

TESTREPORT

Applicant Name : Address : Shenzhen Qianyan Technology LTD FCC: No.3301, Block C, Section 1, Chuangzhi Yuncheng Building, Liuxian Avenue, Xili Community, Xili Street, Nanshan District, Shenzhen, China IC: No. 3301, Block C, Section 1, Chuangzhi Yuncheng Building, Liuxian Avenue, Xili Community, Xili Street, Nanshan District Shenzhen 518000 China RA230403-09924E-RF 2A7VD-H7140 28789-H7140

Test Standard (s)

Report Number:

FCC ID:

IC:

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247, ISSUE 2, FEBRUARY 2017

Sample Description

Product Type:	Smart Humidifier Lite
Model No.:	H7140
Multiple Model(s) No.:	N/A
Trade Mark:	GoveeLife
Date Received:	2023/04/03
Report Date:	2023/04/19

Test Result:	Pass*
* In the configuration tested, t Prepared and Checked By:	
Dave Liang	Candy. Li
Dove Lieng	Condul i

Dave Liang

EMC Engineer

Candy Li

EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503290 Web: www.atc-lab.com

Version 122: 2023-01-30

Page 1 of 82

FCC&RSS- BLE&2.4G Wi-Fi

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Test Methodology Measurement Uncertainty	
SYSTEM TEST CONFIGURATION	
Description of Test Configuration Equipment Modifications	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	8
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	10
TEST EQUIPMENT LIST	11
FCC §15.247 (I) & §1.1307 (B) (3) & §2.1091- RF EXPOSURE	13
APPLICABLE STANDARD	
Result	13
RSS-102 § 2.5.2 – EXEMPTION LIMITS FOR ROUTINE EVALUATION-RF EXPOSURE EVAL	UATION 14
APPLICABLE STANDARD	14
§15.203 & RSS-GEN §6.8 ANTENNA REQUIREMENT	15
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	16
§15.207 (A) & RSS-GEN §8.8 AC LINE CONDUCTED EMISSIONS	17
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver Setup Test Procedure	
CORRECTED FACTOR & MARGIN CALCULATION	
Test Data	
§15.205, §15.209, §15.247(D) & RSS-GEN § 8.10 & RSS-247 § 5.5 SPURIOUS EMISSIONS	24
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver & Spectrum Analyzer Setup Test Procedure	
FACTOR & MARGIN CALCULATION	
TEST DATA	

BANDWIDTH	
APPLICABLE STANDARD	
Test Procedure	
ТЕЅТ DATA	
§15.247(B)(3) & RSS-247 § 5.4(D) MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	40
§15.247(D) & RSS-247 § 5.5 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	41
APPLICABLE STANDARD	41
Test Procedure	41
TEST DATA	41
§15.247(E) & RSS-247 § 5.2 (B) POWER SPECTRAL DENSITY	42
APPLICABLE STANDARD	
Test Procedure	42
TEST DATA	43
APPENDIX WI-FI	44
APPENDIX A: DTS BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	••••••
Appendix E: Band edge measurements Appendix F: Duty Cycle	
APPENDIX BLE	
Appendix A: DTS Bandwidth	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY Appendix E: Band edge measurements	
APPENDIX E. DAND EDGE MEASUREMENTS	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	RA230403-09924E-RF	Original Report	2023/04/19	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

HVIN	H7140
Frequency Range	BLE 1M: 2402-2480MHz Wi-Fi: 2412-2462MHz
Maximum Conducted Peak Output Power	BLE: -4.26dBm Wi-Fi: 13.65dBm(802.11b), 14.34dBm(802.11g) 14.57dBm(802.11n-HT20)
Modulation Technique	BLE: GFSK Wi-Fi: DSSS, OFDM
Antenna Specification*	2.28 dBi (It is provided by the applicant)
Voltage Range	DC 24V from adapter
Sample serial number	23BX-1 for Conducted and Radiated Emissions Test 23BX-2 for RF Conducted Test (Assigned by ATC)
Sample/EUT Status	Good condition
Adapter Information	Model: BI24GL-240100-AdU Input: AC 100-240V, 50/60Hz, 0.8A Output: DC 24V, 1A

Objective

This report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules and RSS-GEN Issue 5, February 2021 Amendment 2 and RSS-247, Issue 2, February 2017 of the Innovation, Science and Economic Development Canada rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliant Testing of Unlicensed Wireless Devices and RSS-GEN Issue 5, February 2021 Amendment 2 and RSS-247, Issue 2, February 2017.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		Uncertainty	
Harmoni	c Current	0.512%, k=2	
Occupied Char	nnel Bandwidth	5%	
RF Fre	equency	0.082*10 ⁻⁷	
RF output pov	wer, conducted	0.71dB	
Unwanted Emis	ssion, conducted	1.6dB	
AC Power Lines	9k-30MHz	2.74dB, k=2	
Conducted Emissions	150kHz-30MHz	2.92dB, k=2	
Audio Freque	ency Response	0.1dB	
Low Pass Fi	lter Response	1.2dB	
Modulatic	on Limiting	1%	
	9kHz - 30MHz	2.06dB	
.	30MHz - 1GHz	5.08dB	
Emissions, Radiated	1GHz - 18GHz	4.96dB	
Radiated	18GHz - 26.5GHz	5.16dB	
	26.5GHz - 40GHz	4.64dB	
Temperature		1 °C	
Humidity		6%	
Supply voltages		0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the Floor 1, KuMaKe Building, Dongzhou Community, Guangming Street, Guangming District, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 30241.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For Wi-Fi mode, total 11 channels are provided to testing:

Channel	Channel Frequency Channel (MHz)		Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	/	/
6	2437	/	/
7	2442	/	/

For 802.11b, 802.11g, 802.11n-HT20, EUT was tested with Channel 1, 6 and 11.

For BLE 1M mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	
0	2402	20	2442	
1	2404	21	2444	
2	2406	22	2446	
3	2408	23	2448	
4	2410	24	2450	
5	2412	25	2452	
6	2414	26	2454	
7	2416	27	2456	
8	2418	28	2458	
9	2420	29	2460	
10	2422	30	2462	
11	2424	31	2464	
12	2426	32	2466	
13	2428	33	2468	
14	2430	34	2470	
15	2432	35	2472	
16	2434	36	2474	
17	2436	37	2476	
18	2438	38 2478		
19	2440	39	2480	

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

"UartAssist.exe*"&"RTLBTAPP_5.2.2.59*" exercise software was used for BLE test, "UI_mptool-1V16*" exercise software was used for Wi-Fi test.

The device was tested with the worst case was performed as below:

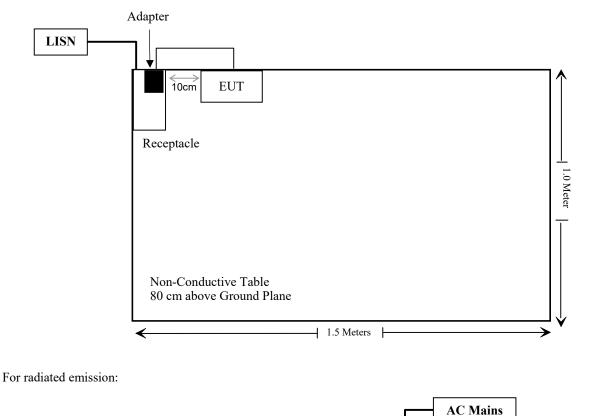
Mada	Data vata	Power Level*			
Mode Data rate		Low Channel	Middle Channel	High Channel	
802.11b	1Mbps	63	63	63	
802.11g	6Mbps	63	63	63	
802.11n-HT20	MCS0	63	63	63	
BLE	1Mbps	2a	2a	2a	

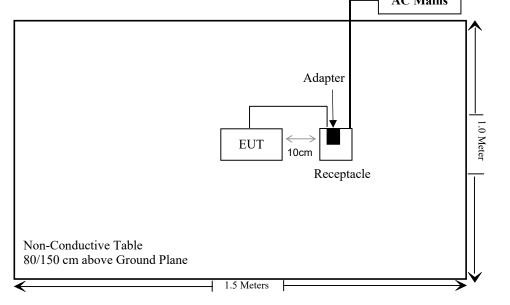
The worst-case data rates are determined to be as follows for each mode based upon inverstigation by measuring the average power, peak power and PSD across all data rates, bandwidths and modulations.

