RF TEST REPORT

For

Shenzhen LinkedSparx Technology Co., Ltd. Product Name: Smart ambient light string

Test Model(s).: LS-S200

Report Reference No. : POCE240105001RF001

FCC ID : 2A82TLS-S200

Applicant's Name : Shenzhen LinkedSparx Technology Co., Ltd.

Address : 606, 82, 4th Industrial Park, Tantou, Songgang, Bao'an District, Shenzhen

Testing Laboratory: Shenzhen POCE Technology Co., Ltd.

Address 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,

Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

Test Specification Standard : 47 CFR Part 15.247

Date of Receipt : January 5, 2024

Date of Test : January 5, 2024 to January 8, 2024

Data of Issue : January 8, 2024

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen POCE Technology Co., Ltd. This document may be altered or revised by Shenzhen POCE Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

Revision History Of Report

Version	Description	REPORT No.	Issue Date	
V1.0	Original	POCE240105001RF001	January 8, 2024	
	1			
1	~C	-00		

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:	Supervised by:	Approved by:
Sen Tang	Tomchen	Machoel Mrs
Ben Tang /Test Engineer	Tom Chen / Project Engineer	Machael Mo / Manager

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 64

CONTENTS

1 IEST SUMMARY	5
1.1 TEST STANDARDS	5 5
2 GENERAL INFORMATION	
2.1 CLIENT INFORMATION	
2.2 DESCRIPTION OF DEVICE (EUT)	6
2.3 DESCRIPTION OF TEST MODES	
2.4 DESCRIPTION OF SUPPORT UNITS	
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	10
2.7 IDENTIFICATION OF TESTING LABORATORY	
2.8 ANNOUNCEMENT	
3 EVALUATION RESULTS (EVALUATION)	
3.1 ANTENNA REQUIREMENT	
3.1.1 Conclusion:	
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	12
4.1 CONDUCTED EMISSION AT AC POWER LINE	
4.1.1 E.U.T. Operation:	
4.1.2 Test Setup Diagram:	
4.1.3 lest Data	
4.2.1 E.U.T. Operation:	
4.2.2 Test Setup Diagram:	
4.2.3 Test Data:	
4.3 MAXIMUM CONDUCTED OUTPUT POWER	
4.3.1 E.U.T. Operation:	16
4.3.2 Test Setup Diagram: 4.3.3 Test Data:	17 17
4.4 POWER SPECTRAL DENSITY	
4.4.1 E.U.T. Operation:	
4.4.2 Test Setup Diagram:	18
4.4.3 Test Data:	
4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
4.5.1 E.U.T. Operation: 4.5.2 Test Setup Diagram:	19
4.5.3 Test Data:	
4.6 BAND EDGE EMISSIONS (RADIATED)	
4.6.1 E.U.T. Operation:	
4.6.2 Test Setup Diagram:	20
4.6.3 Test Data:	
4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz)	
4.7.1 E.U.T. Operation: 4.7.2 Test Data:	26 27
4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)	
4.8.1 E.U.T. Operation:	
4.8.2 Test Data:	
5 TEST SETUP PHOTOS	34
6 PHOTOS OF THE EUT	36
APPENDIX	42

1.	-6DB BANDWIDTH	43
	DUTY CYCLE	
	PEAK OUTPUT POWER	
	POWER SPECTRAL DENSITY	
	BANDEDGE	
	Spurious Emission	

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 64

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : Shenzhen LinkedSparx Technology Co., Ltd.

Address : 606, 82, 4th Industrial Park, Tantou, Songgang, Bao'an District, Shenzhen

Manufacturer : Shenzhen LinkedSparx Technology Co., Ltd.

Address : 606, 82, 4th Industrial Park, Tantou, Songgang, Bao'an District, Shenzhen

2.2 Description of Device (EUT)

Smart ambient light string
LS-S200
,LS-50,LS-S100,LS-300,LS-400,LS-500,LS-600,LS-700,LS-800,LS-900,LS-1000,VS-50,VS-100,VS-200,VS-300,VS-400,VS-500,VS-600,VS-700,VS-800,VS-900,VS-1000
The product has many models, only the model name is different, and the other parts such as the circuit principle, pcb and electrical structure are the same
LinkedSparx、VisionSync、SooPii
DC 5V/2A from adapter
2402MHz to 2480MHz
40
GFSK
PCB
1.85 dBi
V1.0
V1.0

Remark: The Antenna Gain is supplied by the customer. POCE is not responsible for this data and the related calculations associated with it

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 6 of 64

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see

Test channel	Frequency (MHz)	1
rest channel	BLE	
Lowest channel	2402MHz	
Middle channel	2440MHz	
Highest channel	2480MHz	

2.3 Description of Test Modes

No	Title	Description
TM1	Lowest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
TM2	Middle channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
TM3	Highest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.

2.4 Description of Support Units

Title	Title Manufacturer		Serial No.
AC-DC adapter	HUAWEI TECHNOLOGY	HW100400C01	

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 Page 7 of 64 E-mail: service@dace-lab.com

2.5 Equipments Used During The Test

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
loop antenna	EVERFINE	LLA-2	80900L-C	2023-02-27	2024-02-26		
Power absorbing	SCHWARZ	MESS-	1	2023-02-28	2024-02-27		
clamp	BECK	ELEKTRONIK	/	2023-02-20	2024-02-21		
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	1		
Cable	SCHWARZ BECK	1	POO	2023-12-27	2024-12-26		
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-02-27	2024-02-26		
50ΩCoaxial Switch	Anritsu	MP59B	M20531		/		
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2023-06-13	2024-06-12		
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11		

Occupied Bandwidth	
Maximum Conducted Output Powe	r
Power Spectral Density	

Emissions in non-restricted frequency bands										
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date					
RF Test Software	TACHOY	RTS-01	V2.0.0.0	1	GI					
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	18	1					
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10					
DC power	HP	66311B	38444359	/	1					
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	1	POCK					
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12					
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08					
Signal generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08					
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11					

Band edge emissions (Radiated)

Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)

Emissions in nequenc	inissions in requercy bands (above 10112)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
EMI Test software	Farad	EZ -EMC	V1.1.42	/	1				
Positioning Controller	1	MF-7802	1	/	/				
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	1				
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04				
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04				
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04				
Cable(LF)#2	Schwarzbeck	1	1	2023-02-27	2024-02-26				
Cable(LF)#1	Schwarzbeck	1	1	2023-02-27	2024-02-26				
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2023-02-28	2024-02-27				
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	1	2023-02-27	2024-02-26				
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12				
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12				
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12				
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13				
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12				
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20				
Test Receiver	R&S	ESCI	102109	2023-06-13	2024-06-12				

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty			
Conducted Disturbance (0.15~30MHz)	±3.41dB			
Occupied Bandwidth	±3.63%			
RF conducted power	±0.733dB			
RF power density	±0.234%			
Conducted Spurious emissions	±1.98dB			
Radiated Emission (Above 1GHz)	±5.46dB			
Radiated Emission (Below 1GHz)	±5.79dB			
Note: (1) This uncertainty represents an expanded u	ncertainty expressed at approximately the 95%			

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

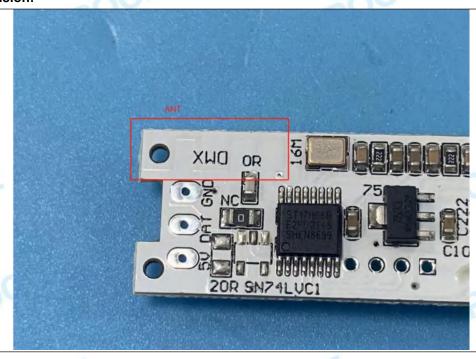
Identification of the Responsible Testing Location

<u>'</u>	•
Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 10 of 64


3 Evaluation Results (Evaluation)

3.1 Antenna requirement

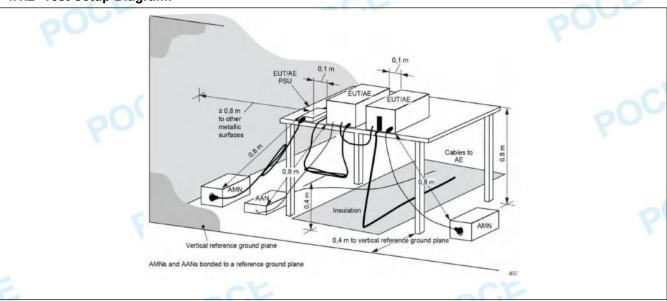
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 64

4 Radio Spectrum Matter Test Results (RF)


4.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).							
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)						
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30 60 50							
CE	*Decreases with the logarithm of the frequency.							
Test Method:	ANSI C63.10-2013 section 6.2							
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices							

4.1.1 E.U.T. Operation:

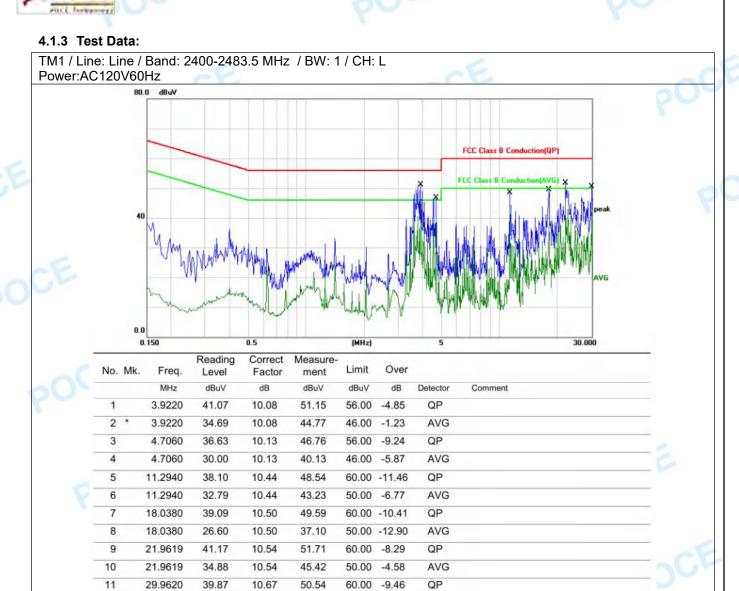
Operating Enviro	onment:			AU		000
Temperature:	23.2 °C		Humidity:	53.3 %	Atmospheric Pressure:	101 kPa
Pre test mode:		TM1				
Final test mode:		TM1				

