

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202206-0362-5 Page: 1 of 45

Radio Test Report FCC ID: 2A7ZM-BURLETTAC10

Report No.	÷	TBR-C-202206-0362-5
Applicant	B	JBU GLOBAL LLC
Equipment Under T	est (E	EUT)
EUT Name	1:	Burletta C10
Model No.	:	Burletta C10
Series Model No.		N/A
Brand Name	:	MASINGO
Sample ID	19	202206-0362-3-1#& 202206-0362-3-2#
Receipt Date	:	2022-07-14
Test Date	R	2022-07-14 to 2022-07-25
Issue Date		2022-07-29
Standards	3	FCC Part 15 Subpart C 15.247
Test Method	22	ANSI C63.10: 2013 KDB 558074 D01 15.247 Meas Guidance v05r02
Conclusions	:	PASS
		In the configuration tested, the EUT complied with the standards specified above.
Witness Engineer		

Witness Engineer

Engineer Supervisor

Engineer Manager

Seven Wu

Ivan Su

Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

CON	TENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	8
	1.6 Description of Test Software Setting	9
	1.7 Measurement Uncertainty	9
	1.8 Test Facility	10
2.	TEST SUMMARY	
3.	TEST SOFTWARE	
4.	TEST EQUIPMENT	
5.	CONDUCTED EMISSION	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 EUT Operating Mode	
	5.6 Test Data	
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	15
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	17
	6.4 Deviation From Test Standard	
	6.5 EUT Operating Mode	
	6.6 Test Data	
7.	EMISSIONS IN RESTRICTED BANDS	19
	7.1 Test Standard and Limit	
	7.2 Test Setup	19
	7.3 Test Procedure	20
	7.4 Deviation From Test Standard	21
	7.5 EUT Operating Mode	
	7.6 Test Data	21
8.	99% OCCUPIED AND 20DB BANDWIDTH	22
	8.1 Test Standard and Limit	22
	8.2 Test Setup	22
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	23
	0.4 Deviation From Fest Standard	20

	8.6 Test Data	
9.	PEAK OUTPUT POWER TEST	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	25
	9.5 EUT Operating Mode	
	9.6 Test Data	25
10.	CARRIER FREQUENCY SEPARATION	
	10.1 Test Standard and Limit	
	10.2 Test Setup	
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	27
	10.5 Antenna Connected Construction	
	10.6 Test Data	
11.	TIME OF OCCUPANCY (DWELL TIME)	
	11.1 Test Standard and Limit	
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	29
	11.5 Antenna Connected Construction	
	11.6 Test Data	
12.	NUMBER OF HOPPING FREQUENCIES	
	12.1 Test Standard and Limit	
	12.2 Test Setup	
	12.3 Test Procedure	
	12.4 Deviation From Test Standard	
	12.5 Antenna Connected Construction	
	12.6 Test Data	
13.	ANTENNA REQUIREMENT	
	13.1 Test Standard and Limit	
	13.2 Deviation From Test Standard	
	13.3 Antenna Connected Construction	
	13.4 Test Data	
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	
ATT	ACHMENT BUNWANTED EMISSIONS DATA	

Report No.: TBR-C-202206-0362-5 Page: 4 of 45

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202206-0362-5	Rev.01	Initial issue of report	2022-07-29
Const u	mon	a lou	TOP
DI LO FO	3	TOPP THE TOPP	3
and a	TOPT	THE THE THE	B
M DOW	THE REAL		B
TUDE		ROB ROBI	a cubb
THE WEAT	E L	TOBU TUE	
LOG MOBY	603	The state of the s	anB.
THE LEAD		Clubber of the	
TOUL	TUP	THE ME	TOBS
Cup and		AT MORN	a Dua

1. General Information about EUT

1.1 Client Information

Applicant		JBU GLOBAL LLC
Address	-	19416 NE 26th Ave, 114B, Miami, Florida 33180
Manufacturer		NINGBO SUNNUO INTERNATIONAL TRADE CO., LTD
Address		No. 23, Jinshan Road, Taoyuan Street NINGBO Zhejiang Province 315600.China.

