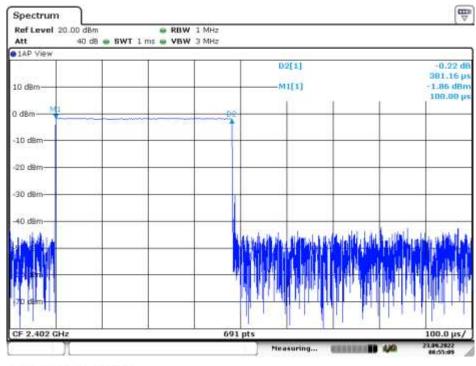
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6seconds. Refer to attached data chart.

TRF No.: 01-R001-3A-BT Global Testing, Great Quality.

42 of 71 Report No.: E01A22090815F00101

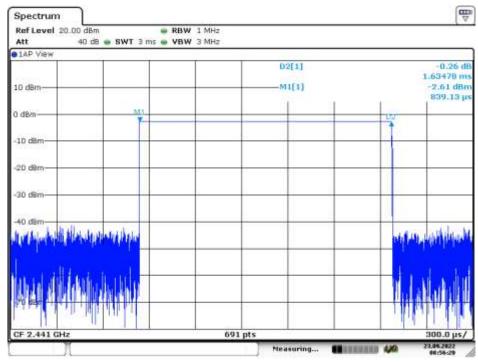
Modulation: GFSK Test Date: October 09, 2022

Test By: Jack Temperature : 24 $^{\circ}$ C Test Result: PASS Humidity : 53 $^{\circ}$

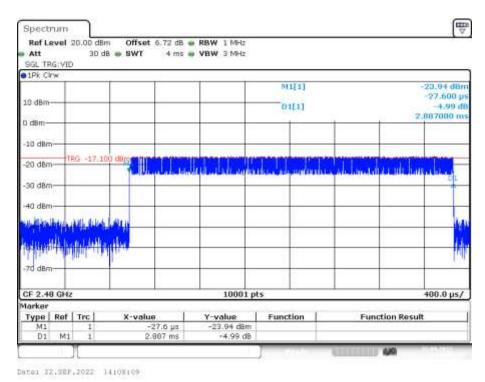

11.5 Test result

Mode	Number of transmission in a 31.6(79 Hopping*0.4)	Length of transmissions time(msec)	Result (msec)	Limit (msec)
DH1	1600/(2*79) x 31.6 = 320.00	0.38116	122	400
DH3	1600/(4*79) x 31.6 =160.00	1.63478	262	400
DH5	1600/(6*79) x 31.6 =106.67	2.887	308	400

Remark: The results of worst cased was recorded.


DH1:

TRF No.:


Date: 23.SEP,2022 08:55:09

DH3:

Date: 23.5EP.2022 08:56:20

DH5:

12. MAXIMUM PEAK OUTPUT POWER TEST

12.1 Measurement Procedure

- a. Check the calibration of the measuring instrument(SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using proper RBW and VBW setting.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

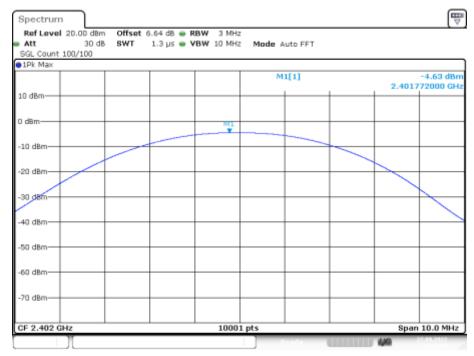
12.2 Test SET-UP (Block Diagram of Configuration)

12.3 Measurement Equipment Used:

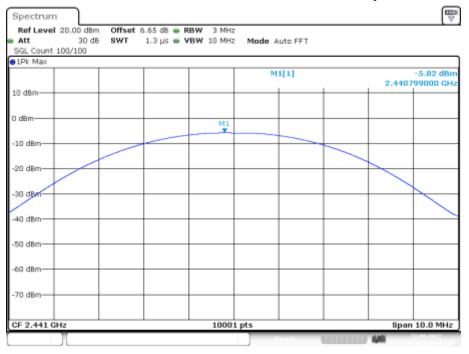
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL	Calibration interval
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12	1 year
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12	1 year
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12	1 year