The software and power level was provided by the applicant.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Govee	Adapter	BI24GL-240100- AdU	Unknown


External I/O Cable


Cable Description	Length (m)	From Port	То
Un-shielding Detachable USB Cable	1.2	Adapter	EUT

Report No.: RA230403-09924E-RF

Block Diagram of Test Setup

For conducted emission:

Version 122: 2023-01-30

FCC&RSS- BLE&2.4G Wi-Fi

SUMMARY OF TEST RESULTS

FCC Rules	RSS Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (3) &§2.1091	RSS-102 § 2.5.2	RF Exposure& Exemption Limits for Routine Evaluation – RF Exposure Evaluation	Compliant
§15.203	RSS-Gen §6.8	Antenna Requirement	Compliant
§15.207 (a)	RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	RSS-GEN § 8.10 & RSS-247 § 5.5	Spurious Emissions	Compliant
§15.247 (a)(2)	RSS- Gen§6.7 RSS-247 § 5.2 (a)	99% Occupied Bandwidth & 6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	RSS-247 § 5.4(d)	Maximum Conducted Output Power	Compliant
§15.247(d)	RSS-247 § 5.5	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	RSS-247 § 5.2 (b)	Power Spectral Density	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model Serial Number		Calibration Date	Calibration Due Date					
	Conducted Emissions Test									
Rohde& Schwarz	EMI Test Receiver	ESCI	100784	2022/11/25	2023/11/24					
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2022/11/25	2023/11/24					
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2022/12/07	2023/12/06					
Unknown	RF Coaxial Cable	No.17	N0350	2022/11/25	2023/11/24					
	Conducted E	mission Test Sof	tware: e3 19821b (V9)						
	Radiate	d Emissions Test	(30MHz-1GHz)							
Rohde& Schwarz	Test Receiver	ESR	102725	2022/11/25	2023/11/24					
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2022/11/25	2023/11/24					
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07					
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07					
Quinstar	Amplifier	Amplifier QLW- 18405536-J0		2022/11/08	2023/11/07					
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05					
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2022/11/30	2025/11/29					
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2022/12/26	2025/12/25					
	Radiated En	nission Test Softv	ware: e3 19821b (V	/9)						
	Radiate	ed Emissions Tes	t (Above 1GHz)							
Unknown	RF Coaxial Cable	No.10	N050	2022/11/25	2023/11/24					
Unknown	RF Coaxial Cable	No.11	N1000	2022/11/25	2023/11/24					
Unknown	RF Coaxial Cable	No.12	N040	2022/11/25	2023/11/24					
Unknown	RF Coaxial Cable	No.13	N300	2022/11/25	2023/11/24					
Unknown	RF Coaxial Cable	No.14	N800	2022/11/25	2023/11/24					
Unknown	RF Coaxial Cable	No.15	N600	2022/11/25	2023/11/24					
Unknown	RF Coaxial Cable	No.16	N650	2022/11/25	2023/11/24					
Wainwright	WHKX3.6/18 G-10SS	5	2022/11/25	2023/11/24						

Report No.: RA230403-09924E-RF

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
RF Conducted Test								
Rohde&Schwarz	Spectrum Analyzer	FSV-40	101590	2022/11/25	2023/11/24			
Tonscend	RF Control Unit	JS0806-2	19G8060182	2022/10/24	2023/10/23			
WEINSCHEL	10dB Attenuator	5324	AU 3842	2022/11/25	2023/11/24			
Agilent	USB wideband power sensor	U2021XA	MY54250003	2022/06/27	2023/06/26			
Unknown	RF Coaxial Cable	No.31	RF-01	Each time	Each time			

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (I) & §1.1307 (B) (3) & §2.1091- RF EXPOSURE

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

According to KDB 447498 D04 Interim General RF Exposure Guidance

MPE-Based Exemption:

General frequency and separation-distance dependent MPE-based effective radiated power(ERP) thresholds are in Table B.1 [Table 1 of § 1.1307(b)(1)(i)(C)] to support an exemption from further evaluation from 300 kHz through 100 GHz.

Table 1 to § $1.1307(b)(3)(i)(C)$ - Single RF Sources Subject to Routine Environmental Evaluation				
RF Source frequency (MHz)	Threshold ERP (watts)			
0.3-1.34	1,920 R ² .			
1.34-30	3,450 R ² /f ² .			
30-300	3.83 R ² .			
300-1,500	0.0128 R ² f.			
1,500-100,000	19.2R ² .			

Ris the minimum separation distance in meters f = frequency in MHz

Result

Mode	Frequency (MHz)	Tune up conducted power	Anten	Antenna Gain		P	Evaluation Distance	ERP Limit
		(dBm)	(dBi)	(dBd)	(dBm)	(W)	(m)	(W)
Wi-Fi	2412-2462	15	2.28	0.13	15.13	0.033	0.2	0.768
BLE	2402-2480	-4	2.28	0.13	-3.87	0.0004	0.2	0.768

Note: 1. The tune up conducted power and antenna gain was declared by the applicant. 2. the BLE/Wi-Fi cannot transmit at same time.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

RSS-102 § 2.5.2 – EXEMPTION LIMITS FOR ROUTINE EVALUATION-RF EXPOSURE EVALUATION

Applicable Standard

According to RSS-102 § (2.5.2):

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows: • below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);

• at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $4.49/f^{0.5}$ W (adjusted for tune-up tolerance), where f is in MHz; • at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);

• at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where f is in MHz; • at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance). In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

Calculated Data:

Frequency (MHz)	Antenna Gain	Tune up conducted power	EIRP		cted EIRP		Evaluation Distance	ERP Limit (W)
· · · ·	(dBi)	(dBm)	(dBm)	(W)	(m)			
2412-2462	2.28	15	17.28	0.053	0.2	2.68		
2402-2480	2.28	-4	-1.72	0.001	0.2	2.68		

Note: The tune up conducted power and antenna gain was declared by the applicant.

So the RF Exposure evaluation can be compliance.

§ 15.203 & RSS-Gen §6.8 ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Connector Construction

The EUT has an internal antenna arrangement which was permanently attached for BLE and Wi-Fi, the antenna gain is 2.28dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Туре	Antenna Gain Impe	
FPC	2.28dBi	50 Ω

Result: Compliant

§ 15.207 (a) & RSS-GEN §8.8 AC LINE CONDUCTED EMISSIONS

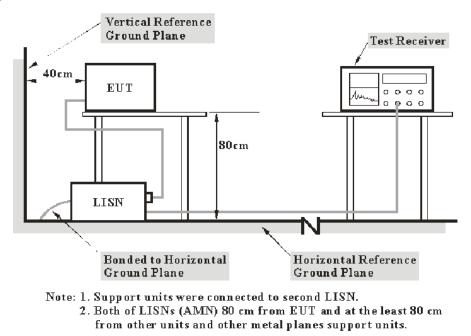
Applicable Standard

FCC § 15.207 (a) & RSS-GEN §8.8

Unless stated otherwise in the applicable RSS, for radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in table 4, as measured using a 50 μ H / 50 Ω line impedance stabilization network. This requirement applies for the radio frequency voltage measured between each power line and the ground terminal of each AC power-line mains cable of the EUT.

For an EUT that connects to the AC power lines indirectly, through another device, the requirement for compliance with the limits in table 4 shall apply at the terminals of the AC power-line mains cable of a representative support device, while it provides power to the EUT. The lower limit applies at the boundary between the frequency ranges. The device used to power the EUT shall be representative of typical applications.

Table 4 - AC Power Lines Conducted Emission Limits						
Frequency range						
(MHz)						
0.15 - 0.5	66 to 56 ¹	56 to 46 ¹				
0.5 - 5	56	46				
5 - 30	60	50				


Note 1: The level decreases linearly with the logarithm of the frequency.

For an EUT with a permanent or detachable antenna operating between 150 kHz and 30 MHz, the AC power-line conducted emissions must be measured using the following configurations:

(a) Perform the AC power-line conducted emissions test with the antenna connected to determine compliance with the limits of table 4 outside the transmitter's fundamental emission band.