4.1.2 Test Setup Diagram:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 12 of 64

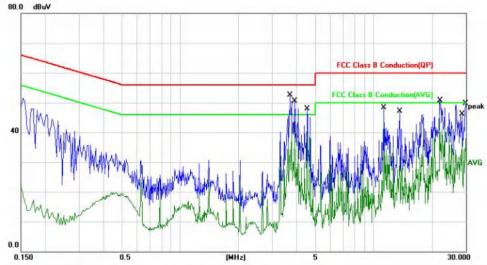
12

29.9620


31.19

10.67

41.86


50.00 -8.14

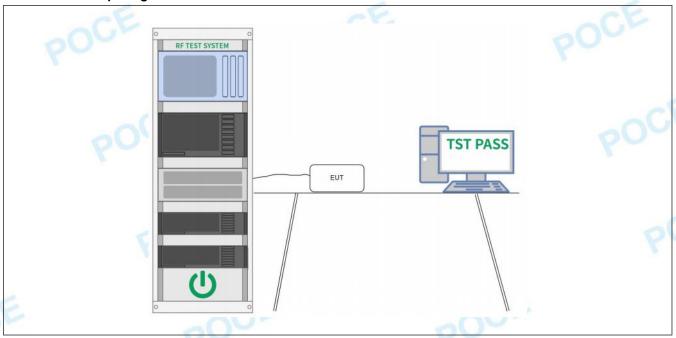
AVG

TM1 / Line: Neutral / Band: 2400-2483.5 MHz / BW: 1 / CH: L Power:AC120V60Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		3.6820	42.44	10.06	52.50	56.00	-3.50	QP	
2	*	3.9220	33.65	10.08	43.73	46.00	-2.27	AVG	
3		4.5460	37.72	10.11	47.83	56.00	-8.17	QP	
4		4.5460	30.60	10.11	40.71	46.00	-5.29	AVG	
5		11.2940	37.91	10.43	48.34	60.00	-11.66	QP	
6		11.2940	32.64	10.43	43.07	50.00	-6.93	AVG	
7		13.6460	36.72	10.44	47.16	60.00	-12.84	QP	
8		13.6460	21.27	10.44	31.71	50.00	-18.29	AVG	
9		21.9619	35.51	10.50	46.01	50.00	-3.99	AVG	
10		22.1180	40.23	10.50	50.73	60.00	-9.27	QP	
11		28.7060	27.50	10.59	38.09	50.00	-11.91	AVG	
12		29.9620	39.11	10.59	49.70	60.00	-10.30	QP	

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor, Over=Limit- Mesurement
- 4.Remark: During the test, pre-scan the 1Mbps, 2 Mbps rate, and found the 1Mbps rate which it is worse case.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 14 of 64


4.2 Occupied Bandwidth

Toot Poquiroment:	47 CED 15 247(a)(2)
Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower
	frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.2.1 E.U.T. Operation:

Operating Environment:								
Temperature:	23.2 °C		Humidity:	53.3 %	Atmospheric Pressure:	101 kPa		
Pre test mode:		TM1,	TM2, TM3	0	Y			
Final test mode:		TM1,	TM2, TM3					

4.2.2 Test Setup Diagram:

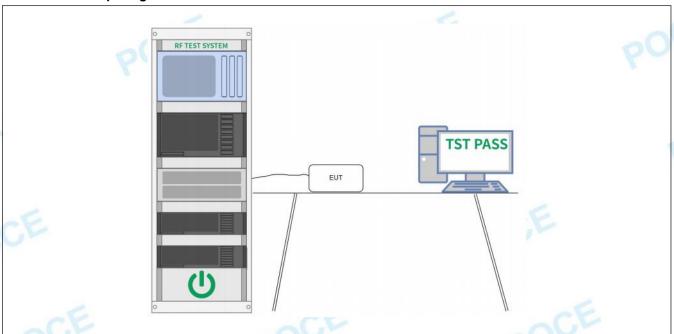
4.2.3 Test Data:

Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 15 of 64

4.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)


4.3.1 E.U.T. Operation:

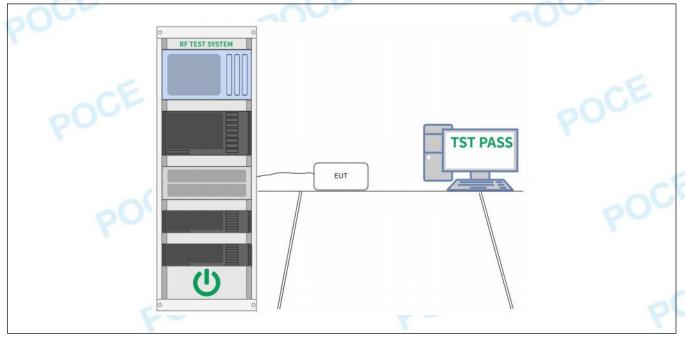
Operating Environment:								
Temperature:	23.2 °C		Humidity:	53.3 %	Atmospheric Pressure:	101 kPa		
Pre test mode:		TM1,	TM2, TM3					
Final test mode:	0	TM1,	TM2, TM3		000			

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 16 of 64

4.3.2 Test Setup Diagram:

4.3.3 Test Data:

Please Refer to Appendix for Details.


4.4 Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

4.4.1 E.U.T. Operation:

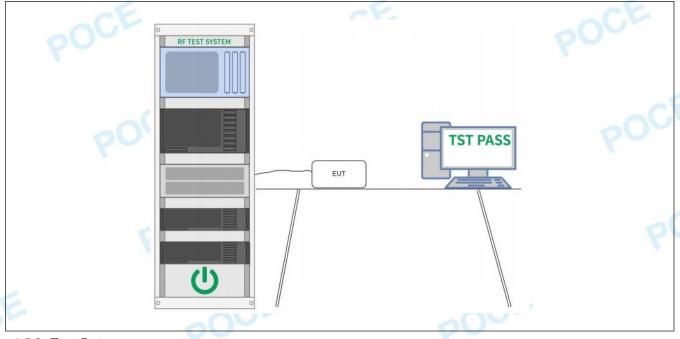
Operating Envir	onment:		-00			
Temperature:	23.2 °C		Humidity:	53.3 %	Atmospheric Pressure:	101 kPa
Pre test mode:		TM1,	TM2, TM3			
Final test mode:	•	TM1,	TM2, TM3	1000		

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 64


4.5 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.5.1 E.U.T. Operation:

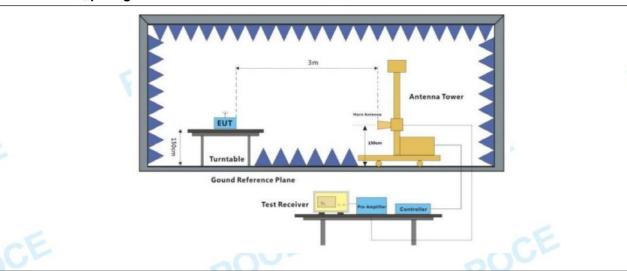
Operating Environment	onment:			SE		aE.
Temperature:	23.2 °C		Humidity:	53.3 %	Atmospheric Pressure:	101 kPa
Pre test mode:		TM1,	TM3	0	Y	
Final test mode:		TM1,	TM3			

4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 19 of 64

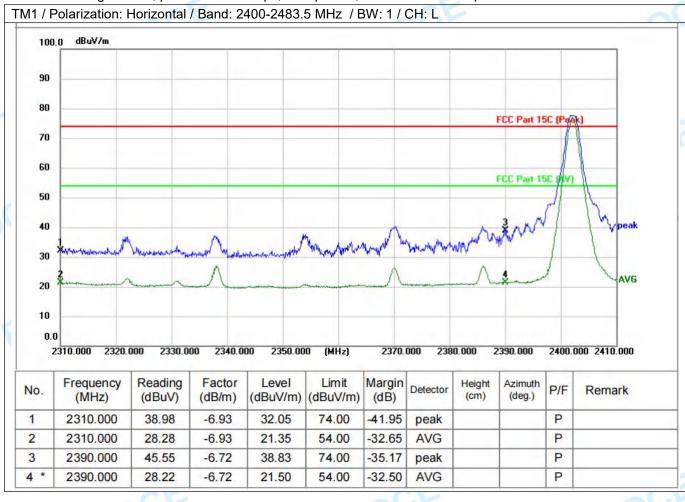

4.6 Band edge emissions (Radiated)

Test Requirement:	restricted bands, as defin	d), In addition, radiated emissions led in § 15.205(a), must also compin § 15.209(a)(see § 15.205(c)).`	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
POCE	radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands is and 15.241. In the emission table about the emission limits show employing a CISPR quast 110–490 kHz and above	paragraph (g), fundamental emission this section shall not be located in 174-216 MHz or 470-806 MHz. However, the tighter limit applies at the born in the above table are based on including the first detector except for the frequents employing an average detector.	the frequency bands wever, operation within this part, e.g., §§ 15.231 and edges. measurements uency bands 9–90 kHz, ts in these three bands
Test Method:	ANSI C63.10-2013 section	on 6.10	
	KDB 558074 D01 15.247		aE.
Procedure:	ANSI C63.10-2013 section	on 6.10.5.2	2000