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

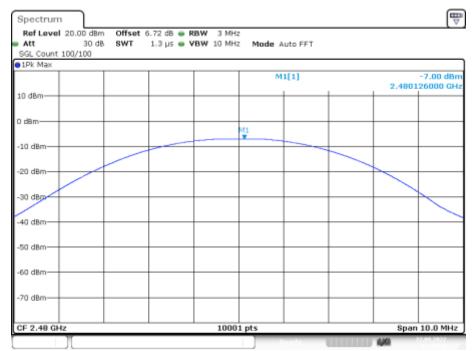
12.4Measurement Results:


Refer to attached data chart.

Spectrum Detector: PK Test Date: October 09, 2022


Test By: Jack Temperature : 24 $^{\circ}$ C Test Result: PASS Humidity : 53 $^{\circ}$

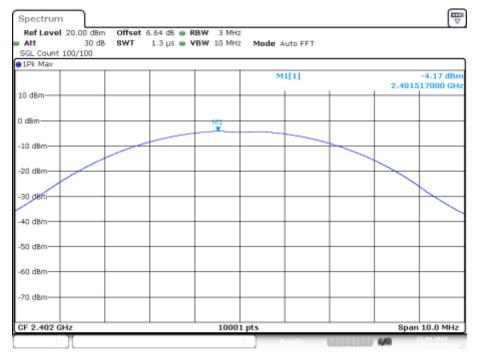
Modulation: GFSK


Channel number	Channel Frequency	Peak Power output(dBm)	Peak Power output(mW)	Peak Power Limit(mW)	PASS/Fail
01	2402	-4.63	0.344	1000	PASS
40	2441	-5.82	0.262	1000	PASS
79	2480	-7.00	0.200	1000	PASS

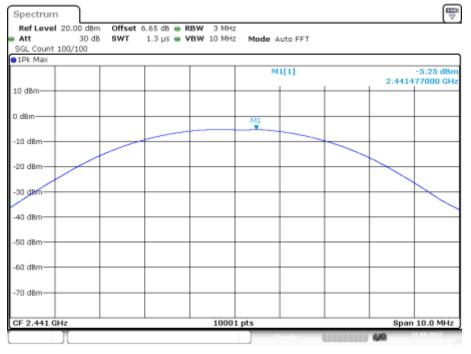
Date: 22.SEP.2022 13:55:00

Date: 22.SEP.2022 13:57:35

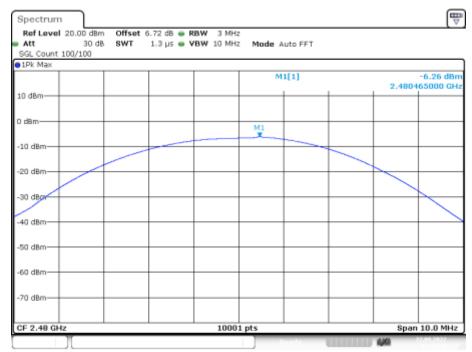
Date: 22.SEP.2022 14:00:45


47 of 71 Report No.: E01A22090815F00101

Spectrum Detector: PK Test Date : October 09, 2022


Test By: Jack Temperature : 24 $^{\circ}$ C Test Result: PASS Humidity : 53 $^{\circ}$

Modulation: $\Pi/4$ -DQPSK


Channel number	Channel Frequency	Peak Power output(dBm)	Peak Power output(mW)	Peak Power Limit(mW)	PASS/Fail
01	2402	-4.17	0.383	1000	PASS
40	2441	-5.25	0.299	1000	PASS
79	2480	-6.26	0.237	1000	PASS

Date: 22.SEP.2022 14:14:58

Date: 22.SEP.2022 14:13:32

Date: 22.SEP.2022 14:10:28

13. Band EDGE test

13.1 Measurement Procedure

For Conducted Test

- 1. The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100KHz. The video bandwidth is set to 300KHz.
- 2. The spectrum from 30MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

For Radiated emission Test

The EUT was placed on a styrofoam table which is 1.5m above ground plane.