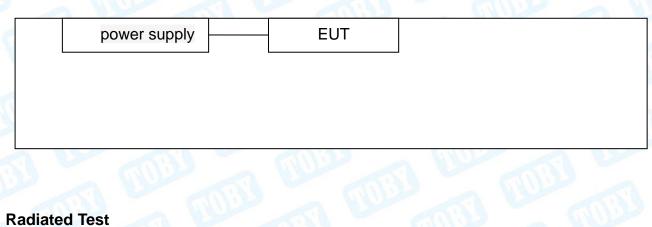
1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Burletta C10	Burletta C10		
Models No.	:	Burletta C10			
Model Different	:				
The second	61 121 K	Operation Frequency:	Bluetooth 5.0(BDR+EDR): 2402MHz~2480MHz		
Draduat		Number of Channel:	79 channels		
Product Description		Antenna Gain:	-0.68dBi PCB Antenna		
		Modulation Type:	GFSK(1Mbps) π /4-DQPSK(2Mbps) 8-DPSK(3Mbps)		
Power Rating	:	DC 3.7V by 1500mAh	Li-ion battery		
Software Version					
Hardware Version	2	ZQS6122T-RZ			
Remark:			million investor		

(1)The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.

(2)For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(3) Antenna information provided by the applicant.


(4)Channel List:

Bluetooth Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2402	27	2429	54	2456	
01	2403	28	2430	55	2457	
02	2404	29	2431	56	2458	
03	2405	30	2432	57	2459	
04	2406	31	2433	58	2460	
05	2407	32	2434	59	2461	
06	2408	33	2435	60	2462	
07	2409	34	2436	61	2463	
08	2410	35	2437	62	2464	
09	2411	36	2438	63	2465	
10	2412	37	2439	64	2466	
11	2413	38	2440	65	2467	
12	2414	39	2441	66	2468	
13	2415	40	2442	67	2469	
14	2416	41	2443	68	2470	
15	2417	42	2444	69	2471	
16	2418	43	2445	70	2472	
17	2419	44	2446	71	2473	
18	2420	45	2447	72	2474	
19	2421	46	2448	73	2475	
20	2422	47	2449	74	2476	
21	2423	48	2450	75	2477	
22	2424	49	2451	76	2478	
23	2425	50	2452	77	2479	
24	2426	51	2453	78	2480	
25	2427	52	2454			
26	2428	53	2455			

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

power supply EUT EUT

1.4 Description of Support Units

		Equipment Information				
	Name	Model	FCC ID/VOC	Manufacturer	Used "√"	
		1000 C				
			Cable Information			
	Number	Shielded Type	Ferrite Core	Length	Note	
2	Cable 1	Yes	NO	0.5M	Accessory	

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode	inal Test Mode Description			
Mode 1	Charging + TX GFSK Mode Channel 00			
	For Radiated Test			
Final Test Mode	Description			
Mode 2	Charging + TX GFSK Mode Channel 00			
Mode 3	TX Mode(GFSK) Channel 00/39/78			
Mode 4	TX Mode(π /4-DQPSK) Channel 00/39/78			
Mode 5	TX Mode(8-DPSK) Channel 00/39/78			
Mode 6	Hopping Mode(GFSK)			
Mode 7 Hopping Mode(π /4-DQPSK)				
Mode 8	Hopping Mode(8-DPSK)			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)

TX Mode: π /4-DQPSK (2 Mbps)

TX Mode: 8-DPSK (3 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	(B)	FCC_assist_1.0.2	2.2
Frequency	2402 MHz	2441MHz	2480 MHz
GFSK	DEF	DEF	DEF
π /4-DQPSK	DEF	DEF	DEF
8-DPSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Report No.: TBR-C-202206-0362-5 Page: 10 of 45

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

2. Test Summary

Standard Section	To at litera		Indama and		
FCC	Test Item	Test Sample(s)	Judgment	Remark	
FCC 15.207(a)	Conducted Emission	202206-0362-3-1#	PASS	N/A	
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	202206-0362-3-1#	PASS	N/A	
FCC 15.203	Antenna Requirement	202206-0362-3-2#	PASS	N/A	
FCC 15.247(a)	99% Occupied Bandwidth & 20dB Bandwidth	202206-0362-3-2#	PASS	N/A	
FCC 15.247(b)(1)	Peak Output Power	202206-0362-3-2#	PASS	N/A	
FCC 15.247(a)(1)	Carrier frequency separation	202206-0362-3-2#	PASS	N/A	
FCC 15.247(a)(1)	Time of occupancy	202206-0362-3-2#	PASS	N/A	
FCC 15.247(b)(1)	Number of Hopping Frequency	202206-0362-3-2#	PASS	N/A	
FCC 15.247(d)	Band Edge	202206-0362-3-2#	PASS	N/A	
FCC 15.207(a)	Conducted Unwanted Emissions	202206-0362-3-2#	PASS	N/A	
FCC 15.205	Emissions in Restricted Bands	202206-0362-3-2#	PASS	N/A	
	On Time and Duty Cycle	202206-0362-3-2#		N/A	

