TEST REPORT # **CERTIFICATE OF CONFORMITY** Standard: 47 CFR FCC Part 15, Subpart B, Class B ANSI C63.4:2014 Report No.: FDCGWN-WTW-P22080986 Model No.: HexaPad 10 BC FCC ID: 2A7XUHEXAPAD10BC **Received Date: 2022/8/31** Test Date: 2022/9/1 ~ 2022/9/5 Issued Date: 2022/9/26 Applicant: Acura Technologies Address: Avenida Antártico, 381, 14th andar - CEP: 09726-150 - São Bernardo do Campo - SP Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kewi Shan Dist., Taoyuan City 33383, Taiwan FCC Registration / **Designation Number:** 328930 / TW1050 Ace Wu / Project Engineer M. We This test report consists of 21 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards. This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at https://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Prepared by : Anna Lee / Specialist Report No.: FDCGWN-WTW-P22080986 Page No. 1 / 21 Report Format Version: 7.1.0 # **Table of Contents** | Rele | ase Control Record | 3 | |---|--|-------------| | 1 | Certificate | 4 | | 2 | Summary of Test Results | 5 | | 2.1
2.2 | · · · · · · · · · · · · · · · · · · · | | | 3 | General Information | 6 | | 3.1
3.2
3.3
3.4
3.5
3.6
3.7 | Primary Clock Frequencies of Internal Source | 6
7
8 | | 4 | Test Instruments | 9 | | 4.1
4.2
4.3 | 2 Radiated Emissions up to 1 GHz | 9 | | 5 | Limits of Test Items | 11 | | 5.1
5.2
5.3 | 2 Radiated Emissions up to 1 GHz | 11 | | 6 | Test Arrangements | 12 | | 6.1
6.2
6.3 | 2 Radiated Emissions up to 1 GHz | 13 | | 7 | Test Results of Test Item | 15 | | 7.1
7.2
7.3 | 2 Radiated Emissions up to 1 GHz | 17 | | 8 | Information of the Testing Laboratories | 21 | # **Release Control Record** | Issue No. | Description | Date Issued | |----------------------|-------------------|-------------| | FDCGWN-WTW-P22080986 | Original release. | 2022/9/26 | Report No.: FDCGWN-WTW-P22080986 Page No. 3 / 21 Report Format Version: 7.1.0 ### 1 Certificate Product: HexaPad 10BC Brand: ACURA Technologies, part of HID Test Model: HexaPad 10 BC FCC ID: 2A7XUHEXAPAD10BC Sample Status: Engineering sample Applicant: Acura Technologies **Test Date:** 2022/9/1 ~ 2022/9/5 Standard: 47 CFR FCC Part 15, Subpart B, Class B ANSI C63.4:2014 The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report. # 2 Summary of Test Results The test items that the EUT need to perform in accordance with its interfaces, evaluated functions, are as follows: | Standard / Clause | Test Item | Result | Remark | |-------------------|--------------------------------------|--------|---| | FCC Part 15.107 | Conducted Emissions from Power Ports | Pagg | Minimum passing Class B margin is -12.61 dB at 0.97380, 1.20546 MHz | | FCC Part 15.109 | Radiated Emissions up to 1 GHz | Pass | Minimum passing Class B margin is
-4.09 dB at 456.18 MHz | | FCC Part 15.109 | Radiated Emissions above 1 GHz | Pass | Minimum passing Class B margin is -20.55 dB at 4741.70 MHz | Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. ### 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Specification | Expanded Uncertainty (k=2) (±) | Maximum allowable uncertainty (±) | |--------------------------------------|----------------|--------------------------------|--------------------------------------| | Conducted Emissions from Power Ports | 9 kHz ~ 30 MHz | 2.79 dB | 3.4 dB (<i>U</i> cispr) | | Radiated Emissions up to 1 GHz | 30 MHz ~ 1 GHz | 4.14 dB | 6.3 dB (<i>U</i> cispr) | | Radiated Emissions above 1 GHz | 1 GHz ~ 6 GHz | 5.09 dB | 5.2 dB (<i>U</i> _{cispr}) | The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated. #### 2.2 Supplementary Information There is not any deviation from the test standards for the test method, and no modifications required for compliance. Report No.: FDCGWN-WTW-P22080986 Page No. 5 / 21 Report Format