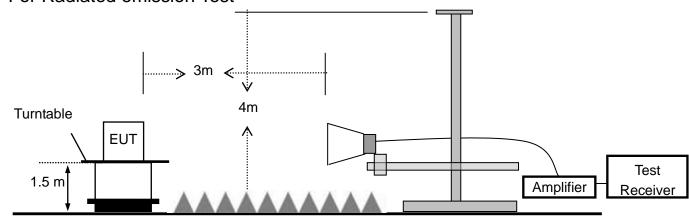
The measurement procedure at the ban edges was simplified by performing the measurement in just one plot. Both, the in-band-emission and the unwanted emission were be encompassed by the span. After trace stabilization, the maximum peak was be determined by a peak detector and the value was marked by an appropriate limit line. The second limit line, which is 20dB below the first, marks the limit for the emissions in the unrestricted band. A maximum-peak-detector marks the highest emission in the unrestricted band next to the band edge.

The measurements were performed at the lower end of the 2.4GHz band. Use the following spectrum analyzer settings:

For Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:


EMI Test Receiver	Setting
Attenuation	Auto
RBW	1MHz
VBW	3MHz
Detector	Peak
Trace	Max hold

For Non-Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 100KHz, video bandwidth 300KHz:


EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

13.2 Test SET-UP (Block Diagram of Configuration)

For Conducted Test

For Radiated emission Test

13.3 Measurement Equipment Used:

For Conducted Test

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL	Calibration interval
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12	1 year
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12	1 year
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12	1 year

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

For Radiated emission Test

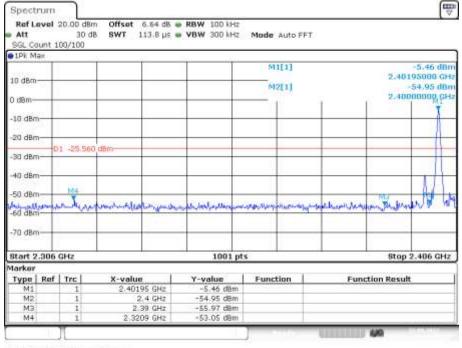
Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until	Calibratio n interval
1	Signal Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12	1 year
2	Broadband RF Power Amplifier	AEROFLEX	AEROFLEX100KHz-40G Hz	J1013130524 001	2022-11-12	1 year
3	DRG Horm Antenna	A.H.SYSTEMS	SAS-574	J2031090612 123	2022-11-12	1 year
4	RF Cable	Gigalink Microwave	ZT40-2.92J-2.92J-2m	N/A	2022-11-12	1 year
5	RF Cable	Gigalink Microwave	ZT40-2.92J-2.92J-0.3m	N/A	2022-11-12	1 year

TRF No.: 01-R001-3A-BT Global Testing, Great Quality.

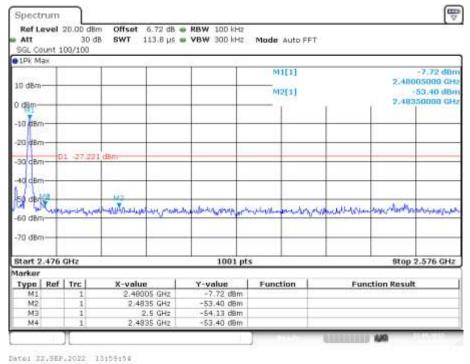
13.4 Measurement Results:

Refer to attached data chart.

