

FCC RADIO TEST REPORT

FCC ID: 2A7Y6-KH5S

Sample: Selfie Stick

Trade Name: N/A

Main Model: KH5S

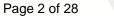
Additional Model: KH5, KH9, KH8S, KH8, KH6S, KH6, KH3S,

KH3, KH1X, KH1, R5S, R1S, R1, H1S, H1

Report No.: UNIA22070902ER-61

Report No.: UNIA22070902ER-61

Prepared for


Dongguan Mingqinxin Electronics Co., Ltd

302, building 5, fengzhimei Industrial Zone, Jintian Road, Huangdong, Fenggang, Dongguan, China

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

TEST RESULT CERTIFICATION

Applicant:	Dongguan Mingqi	nxin Electronics Co., Ltd			
Address:	302, building 5, fengzhimei Industrial Zone, Jintian Road, Huangdong, Fenggang, Dongguan, China				
Manufacturer:	Dongguan Mingqi	nxin Electronics Co., Ltd			
Address:	•	ngzhimei Industrial Zone, gang, Dongguan, China	Jintian Road,		
Product description					
Product:	Selfie Stick				
Trade Name:	N/A				
Model Name:	KH5S, KH5, KH9, KH1, R5S, R1S, F	, KH8S, KH8, KH6S, KH6 R1, H1S, H1	s, KH3S, KH3, KH1X,		
Test Methods	FCC Rules and R ANSI C63.10: 201	egulations Part 15 Subpar 3	rt C Section 15.249,		
This device described above Co., Ltd., and the test results with the FCC requirements. A report.	show that the eq	uipment under test (EU	JT) is in compliance		
This report shall not be repro document may be altered or personnel only, and shall be	revised by Shenz	hen United Testing Ted			
This report shall not be repro document may be altered or personnel only, and shall be	revised by Shenz	hen United Testing Ted			
This report shall not be repro document may be altered or personnel only, and shall be Date of Test	revised by Shenz noted in the revis	then United Testing Tection of the document.			
This report shall not be reproduced to document may be altered or personnel only, and shall be Date of Test	revised by Shenz noted in the revis : Jul. 09,	then United Testing Tection of the document. 2022 ~ Jul. 25, 2022			
This report shall not be repro document may be altered or personnel only, and shall be Date of Test	revised by Shenz noted in the revis : Jul. 09,	then United Testing Tection of the document. 2022 ~ Jul. 25, 2022			
This report shall not be repro document may be altered or personnel only, and shall be Date of Test	revised by Shenz noted in the revis : Jul. 09,	then United Testing Tection of the document. 2022 ~ Jul. 25, 2022			
This report shall not be reproduced document may be altered or personnel only, and shall be Date of Test Date (s) of performance of tests Date of Issue	revised by Shenz noted in the revis : Jul. 09,	then United Testing Tection of the document. 2022 ~ Jul. 25, 2022 2022 kahn.yang			
This report shall not be repro document may be altered or personnel only, and shall be Date of Test	revised by Shenz noted in the revis : Jul. 09,	then United Testing Tection of the document. 2022 ~ Jul. 25, 2022 2022			
This report shall not be repro document may be altered or personnel only, and shall be Date of Test	revised by Shenz noted in the revis : Jul. 09,	then United Testing Tection of the document. 2022 ~ Jul. 25, 2022 2022 kahn.yang			
This report shall not be repro document may be altered or personnel only, and shall be Date of Test Date (s) of performance of tests Date of Issue	revised by Shenz noted in the revis : Jul. 09,: Jul. 26,: Pass	then United Testing Tection of the document. 2022 ~ Jul. 25, 2022 2022 kahn.yang	chnology Co., Ltd.,		
This report shall not be repro document may be altered or personnel only, and shall be Date of Test	revised by Shenz noted in the revis	then United Testing Tection of the document. 2022 ~ Jul. 25, 2022 2022 kahn.yang Kahn yang/Supervisor	chnology Co., Ltd.,		
This report shall not be repro document may be altered or personnel only, and shall be Date of Test Date (s) of performance of tests Date of Issue	revised by Shenz noted in the revis	then United Testing Tection of the document. 2022 ~ Jul. 25, 2022 2022 kahn.yang Kahn yang/Supervisor	chnology Co., Ltd.,		