Version: 7.1.0 # 3 General Information # 3.1 Description of EUT | Product | HexaPad 10BC | |---------------------|---------------------------------| | Brand | ACURA Technologies, part of HID | | Test Model | HexaPad 10 BC | | FCC ID | 2A7XUHEXAPAD10BC | | RFID module FCC ID | QV5MERCURY6EN | | Sample Status | Engineering sample | | Operating Software | N/A | | Power Supply Rating | 5 Vdc (USB) | | Accessory Device | N/A | | Data Cable Supplied | N/A | ### 3.2 Primary Clock Frequencies of Internal Source The highest frequency generated or used within the EUT or on which the EUT operates or tunes is 928MHz, provided by Acura Technologies., for detailed internal source, please refer to the manufacturer's specifications. #### 3.3 Features of EUT The tests reported herein were performed according to the method specified by Acura Technologies., for detailed feature description, please refer to the manufacturer's specifications or user's manual. Please refer to appendix of the report if the applicant has provided additional descriptions of the EUT. Report No.: FDCGWN-WTW-P22080986 Page No. 6 / 21 Report Format Version: 7.1.0 # 3.4 Operating Modes of EUT and Determination of Worst Case Operating Mode Test modes are presented in the report as below. | | Test Condition | | | | | |------|---|--|--|--|--| | Mode | Conducted Emissions from Power Ports | | | | | | Α | EUT with Notebook + UHF Link + Barcode Scan | | | | | | Mode | Radiated Emissions up to 1 GHz | | | | | | Α | EUT with Notebook + UHF Link + Barcode Scan | | | | | | Mode | Mode Radiated Emissions above 1 GHz | | | | | | Α | EUT with Notebook + UHF Link + Barcode Scan | | | | | # 3.5 Test Program Used and Operation Descriptions - a. The EUT was powered by laptop on the test table. - b. The EUT for reading RFID and barcode tag to laptop. # 3.6 Connection Diagram of EUT and Peripheral Devices # 3.7 Configuration of Peripheral Devices and Cable Connections | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|-----------|-------|---------------|------------------------------|--------|-----------------------| | Α | Laptop | DELL | Latitude 5501 | F42VP13 | N/A | Provided by Lab | | В | Mouse | DELL | MS111-P | CN-011D3V-
71581-1CJ-093M | DoC | Provided by Lab | | С | Printer | EPSON | T22 | MEEZ070388 | N/A | Provided by Lab | | D | RFID Card | N/A | N/A | N/A | N/A | Supplied by applicant | | Е | Barcode | N/A | N/A | N/A | N/A | Provided by Lab | | ID | Cable Descriptions | Qty. | Length
(m) | Shielding
(Yes/No) | Cores
(Qty.) | Remarks | |----|--------------------|------|---------------|-----------------------|-----------------|-----------------------| | 1 | USB Cable | 1 | 1.9 | Yes | 0 | Supplied by applicant | | 2 | USB Cable | 1 | 1.8 | Yes | 0 | Provided by Lab | | 3 | USB Cable | 1 | 1.8 | Yes | 0 | Provided by Lab | Report No.: FDCGWN-WTW-P22080986 Page No. 8 / 21 Report Format Version: 7.1.0 # 4 Test Instruments The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA. ### 4.1 Conducted Emissions from Power Ports | Description
Manufacturer | Model No. | Serial No. | Calibrated
Date | Calibrated
Until | |---|-------------------------|----------------|--------------------|---------------------| | DC-LISN
SCHWARZBECK MESS-
ELETRONIK | NNBM 8126G | 8126G-069 | 2021/11/10 | 2022/11/9 | | LISN
R&S | ESH3-Z5 | 100311 | 2021/9/7 | 2022/9/6 | | LISN
ROHDE & SCHWARZ | ENV216 | 101826 | 2022/3/14 | 2023/3/13 | | LISN
Schwarzbeck | NNLK 8121 | 8121-731 | 2022/5/26 | 2023/5/25 | | RF Coaxial Cable
WOKEN | 5D-FB | Cable-cond1-01 | 2022/1/15 | 2023/1/14 | | Software
BVADT | BVADT_Cond_
V7.3.7.4 | N/A | N/A | N/A | | Test Receiver
Rohde&Schwarz | ESCI | 100613 | 2021/12/3 | 2022/12/2 | # Notes: - 1. The test was performed in HY Conduction 1. - 2. Tested Date: 2022/9/5 # 4.2 Radiated Emissions up to 1 GHz | Description