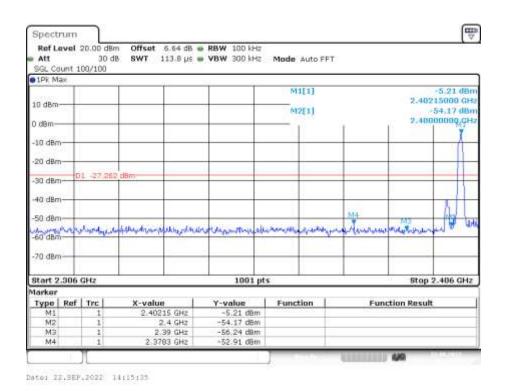
Spectrum Detector: PK Test Date: October 09, 2022

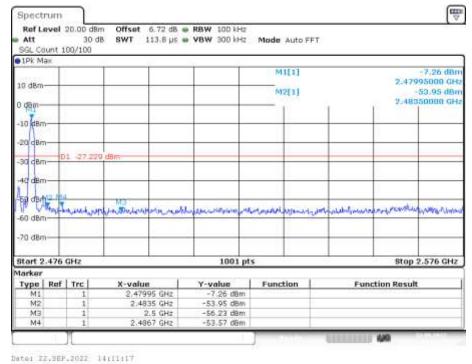

Test By: Jack Temperature : 24 $^{\circ}$ C Test Result: PASS Humidity : 53 $^{\circ}$

1. Conducted Test


For Non-Hopping Mode:

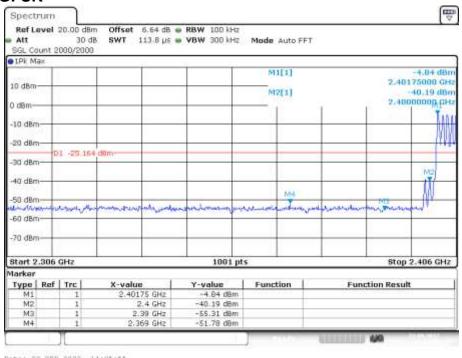
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	No-Hopping	-47.49	-20	Pass
NVNT	1-DH5	2480	Ant1	No-Hopping	-46.18	-20	Pass
NVNT	2-DH5	2402	Ant1	No-Hopping	-45.64	-20	Pass
NVNT	2-DH5	2480	Ant1	No-Hopping	-46.33	-20	Pass

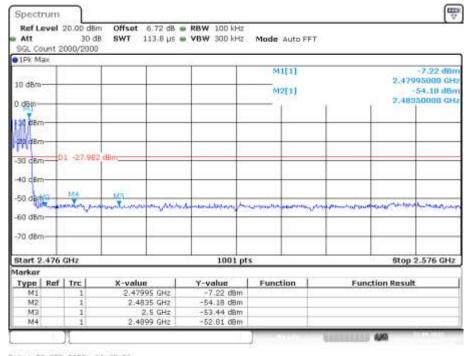

Test plots of GFSK



Date: 22.9EF.2022 13:56:00

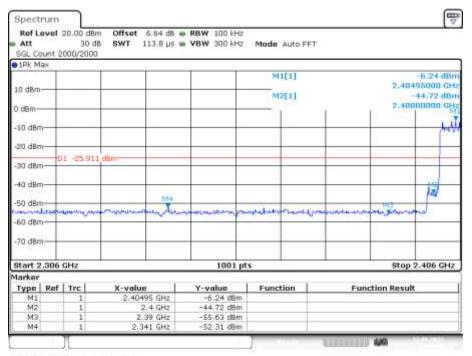
Test plots of pi/4-DQPSK




Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	Hopping	-46.61	-20	Pass
NVNT	1-DH5	2480	Ant1	Hopping	-44.83	-20	Pass
NVNT	2-DH5	2402	Ant1	Hopping	-46.4	-20	Pass
NVNT	2-DH5	2480	Ant1	Hopping	-43.38	-20	Pass

Test plots of GFSK

For Hopping Mode:



Date: 27.98F.2022 14:05:55

Date: 22.9EF.2022 14:05:23

Test plots of pi/4-DQPSK

Date: 37.98F.2022 14:21:26

Function Result

Function

Date: 22.38F.2022 14:24:29

МЗ

14. Antenna Port Emission

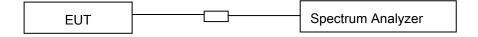
14.1Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL	Calibration interval
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12	1 year
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12	1 year
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12	1 year

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

14.2Measuring Instruments and Setting

The following table is the setting of spectrum analyzer.