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

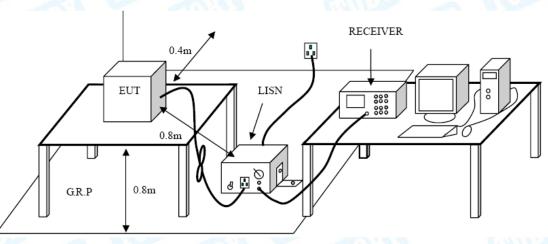
Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

4. Test Equipment

Conducted Emissio	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 23, 2022	Jun. 22, 2023
CUD2	Compliance				2 2
RF Switching Unit	Direction Systems	RSU-A4	34403	Jun. 23, 2022	Jun. 22, 2023
	Inc	(BD)			
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 22, 2022	Jun. 21, 2023
LISN	Rohde & Schwarz	ENV216	101131	Jun. 22, 2022	Jun. 21, 2023
Radiation Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 03, 2021	Sep. 02, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472	Feb. 26, 2022	Feb.25, 2023
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2022	Feb. 26, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 26, 2022	Feb. 25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Feb. 26, 2022	Feb.25, 2024
Pre-amplifier	SONOMA	310N	185903	Feb. 26, 2022	Feb.25, 2023
Pre-amplifier	HP	8449B	3008A00849	Feb. 26, 2022	Feb.25, 2023
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022
Antenna Conducted	I Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 23, 2022	Jun. 22, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 03, 2021	Sep. 02, 2022
Spectrum Analyzer	KEYSIGT	N9020B	MY60110172	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep. 03, 2021	Sep. 02, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep. 03, 2021	Sep. 02, 2022
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 03, 2021	Sep. 02, 2022

5. Conducted Emission

5.1 Test Standard and Limit


- 5.1.1 Test Standard
 - FCC Part 15.207
- 5.1.2 Test Limit

Fraguanay	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

● The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50 uH of coupling impedance for the measuring instrument.

●Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

●LISN at least 80 cm from nearest part of EUT chassis.

●The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Report No.: TBR-C-202206-0362-5 Page: 14 of 45

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz			
Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolt/meter)**	(meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	

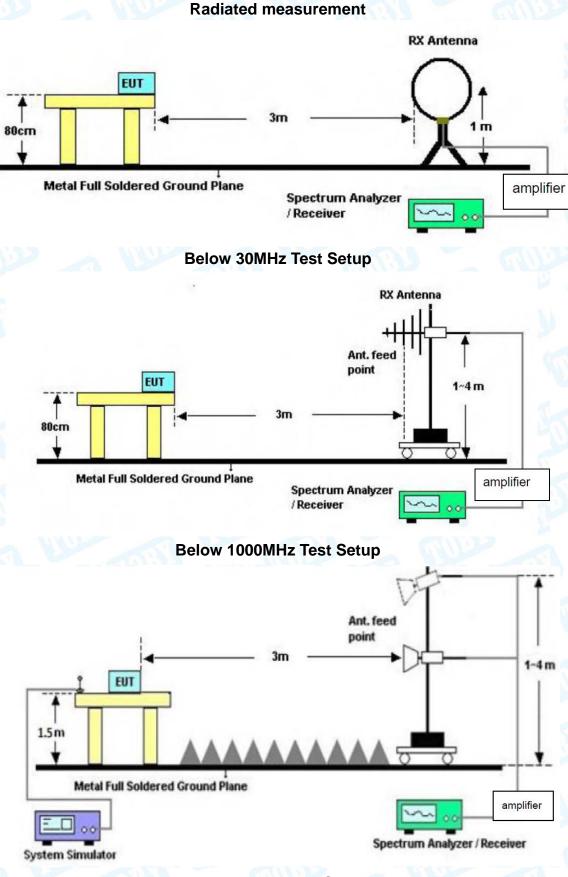
Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

General field strength limits at frequencies above 30 MHz				
Frequency (MHz)	Field strength(µV/m at 3 m)	Measurement Distance (meters)		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

General field strength limits at frequencies Above 1000MHz			
Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

Note:

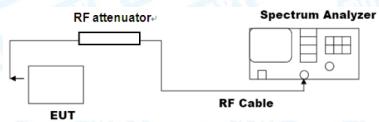
(1) The tighter limit applies at the band edges.


(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Report No.: TBR-C-202206-0362-5 Page: 16 of 45

6.2 Test Setup



Above 1GHz Test Setup

Report No.: TBR-C-202206-0362-5 Page: 17 of 45

Conducted measurement

6.3 Test Procedure

---Radiated measurement

● The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

• The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

• The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

● If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

•For the actual test configuration, please see the test setup photo.