Manufacturer | Model No. | Serial No. | Calibrated
Date | Calibrated
Until | |-----------------------------|---------------------------------|-------------------|--------------------|---------------------| | Antenna Tower (H) | MFA-440 | 970705 | N/A | N/A | | Antenna Tower (V) | MFA-440 | 9707 | N/A | N/A | | Bi_Log Antenna | VIII D0469 | 9168-148 | 2021/10/19 | 2022/10/18 | | Schwarbeck | VULB9168 | 9168-156 | 2021/10/19 | 2022/10/18 | | Controller (H) | MF7802 | 08093 | N/A | N/A | | Controller (V) | MF7802 | 074 | N/A | N/A | | Pre_Amplifier | 240N | 352923 | 2022/5/14 | 2023/5/13 | | Sonoma | 310N | 352924 | 2022/5/14 | 2023/5/13 | | RF Coaxial Cable | LMR-600(11.8M)+LMR-
400 (7M) | CABLE-CH1(HOR)-01 | 2021/9/4 | 2022/9/3 | | TIMES | LMR-600(18M)+LMR-400
(7M) | CABLE-CH1(VER)-01 | 2021/9/4 | 2022/9/3 | | Software | ADT_Radiated_V8.7.08 | N/A | N/A | N/A | | Test Receiver ESR7 | ESR | 101240 | 2021/11/3 | 2022/11/2 | | R&S | ESR | 101264 | 2022/4/11 | 2023/4/10 | | Turn Table | DS430 | 50303 | N/A | N/A | # Notes: - 1. The test was performed in HY 10M Chamber. The test site validated date: 2022/8/6 (NSA) - 2. Tested Date: 2022/9/1 ### 4.3 Radiated Emissions above 1 GHz | Description
Manufacturer | Model No. | Serial No. | Calibrated
Date | Calibrated
Until | |--|---------------------------------------|---------------------------------|--------------------|---------------------| | Antenna Tower
BVADT | AT100 | AT93021702 | N/A | N/A | | Attenuator
Mini-Circuits | BW-N4W5+ | PAD-CH3-03 | 2022/7/9 | 2023/7/8 | | BandPass Filter | BRM17690-01 | 002 | 2021/9/4 | 2022/9/3 | | MICRO-TRONICS | BRM50716-01 | G010 | 2021/9/4 | 2022/9/3 | | Boresight antenna tower fixture BV | BAF-02 | 3 | N/A | N/A | | Controller
BVADT | SC100 | SC93021702 | N/A | N/A | | Horn Antenna
Schwarzbeck | BBHA 9120 D | 209 | 2021/11/14 | 2022/11/13 | | N9030B - PXA Signal Analyzer
KEYSIGHT | N9030B | MY60070562 | 2022/1/6 | 2023/1/5 | | Pre_Amplifier
Agilent | 8449B | 3008A02465 | 2022/3/19 | 2023/3/18 | | RF Coaxial Cable
HUBER+SUHNER&EMCI | SUCOFLEX
104&EMC104-SM-SM-
8000 | Cable-CH3-
03(309224+170907) | 2022/7/9 | 2023/7/8 | | Software
BVADT | ADT_Radiated_V8.7.08 | N/A | N/A | N/A | | Turn Table
BVADT | TT100 | TT93021702 | N/A | N/A | # Notes: - 1. The test was performed in HY 966 Chamber 2. The test site validated date: 2022/5/21 (VSWR) - 2. Tested Date: 2022/9/3 ### 5 Limits of Test Items #### 5.1 Conducted Emissions from Power Ports | Fraguency (MHz) | Class A | (dBuV) | Class B (dBuV) | | | |-----------------|------------|---------|----------------|---------|--| | Frequency (MHz) | Quasi-peak | Average | Quasi-peak | Average | | | 0.15 - 0.5 | 79 | 66 | 66 - 56 | 56 - 46 | | | 0.50 - 5.0 | 73 | 60 | 56 | 46 | | | 5.0 - 30.0 | 73 | 60 | 60 | 50 | | Notes: 1. The lower limit shall apply at the transition frequencies. ### 5.2 Radiated Emissions up to 1 GHz Emissions radiated outside of the specified bands, shall be according to the general radiated limits as following: | | Radiated Emissions Limits at 10 meters (dBµV/m) | | | | | | | | |----------------------|---|---------------------|-------------------|----|--|--|--|--| | Frequencies
(MHz) | FCC 15B,
Class A | FCC 15B,
Class B | CISPR 22, Class B | | | | | | | 30-88 | 39.1 | 29.5 | | | | | | | | 88-216 | 43.5 | 33.1 | 40 | 30 | | | | | | 216-230 | 46.4 | 35.6 | | | | | | | | 230-960 | 40.4 | 33.0 | 47 | 27 | | | | | | 960-1000 | 49.5 | 43.5 | 47 | 37 | | | | | | Radiated Emissions Limits at 3 meters (dBμV/m) | | | | | | | | |--|---------------------|---------------------|-------------------|-------------------|--|--|--| | Frequencies
(MHz) | FCC 15B,
Class A | FCC 15B,