	Table of Contents		Page
1 TEST SUMMARY			4
2 GENERAL INFORMATION	ON		6
2.1 GENERAL DESCRIP	TION OF EUT		6
2.2 CARRIER FREQUEN	NCY OF CHANNELS		7
2.3 TEST MODE			7
2.4 TEST SETUP			7
2.5 DESCRIPTION TEST	T PERIPHERAL AND	EUT PERIPHERAL	8
2.6 MEASUREMENT INS	STRUMENTS LIST		9
3 CONDUCTED EMISSIO	N		10
3.1 TEST LIMIT			10
3.2 TEST SETUP			10
3.3 TEST PROCEDURE			11
3.4 TEST RESULT			11
4 RADIATED EMISSION			12
4.1 TEST LIMIT			12
4.2 TEST SETUP			13
4.3 TEST PROCEDURE			14
4.4 TEST RESULT			14
5 BAND EDGE			21
5.1 TEST LIMIT			21
5.2 TEST PROCEDURE			21
5.3 TEST RESULT			21
6 OCCUPIED BANDWIDT	H		24
6.1 TEST SETUP			24
6.2 TEST PROCEDURE			24
6.4 TEST RESULT			24
7 ANTENNA REQUIREME	ENT		26
8 PHOTO OF TEST			27
8.1 RADIATED EMISSIO	N		27
8.2 CONDUCTED EMISS	SION		28

1 TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

ITEM	STANGARD	RESULT
CONDUCTED EMISSION	FCC Part 15.207	N/A
RADIATED EMISSION	FCC Part 15.209/15.249	COMPLIANT
BAND EDGE	FCC Part 15.249/15.205	COMPLIANT
OCCUPIED BANDWIDTH	FCC Part 15.215	COMPLIANT
ANTENNA REQUIREMENT	FCC Part 15.203	COMPLIANT

1.2 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address : 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang

Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

A2LA Certificate Number: 4747.01

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 21947

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.

Page 5 of 28 Report No.: UNIA22070902ER-61

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
UNI	ANSI	9kHz ~ 150kHz	2.96	
120		150kHz ~ 30MHz	2.44	

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
INU	ANSI	9kHz ~ 30MHz	2.50	200
		30MHz ~ 1000MHz	4.80	17
12		Above 1000MHz	4.13	

Page 6 of 28

Report No.: UNIA22070902ER-61

2 GENERAL INFORMATION

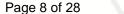
2.1 GENERAL DESCRIPTION OF EUT

Product:	Selfie Stick
Trade Name:	N/A
Main Model:	KH5S
Additional Model:	KH5, KH9, KH8S, KH8, KH6S, KH6, KH3S, KH3, KH1X, KH1, R5S, R1S, R1, H1S, H1
Model Difference:	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample model: KH5S.
FCC ID:	2A7Y6-KH5S
Operation Frequency:	2402MHz~2480MHz
Number of Channels:	40CH
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	0.5dBi
Battery:	CR1632
Adapter:	N/A
Power Source:	DC 3.0V from CR1632

2.2 CARRIER FREQUENCY OF CHANNELS

Channel List								
Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
2402	10	2422	20	2442	30	2462		
2404	11	2424	21	2444	31	2464		
2406	12	2426	22	2446	32	2466		
2408	13	2428	23	2448	33	2468		
2410	14	2430	24	2450	34	2470		
2412	15	2432	25	2452	35	2472		
2414	16	2434	26	2454	36	2474		
2416	17	2436	27	2456	37	2476		
2418	18	2438	28	2458	38	2478		
2420	19	2440	29	2460	39	2480		
	(MHz) 2402 2404 2406 2408 2410 2412 2414 2416 2418	(MHz) Charmel 2402 10 2404 11 2406 12 2408 13 2410 14 2412 15 2414 16 2416 17 2418 18	Frequency (MHz) Channel Frequency (MHz) 2402 10 2422 2404 11 2424 2406 12 2426 2408 13 2428 2410 14 2430 2412 15 2432 2414 16 2434 2416 17 2436 2418 18 2438	Frequency (MHz) Channel Frequency (MHz) Channel 2402 10 2422 20 2404 11 2424 21 2406 12 2426 22 2408 13 2428 23 2410 14 2430 24 2412 15 2432 25 2414 16 2434 26 2416 17 2436 27 2418 18 2438 28	Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) 2402 10 2422 20 2442 2404 11 2424 21 2444 2406 12 2426 22 2446 2408 13 2428 23 2448 2410 14 2430 24 2450 2412 15 2432 25 2452 2414 16 2434 26 2454 2416 17 2436 27 2456 2418 18 2438 28 2458	Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel 2402 10 2422 20 2442 30 2404 11 2424 21 2444 31 2406 12 2426 22 2446 32 2408 13 2428 23 2448 33 2410 14 2430 24 2450 34 2412 15 2432 25 2452 35 2414 16 2434 26 2454 36 2416 17 2436 27 2456 37 2418 18 2438 28 2458 38		