(b) Retest with a dummy load instead of the antenna to determine compliance with the limits of table 4 within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network that simulates the antenna in the fundamental frequency band.

EUT Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 & RSS-247/RSS-Gen limits.

The spacing between the peripherals was 10 cm.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

The Transd factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

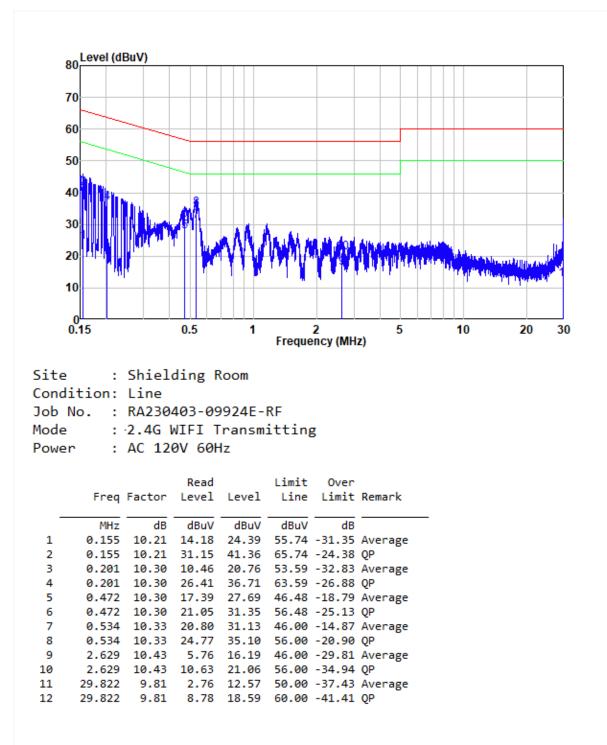
Transd Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

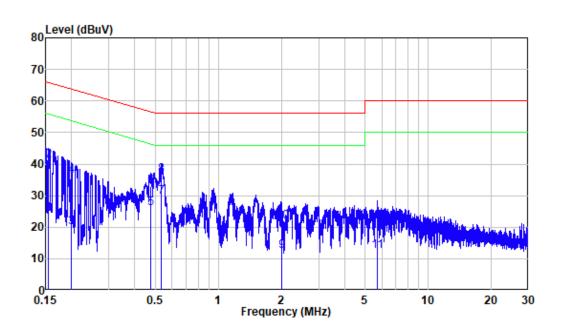
Test Data

Environmental Conditions


Temperature:	22 °C
Relative Humidity:	59 %
ATM Pressure:	101.0 kPa

The testing was performed by Jerry Wu on 2023-04-11.

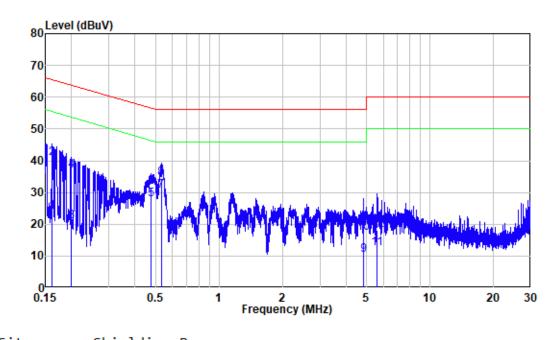
EUT operation mode: Transmitting


2.4G WiFi mode: (worst case is 802.11n20 mode, high channel)

AC 120V/60 Hz, Line

Report No.: RA230403-09924E-RF

AC 120V/60 Hz, Neutral

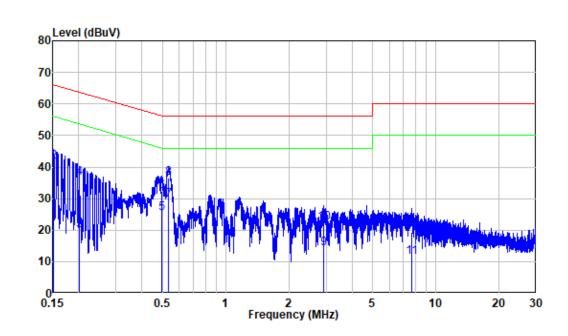

Site :	Shielding Room
Condition:	Neutral
Job No. :	RA230403-09924E-RF
Mode :	2.4G WIFI Transmitting
Power :	AC 120V 60Hz

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.155	9.80	14.33	24.13	55.72	-31.59	Average
2	0.155	9.80	31.36	41.16	65.72	-24.56	QP
3	0.200	9.80	10.08	19.88	53.61	-33.73	Average
4	0.200	9.80	26.56	36.36	63.61	-27.25	QP
5	0.476	9.80	16.06	25.86	46.40	-20.54	Average
6	0.476	9.80	23.07	32.87	56.40	-23.53	QP
7	0.536	9.81	19.75	29.56	46.00	-16.44	Average
8	0.536	9.81	26.84	36.65	56.00	-19.35	QP
9	2.001	9.82	2.69	12.51	46.00	-33.49	Average
10	2.001	9.82	12.07	21.89	56.00	-34.11	QP
11	5.695	9.86	2.37	12.23	50.00	-37.77	Average
12	5.695	9.86	10.83	20.69	60.00	-39.31	QP -

Report No.: RA230403-09924E-RF

BLE mode: (worst case is low channel)

AC 120V/60 Hz, Line


Site	:	Shielding Room
Condition	:	Line
Job No.	:	RA230403-09924E-RF
Mode	:	BLE Transmitting
Power	:	AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.162	10.23	13.65	23.88	55.38	-31.50	Average
2	0.162	10.23	30.60	40.83	65.38	-24.55	QP
3	0.200	10.30	10.53	20.83	53.61	-32.78	Average
4	0.200	10.30	26.61	36.91	63.61	-26.70	QP
5	0.476	10.30	17.59	27.89	46.40	-18.51	Average
6	0.476	10.30	21.28	31.58	56.40	-24.82	QP
7	0.531	10.33	20.22	30.55	46.00	-15.45	Average
8	0.531	10.33	24.19	34.52	56.00	-21.48	QP
9	4.813	10.42	-0.10	10.32	46.00	-35.68	Average
10	4.813	10.42	6.83	17.25	56.00	-38.75	QP
11	5.597	10.40	1.96	12.36	50.00	-37.64	Average
12	5.597	10.40	7.59	17.99	60.00	-42.01	QP

FCC&RSS- BLE&2.4G Wi-Fi

Report No.: RA230403-09924E-RF

AC 120V/60 Hz, Neutral

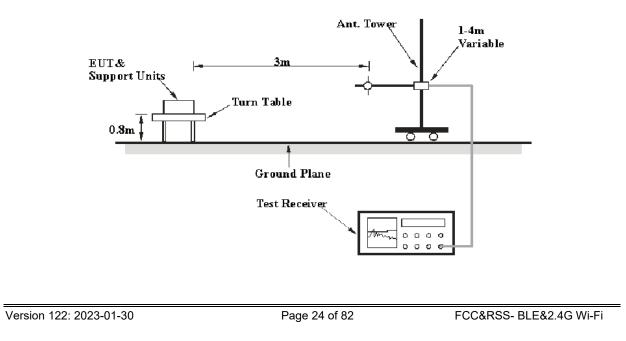
Site	:	Shielding Room
Condition	:	Neutral
Job No.	:	RA230403-09924E-RF
Mode :	:	BLE Transmitting
Power	:	AC 120V 60Hz

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.152	9.80	14.52	24.32	55.90	-31.58	Average
2	0.152	9.80	31.85	41.65	65.90	-24.25	QP
3	0.201	9.80	10.17	19.97	53.57	-33.60	Average
4	0.201	9.80	26.62	36.42	63.57	-27.15	QP
5	0.495	9.80	15.47	25.27	46.08	-20.81	Average
6	0.495	9.80	22.61	32.41	56.08	-23.67	QP
7	0.536	9.81	19.68	29.49	46.00	-16.51	Average
8	0.536	9.81	26.82	36.63	56.00	-19.37	QP
9	2.931	9.83	4.21	14.04	46.00	-31.96	Average
10	2.931	9.83	12.47	22.30	56.00	-33.70	QP
11	7.677	9.88	1.73	11.61	50.00	-38.39	Average
12	7.677	9.88	9.46	19.34	60.00	-40.66	QP

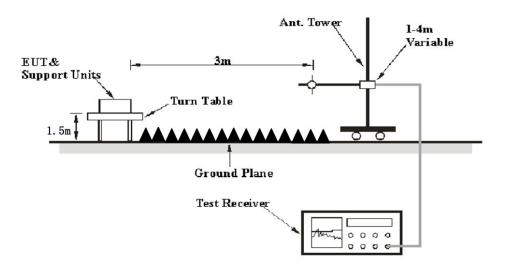
§15.205, §15.209, §15.247(d) & RSS-GEN § 8.10 & RSS-247 § 5.5 SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;


According to RSS-GEN § 8.10 & RSS-247 § 5.5

Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:(a) The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).(b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.(c) Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in table 5 and table 6.