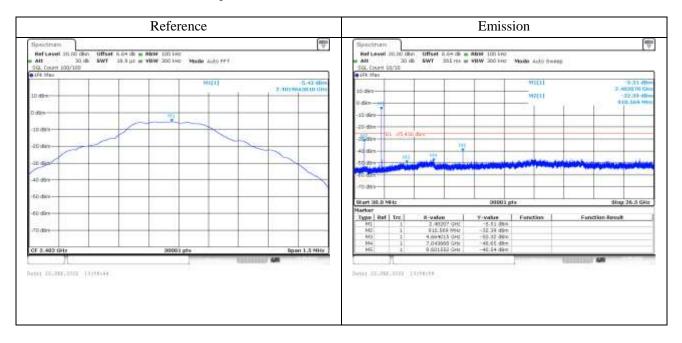

Spectrum analyzer	Setting
Attenuation	Auto
RB	100kHz
VB	300kHz
Detector	Peak
Trace	Max hold

14.3Test Procedures

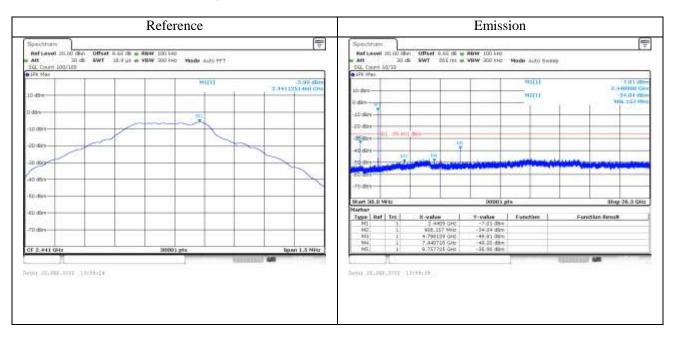
The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 15.247 Meas Guidance v05r02.

The conducted spurious emissions were measured conducted using a spectrum analyzer at low, Middle, and high channels, the limit was determined by attenuation 20dB of the RF peak power output.