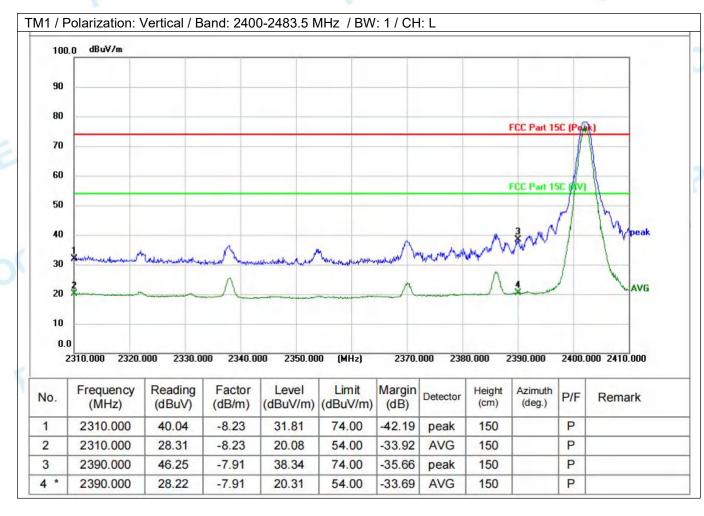
4.6.1 E.U.T. Operation:

Operating Envir	onment:						
Temperature:	23.2 °C		Humidity:	53.3 %	Atmospheric Pressure:	101 kPa	
Pre test mode:		TM1,	TM3		-CE		-C
Final test mode:	0	TM1,	TM3		200		200

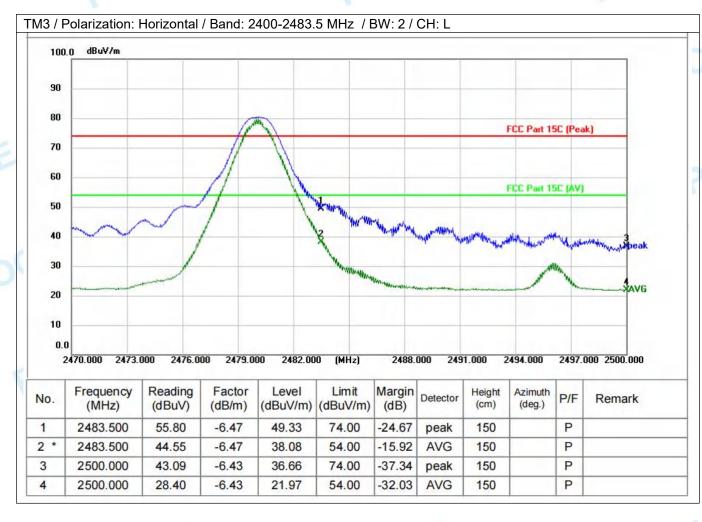
4.6.2 Test Setup Diagram:

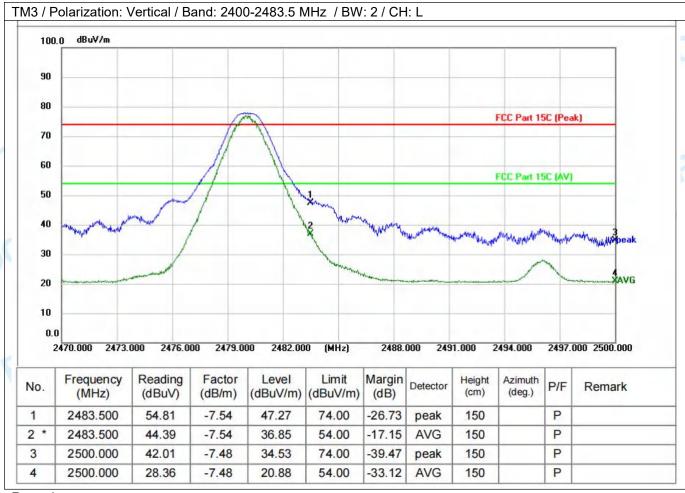


H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 20 of 64



4.6.3 Test Data:


Remark: During the test, pre-scan the 1Mbps, 2 Mbps rate, and found the 1Mbps rate which it is worse case.



Remark:

- 1.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 2.Mesurement Level = Reading level + Correct Factor, Over=Limit- Mesurement Correction Factor = Antenna Factor + Cable loss - Pre-amplifier