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

• Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

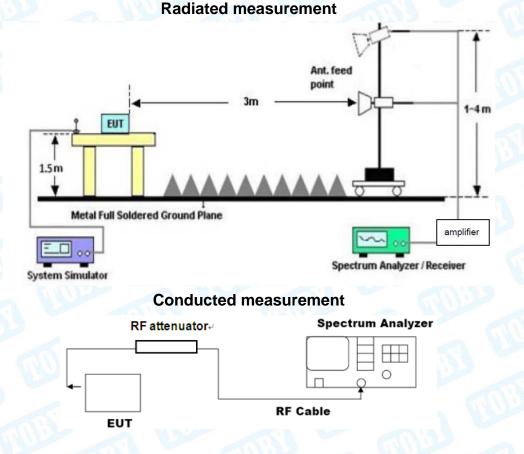
6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the external appendix report of BT.

7. Emissions in Restricted Bands

7.1 Test Standard and Limit

7.1.1 Test Standard


FCC Part 15.205 & FCC Part 15.247(d)

7.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)		
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)	
2310 ~2390	74	54	
2483.5 ~2500	74	54	
	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e)	
2310 ~2390	-21.20	-41.20	
2483.5 ~2500	-21.20	-41.20	

alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

7.3 Test Procedure

---Radiated measurement

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

• The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

● The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

• The Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

• For the actual test configuration, please see the test setup photo.

--- Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).

d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).

e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

$E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

f) Compare the resultant electric field strength level with the applicable regulatory limit.

g) Perform the radiated spurious emission test.

Report No.: TBR-C-202206-0362-5 Page: 21 of 45

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

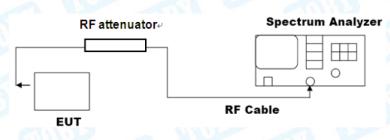
7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Please refer to the external appendix report of BT.

8. 99% Occupied and 20dB Bandwidth

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(a)

8.1.2 Test Limit

For an FHSS system operating in the 2400 to 2483.5 MHz band, there are no limits for 20dB bandwidth and 99% occupied bandwidth.

8.2 Test Setup

8.3 Test Procedure

• The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

d) Step a) through step c) might require iteration to adjust within the specified range.

e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequence between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

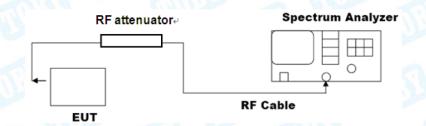
No deviation

8.5 EUT Operating Mode

Please refer to the description of test mode.

8.6 Test Data

Please refer to the external appendix report of BT.


9. Peak Output Power Test

9.1 Test Standard and Limit

- 9.1.1 Test Standard FCC Part 15.247(b)(1)
- 9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	P _{max-pk} ≤ 1 W	
	<i>N_{ch}</i> ≥ 75	
GUUD A	f ≥ MAX { 25 kHz, BW20dB }	
	max. BW20dB not specified	
	$tch \le 0.4 ext{ s for } T = 0.4^* Nch$	and a start
Peak Output Power	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5
	<i>Nch</i> ≥ 15	
E CUL	f ≥ [MAX{25 kHz, 0.67*BW20dB}	
	OR MAX{25 kHz, BW20dB}]	
	max. BW20dB not specified	
	$tch \le 0.4$ s for $T = 0.4^* N_{ch}$	
	cupancy; $T =$ period; $N_{ch} = #$ hopping f f = hopping channel carrier frequency s	

9.2 Test Setup

9.3 Test Procedure

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:
 a) Use the following spectrum analyzer settings:

- 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 2) RBW > 20 dB bandwidth of the emission being measured.
- 3) VBW≥ RBW.
- 4) Sweep: Auto.
- 5) Detector function: Peak.
- 6) Trace: Max hold.
- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power, after any corrections for external

Report No.: TBR-C-202206-0362-5 Page: 25 of 45

attenuators and cables.

e) A plot of the test results and setup description shall be included in the test report.

NOTE-A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

9.4 Deviation From Test Standard

No deviation

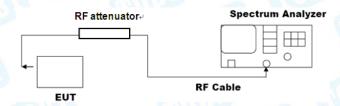
9.5 EUT Operating Mode

Please refer to the description of test mode.

9.6 Test Data

Please refer to the external appendix report of BT.