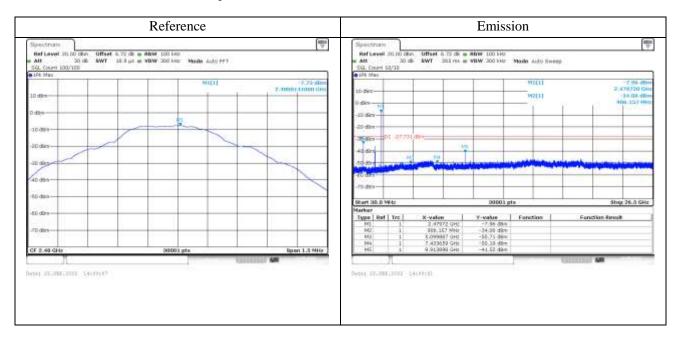
14.4Block Diagram of Test setup

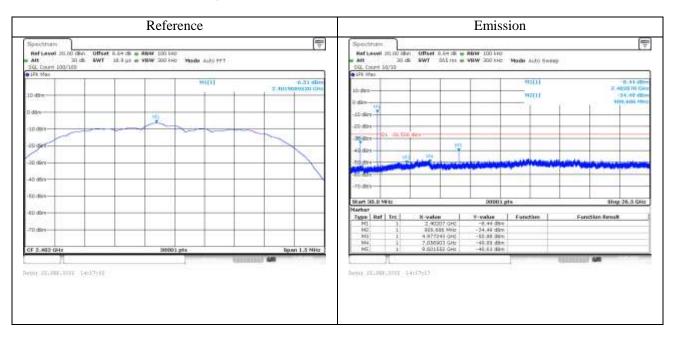


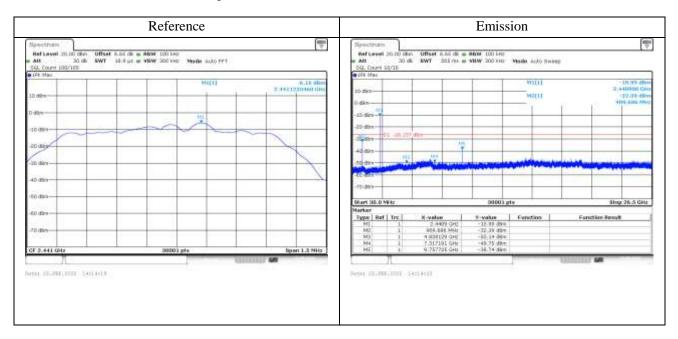
14.5Test Result

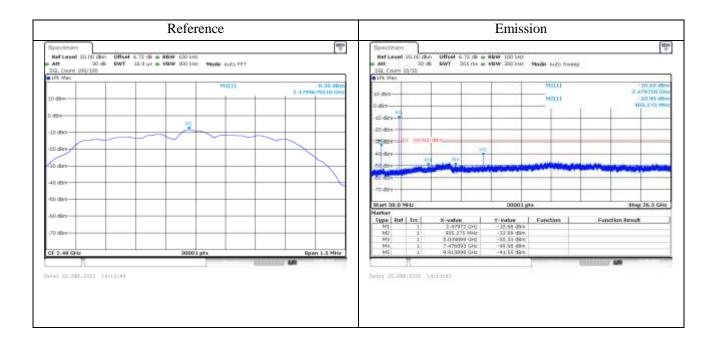

PASS.

Please refer to following pages.


Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Emission


Tx. Spurious NVNT 1-DH5 2441MHz Ant1 Emission


Tx. Spurious NVNT 1-DH5 2480MHz Ant1 Emission


Tx. Spurious NVNT 2-DH5 2402MHz Ant1 Emission

Tx. Spurious NVNT 2-DH5 2441MHz Ant1 Emission

Tx. Spurious NVNT 2-DH5 2480MHz Ant1 Emission

15. Antenna Application

15.1 Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247.

FCC part 15C section 15.247 requirements:

Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

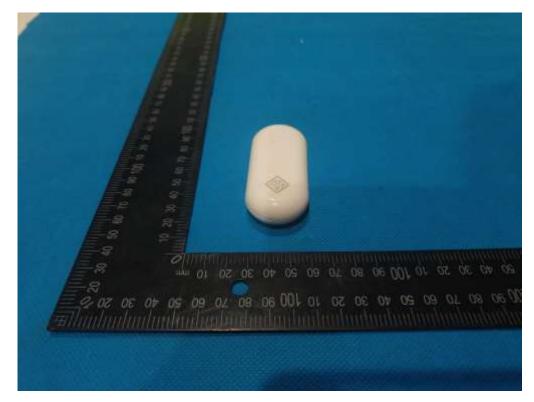
15.2 Result

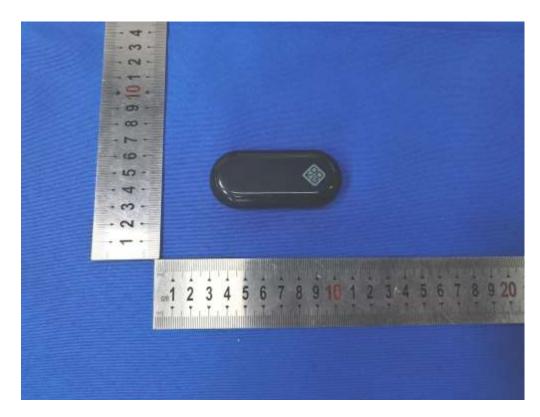
The EUT's antenna, permanent attached antenna, used a PCB antenna and integrated on PCB, The antenna's gain is -2.67 dBi and meets the requirement.