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 24 of 64

4.7 Emissions in frequency bands (below 1GHz)

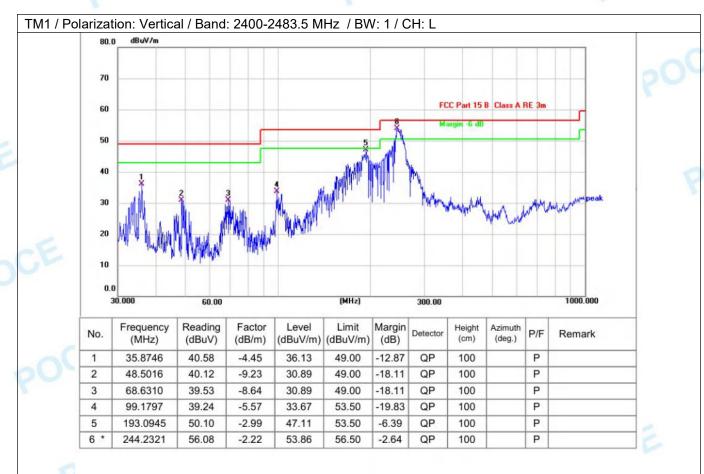
Test Requirement:	Pofor to 47 CED 15 24	7(d) In addition, radiated emission	as which fall in the
rost requirement.		7(d), In addition, radiated emissior fined in § 15.205(a), must also cor	
20		d in § 15.209(a)(see § 15.205(c)).	
Test Limit:	Frequency (MHz)	Field strength	Measurement
root Emma	Troqueriey (Wir 12)	(microvolts/meter)	distance
		(merevene, meter)	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
		<u> </u>	
		n paragraph (g), fundamental emis	
		ler this section shall not be located	
		z, 174-216 MHz or 470-806 MHz. I	
	and 15.241.	is permitted under other sections	or this part, e.g., 99 15.231
		have the tighter limit applies at the	hand addag
		bove, the tighter limit applies at the own in the above table are based o	
		asi-peak detector except for the fr	
		re 1000 MHz. Radiated emission li	
		ments employing an average dete	
T. A. M. Alexad			Ctor.
Test Method:	ANSI C63.10-2013 sec		
	KDB 558074 D01 15.24	47 Meas Guidance v05r02	
Procedure:	a. For below 1GHz. the	EUT was placed on the top of a r	otating table 0.8 meters
200		3 or 10 meter semi-anechoic chan	
		ine the position of the highest radi	
		EUT was placed on the top of a r	
		3 meter fully-anechoic chamber. T	
		he position of the highest radiation	
		or 10 meters away from the interfe	
200			
		the top of a variable-height anten	na tower.
		the top of a variable-height anten	
		is varied from one meter to four m	eters above the ground to
	determine the maximur	is varied from one meter to four more value of the field strength. Both	eters above the ground to horizontal and vertical
	determine the maximum polarizations of the anti-	is varied from one meter to four more walue of the field strength. Both enna are set to make the measure	eters above the ground to horizontal and vertical ement.
	determine the maximur polarizations of the ant e. For each suspected	is varied from one meter to four more walue of the field strength. Both enna are set to make the measure emission, the EUT was arranged to	eters above the ground to horizontal and vertical ement. o its worst case and then
	determine the maximur polarizations of the ant e. For each suspected the antenna was tuned	is varied from one meter to four more value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meter	eters above the ground to horizontal and vertical ement. o its worst case and then rs (for the test frequency of
	determine the maximur polarizations of the ant e. For each suspected the antenna was tuned below 30MHz, the ante	is varied from one meter to four more value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meterna was tuned to heights 1 meter	eters above the ground to horizontal and vertical ement. To its worst case and then rs (for the test frequency of and the rotatable table
	determine the maximur polarizations of the ant e. For each suspected the antenna was tuned below 30MHz, the antewas turned from 0 degr	is varied from one meter to four more value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meter	eters above the ground to horizontal and vertical ment. To its worst case and then rs (for the test frequency of and the rotatable table ximum reading.
	determine the maximur polarizations of the ant e. For each suspected the antenna was tuned below 30MHz, the antewas turned from 0 degr	is varied from one meter to four more value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meterna was tuned to heights 1 meter rees to 360 degrees to find the matter was set to Peak Detect Funct	eters above the ground to horizontal and vertical ment. To its worst case and then rs (for the test frequency of and the rotatable table ximum reading.
	determine the maximur polarizations of the ante. For each suspected the antenna was tuned below 30MHz, the ante was turned from 0 degrees. The test-receiver sys Bandwidth with Maximum to the suspension of the s	is varied from one meter to four more value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meterna was tuned to heights 1 meter rees to 360 degrees to find the matter was set to Peak Detect Funct	eters above the ground to horizontal and vertical ement. The control its worst case and then rest for the test frequency of and the rotatable table ximum reading.
P	determine the maximur polarizations of the ante. For each suspected the antenna was tuned below 30MHz, the ante was turned from 0 degrees. The test-receiver sys Bandwidth with Maximur g. If the emission level	is varied from one meter to four more value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meterna was tuned to heights 1 meter rees to 360 degrees to find the mattern was set to Peak Detect Functum Hold Mode. of the EUT in peak mode was 10d	eters above the ground to horizontal and vertical ement. The worst case and then res (for the test frequency of and the rotatable table eximum reading. The son and Specified and the limit
	determine the maximur polarizations of the ante. For each suspected the antenna was tuned below 30MHz, the ante was turned from 0 degrees. The test-receiver sys Bandwidth with Maximur g. If the emission level specified, then testing of	is varied from one meter to four more value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meterna was tuned to heights 1 meter rees to 360 degrees to find the mattern was set to Peak Detect Functum Hold Mode.	eters above the ground to horizontal and vertical ement. To its worst case and then rs (for the test frequency of and the rotatable table ximum reading. Ton and Specified B lower than the limit ues of the EUT would be
	determine the maximur polarizations of the ante. For each suspected the antenna was tuned below 30MHz, the ante was turned from 0 degrees. The test-receiver sys Bandwidth with Maximur g. If the emission level specified, then testing or reported. Otherwise the	is varied from one meter to four more value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meterna was tuned to heights 1 meter rees to 360 degrees to find the mattern was set to Peak Detect Functum Hold Mode. of the EUT in peak mode was 10d could be stopped and the peak value.	eters above the ground to horizontal and vertical ement. The worst case and then res (for the test frequency of and the rotatable table ximum reading. From and Specified B lower than the limit ues of the EUT would be margin would be re-
P	determine the maximur polarizations of the ante. For each suspected the antenna was tuned below 30MHz, the ante was turned from 0 degrees. The test-receiver sys Bandwidth with Maximur g. If the emission level specified, then testing or reported. Otherwise the	is varied from one meter to four more value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meter to a was tuned to heights 1 meter rees to 360 degrees to find the mattern was set to Peak Detect Funct um Hold Mode. of the EUT in peak mode was 10d could be stopped and the peak value emissions that did not have 10deg peak, quasi-peak or average me	eters above the ground to horizontal and vertical ement. The worst case and then res (for the test frequency of and the rotatable table ximum reading. From and Specified B lower than the limit ues of the EUT would be margin would be re-
P	determine the maximur polarizations of the ante. For each suspected the antenna was tuned below 30MHz, the ante was turned from 0 degrees. The test-receiver sys Bandwidth with Maximur g. If the emission level specified, then testing or reported. Otherwise the tested one by one using reported in a data sheet.	is varied from one meter to four more value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meter to a was tuned to heights 1 meter rees to 360 degrees to find the mattern was set to Peak Detect Funct um Hold Mode. of the EUT in peak mode was 10d could be stopped and the peak value emissions that did not have 10deg peak, quasi-peak or average me	eters above the ground to horizontal and vertical ement. To its worst case and then its (for the test frequency of and the rotatable table ximum reading. For and Specified B lower than the limit ues of the EUT would be a margin would be rethod as specified and then
F	determine the maximur polarizations of the ante. For each suspected the antenna was tuned below 30MHz, the ante was turned from 0 degrees. The test-receiver sys Bandwidth with Maximur g. If the emission level specified, then testing or reported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the legislations of the same polarizations.	is varied from one meter to four more value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meterna was tuned to heights 1 meter rees to 360 degrees to find the matem was set to Peak Detect Functum Hold Mode. of the EUT in peak mode was 10d could be stopped and the peak value emissions that did not have 10dE g peak, quasi-peak or average meet.	eters above the ground to horizontal and vertical ement. To its worst case and then its (for the test frequency of and the rotatable table ximum reading. For and Specified B lower than the limit ues of the EUT would be a margin would be rethod as specified and then I, the Highest channel.
P	determine the maximur polarizations of the ante. For each suspected the antenna was tuned below 30MHz, the ante was turned from 0 degrees. The test-receiver sys Bandwidth with Maximur g. If the emission level specified, then testing or reported. Otherwise the tested one by one using reported in a data sheet. Test the EUT in the li. The radiation measur	is varied from one meter to four more value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meter to heights from 1 meter to 4 meter to 360 degrees to find the mattern was set to Peak Detect Functium Hold Mode. of the EUT in peak mode was 10de could be stopped and the peak value emissions that did not have 10de g peak, quasi-peak or average meet. owest channel, the middle channer tements are performed in X, Y, Z and X a	eters above the ground to horizontal and vertical ment. To its worst case and then res (for the test frequency of and the rotatable table ximum reading. For and Specified B lower than the limit ues of the EUT would be a margin would be rethod as specified and then I, the Highest channel.
E CE	determine the maximur polarizations of the ante. For each suspected the antenna was tuned below 30MHz, the ante was turned from 0 degres. The test-receiver sys Bandwidth with Maximur g. If the emission level specified, then testing or reported. Otherwise the tested one by one using reported in a data sheet. Test the EUT in the li. The radiation measur Transmitting mode, and	is varied from one meter to four more value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meter to heights from 1 meter to 4 meter to 360 degrees to find the mattern was set to Peak Detect Functium Hold Mode. of the EUT in peak mode was 10de could be stopped and the peak value emissions that did not have 10de g peak, quasi-peak or average meat. owest channel, the middle channel	eters above the ground to horizontal and vertical ment. To its worst case and then res (for the test frequency of and the rotatable table ximum reading. From and Specified B lower than the limit ues of the EUT would be a margin would be rethod as specified and then I, the Highest channel. Xis positioning for the the specified and the rethod the test channel.
E CE	determine the maximur polarizations of the ante. For each suspected the antenna was tuned below 30MHz, the ante was turned from 0 degres. The test-receiver sys Bandwidth with Maximur g. If the emission level specified, then testing or reported. Otherwise the tested one by one using reported in a data sheet. Test the EUT in the li. The radiation measur Transmitting mode, and	is varied from one meter to four memory value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meterna was tuned to heights 1 meter rees to 360 degrees to find the matem was set to Peak Detect Functum Hold Mode. of the EUT in peak mode was 10d could be stopped and the peak value emissions that did not have 10de g peak, quasi-peak or average meet. owest channel, the middle channel ements are performed in X, Y, Z and found the X axis positioning which	eters above the ground to horizontal and vertical ment. To its worst case and then res (for the test frequency of and the rotatable table ximum reading. From and Specified B lower than the limit ues of the EUT would be a margin would be rethod as specified and then I, the Highest channel. Xis positioning for the the specified and the rethod the test channel.
	determine the maximur polarizations of the ante. For each suspected the antenna was tuned below 30MHz, the ante was turned from 0 degres. The test-receiver sys Bandwidth with Maximur g. If the emission level specified, then testing or reported. Otherwise the tested one by one using reported in a data sheet. The radiation measur Transmitting mode, and j. Repeat above process.	is varied from one meter to four more value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meterna was tuned to heights 1 meter rees to 360 degrees to find the matem was set to Peak Detect Functum Hold Mode. of the EUT in peak mode was 10d could be stopped and the peak value emissions that did not have 10de g peak, quasi-peak or average meat. owest channel, the middle channer ements are performed in X, Y, Z and found the X axis positioning which dures until all frequencies measured.	eters above the ground to horizontal and vertical ement. To its worst case and then are (for the test frequency of and the rotatable table ximum reading. For and Specified B lower than the limit uses of the EUT would be a margin would be rethod as specified and then as specified and then the Highest channel. The Highest channel with it is the worst case. The discontinuity of the worst case.
E CE	determine the maximur polarizations of the ante. For each suspected the antenna was tuned below 30MHz, the ante was turned from 0 degres. The test-receiver sys Bandwidth with Maximur g. If the emission level specified, then testing or reported. Otherwise the tested one by one using reported in a data sheet. The radiation measur Transmitting mode, and j. Repeat above proced Remark: 1) For emission below	is varied from one meter to four more value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meter to heights from 1 meter to 4 meter to 360 degrees to find the mattern was set to Peak Detect Funct um Hold Mode. of the EUT in peak mode was 10d could be stopped and the peak value emissions that did not have 10de g peak, quasi-peak or average meat. owest channel, the middle channer ements are performed in X, Y, Z and found the X axis positioning which dures until all frequencies measured 1GHz, through pre-scan found the	eters above the ground to horizontal and vertical ement. To its worst case and then are (for the test frequency of and the rotatable table ximum reading. For and Specified B lower than the limit uses of the EUT would be a margin would be rethod as specified and then as specified and then the Highest channel. The Highest channel with it is the worst case. The discontinuity of the worst case.
E CE	determine the maximur polarizations of the ante. For each suspected the antenna was tuned below 30MHz, the ante was turned from 0 degrif. The test-receiver sys Bandwidth with Maximur g. If the emission level specified, then testing or reported. Otherwise the tested one by one using reported in a data sheet. Test the EUT in the liable. The radiation measur Transmitting mode, and j. Repeat above proced Remark: 1) For emission below channel. Only the wors	is varied from one meter to four memory value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meterna was tuned to heights 1 meter rees to 360 degrees to find the matem was set to Peak Detect Functum Hold Mode. of the EUT in peak mode was 10d could be stopped and the peak value emissions that did not have 10df g peak, quasi-peak or average meet. owest channel, the middle channer ements are performed in X, Y, Z and found the X axis positioning which dures until all frequencies measured 1GHz, through pre-scan found the transet is recorded in the report.	eters above the ground to horizontal and vertical ement. To its worst case and then its (for the test frequency of and the rotatable table ximum reading. For and Specified B lower than the limit ues of the EUT would be a margin would be resthod as specified and then I, the Highest channel is positioning for the it is the worst case. The worst case is the lowest
E P	determine the maximur polarizations of the anterest e. For each suspected the antenna was tuned below 30MHz, the anterest was turned from 0 degrest. The test-receiver system Bandwidth with Maximur g. If the emission level specified, then testing or reported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the li. The radiation measur Transmitting mode, and j. Repeat above process Remark: 1) For emission below channel. Only the wors 2) The field strength is	is varied from one meter to four memory value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meterna was tuned to heights 1 meter rees to 360 degrees to find the matem was set to Peak Detect Functum Hold Mode. of the EUT in peak mode was 10d could be stopped and the peak value emissions that did not have 10d g peak, quasi-peak or average meet. owest channel, the middle channer ements are performed in X, Y, Z and found the X axis positioning which dures until all frequencies measured 1GHz, through pre-scan found the trace is recorded in the report. calculated by adding the Antenna	eters above the ground to horizontal and vertical ement. To its worst case and then its (for the test frequency of and the rotatable table ximum reading. For and Specified B lower than the limit ues of the EUT would be a margin would be rethod as specified and then I, the Highest channel is positioning for the it is the worst case. For a worst case is the lowest Factor, Cable Factor &
E P	determine the maximur polarizations of the anterest e. For each suspected the antenna was tuned below 30MHz, the anterest was turned from 0 degrest. The test-receiver system Bandwidth with Maximur g. If the emission level specified, then testing of reported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the li. The radiation measur Transmitting mode, and j. Repeat above proced Remark: 1) For emission below channel. Only the wors 2) The field strength is Preamplifier. The basic	is varied from one meter to four memory value of the field strength. Both enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 meterna was tuned to heights 1 meter rees to 360 degrees to find the matem was set to Peak Detect Functum Hold Mode. of the EUT in peak mode was 10d could be stopped and the peak value emissions that did not have 10df g peak, quasi-peak or average meet. owest channel, the middle channer ements are performed in X, Y, Z and found the X axis positioning which dures until all frequencies measured 1GHz, through pre-scan found the transet is recorded in the report.	eters above the ground to horizontal and vertical ement. To its worst case and then res (for the test frequency of and the rotatable table ximum reading. To and Specified B lower than the limit ues of the EUT would be a margin would be rethod as specified and then the Highest channel. The Highest channel wis positioning for the it is the worst case. The worst case is the lowest factor, Cable Factor & is as follows:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 25 of 64


Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.7.1 E.U.T. Operation:


	•						
Operatir	ng Envir	onment:		CE		OCE	
Tempera	ature:	23.2 °C	OL	Humidity:	53.3 %	Atmospheric Pressure:	101 kPa
Pre test	mode:		TM1			1	
Final tes	st mode:		TM1				

4.7.2 Test Data:

POCE

4.8 Emissions in frequency bands (above 1GHz)

Test Requirement:	15.205(a), must also con	ssions which fall in the restricte	
	15.209(a)(see § 15.205(d	e)).`	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	** Except as provided in radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands is and 15.241. In the emission table about	paragraph (g), fundamental em r this section shall not be locate 174-216 MHz or 470-806 MHz s permitted under other section ove, the tighter limit applies at t	ed in the frequency bands . However, operation within s of this part, e.g., §§ 15.231 he band edges.
POCE	employing a CISPR quas 110–490 kHz and above	n in the above table are based si-peak detector except for the 1000 MHz. Radiated emission ents employing an average det	frequency bands 9–90 kHz, limits in these three bands
Test Method:	ANSI C63.10-2013 section KDB 558074 D01 15.247		
	360 degrees to determine b. For above 1GHz, the E above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on the d. The antenna height is determine the maximum polarizations of the anter e. For each suspected en the antenna was tuned to	or 10 meter semi-anechoic char e the position of the highest race. EUT was placed on the top of a meter fully-anechoic chamber. e position of the highest radiation 10 meters away from the interface top of a variable-height anter varied from one meter to four race value of the field strength. Both an are set to make the measuraission, the EUT was arranged to heights from 1 meter to 4 meters are was tuned to heights 1 meters.	diation. a rotating table 1.5 meters The table was rotated 360 on. ference-receiving antenna, enna tower. meters above the ground to h horizontal and vertical rement. d to its worst case and then ters (for the test frequency of
		es to 360 degrees to find the m	
	f. The test-receiver syste Bandwidth with Maximun g. If the emission level of	m was set to Peak Detect Fund n Hold Mode. i the EUT in peak mode was 10	ction and Specified OdB lower than the limit
	reported. Otherwise the e tested one by one using reported in a data sheet.	uld be stopped and the peak vemissions that did not have 100 peak, quasi-peak or average mest channel, the middle chanr	dB margin would be re- nethod as specified and then
	i. The radiation measurer Transmitting mode, and f j. Repeat above procedu Remark:	ments are performed in X, Y, Z found the X axis positioning wh res until all frequencies measu	axis positioning for nich it is the worst case. red was complete.
	channel. Only the worst of 2) The field strength is can be Preamplifier. The basic e	GHz, through pre-scan found the case is recorded in the report. Alculated by adding the Antenna quation with a sample calculation Reading + Antenna Factor +	a Factor, Cable Factor & ion is as follows:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 29 of 64

Report No.: POCE240105001RF001

Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.8.1 E.U.T. Operation:

Operating Envir	onment:		CE		OCE	
Temperature:	23.2 °C	0	Humidity:	53.3 %	Atmospheric Pressure:	101 kPa
Pre test mode:		TM1,	TM2, TM3			
Final test mode:		TM1,	TM2, TM3			

4.8.2 Test Data:

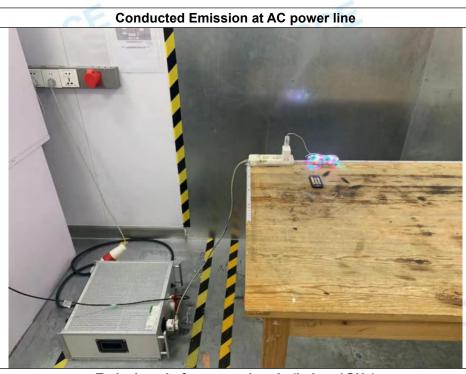
Remark: During the test, pre-scan the 1Mbps, 2 Mbps rate, and found the 1Mbps rate which it is worse case.

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L											
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4804.000	37.20	-0.90	36.30	74.00	-37.70	peak			Р	
2	4804.000	26.85	-0.90	25.95	54.00	-28.05	AVG			Р	
3	7206.000	35.48	4.13	39.61	74.00	-34.39	peak			Р	
4	7206.000	25.80	4.13	29.93	54.00	-24.07	AVG			Р	
5	9608.000	35.14	8.09	43.23	74.00	-30.77	peak			Р	
6 *	9608.000	24.83	8.09	32.92	54.00	-21.08	AVG			Р	

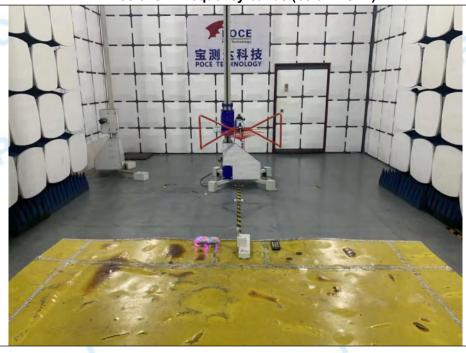
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4804.000	40.44	-0.28	40.16	74.00	-33.84	peak			Р	
2	4804.000	27.49	-0.28	27.21	54.00	-26.79	AVG			Р	
3	7206.000	37.03	4.09	41.12	74.00	-32.88	peak			Р	
4	7206.000	26.01	4.09	30.10	54.00	-23.90	AVG			Р	
5	9608.000	35.73	8.02	43.75	74.00	-30.25	peak			Р	
6 *	9608.000	25.08	8.02	33.10	54.00	-20.90	AVG			Р	

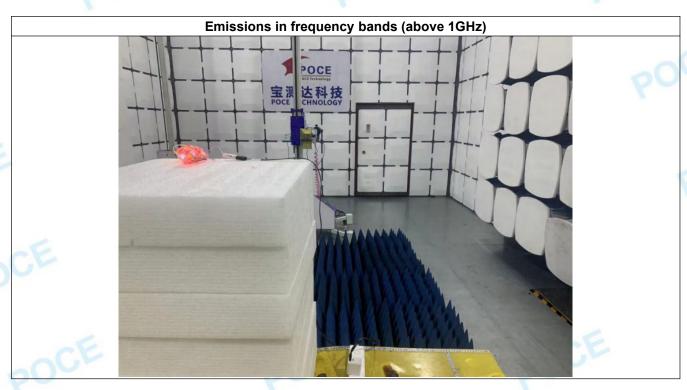
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4880.000	37.07	-0.65	36.42	74.00	-37.58	peak			Р	
2	4880.000	26.64	-0.65	25.99	54.00	-28.01	AVG			Р	
3	7320.000	36.68	4.31	40.99	74.00	-33.01	peak			Р	
4	7320.000	25.60	4.31	29.91	54.00	-24.09	AVG			Р	
5	9760.000	34.66	8.09	42.75	74.00	-31.25	peak			Р	
6 *	9760.000	25.05	8.09	33.14	54.00	-20.86	AVG			Р	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4880.000	37.80	-0.03	37.77	74.00	-36.23	peak			Р	
2	4880.000	26.70	-0.03	26.67	54.00	-27.33	AVG			Р	
3	7320.000	35.80	4.36	40.16	74.00	-33.84	peak			Р	
4	7320.000	25.51	4.36	29.87	54.00	-24.13	AVG			Р	
5	9760.000	34.95	8.12	43.07	74.00	-30.93	peak			Р	
6 *	9760.000	24.77	8.12	32.89	54.00	-21.11	AVG			Р	