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013 & RSS-Gen. The specification used was the FCC 15.209, and FCC 15.247 & RSS-Gen limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	РК
Above 1 GHz	1MHz	10 Hz ^{Note 1}	/	Average
	1MHz	$> 1/T^{Note 2}$	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

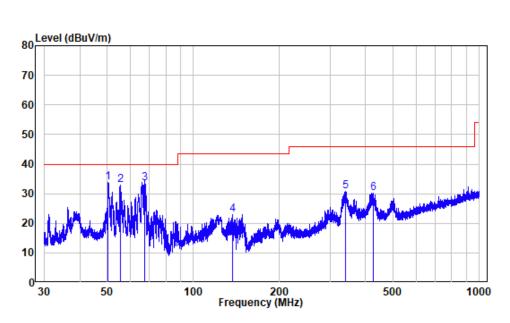
The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

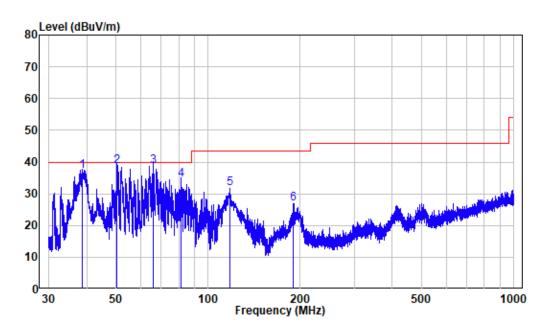
Temperature:	21.7 °C
Relative Humidity:	65 %
ATM Pressure:	101.0 kPa


The testing was performed by Jimi Zheng on 2023-04-11 for below 1GHz and Jason Liu on 2023-04-14 for above 1GHz.

EUT operation mode: Transmitting

30 MHz~1 GHz:

Note: When the test result of Peak was more than 6dB below the limit of QP, just the Peak value was recorded.


2.4G WiFi: (worst case is 802.11n20 mode, high channel) Horizontal

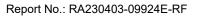
Site : chamber Condition: 3m HORIZONTAL Job No. : RA230403-09924E-RF Test Mode: 2.4G WIFI Transmitting

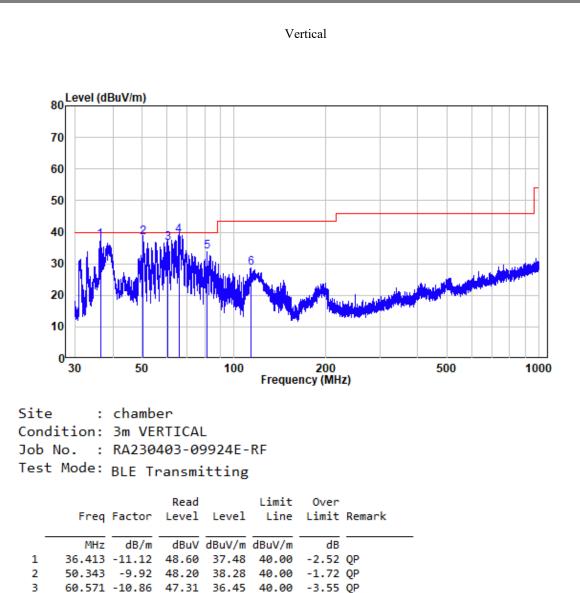
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	50.144	-9.92	43.60	33.68	40.00	-6.32	Peak
2	55.634	-10.23	43.27	33.04	40.00	-6.96	Peak
3	67.557	-13.63	47.21	33.58	40.00	-6.42	QP
4	136.879	-15.19	38.14	22.95	43.50	-20.55	Peak
5	339.291	-7.46	38.18	30.72	46.00	-15.28	Peak
6	426.147	-5.84	36.09	30.25	46.00	-15.75	Peak



Site : chamber Condition: 3m VERTICAL Job No. : RA230403-09924E-RF Test Mode: 2.4G WIFI Transmitting

	Freq	Factor		Level			Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	38.650	-10.67	47.81	37.14	40.00	-2.86	QP
2	50.299	-9.91	48.59	38.68	40.00	-1.32	QP
3	65.947	-12.87	51.41	38.54	40.00	-1.46	QP
4	81.497	-16.70	51.00	34.30	40.00	-5.70	QP
5	117.928	-13.15	44.71	31.56	43.50	-11.94	Peak
6	190.238	-11.54	38.50	26.96	43.50	-16.54	Peak


Report No.: RA230403-09924E-RF


BLE: (worst case is low channel)

Site : chamber Condition: 3m HORIZONTAL Job No. : RA230403-09924E-RF Test Mode: BLE Transmitting

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	36.429	-11.12	37.34	26.22	40.00	-13.78	Peak
2	50.277	-9.92	41.13	31.21	40.00	-8.79	Peak
3	55.366	-10.25	44.03	33.78	40.00	-6.22	Peak
4	67.409	-13.54	47.49	33.95	40.00	-6.05	QP
5	118.862	-13.32	35.85	22.53	43.50	-20.97	Peak
6	336.330	-7.57	38.71	31.14	46.00	-14.86	Peak

65.832 -12.81 51.69 38.88 40.00 -1.12 QP

81.426 -16.70 50.55 33.85 40.00 -6.15 Peak 113.416 -12.50 41.24 28.74 43.50 -14.76 Peak

Version 122: 2023-01-30

4 5

6

FCC&RSS- BLE&2.4G Wi-Fi

Report No.: RA230403-09924E-RF

1 GHz-25 GHz:

Wi-Fi:

Frequency	Re	ceiver	Turntable Rx Antenna			Factor	Absolute	Limit	Margin
(MHz)	Reading (dBµV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBµV/m)	(dBµV/m)	(dB)
				802.11	b				
			Low C	hannel(2	412MH	[z)			
2378.04	68.02	РК	79	1.5	Н	-10.73	57.29	74	-16.71
2378.04	53.26	AV	79	1.5	Н	-10.73	42.53	54	-11.47
2324.52	66.54	РК	245	2.2	V	-10.52	56.02	74	-17.98
2324.52	52.56	AV	245	2.2	V	-10.52	42.04	54	-11.96
2390	65.63	РК	154	1.8	Н	-10.70	54.93	74	-19.07
2390	53.18	AV	154	1.8	Н	-10.70	42.48	54	-11.52
2390	66.49	РК	310	1.3	V	-10.70	55.79	74	-18.21
2390	53.55	AV	310	1.3	V	-10.70	42.85	54	-11.15
4824	60.05	РК	132	2.1	Н	-6.10	53.95	74	-20.05
4824	59.60	РК	151	2.1	V	-6.10	53.50	74	-20.50
			Middle (Channel	(2437M	Hz)	I		
4874	60.44	РК	39	2.4	Н	-5.95	54.49	74	-19.51
4874	46.70	AV	39	2.4	Н	-5.95	40.75	54	-13.25
4874	59.80	РК	343	1.7	V	-5.95	53.85	74	-20.15
			High Cl	hannel(2	462 MF	łz)			
2483.5	66.16	РК	147	1.6	Н	-10.55	55.61	74	-18.39
2483.5	53.64	AV	147	1.6	Н	-10.55	43.09	54	-10.91
2483.5	66.45	РК	41	1.4	V	-10.55	55.9	74	-18.10
2483.5	54.21	AV	41	1.4	V	-10.55	43.66	54	-10.34
2500	67.30	РК	194	1.5	Н	-10.42	56.88	74	-17.12
2500	53.59	AV	194	1.5	Н	-10.42	43.17	54	-10.83
2492.65	68.47	РК	138	1.9	V	-10.48	57.99	74	-16.01
2492.65	54.18	AV	138	1.9	V	-10.48	43.7	54	-10.30
4924	59.82	РК	70	1.1	Н	-5.67	54.15	74	-19.85
4924	46.59	AV	70	1.1	Н	-5.67	40.92	54	-13.08
4924	59.60	РК	188	2.4	V	-5.67	53.93	74	-20.07