10. Carrier frequency separation


10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247(a)(1)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	P _{max-pk} ≤ 1 W	
	<i>N</i> _{ch} ≥ 75	
	f ≥ MAX { 25 kHz, BW20dB }	
	max. BW20dB not specified	
	$tch \le 0.4$ s for $T = 0.4^* Nch$	
Carrier frequency	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5
separation	<i>Nch</i> ≥ 15	
AUL	f ≥ [MAX{25 kHz, 0.67*BW20dB}	
A CONTRACT	OR MAX{25 kHz, BW20dB}]	
	max. BW20dB not specified	
	$tch \le 0.4 ext{ s for } T = 0.4^* N_{ch}$	
t_{ch} = average time of occupancy; T = period; N_{ch} = # hopping frequencies; BW = bandwidth; f = hopping channel carrier frequency separation		

10.2 Test Setup

10.3 Test Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

a) Span: Wide enough to capture the peaks of two adjacent channels.

b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

- c) Video (or average) bandwidth (VBW) \geq RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

Report No.: TBR-C-202206-0362-5 Page: 27 of 45

10.4 Deviation From Test Standard

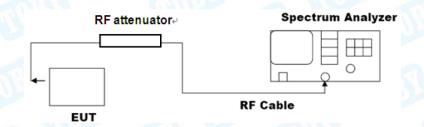
No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Please refer to the external appendix report of BT.


11. Time of occupancy (dwell time)

11.1 Test Standard and Limit

- 11.1.1 Test Standard FCC Part 15.247(a)(1)
- 11.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	<i>P</i> max-pk ≤ 1 W	
	<i>N</i> _{ch} ≥ 75	
	f ≥ MAX { 25 kHz, BW20dB }	
	max. BW20dB not specified	
	$tch \le 0.4$ s for $T = 0.4^*Nch$	and a start
Time of occupancy	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5
(dwell time)	<i>Nch</i> ≥ 15	
	f ≥ [MAX{25 kHz, 0.67*ВW20dв}	
	OR MAX{25 kHz, BW20dB}]	
	max. BW20dB not specified	
	$tch \le 0.4$ s for $T = 0.4^* N_{ch}$	

11.2 Test Setup

11.3 Test Procedure

• The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

a) Span: Zero span, centered on a hopping channel.

b) RBW shall be \Box channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.

c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.

d) Detector function: Peak.

e) Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies

Report No.: TBR-C-202206-0362-5 Page: 29 of 45

with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) =

(number of hops on spectrum analyzer)x(period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

11.4 Deviation From Test Standard

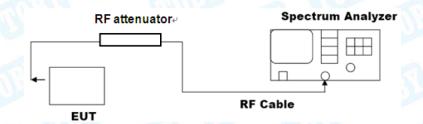
No deviation

11.5 Antenna Connected Construction

Please refer to the description of test mode.

11.6 Test Data

Please refer to the external appendix report of BT.



12. Number of hopping frequencies

- 12.1 Test Standard and Limit
 - 12.1.1 Test Standard FCC Part 15.247(b)(1)
 - 12.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	P _{max-pk} ≤ 1 W	
	<i>N</i> _{ch} ≥ 75	
TUD'S	f ≥ MAX { 25 kHz, BW20dB }	
	max. BW20dB not specified	
Original	$tch \le 0.4$ s for $T = 0.4^* Nch$	RUDD
Carrier frequency	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5
separation	<i>Nch</i> ≥ 15	
	f ≥ [MAX{25 kHz, 0.67*BW20dB}	COULD -
	OR MAX{25 kHz, BW20dB}]	
	max. BW20dB not specified	BU _ MUDU
	$tch \le 0.4$ s for $T = 0.4^* N_{ch}$	

12.2 Test Setup

12.3 Test Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

c) VBW ≥ RBW.

- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the

hopping frequencies.

Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

12.4 Deviation From Test Standard

No deviation

12.5 Antenna Connected Construction

Please refer to the description of test mode.

12.6 Test Data

Please refer to the external appendix report of BT.

13. Antenna Requirement

13.1 Test Standard and Limit

11.1.1 Test Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

13.2 Deviation From Test Standard

No deviation

13.3 Antenna Connected Construction

The gains of the antenna used for transmitting is -0.68 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

13.4 Test Data

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type		
12	Permanent attached antenna	no
2	Unique connector antenna	
2	Professional installation antenna	NOP