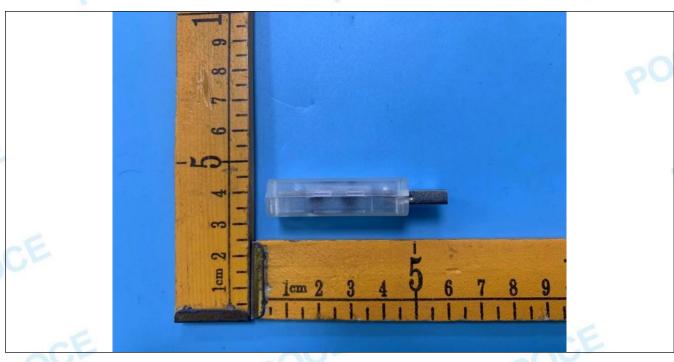
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4960.000	37.00	-0.37	36.63	74.00	-37.37	peak			Р	
2	4960.000	26.41	-0.37	26.04	54.00	-27.96	AVG			Р	
3	7440.000	35.73	4.49	40.22	74.00	-33.78	peak			Р	
4	7440.000	25.68	4.49	30.17	54.00	-23.83	AVG			Р	
5	9920.000	34.70	8.08	42.78	74.00	-31.22	peak			Р	
6 *	9920.000	25.29	8.08	33.37	54.00	-20.63	AVG			Р	

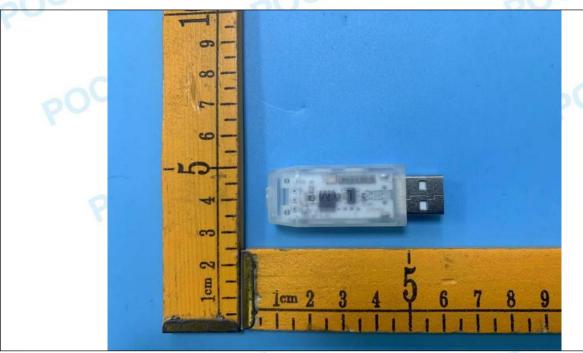

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4960.000	38.13	0.23	38.36	74.00	-35.64	peak			Р	
2	4960.000	26.69	0.23	26.92	54.00	-27.08	AVG			Р	
3	7440.000	37.07	4.64	41.71	74.00	-32.29	peak			Р	
4	7440.000	25.87	4.64	30.51	54.00	-23.49	AVG			Р	
5	9920.000	36.99	8.23	45.22	74.00	-28.78	peak			Р	
6 *	9920.000	25.49	8.23	33.72	54.00	-20.28	AVG			Р	

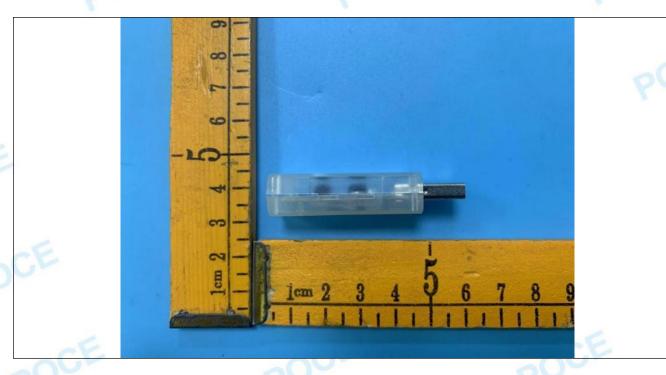

5 TEST SETUP PHOTOS

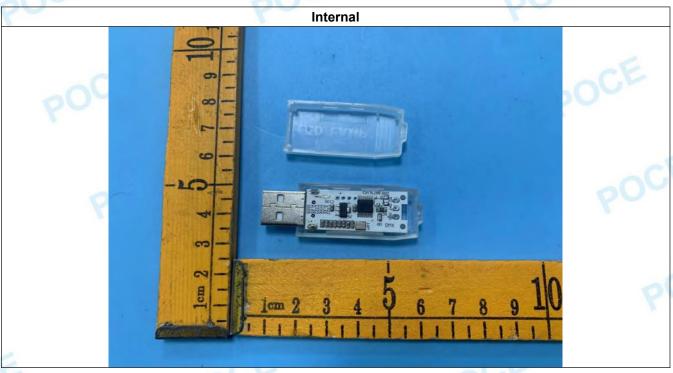
Emissions in frequency bands (below 1GHz)

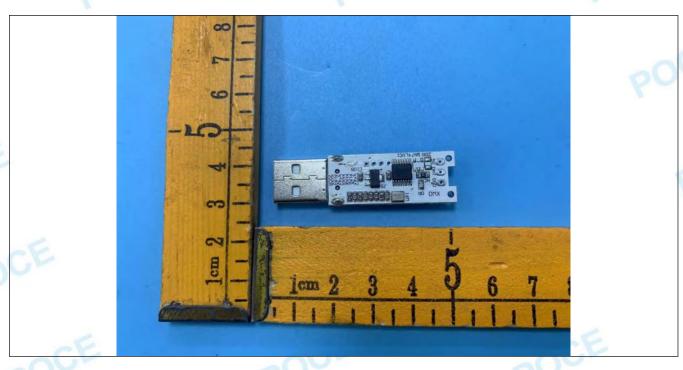


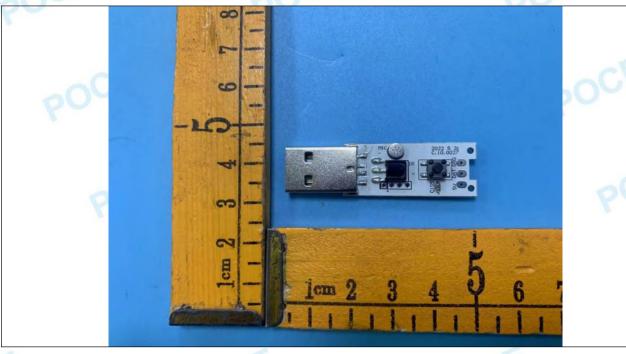


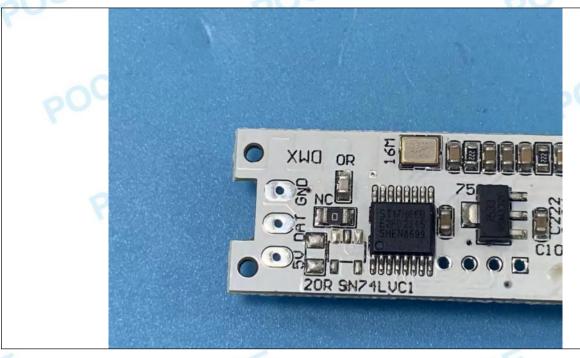

6 PHOTOS OF THE EUT

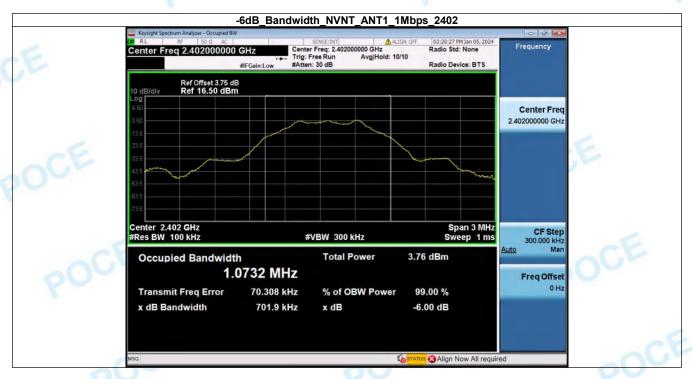






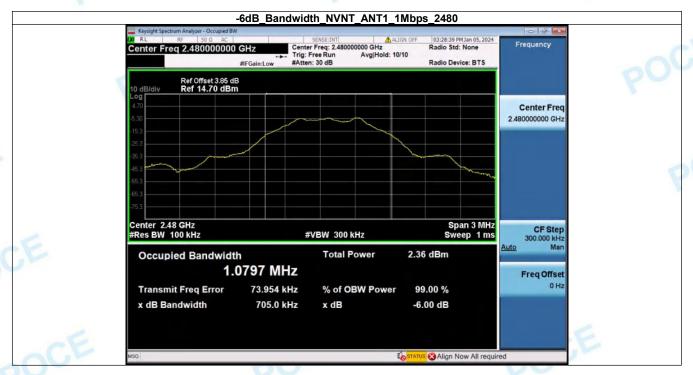


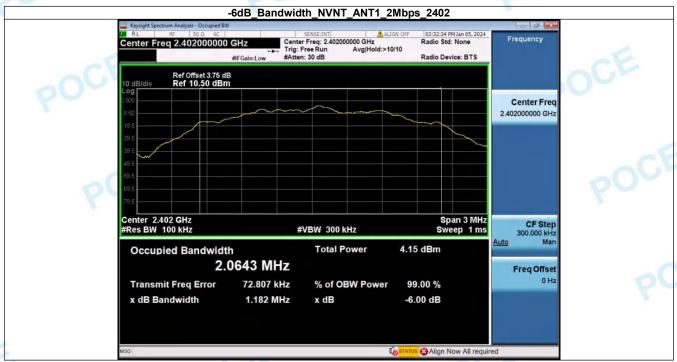



Appendix

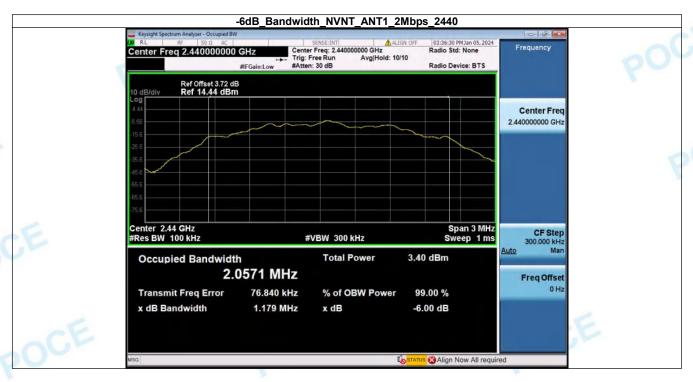
HT240102011--LS-S200--BLE--FCC FCC_BLE (Part15.247) Test Data