Class B | CISPR 22, Class A | CISPR 22, Class B | | | | | | | | | | | | | | 30-88 | 49.5 | 40.0 | | | | | | | 88-216 | 54.0 | 43.5 | 50.5 | 40.5 | | | | | 216-230 | 56.9 | 46.0 | | | | | | | 230-960 | 50.9 | 40.0 | 57.5 | 47.5 | | | | | 960-1000 | 60.0 | 54.0 | 07.5 | 47.5 | | | | Notes: 1. The lower limit shall apply at the transition frequencies. #### 5.3 Radiated Emissions above 1 GHz Frequency Range (For unintentional radiators) | Highest frequency generated or used in the device or on which the device operates or tunes (MHz) | Upper frequency of measurement range (MHz) | |--|--| | Below 1.705 | 30 | | 1.705-108 | 1000 | | 108-500 | 2000 | | 500-1000 | 5000 | | Above 1000 | 5th harmonic of the highest frequency or 40GHz, whichever is lower | | Radiated Emissions Limits at 3 meters (dBµV/m) | | | | | | | |--|---------------------|---------------------|--|--|--|--| | Frequency range Class A Class B | | | | | | | | Above 1GHz | Avg: 60
Peak: 80 | Avg: 54
Peak: 74 | | | | | Notes: 1. These limit levels apply for a measurement distance of 3 m. If using a different measurement distance, the measured levels shall be extrapolated to the 3 m limit distance using a factor of 20 dB per decade of distance. The measurement distance shall place the measurement antenna in the far field of the ITE or digital apparatus under test. Report No.: FDCGWN-WTW-P22080986 Page No. 11 / 21 Report Format Version: 7.1.0 ^{2.} The limit decreases linearly with the logarithm of the frequency in the range of 0.15 to 0.50 MHz. ### 6 Test Arrangements #### 6.1 Conducted Emissions from Power Ports - a. For the table-top EUT is placed on a 0.8 meter insulation table; for the floor standing EUT shall be insulated (by insulation of 12 mm) from the horizontal reference ground plane. The EUT is placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units are connected to the power mains through another LISN. They provide coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference. - c. The test results of conducted emissions at mains ports are recorded of six worst margins for quasi-peak (mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater. Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz. For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration. Report No.: FDCGWN-WTW-P22080986 Page No. 12 / 21 Report Format Version: 7.1.0 ### 6.2 Radiated Emissions up to 1 GHz - a. For the table-top EUT is placed on a 0.8 meter to the top of rotating table; for the floor standing EUT shall be insulated (by insulation of 12 mm) from the horizontal reference ground plane. The rotating table is rotated 360 degrees to determine the position of the highest radiation. If the equipment requires a dedicated ground connection, this shall be provided and bonded to the RGP. - b. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is up to 1 GHz. Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for quasi-peak detection (QP) at frequency up to 1GHz. For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration. #### 6.3 Radiated Emissions above 1 GHz - a. For the table-top EUT is placed on a 0.8 meter to the top of rotating table; for the floor standing EUT shall be insulated (by insulation of 12 mm) from the horizontal reference ground plane. The rotating table is rotated 360 degrees to determine the position of the highest radiation. If the equipment requires a dedicated ground connection, this shall be provided and bonded to the RGP. - b. The EUT was set d = 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna can be varied from one meter to four meters, the height of adjustment depends on the EUT height and the antenna 3dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The spectrum analyzer system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. Note: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection (PK) at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1GHz. For the actual test configuration, please refer to the related item – Photographs of the Test Configuration. # 7 Test Results of Test Item #### 7.1 Conducted Emissions from Power Ports ### **Mode A** | Frequency Range | 150 kHz ~ 30 MHz | Detector Function & Resolution Bandwidth | Quasi-Peak (QP) /