Attachment A-- Conducted Emission Test Data

perature:	24.4 ℃		Re	lative Humic	dity: 4	4%	<u>ann</u>
Voltage:	AC 120	0V/60Hz				10	
ninal:	Line		(III)	0	(II)	1 de	
Mode:							A COM
nark:	Only w	orse case is	reported.	N.V.	-		
dBu¥						NP-	1
						AVG:	
Х'n	X						
1 VMMM	MAN	n without a	. Aug				
Nh. P.	my have	1 mm	WWWWWW	"hunn	mm	mm	MAN.
A ANNA	-M Kn		Jun J	Minin	n	MM	MM. peak
			<u>м</u>	V V			AVG
50	0.5		(MHz)	5			30.000
		Peoding	Correct	Measure			
o. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1 (0.1539	34.08	11.10	45.18	65.78	-20.60	QP
2 (0.1539	18.90	11.10	30.00	55.78	-25.78	AVG
3 ().1740	31.79	11.06	42.85	64.76	-21.91	QP
4 (
	0.1740	17.70	11.06	28.76	54.76	-26.00	AVG
	0.1740 0.4180	17.70 29.60	11.06 10.91	28.76 40.51		-26.00 -16.98	AVG QP
5 (57.49		QP
5 (6 * (0.4180	29.60	10.91	40.51	57.49 47.49	-16.98	QP
5 (6 * (7 (0.4180 0.4180	29.60 23.45	10.91 10.91	40.51 34.36	57.49 47.49 56.00	-16.98 -13.13	QP AVG
5 (6 * (7 (8 (0.4180 0.4180 0.8620	29.60 23.45 21.49	10.91 10.91 10.77	40.51 34.36 32.26	57.49 47.49 56.00 46.00	-16.98 -13.13 -23.74	QP AVG QP
5 (6 * (7 (8 (9)	0.4180 0.4180 0.8620 0.8620	29.60 23.45 21.49 16.70	10.91 10.91 10.77 10.77	40.51 34.36 32.26 27.47	57.49 47.49 56.00 46.00 56.00	-16.98 -13.13 -23.74 -18.53	QP AVG QP AVG
5 (6 * (7 (8 (9)	0.4180 0.4180 0.8620 0.8620 1.9540	29.60 23.45 21.49 16.70 17.93	10.91 10.91 10.77 10.77 10.51	40.51 34.36 32.26 27.47 28.44	57.49 47.49 56.00 46.00 56.00 46.00	-16.98 -13.13 -23.74 -18.53 -27.56	QP AVG QP AVG QP
	Voltage: ninal: Mode: nark: dBuV A A A A A A A A A A A A A A A A A A A	Voltage: AC 120 ninal: Line Mode: Mode nark: Only w dBuV Image: Constraint of the second of the	Voltage: AC 120V/60Hz ninal: Line Mode: Mode 1 nark: Only worse case is dBuV AC 120V/60Hz Mode 1 nark: Only worse case is dBuV AC 120V/60Hz Note 1 000 0 019 worse case is Reading Level MHz dBuV 1 0.1539 34.08 2 0.1539 18.90	Voltage: AC 120V/60Hz inal: Line Mode: Mode 1 nark: Only worse case is reported. dBuV data 0 0.1 0 0.5 (MHz) 0 0.5 (MHz) 0 0.1539 34.08 11.10 2 0.1539 18.90 11.10	Voltage: AC 120V/60Hz minal: Line Mode: Mode 1 ark: Only worse case is reported. dBuV Image: Construction of the second s	Voltage: AC 120V/60Hz Mode: Mode 1 Mode: Only worse case is reported. dBuV dBuV AC 120V/60Hz dBuV dBuV dBuV AC 120V/60Hz dBuV AC 120V/60Hz dBuV dBuV dBuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV ABuV	Voltage: AC 120V/60Hz Mode: Mode 1 Mode: Mode 1 mark: Only worse case is reported. dBuV PP: AVG: dBuV PP: AVG: Dot Reading Level Correct Factor Measure- ment Limit Dver Over MHz dBuV dBuV dBuV dBuV dBuV dBuV MK. Freq. Reading Level Correct Factor Measure- ment Limit Limit Over MHz dBuV <

Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

TOBY

Temperature:	24.4 °C	Rela	tive Humidity:	44%
Test Voltage:	AC 120V/60Hz		COLS .	
Ferminal:	Neutral		1	
Test Mode:	Mode 1	COURS	111	
Remark:	Only worse case i	is reported.	AN T	CU107
	Man Min Man			
20				

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1539	32.47	10.99	43.46	65.78	-22.32	QP
2		0.1539	16.70	10.99	27.69	55.78	-28.09	AVG
3		0.1780	29.33	11.05	40.38	64.57	-24.19	QP
4		0.1780	14.53	11.05	25.58	54.57	-28.99	AVG
5		0.1986	28.00	11.12	39.12	63.66	-24.54	QP
6		0.1986	11.36	11.12	22.48	53.66	-31.18	AVG
7		0.4300	27.49	10.90	38.39	57.25	-18.86	QP
8	*	0.4300	19.29	10.90	30.19	47.25	-17.06	AVG
9		0.8460	15.52	10.79	26.31	56.00	-29.69	QP
10		0.8460	8.43	10.79	19.22	46.00	-26.78	AVG
11		1.7180	15.83	10.59	26.42	56.00	-29.58	QP
12		1.7180	7.89	10.59	18.48	46.00	-27.52	AVG