Report No.: RA230403-09924E-RF

F	Receiver		Turntable	Rx Ar	ntenna	Factor	Absolute	Limit	Manala	
Frequency (MHz)	Reading (dBµV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBµV/m)	(dBµV/m)	Margin (dB)	
	802.11g									
			Low C	hannel(2	2412MH	[z)				
2350.08	67.95	РК	154	2.1	Н	-10.79	57.16	74	-16.84	
2350.08	53.17	AV	154	2.1	Н	-10.79	42.38	54	-11.62	
2384.88	67.34	РК	124	2.2	V	-10.71	56.63	74	-17.37	
2384.88	53.50	AV	124	2.2	V	-10.71	42.79	54	-11.21	
2390	65.38	РК	88	1.4	Н	-10.70	54.68	74	-19.32	
2390	53.12	AV	88	1.4	Н	-10.70	42.42	54	-11.58	
2390	65.46	РК	229	1.4	V	-10.70	54.76	74	-19.24	
2390	53.49	AV	229	1.4	V	-10.70	42.79	54	-11.21	
4824	59.44	РК	287	1.5	Н	-6.10	53.34	74	-20.66	
4824	59.73	РК	197	1.5	V	-6.10	53.63	74	-20.37	
			Middle (Channel	(2437M	Hz)				
4874	59.65	РК	284	1.7	Н	-5.95	53.70	74	-20.30	
4874	59.59	РК	171	1.7	V	-5.95	53.64	74	-20.36	
			High Cl	hannel(2	2462 MF	łz)				
2483.5	65.74	PK	318	2	Н	-10.55	55.19	74	-18.81	
2483.5	53.54	AV	318	2	Н	-10.55	42.99	54	-11.01	
2483.5	66.39	РК	189	2.1	V	-10.55	55.84	74	-18.16	
2483.5	54.52	AV	189	2.1	V	-10.55	43.97	54	-10.03	
2497.45	67.87	РК	35	2.2	Н	-10.44	57.43	74	-16.57	
2497.45	53.57	AV	35	2.2	Н	-10.44	43.13	54	-10.87	
2490.8	68.58	РК	262	1.4	V	-10.49	58.09	74	-15.91	
2490.8	54.47	AV	262	1.4	V	-10.49	43.98	54	-10.02	
4924	59.31	РК	248	2.2	Н	-5.67	53.64	74	-20.36	
4924	59.61	РК	138	2.2	V	-5.67	53.94	74	-20.06	

FCC&RSS- BLE&2.4G Wi-Fi

Report No.: RA230403-09924E-RF

Б	Re	Receiver		Rx Ai	ntenna	F (Absolute	T • • •	
Frequency (MHz)	Reading (dBµV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	<u> </u>			802.11r	n20		<u>.</u>	·	
			Low C	hannel(2	2412MH	(z)			
2366.76	67.12	РК	137	2.2	Н	-10.75	56.37	74	-17.63
2366.76	53.15	AV	137	2.2	Н	-10.75	42.40	54	-11.60
2362.2	68.21	РК	116	2	V	-10.76	57.45	74	-16.55
2362.2	53.29	AV	116	2	V	-10.76	42.53	54	-11.47
2390	65.22	РК	81	1	Н	-10.70	54.52	74	-19.48
2390	53.18	AV	81	1	Н	-10.70	42.48	54	-11.52
2390	65.79	РК	339	1.1	V	-10.70	55.09	74	-18.91
2390	53.28	AV	339	1.1	V	-10.70	42.58	54	-11.42
4824	59.81	РК	55	1.5	Н	-6.10	53.71	74	-20.29
4824	59.72	РК	242	1.5	V	-6.10	53.62	74	-20.38
	1		Middle (Channel	(2437M	Hz)			
4874	59.39	РК	240	1.4	Н	-5.95	53.44	74	-20.56
4874	59.47	РК	87	1.4	V	-5.95	53.52	74	-20.48
			High Cl	hannel(2	2462 MF	łz)			
2483.5	66.58	РК	205	1.7	Н	-10.55	56.03	74	-17.97
2483.5	53.52	AV	205	1.7	Н	-10.55	42.97	54	-11.03
2483.5	66.20	РК	217	1.4	V	-10.55	55.65	74	-18.35
2483.5	53.99	AV	217	1.4	V	-10.55	43.44	54	-10.56
2485.1	68.12	РК	188	1.6	Н	-10.54	57.58	74	-16.42
2485.1	53.70	AV	188	1.6	Н	-10.54	43.16	54	-10.84
2485.65	68.42	РК	1	1.5	V	-10.53	57.89	74	-16.11
2485.65	53.98	AV	1	1.5	V	-10.53	43.45	54	-10.55
4924	59.40	РК	20	1	Н	-5.67	53.73	74	-20.27
4924	59.45	РК	292	1	V	-5.67	53.78	74	-20.22

BLE:

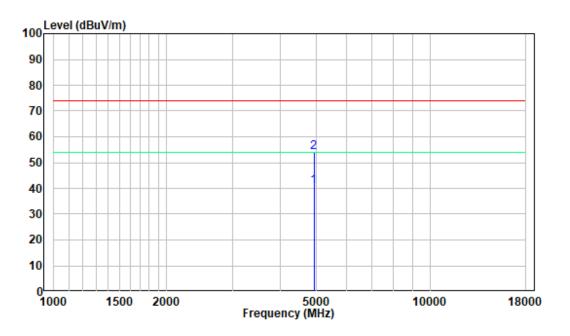
Frequency	Receiver		Turntable Rx Antenna			Factor	Absolute	Limit	Margin
(MHz)	Reading (dBµV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBµV/m)	(dBµV/m)	(dB)
BLE_1M									
Low Channel 2402MHz									
2326.1	66.56	РК	272	1.8	Н	-10.54	56.02	74	-17.98
2326.1	53.50	AV	272	1.8	Н	-10.54	42.96	54	-11.04
2337.2	66.46	РК	227	2.5	V	-10.65	55.81	74	-18.19
2337.2	53.51	AV	227	2.5	V	-10.65	42.86	54	-11.14
2390	64.87	РК	128	1.3	Н	-10.70	54.17	74	-19.83
2390	53.77	AV	128	1.3	Н	-10.70	43.07	54	-10.93
2390	65.59	РК	27	1.8	V	-10.70	54.89	74	-19.11
2390	53.85	AV	27	1.8	V	-10.70	43.15	54	-10.85
4804	59.78	РК	203	1.5	Н	-6.11	53.67	74	-20.33
4804	59.52	РК	294	1.5	V	-6.11	53.41	74	-20.59
Middle Channel 2440MHz									
4880	59.21	РК	37	1.6	Н	-5.91	53.30	74	-20.70
4880	59.28	РК	148	1.6	V	-5.91	53.37	74	-20.63
High Channel 2480MHz									
2483.5	66.04	РК	244	2.4	Н	-10.55	55.49	74	-18.51
2483.5	54.18	AV	244	2.4	Н	-10.55	43.63	54	-10.37
2483.5	65.53	РК	146	2.3	V	-10.55	54.98	74	-19.02
2483.5	54.14	AV	146	2.3	V	-10.55	43.59	54	-10.41
2493.1	67.85	РК	140	1.7	Н	-10.47	57.38	74	-16.62
2493.1	54.68	AV	140	1.7	Н	-10.47	44.21	54	-9.79
2494.06	68.02	РК	254	2.4	V	-10.47	57.55	74	-16.45
2494.06	54.56	AV	254	2.4	V	-10.47	44.09	54	-9.91
4960	58.64	РК	86	2.2	Н	-5.47	53.17	74	-20.83
4960	58.97	РК	135	2.2	V	-5.47	53.50	74	-20.50