2.3 TEST MODE


The EUT was programmed to be in continuously transmitting mode.

Channel List				
Test Channel	EUT Channel	Test Frequency (MHz)		
Low	CH00	2402		
Middle	CH19	2440		
High	CH39	2480		

2.4 TEST SETUP

Operation of EUT during Radiation testing:

EUT

2.5 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Note
E-1	Selfie Stick	N/A	KH5S	EUT
3	j			
		111		
			D.	1 [2]

Item	Shielded Type	Ferrite Core	Length	Note
				. [7]
	j ;			
			ri i	
			12	
	ai .			

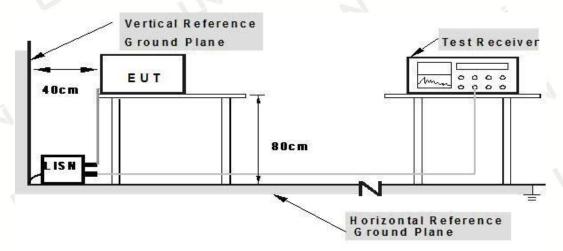
Note:

- 1. The support equipment was authorized by Declaration of Confirmation.
- 2. For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- 3. "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.6 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
		Conduction Em	ssions Measuremer	nt	
1	Conducted Emission Test Software	EZ-EMC	Ver.CCS-3A1-CE	N/A	N/A
2	AMN	Schwarzbeck	NNLK8121	8121370	2022.09.22
3	AAN	TESEQ	T8-Cat6	38888	2022.09.22
4	Pulse Limiter	CYBRTEK	EM5010	E115010056	2023.05.30
5	EMI Test Receiver	Rohde&Schwarz	ESCI	101210	2022.09.22
		Radiated Emis	sions Measurement	P	i
1	Radiated Emission Test Software	EZ-EMC	Ver.CCS-03A1	N/A	N/A
2	Horn Antenna	Sunol	DRH-118	A101415	2022.09.27
3	Broadband Hybrid Antenna	Sunol	JB1	A090215	2024.02.26
4	PREAMP	HP	8449B	3008A00160	2022.09.22
5	PREAMP	HP	8447D	2944A07999	2023.05.30
6	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2022.09.22
7	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2022.09.22
8	Signal Generator	Agilent	E4421B	MY4335105	2022.09.22
9	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2022.09.22
10	MXA Signal Analyzer	Keysight	N9020A	MY51110104	2022.09.22
11	RF Power sensor	DARE	RPR3006W	15I00041SNO88	2023.05.30
12	RF Power sensor	DARE	RPR3006W	15I00041SNO89	2023.05.30
13	RF power divider	Anritsu	K241B	992289	2022.09.22
14	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2022.09.22
15	Active Loop Antenna	Com-Power	AL-130R	10160009	2023.05.30
16	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2022.09.22
17	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2023.05.30
18	Horn Antenna	A-INFOMW	LB-180400-KF	J211060660	2022.09.27
19	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2022.09.22
20	Signal Generator	Agilent	N5183A	MY47420153	2022.09.22
21	Spctrum Analyzer	Rohde&Schwarz	FSP 40	100501	2022.09.22
22	Power Meter	KEYSIGHT	N1911A	MY50520168	2022.09.22
23	Frequency Meter	VICTOR	VC2000	997406086	2022.09.22
24	DC Power Source	HYELEC	HY5020E	055161818	2022.09.22