Remark: 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Attachment B--Unwanted Emissions Data

---Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

emperature:	23.5℃ Relative Humidity: 46%
est Voltage:	AC 120V/60Hz
Ant. Pol.	Horizontal
est Mode:	Mode 2
Remark:	Only worse case is reported.
80.0 dBu∀/m	
30	(RF)FCC 15C 3M Radiation Margin -6 dB

*:Maximum data x:Over limit !:over margin

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		138.3873	48.48	-14.69	33.79	43.50	-9.71	peak
2		185.7882	43.08	-13.74	29.34	43.50	-14.16	peak
3		263.8190	43.49	-10.69	32.80	46.00	-13.20	peak
4	*	309.9977	50.24	-8.12	42.12	46.00	-3.88	peak
5		372.0045	44.05	-7.56	36.49	46.00	-9.51	peak
6		893.8567	31.45	2.38	33.83	46.00	-12.17	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

TOBY

Temperature:	23.5℃		R	elative Humi	dity:	46%	A
Test Voltage:	AC 120	V/60Hz				5	ALL
Ant. Pol.	Vertical	0m		A 19			
Test Mode:	Mode 2				01		-
Remark:	Only w	orse case i	s reported.	60		110	WW
80.0 dBuV/m							
30 -20			r			15C 3M Radiation Margin -6	
30.000 40 5	50 60 70	80	(MHz)	300	400	500 600 700	1000.00
No. Mk. F	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		2010.		mont			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
					dBuV/m 43.50		Detecto peak
1 140	MHz	dBuV	dB/m	dBuV/m		-14.64	peak
1 140 2 185	MHz).3421	dBuV 43.53	dB/m -14.67	dBuV/m 28.86	43.50	-14.64	
1 140 2 185 3 * 309	MHz 0.3421 5.7882	dBuV 43.53 47.57	dB/m -14.67 -13.74	dBuV/m 28.86 33.83	43.50 43.50	-14.64 -9.67 -3.27	peak peak
1 140 2 185 3 * 309 4 ! 372	MHz 0.3421 5.7882 0.9977	dBuV 43.53 47.57 50.85	dB/m -14.67 -13.74 -8.12	dBuV/m 28.86 33.83 42.73	43.50 43.50 46.00	-14.64 -9.67 -3.27 -5.41	peak peak peak

*:Maximum data x:Over limit !:over margin

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Above 1GHz

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60HZ	AUD	2 19
Ant. Pol.	Horizontal		33
Test Mode:	TX GFSK Mode 2402MHz		-

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.016	45.51	12.31	57.82	74.00	-16.18	peak
2	*	4804.426	32.61	12.31	44.92	54.00	-9.08	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60HZ	IV III	Charles and Charles
Ant. Pol.	Vertical	GUD	
Test Mode:	TX GFSK Mode 2402MHz		

N	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4804.238	32.80	12.31	45.11	54.00	-8.89	AVG
2		4804.296	45.57	12.31	57.88	74.00	-16.12	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60HZ	0	
Ant. Pol.	Horizontal	IN A	
Test Mode:	TX GFSK Mode 2441MHz		COD

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.608	46.35	12.81	59.16	74.00	-14.84	peak
2	*	4881.798	33.67	12.81	46.48	54.00	-7.52	AVG

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

Temperature:	23.5 ℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60HZ		
Ant. Pol.	Vertical	1115	E
Test Mode:	TX GFSK Mode 2441MHz		R

No	. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.616	46.44	12.81	59.25	74.00	-14.75	peak
2	*	4881.820	33.45	12.81	46.26	54.00	-7.74	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value <a verage limit, So only show the peak value.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60HZ		
Ant. Pol.	Horizontal		
Test Mode:	TX GFSK Mode 2480MHz		(1)))

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4959.688	33.04	13.29	46.33	54.00	-7.67	AVG
2			4959.990	45.66	13.29	58.95	74.00	-15.05	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60HZ	200	A LESS
Ant. Pol.	Vertical	TOUR	
Test Mode:	TX GFSK Mode 2480MHz	COB.	- MUL

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.706	46.61	13.29	59.90	74.00	-14.10	peak
2	*	4959.788	33.12	13.29	46.41	54.00	-7.59	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