Note:

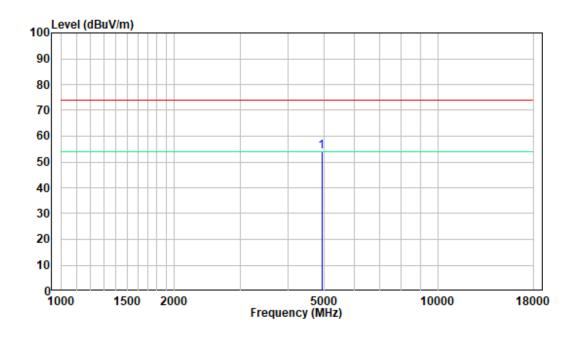
Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading

Margin = Corrected Amplitude - Limit

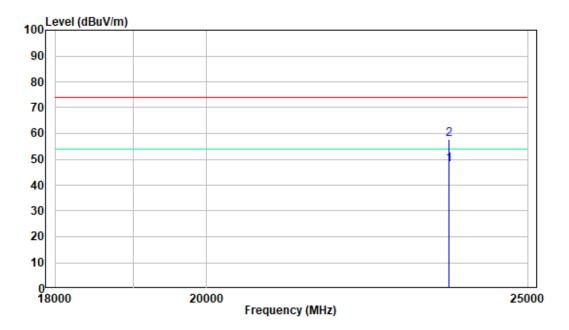

The other spurious emission which is in the noise floor level was not recorded.

When the test result of peak was less than the limit of average, just peak values were recorded.

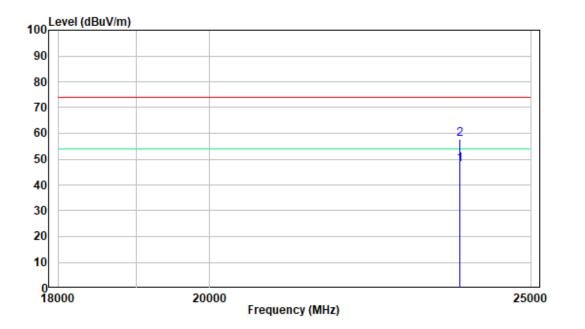

1-18 GHz:

Pre-scan for 802.11B High Channel

Horizontal


Version 122: 2023-01-30

FCC&RSS- BLE&2.4G Wi-Fi


18 -25GHz:

Pre-scan for 802.11B High Channel

Horizontal

Vertical

FCC&RSS- BLE&2.4G Wi-Fi

§15.247 (a)(2) & RSS-Gen§6.7 RSS-247 § 5.2 (a) 99% OCCUPIED BANDWIDTH & 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "6 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 6 dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.8.1 and Clause 6.9.3

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

The following conditions shall be observed for measuring the occupied bandwidth and 6 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 6 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 6 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

Version 122: 2023-01-30

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed

in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Attenuator

Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Huang on 2023-04-17.

EUT operation mode: Transmitting

Test Result Compliant. Please refer to the Appendix BLE & Appendix Wi-Fi.

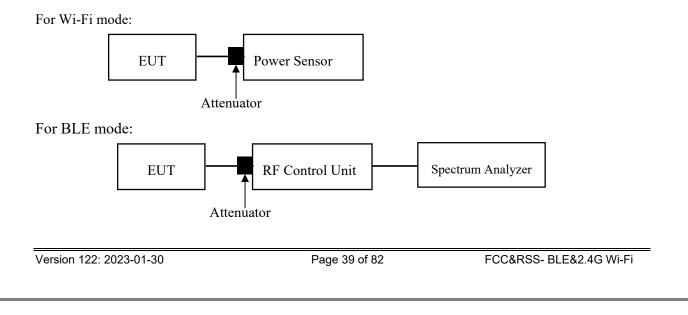
§15.247(b)(3) & RSS-247 § 5.4(d) MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.


Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.9.1.1 for BLE and 11.9.1.3 for Wi-Fi

1. Place the EUT on a bench and set it in transmitting mode.

2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.

3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Huang on 2023-04-17.

EUT operation mode: Transmitting

Test Result Compliant. Please refer to the Appendix BLE & Appendix Wi-Fi.

§ 15.247(d) & RSS-247 § 5.5 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.11

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Huang on 2023-04-17.

EUT operation mode: Transmitting

Test Result Compliant. Please refer to the Appendix BLE & Appendix Wi-Fi.

§15.247(e) & RSS-247 § 5.2 (b) POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.10.2

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Attenuator

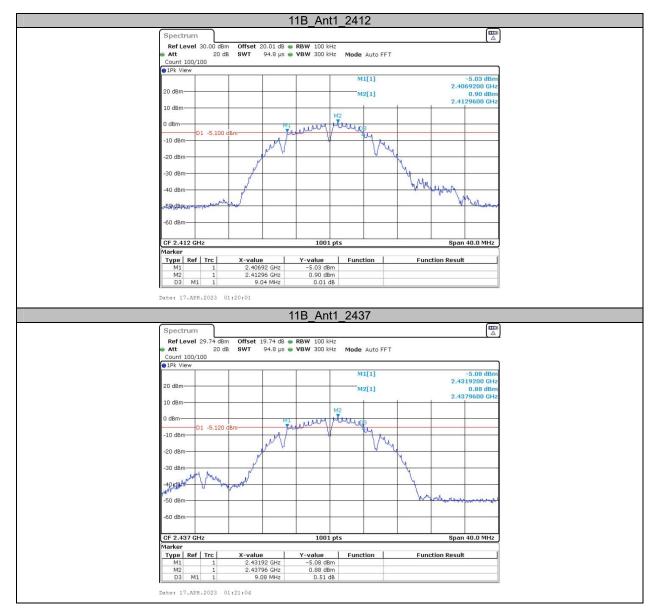
Test Data

Environmental Conditions

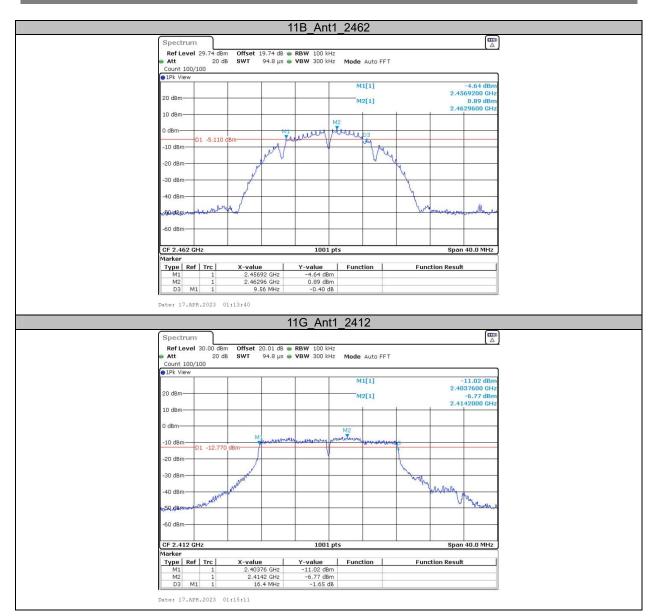
Temperature:	23 °C	
Relative Humidity:	60 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Jacob Huang on 2023-04-17.