3 CONDUCTED EMISSION


3.1 TEST LIMIT

For unintentional device, according to § 15.207(a) Line Conducted Emission Limits is as following

	Maximum RF Line Voltage (dBμV)				
Frequency (MHz)	CLASS A		CLASS B		
(Q.P.	Ave.	Q.P.	Ave.	
0.15~0.50	79	66	66~56*	56~46*	
0.50~5.00	73	60	56	46	
5.00~30.0	73	60	60	50	

^{*} Decreasing linearly with the logarithm of the frequency.
For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 TEST SETUP

Note: 1.Support units were connected to second LISM.

2.Both of LISMs (AMM) are 80 cm from EUT and at least 80 from other units and other metal planes

Page 11 of 28

Report No.: UNIA22070902ER-61

3.3 TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is placed on a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

3.4 TEST RESULT

N/A

Remark: EUT is powered by DC 3.0V of CR1632 battery.

4 RADIATED EMISSION

4.1 TEST LIMIT

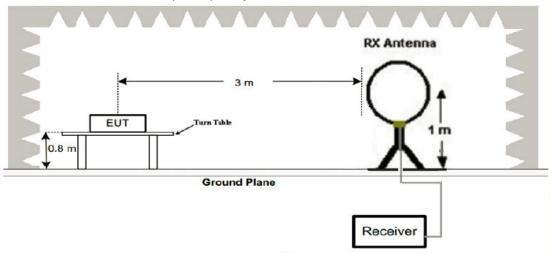
For unintentional device, according to § 15.209(a), except for Class B digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F (kHz)	-	Quasi-peak	300
0.490MHz-1.705MHz	24000/F (kHz)	-	Quasi-peak	30
1.705MHz-30MHz	30	-	Quasi-peak	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
1011	500	54.0	Average	3
Above 1GHz	500	74.0	Peak	3

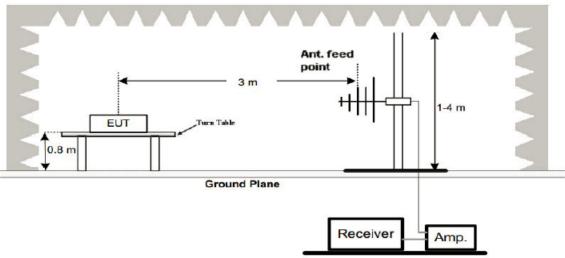
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

Limit: (Field strength of the fundamental signal)

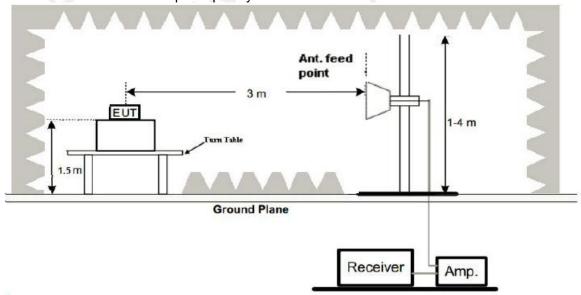
Frequency	Limit (dBuV/m @3m)	Remark
2400MHz-2483.5MHz	94.0	Average Value
	114.0	Peak Value


Page 13 of 28

Report No.: UNIA22070902ER-61



4.2 TEST SETUP


1. Radiated Emission Test-Up Frequency Below 30MHz

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz

Page 14 of 28 Report No.: UNIA22070902ER-61

4.3 TEST PROCEDURE

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane.

 And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9kHz to 25GHz per FCC PART 15.33(a).

For battery operated equipment, the equipment tests shall be performed using a new battery.