-9.06

-16.00

AVG

peak

54.00

74.00

44.94

58.00

							20
Temperature	23.	5°C		Relative Hu	umidity:	46%	
Test Voltage:	AC	120V/60HZ			3.5		AUS
Ant. Pol.	Horizontal						1.5
Test Mode:	Mode: TX π /4-DQPSK Mode 2402MHz						
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector

12.31

12.31

Remark:

1

2

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

4803.764

4804.374

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

32.63

45.69

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60HZ		20			
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX π /4-DQPSK Mode 240	2MHz				

N	o. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	ł	4803.588	32.60	12.31	44.91	54.00	-9.09	AVG
2			4804.384	45.39	12.31	57.70	74.00	-16.30	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

dB

-14.93

-7.90

Detector

peak

AVG

Temperature:	23.5	5℃		Relative Hu	imidity:	46%	
Test Voltage:	AC	AC 120V/60HZ					MUP
Ant. Pol.	. Pol. Horizontal						
Test Mode:	Test Mode: TX π /4-DQPSK Mode 2441MHz						
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	

dB/m

dBuV/m

59.07

46.10

dBuV/m

74.00

54.00

2	*	4882.150	33.29	12.81	

dBuV

46.26

MHz

4881.838

Remark:

1

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX π /4-DQPSK Mode 2441	MHz				

No	o. M	1k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4	882.100	33.51	12.81	46.32	54.00	-7.68	AVG
2		4	882.408	45.98	12.81	58.79	74.00	-15.21	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

Temperature:	23.5 ℃		Relative Humidity:	46%			
Test Voltage:	AC 120V/60HZ		Con BU	MU2			
Ant. Pol.	Horizontal						
Test Mode:	TX π /4-DQPSK	TX π /4-DQPSK Mode 2480MHz					
	Reading	Correct	Measure-				

No.	Mk.	Freq.	Level		ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.810	32.91	13.29	46.20	54.00	-7.80	AVG
2		4960.428	45.79	13.30	59.09	74.00	-14.91	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

Temperature:	23.5°CRelative Humidity:46%						
Test Voltage:	AC 120V/60HZ						
Ant. Pol.	Vertical						
Test Mode:	TX π /4-DQPSK Mode 2480MHz						

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.872	45.27	13.29	58.56	74.00	-15.44	peak
2	*	4960.036	32.99	13.29	46.28	54.00	-7.72	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value <a verage limit, So only show the peak value.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60HZ						
Ant. Pol.	Horizontal						
Test Mode:	TX 8-DPSK Mode 2402MHz		CODD -				

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.940	44.63	12.31	56.94	74.00	-17.06	peak
2	*	4803.970	32.50	12.31	44.81	54.00	-9.19	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

Temperature:	23.5℃	46%							
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ							
Ant. Pol.	Vertical	The state	Contraction of the second						
Test Mode:	TX 8-DPSK Mode 2402MHz								

No	o. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4803.554	32.45	12.31	44.76	54.00	-9.24	AVG
2		4803.896	46.01	12.31	58.32	74.00	-15.68	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

Temperature:	23.5	5°C		Relative Humidity:		46%	
Test Voltage: AC 120V/60HZ							MUP.
Ant. Pol. Horizontal							
Test Mode:	TX	TX 8-DPSK Mode 2441MHz					
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	

			LOVOI	1 actor	mont			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.604	45.36	12.81	58.17	74.00	-15.83	peak
2	*	4881.960	33.25	12.81	46.06	54.00	-7.94	AVG

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

Temperature:	23.5℃	46%					
Test Voltage:	AC 120V/60HZ						
Ant. Pol.	Vertical		2010				
Test Mode:	TX 8-DPSK Mode 2441MHz						

No	o. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4881.614	33.32	12.81	46.13	54.00	-7.87	AVG
2		4881.668	45.83	12.81	58.64	74.00	-15.36	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

Temperature:	23.5	23.5 ℃		Relative Humidity:		46%		
Test Voltage:	AC	AC 120V/60HZ						
Ant. Pol.	Hor	Horizontal						
Test Mode:	TX	TX 8-DPSK Mode 2480MHz						
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		

			2010.					
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4960.042	32.84	13.29	46.13	54.00	-7.87	AVG
2		4960.314	45.61	13.29	58.90	74.00	-15.10	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60HZ	2				
Ant. Pol.	Vertical					
Test Mode:	TX 8-DPSK Mode 2480MHz		CUT!			

N	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.810	32.66	13.29	45.95	54.00	-8.05	AVG
2		4959.822	45.97	13.29	59.26	74.00	-14.74	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

--- END OF REPORT----