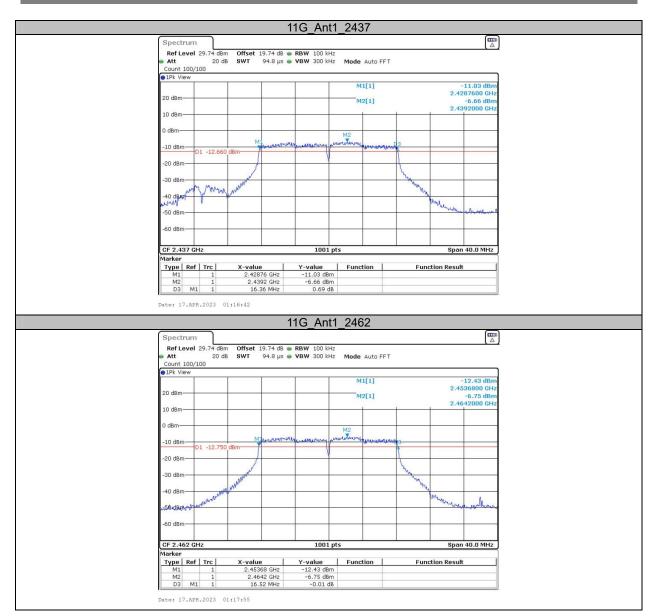
EUT operation mode: Transmitting

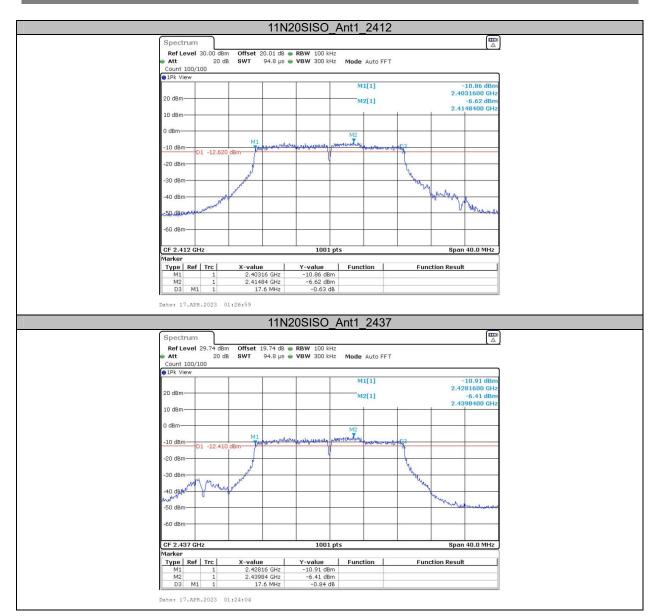

Test Result: Compliant. Please refer to the Appendix Wi-Fi and Appendix BLE.

APPENDIX Wi-Fi


Appendix A: DTS Bandwidth Test Result

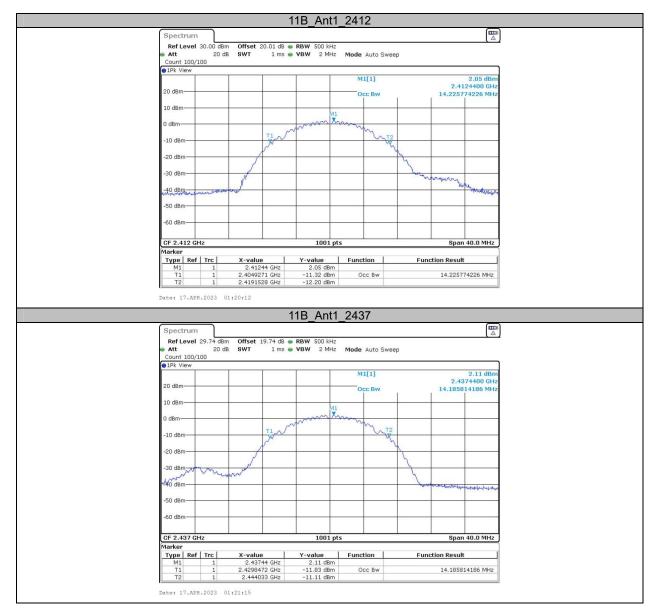
Test Mode	Antenna	Frequency[MHz]	DTS BW [MHz]	Limit[MHz]	Verdict
		2412	9.04	0.5	PASS
11B	Ant1	2437	9.08	0.5	PASS
		2462	9.56	0.5	PASS
		2412	16.40	0.5	PASS
11G	Ant1	2437	16.36	0.5	PASS
		2462	16.52	0.5	PASS
		2412	17.60	0.5	PASS
11N20SISO	Ant1	2437	17.60	0.5	PASS
		2462	17.72	0.5	PASS

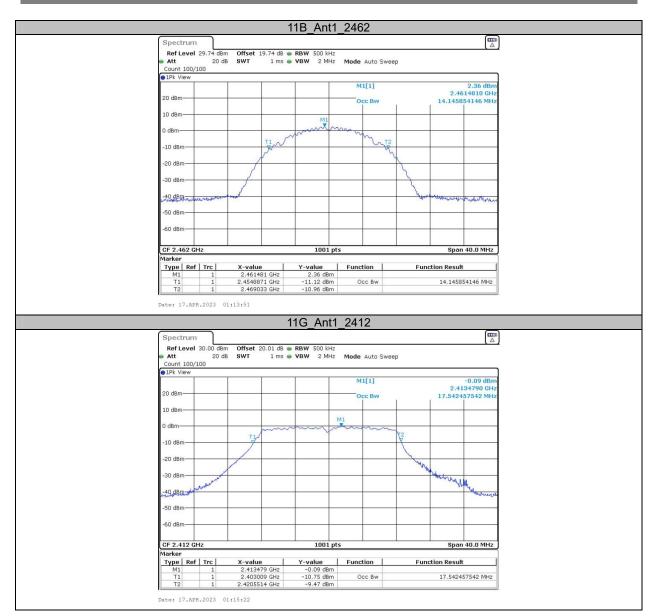

Test Graphs


Report No.: RA230403-09924E-RF

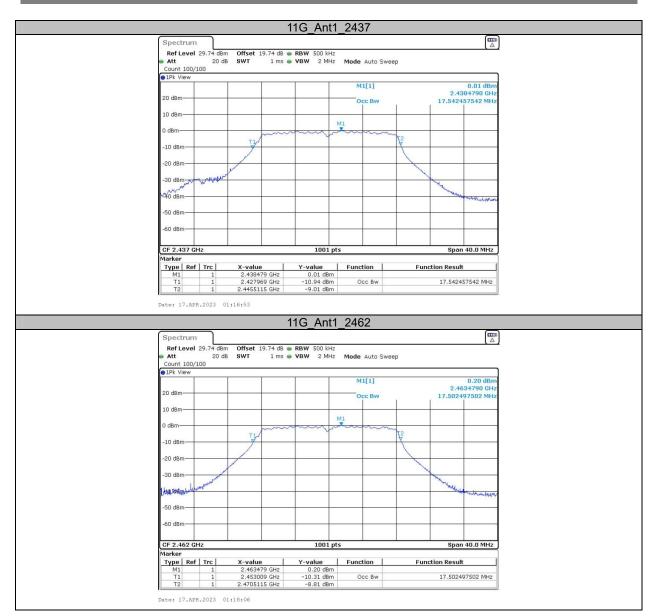
Report No.: RA230403-09924E-RF

Report No.: RA230403-09924E-RF


Report No.: RA230403-09924E-RF


Appendix B: Occupied Channel Bandwidth Test Result

Test Mode	Antenna	Channel Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2412	14.226	2404.927	2419.153		
11B	Ant1	2437	14.186	2429.847	2444.033		
		2462	14.146	2454.887	2469.033		
		2412	17.542	2403.009	2420.551		
11G	Ant1	2437	17.542	2427.969	2445.511		
		2462	17.502	2453.009	2470.511		
		2412	18.422	2402.729	2421.151		
11N20SISO	Ant1	2437	18.422	2427.689	2446.111		
		2462	18.382	2452.729	2471.111		