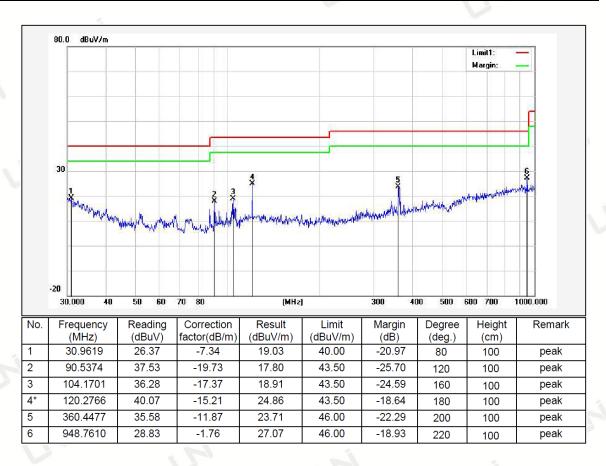
4.4 TEST RESULT

PASS

Remark:

- 1. All modes were test at Low, Middle, and High channel, only the worst result of GFSK Low Channel was reported for below 1GHz test.
- 2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, and test data recorded in this report.
- 3. Radiated emission test from 9kHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9kHz to 30MHz and not recorded in this report.

Below 1GHz Test Results:


Temperature:	24°C	Relative Humidity:	48%			
Test Date:	Jul. 14, 2022	Pressure:	1010hPa			
Test Voltage:	DC 3.0V	Phase:	Horizontal			
Test Mode:	Transmitting mode of GFSK 2402MHz					

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

Temperature:	24°C	Relative Humidity:	48%			
Test Date:	Jul. 14, 2022	Pressure:	1010hPa			
Test Voltage:	DC 3.0V	Phase:	Vertical			
Test Mode:	Transmitting mode of GFSK 2402MHz					

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

Remark

- 1. Measuring frequencies from 9 kHz to the 1 GHz, Radiated emission test from 9kHz to 30MHzwas verified, and no any emission was found except system noise floor.
- 2. * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- 3. The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120kHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10kHz.

Above 1 GHz Test Results: CH00 (2402MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	112.46	-5.84	106.62	114	-7.38	PK
2402	82.51	-5.84	76.67	94	-17.33	AV
4804	60.22	-3.64	56.58	74	-17.42	PK
4804	50.18	-3.64	46.54	54	-7.46	AV
7206	57.29	-0.95	56.34	74	-17.66	PK
7206	47.40	-0.95	46.45	54	-7.55	AV
Remark: Fac	ctor = Antenna	Factor + Cab	ole Loss – Pre-amp	lifier. Margin :	= Absolute L	.evel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2402	112.44	-5.84	106.60	114	-7.40	PK
2402	82.39	-5.84	76.55	94	-17.45	AV
4804	60.17	-3.64	56.53	74	-17.47	PK
4804	50.16	-3.64	46.52	54	-7.48	AV
7206	57.27	-0.95	56.32	74	-17.68	PK
7206	47.19	-0.95	46.24	54	-7.76	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit

CH19 (2440MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2440	112.21	-5.71	106.50	114	-7.50	PK
2440	82.11	-5.71	76.40	94	-17.60	AV
4880	59.77	-3.51	56.26	74	-17.74	PK
4880	50.01	-3.51	46.50	54	-7.50	AV
7320	56.90	-0.82	56.08	74	-17.92	PK
7320	46.70	-0.82	45.88	54	-8.12	AV
Remark: Fac	ctor = Antenna	Factor + Cab	ole Loss – Pre-amp	lifier. Margin :	= Absolute L	evel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2440	112.25	-5.71	106.54	114	-7.46	PK
2440	82.13	-5.71	76.42	94	-17.58	AV
4880	59.75	-3.51	56.24	74	-17.76	PK
4880	49.96	-3.51	46.45	54	-7.55	AV
7320	56.85	-0.82	56.03	74	-17.97	PK
7320	46.67	-0.82	45.85	54	-8.15	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2480	112.10	-5.65	106.45	114	-7.55	PK
2480	81.83	-5.65	76.18	94	-17.82	AV
4960	59.63	-3.43	56.20	74	-17.80	PK
4960	49.71	-3.43	46.28	54	-7.72	AV
7440	56.63	-0.75	55.88	74	-18.12	PK
7440	46.59	-0.75	45.84	54	-8.16	AV
Remark: Fac	ctor = Antenna	Factor + Cab	ole Loss – Pre-amp	lifier. Margin	= Absolute L	.evel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2480	112.08	-5.65	106.43	114	-7.57	PK
2480	81.85	-5.65	76.20	94	-17.80	AV
4960	59.53	-3.43	56.10	74	-17.90	PK
4960	49.67	-3.43	46.24	54	-7.76	AV
7440	56.53	-0.75	55.78	74	-18.22	PK
7440	46.57	-0.75	45.82	54	-8.18	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit

Page 20 of 28

Report No.: UNIA22070902ER-61

Remark:

- 1. Measuring frequencies from 1 GHz to the 25 GHz.
- 2. "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- 3. * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- 4. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120kHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10kHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 6. When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.
- 7. All modes of operation were investigated and the worst-case emissions of $\pi/4$ DQPSK are reported.
- 8. For fundamental frequency, RBW >20dB BW, VBW>=3XRBW, PK detector for PK value, AV detector for AV value.

Page 21 of 28

Report No.: UNIA22070902ER-61

5 BAND EDGE

5.1 TEST LIMIT

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 TEST PROCEDURE

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 1MHz and VBM to 3MHz to measure the peak field strength and set RBW to 1MHz and VBW to 10Hz to measure the average radiated field strength. Peak detector is for both

5.3 TEST RESULT

PASS

Operation Mode: TX CH00 (2402MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector					
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type					
2310	57.19	-5.81	51.38	74	-22.62	PK					
2310	/	-5.81	/	54	/	AV					
2390	57.24	-5.84	51.40	74	-22.60	PK					
2390	1	-5.84	/	54	/	AV					
2400	57.32	-5.84	51.48	74	-22.52	PK					
2400	/	-5.84	/	54	/	AV					
Remark: Fac	tor = Antenna Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.									

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
2310	57.35	-5.81	51.54	74	-22.46	PK			
2310	/	-5.81	/	54	/	AV			
2390	57.37	-5.84	51.53	74	-22.47	PK			
2390	/	-5.84	/	54	1	AV			
2400	57.26	-5.84	51.42	74	-22.58	PK			
2400	/	-5.84	1	54	1	AV			
Remark: Fac	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Operation Mode: TX CH39 (2480MHz)

Horizontal:

		32			45	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.00	-5.65	51.35	74	-22.65	PK
2483.5	/	-5.65	/	54	/	AV
2500	57.06	-5.72	51.34	74	-22.66	PK
2500	1	-5.72		54	/	AV
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Vertical:

						etter.
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.10	-5.65	51.45	74	-22.55	PK
2483.5	/	-5.65	/	54	1	AV
2500	57.06	-5.72	51.34	74	-22.66	PK
2500	/	-5.72	/	54	/	AV
Devel France Advance France October Development						

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Page 24 of 28

Report No.: UNIA22070902ER-61

6 OCCUPIED BANDWIDTH

6.1 TEST SETUP

Same as Radiated Emission Measurement.

6.2 TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on ANSI C63.10 section 6.9.2: RBW=30kHz, VBW=100kHz, Span=3MHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

6.4 TEST RESULT

PASS

GFSK Modulation:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
CH00	2402	1.130	PASS
CH19	2440	1.130	PASS
CH39	2480	1.130	PASS

CH00: 2402MHz

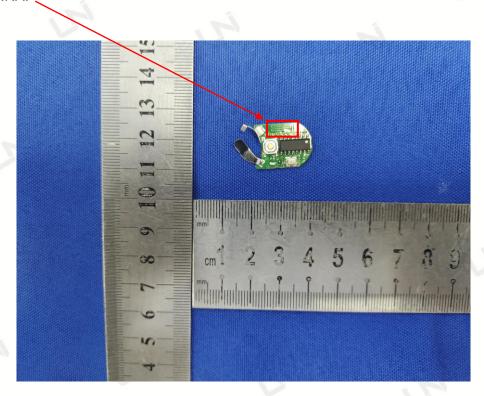
CH19: 2440MHz

CH39: 2480MHz

Page 26 of 28

Report No.: UNIA22070902ER-61

7 ANTENNA REQUIREMENT


Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, The directional gains of antenna used for transmitting is 0.5dBi.

ANTENNA:

8 PHOTO OF TEST

8.1 RADIATED EMISSION

NI/A

End of Report