Average (AV), 9kHz | |-----------------|------------------|--|---| | Input Power | 120 Vac, 60 Hz | Environmental Conditions | 25°C, 72% RH | | Tested by | Slash Huang | | | | | Phase Of Power : Line (L) | | | | | | | | | | |----|---------------------------|-------------------|-------|----------------|-------|----------------|-------|------------|--------|------------| | No | Frequency | Correction Factor | | g Value
uV) | | n Level
uV) | | nit
uV) | | rgin
B) | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.53400 | 9.69 | 33.43 | 23.58 | 43.12 | 33.27 | 56.00 | 46.00 | -12.88 | -12.73 | | 2 | 0.91400 | 9.70 | 30.29 | 14.88 | 39.99 | 24.58 | 56.00 | 46.00 | -16.01 | -21.42 | | 3 | 0.97400 | 9.70 | 33.31 | 20.30 | 43.01 | 30.00 | 56.00 | 46.00 | -12.99 | -16.00 | | 4 | 1.42200 | 9.71 | 32.84 | 17.05 | 42.55 | 26.76 | 56.00 | 46.00 | -13.45 | -19.24 | | 5 | 1.78200 | 9.72 | 29.77 | 10.61 | 39.49 | 20.33 | 56.00 | 46.00 | -16.51 | -25.67 | | 6 | 2.03000 | 9.72 | 31.55 | 13.83 | 41.27 | 23.55 | 56.00 | 46.00 | -14.73 | -22.45 | #### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value Report No.: FDCGWN-WTW-P22080986 Page No. 15 / 21 Report Format Version: 7.1.0 | Frequency Range | 1150 kHz ~ 30 MHz | Detector Function & | Quasi-Peak (QP) / | |-----------------|-------------------|----------------------|--------------------| | | | Resolution Bandwidth | Average (AV), 9kHz | | Innut Dawar | 120 \/o.c. 60 Hz | Environmental | 25%C 720/ DU | | Input Power | 120 Vac, 60 Hz | Conditions | 25°C, 72% RH | | Tested by | Slash Huang | | | | | Phase Of Power : Neutral (N) | | | | | | | | | | |----|------------------------------|-------------------|-------|----------------|-------|----------------|-------|------------|--------|------------| | No | Frequency | Correction Factor | | g Value
uV) | | n Level
uV) | | nit
uV) | | rgin
B) | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.52155 | 9.69 | 31.85 | 17.95 | 41.54 | 27.64 | 56.00 | 46.00 | -14.46 | -18.36 | | 2 | 0.73800 | 9.70 | 32.99 | 19.69 | 42.69 | 29.39 | 56.00 | 46.00 | -13.31 | -16.61 | | 3 | 0.97380 | 9.70 | 33.69 | 20.78 | 43.39 | 30.48 | 56.00 | 46.00 | -12.61 | -15.52 | | 4 | 1.01800 | 9.70 | 29.41 | 10.18 | 39.11 | 19.88 | 56.00 | 46.00 | -16.89 | -26.12 | | 5 | 1.20546 | 9.71 | 33.68 | 19.49 | 43.39 | 29.20 | 56.00 | 46.00 | -12.61 | -16.80 | | 6 | 1.80200 | 9.72 | 32.12 | 15.13 | 41.84 | 24.85 | 56.00 | 46.00 | -14.16 | -21.15 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value # 7.2 Radiated Emissions up to 1 GHz ### **Mode A** | Frequency Range | 13() MHZ ~ 1 (4HZ | Detector Function & Resolution Bandwidth | Quasi-Peak (QP), 120 kHz | |-----------------|-------------------|--|--------------------------| | Input Power | 1120 Vac 60 Hz | Environmental Conditions | 23°C, 66% RH | | Tested By | Nick Wu | | | | | Antenna Polarity & Test Distance : Horizontal at 10 m | | | | | | | | | |----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | | 1 | 34.70 | 18.28 QP | 30.00 | -11.72 | 4.00 H | 340 | 32.67 | -14.39 | | | 2 | 106.83 | 24.05 QP | 30.00 | -5.95 | 4.00 H | 209 | 40.78 | -16.73 | | | 3 | 132.05 | 21.42 QP | 30.00 | -8.58 | 3.50 H | 243 | 36.20 | -14.78 | | | 4 | 152.81 | 20.69 QP | 30.00 | -9.31 | 4.00 H | 247 | 34.00 | -13.31 | | | 5 | 203.06 | 25.01 QP | 30.00 | -4.99 | 3.00 H | 30 | 41.15 | -16.14 | | | 6 | 553.29 | 27.46 QP | 37.00 | -9.54 | 1.50 H | 189 | 34.08 | -6.62 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) - Pre-Amplifier Factor (dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission level Limit value | Frequency Range | 13() MH7 ~ 1 (iH7 | Detector Function & Resolution Bandwidth | Quasi-Peak (QP), 120 kHz | |-----------------|-------------------|--|--------------------------| | Input Power | 120 Vac, 60 Hz | Environmental Conditions | 23°C, 66% RH | | Tested By | Nick Wu | | | | Antenna Polarity & Test Distance : Vertical at 10 m | | | | | | | | | |---|--------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | 1 | 32.58 | 23.35 QP | 30.00 | -6.65 | 1.00 V | 278 | 38.46 | -15.11 | | 2 | 48.12 | 22.37 QP | 30.00 | -7.63 | 1.52 V | 90 | 35.58 | -13.21 | | 3 | 96.07 | 17.82 QP | 30.00 | -12.18 | 1.89 V | 360 | 36.39 | -18.57 | | 4 | 150.00 | 21.37 QP | 30.00 | -8.63 | 1.00 V | 26 | 34.51 | -13.14 | | 5 | 193.60 | 23.87 QP | 30.00 | -6.13 | 1.00 V | 280 | 39.72 | -15.85 | | 6 | 456.18 | 32.91 QP | 37.00 | -4.09 | 3.39 V | 342 | 40.78 | -7.87 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) - Pre-Amplifier Factor (dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission level Limit value ### 7.3 Radiated Emissions above 1 GHz ### **Mode A** | Frequency Range | 1GHz ~ 5GHz | Detector Function & Resolution Bandwidth | Peak (PK) / Average (AV), 1MHz | |-----------------|----------------|--|--------------------------------| | Input Power | 120 Vac, 60 Hz | Environmental Conditions | 23°C, 74% RH | | Tested By | Kai Chu | | | | Antenna Polarity & Test Distance : Horizontal at 3 m | | | | | | | | | |--|--------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | 1 | 1714.85 | 45.28 PK | 74.00 | -28.72 | 1.00 H | 336 | 49.12 | -3.84 | | 2 | 1714.85 | 27.98 AV | 54.00 | -26.02 | 1.00 H | 336 | 31.82 | -3.84 | | 3 | 2755.25 | 48.65 PK | 74.00 | -25.35 | 1.74 H | 159 | 48.96 | -0.31 | | 4 | 2755.25 | 30.84 AV | 54.00 | -23.16 | 1.74 H | 159 | 31.15 | -0.31 | | 5 | 4354.10 | 46.11 PK | 74.00 | -27.89 | 1.00 H | 121 | 42.94 | 3.17 | | 6 | 4354.10 | 33.20 AV | 54.00 | -20.80 | 1.00 H | 121 | 30.03 | 3.17 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) - Pre-Amplifier Factor (dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission level Limit value | Frequency Range | 1GHz ~ 5GHz | Detector Function & Resolution Bandwidth | Peak (PK) / Average (AV), 1MHz | | |-----------------|----------------|--|--------------------------------|--| | Input Power | 120 Vac, 60 Hz | Environmental Conditions | 23°C, 74% RH | | | Tested By | Kai Chu | | | | | Antenna Polarity & Test Distance : Vertical at 3 m | | | | | | | | | |--|--------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | 1 | 1717.40 | 46.54 PK | 74.00 | -27.46 | 1.00 V | 128 | 50.38 | -3.84 | | 2 | 1717.40 | 28.57 AV | 54.00 | -25.43 | 1.00 V | 128 | 32.41 | -3.84 | | 3 | 2771.40 | 47.26 PK | 74.00 | -26.74 | 2.11 V | 197 | 47.52 | -0.26 | | 4 | 2771.40 | 32.76 AV | 54.00 | -21.24 | 2.11 V | 197 | 33.02 | -0.26 | | 5 | 4741.70 | 46.65 PK | 74.00 | -27.35 | 1.87 V | 232 | 42.10 | 4.55 | | 6 | 4741.70 | 33.45 AV | 54.00 | -20.55 | 1.87 V | 232 | 28.90 | 4.55 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) - Pre-Amplifier Factor (dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission level Limit value # 8 Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025. Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323 If you have any comments, please feel free to contact us at the following: Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@bureauveritas.com. Web Site: http://ee.bureauveritas.com.tw The address and road map of all our labs can be found in our web site also. --- END --- Report No.: FDCGWN-WTW-P22080986 Page No. 21 / 21 Report Format Version: 7.1.0