1. -6dB Bandwidth

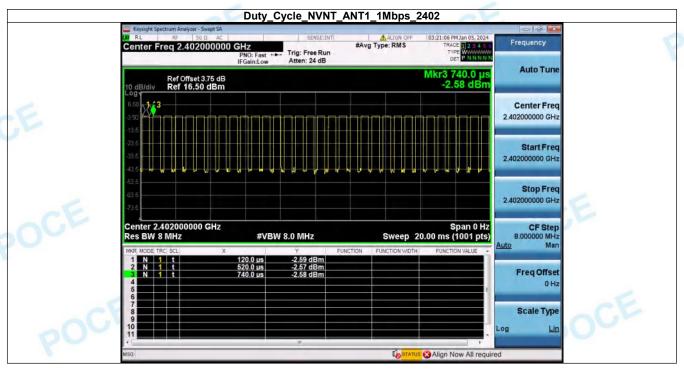

Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402	701.88	500	Pass
NVNT	ANT1	1Mbps	2440.00	701.13	500	Pass
NVNT	ANT1	1Mbps	2480	704.98	500	Pass
NVNT	ANT1	2Mbps	2402	1181.63	500	Pass
NVNT	ANT1	2Mbps	2440.00	1179.42	500	Pass
NVNT	ANT1	2Mbps	2480	1176.96	500	Pass

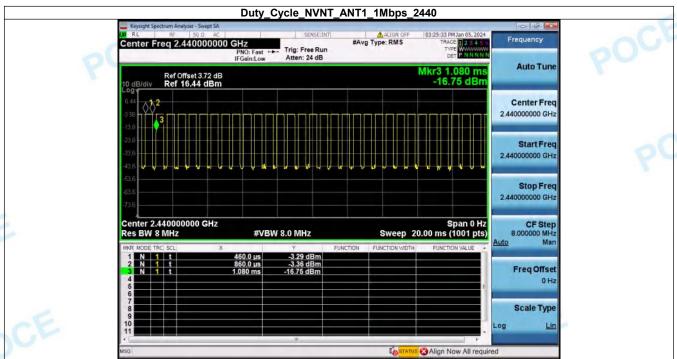


H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 43 of 64

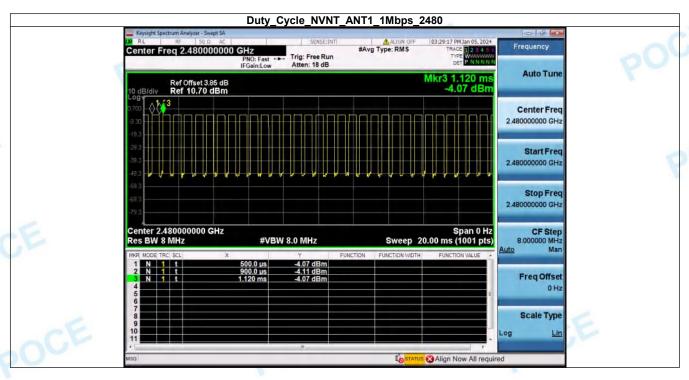


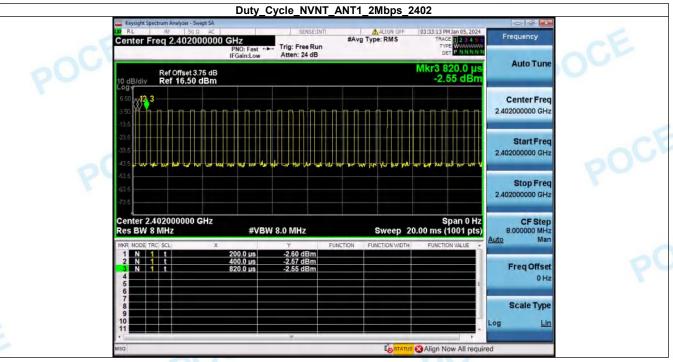
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 44 of 64

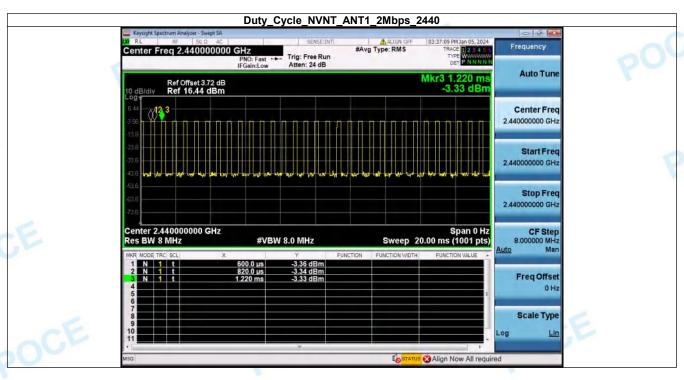


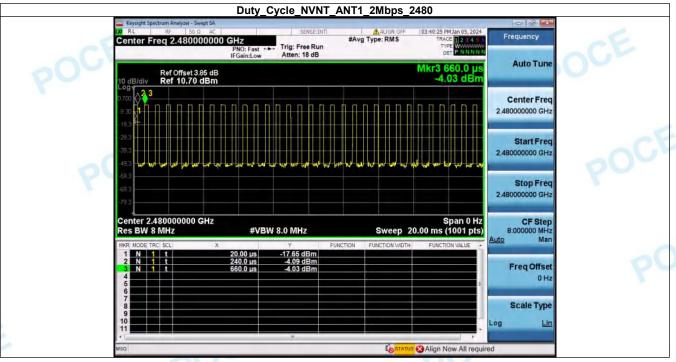


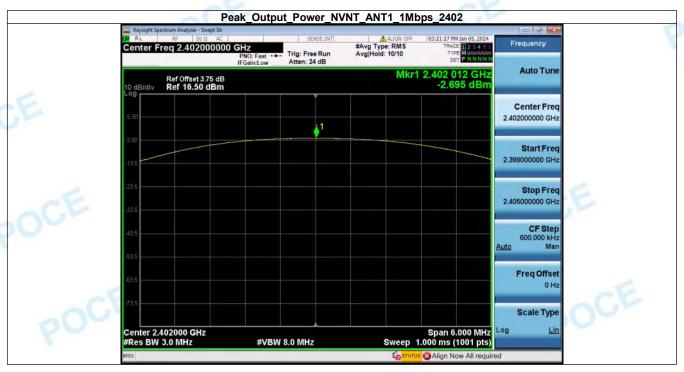
2. Duty Cycle

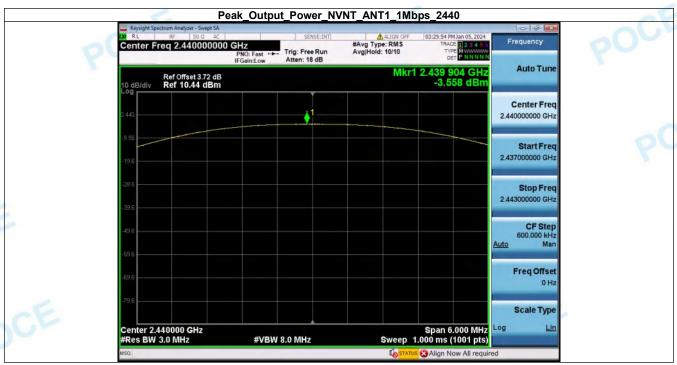

Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1Mbps	2402	64.52	1.90
NVNT	ANT1	1Mbps	2440.00	67.74	1.69
NVNT	ANT1	1Mbps	2480	67.74	1.69
NVNT	ANT1	2Mbps	2402	32.26	4.91
NVNT	ANT1	2Mbps	2440.00	38.71	4.12
NVNT	ANT1	2Mbps	2480	34.38	4.64

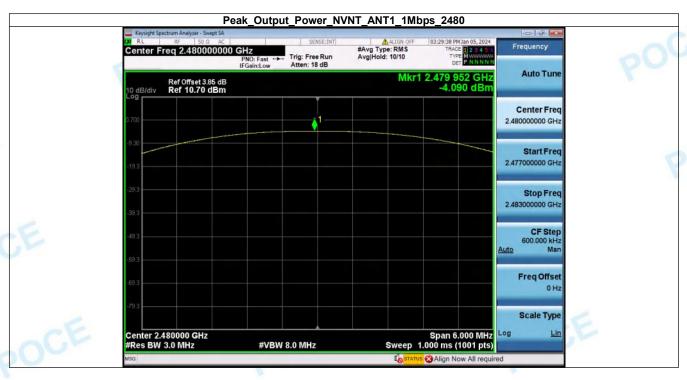




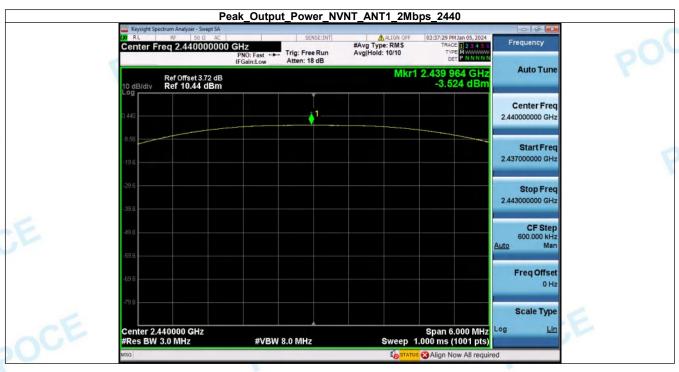

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 Page 46 of 64 E-mail: service@dace-lab.com