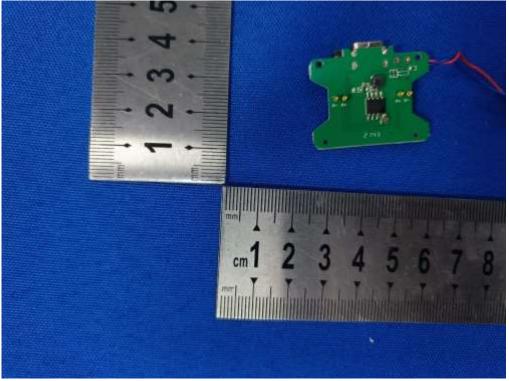
TRF No.: 01-R001-3A-BT Global Testing, Great Quality.

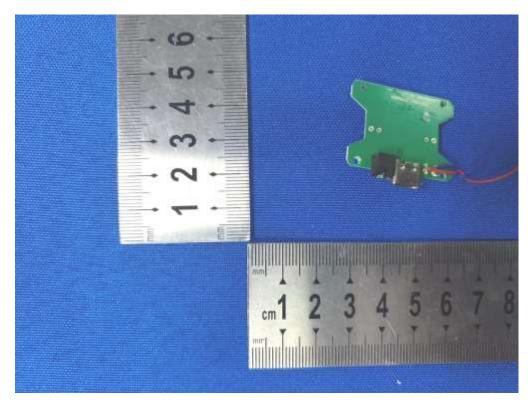
APPENDIX (Photos of EUT)

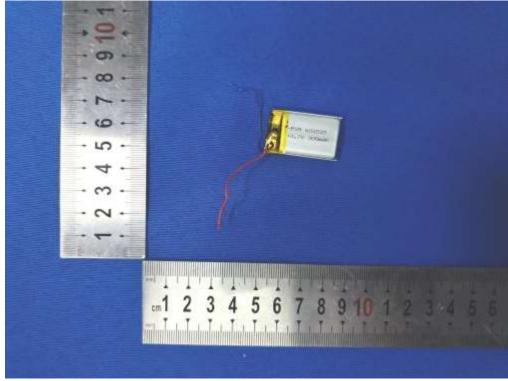
61 of 71

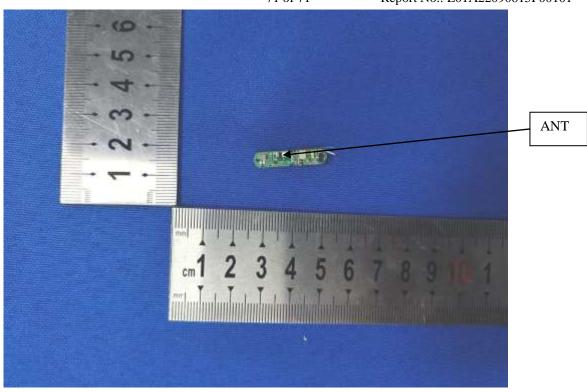


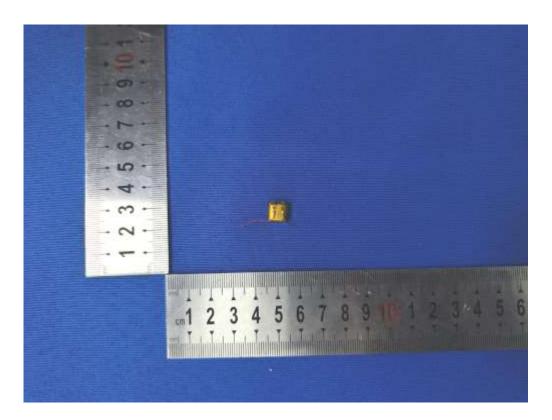












--- End of Report ---