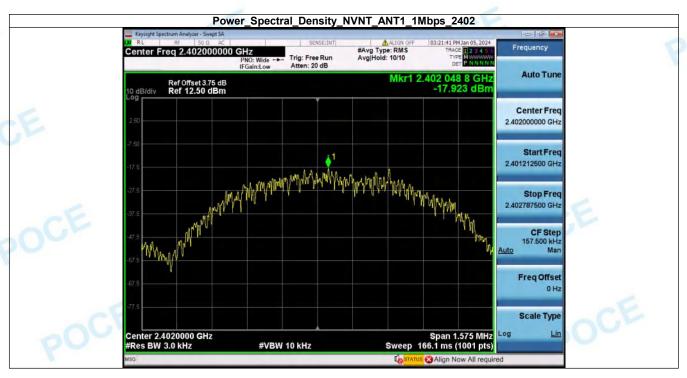



3. Peak Output Power

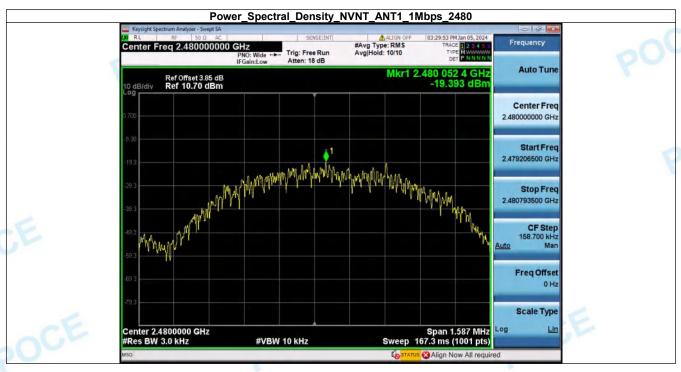
Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1Mbps	2402	-2.69	0.54	1000	Pass
NVNT	ANT1	1Mbps	2440.00	-3.56	0.44	1000	Pass
NVNT	ANT1	1Mbps	2480	-4.09	0.39	1000	Pass
NVNT	ANT1	2Mbps	2402	-2.57	0.55	1000	Pass
NVNT	ANT1	2Mbps	2440.00	-3.52	0.44	1000	Pass
NVNT	ANT1	2Mbps	2480	-4.08	0.39	1000	Pass

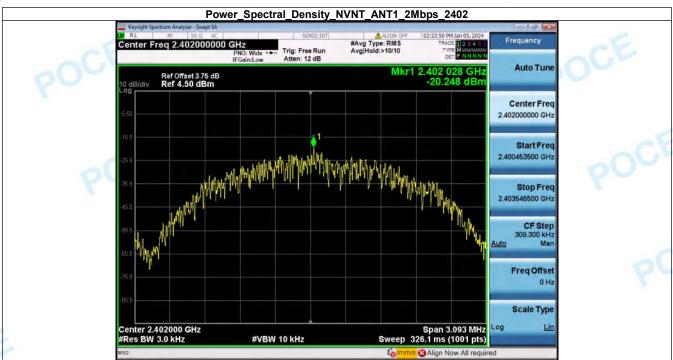


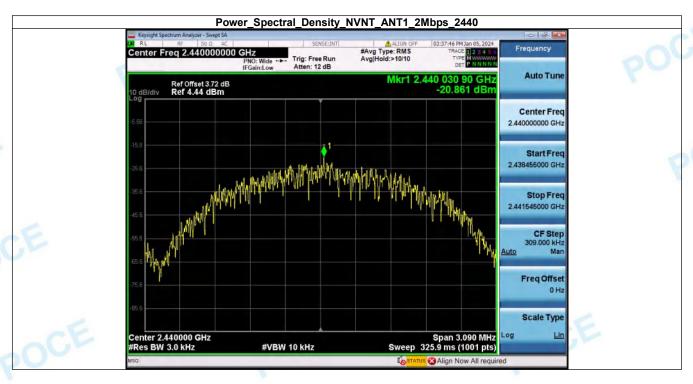
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Page 49 of 64 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

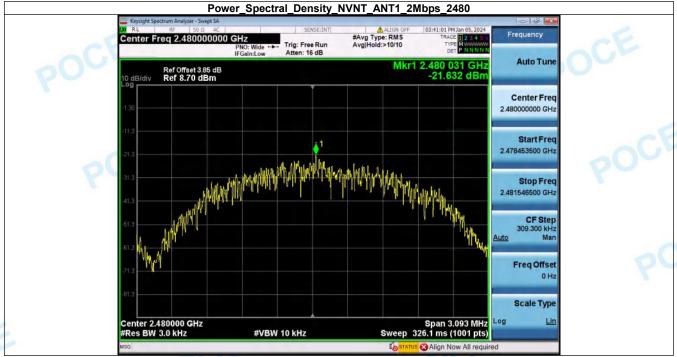


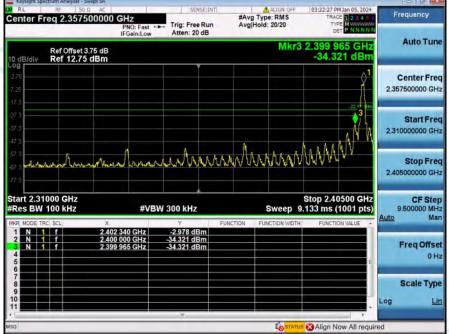
4. Power Spectral Density


Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm)	Limit(dBm/3kHz)	Result
NVNT	ANT1	1Mbps	2402	-17.92	8	Pass
NVNT	ANT1	1Mbps	2440.00	-18.49	8	Pass
NVNT	ANT1	1Mbps	2480	-19.39	8	Pass
NVNT	ANT1	2Mbps	2402	-20.25	8	Pass
NVNT	ANT1	2Mbps	2440.00	-20.86	8	Pass
NVNT	ANT1	2Mbps	2480	-21.63	8	Pass



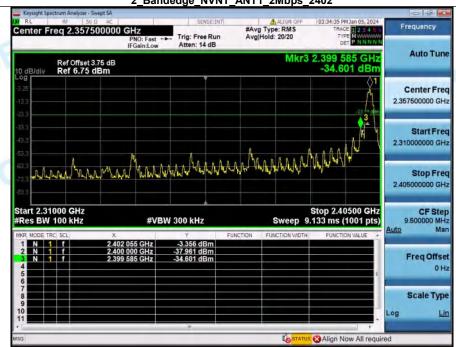


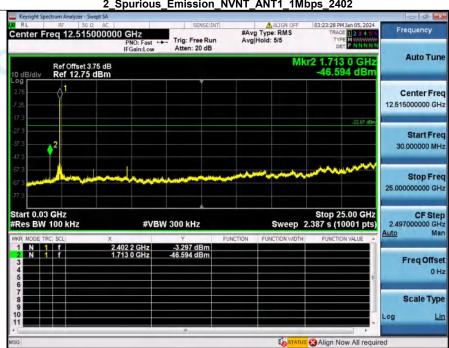

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 52 of 64




5. Bandedge TX_Frequency Max. Mark Frequency Spurious Condition Antenna Rate limit(dBm) Result (MHz) (MHz) level(dBm) Pass **NVNT** ANT1 1Mbps 2402 2399.965 -34.321 -22.872 NVNT ANT1 1Mbps 2480 2483.950 -43.079 -24.222 Pass 2Mbps NVNT ANT1 2402 2399.585 -34.601 -23.481 Pass

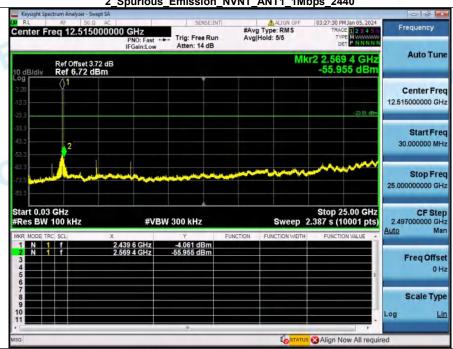
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 55 of 64





6. Spurious Emission

	TX Frequency(MHz)	Spurious MAX.Value(dBm)	Limit	Result
Rate				Pass
	· ·			Pass
				Pass
		.=		Pass
		******		Pass
 				Pass
	1Mbps 1Mbps 1Mbps 2Mbps 2Mbps 2Mbps 2Mbps	1Mbps 2440.00 1Mbps 2480 2Mbps 2402 2Mbps 2440.00	1Mbps 2440.00 -55.955 1Mbps 2480 -42.970 2Mbps 2402 -37.056 2Mbps 2440.00 -53.216	1Mbps 2440.00 -55.955 -23.807 1Mbps 2480 -42.970 -24.222 2Mbps 2402 -37.056 -23.481 2Mbps 2440.00 -53.216 -24.163



H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 59 of 64