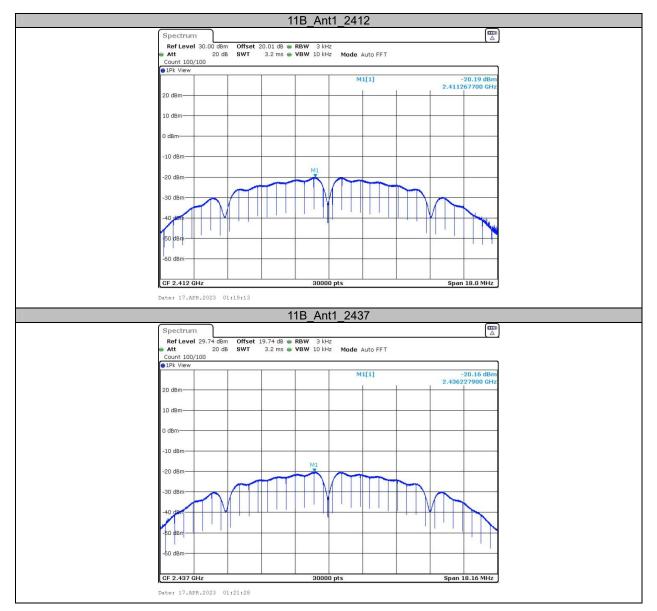

Test Graphs


Report No.: RA230403-09924E-RF

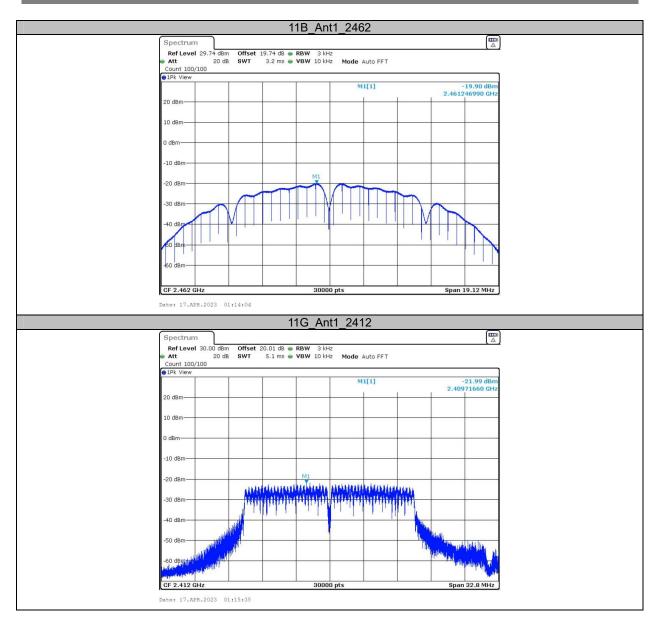
Report No.: RA230403-09924E-RF

Report No.: RA230403-09924E-RF

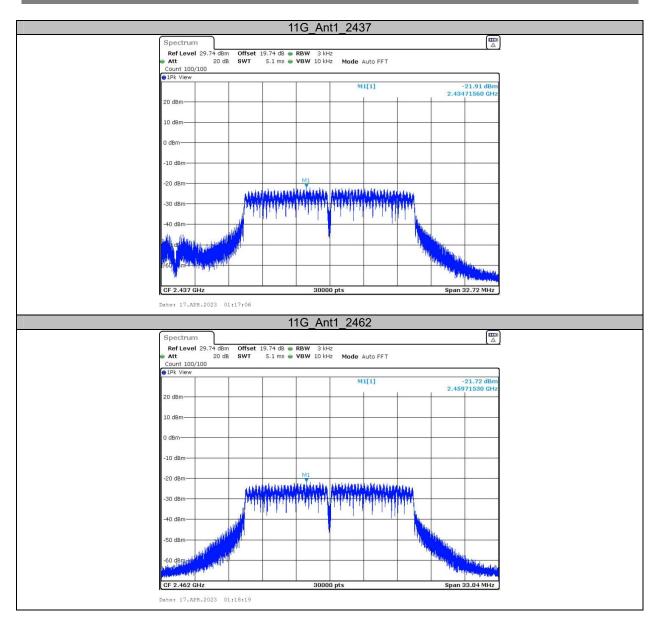
Report No.: RA230403-09924E-RF

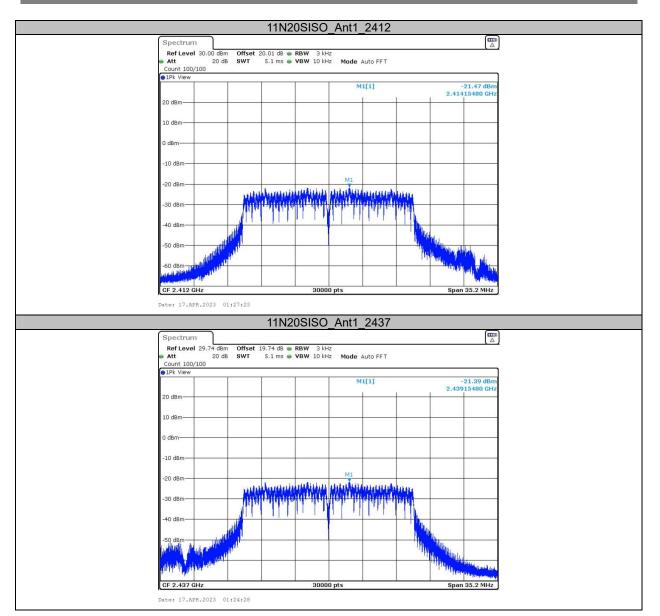

Appendix C: Maximum conducted output power Test Result Peak

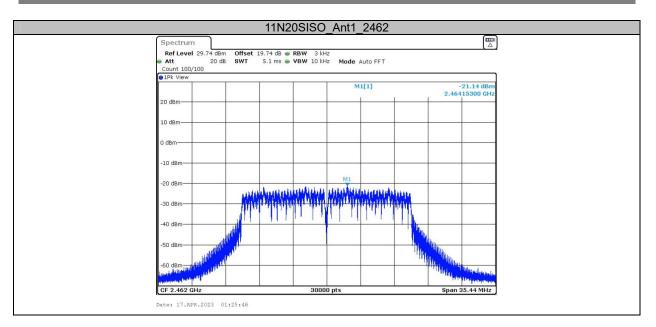
Test Mode	Antenna	Frequenc y[MHz]	Peak Powert[dBm]	Conducted Limit[dBm]	EIRP [dBm]	EIRP Limit[dBm]	Verdict
		2412	13.38	≤30.00	15.66	≤36.00	PASS
11B	Ant1	2437	13.36	≤30.00	15.64	≤36.00	PASS
		2462	13.65	≤30.00	15.93	≤36.00	PASS
		2412	14.07	≤30.00	16.35	≤36.00	PASS
11G	11G Ant1	2437	14.17	≤30.00	16.45	≤36.00	PASS
		2462	14.34	≤30.00	16.62	≤36.00	PASS
11N20SIS		2412	14.28	≤30.00	16.56	≤36.00	PASS
0	Ant1	2437	14.38	≤30.00	16.66	≤36.00	PASS
0		2462	14.57	≤30.00	16.85	≤36.00	PASS

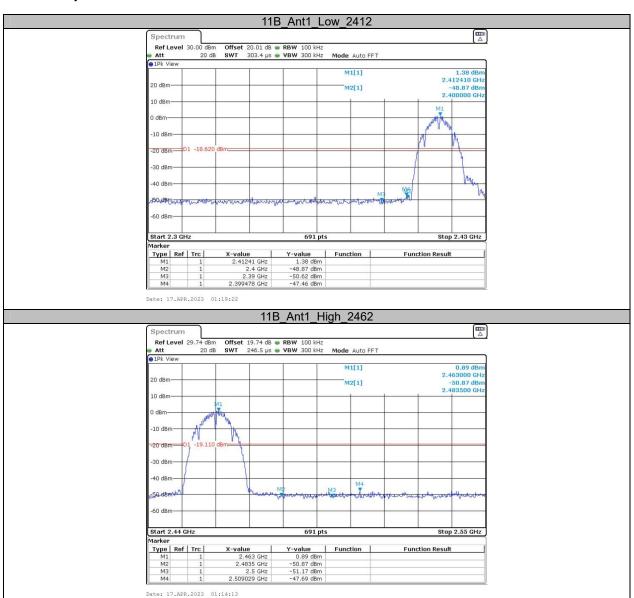

Appendix D: Maximum power spectral density Test Result

Test Mode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2412	-20.19	≤8.00	PASS
11B	Ant1	2437	-20.16	≤8.00	PASS
		2462	-19.90	≤8.00	PASS
		2412	-21.99	≤8.00	PASS
11G	Ant1	2437	-21.91	≤8.00	PASS
		2462	-21.72	≤8.00	PASS
		2412	-21.47	≤8.00	PASS
11N20SISO	Ant1	2437	-21.39	≤8.00	PASS
		2462	-21.14	≤8.00	PASS

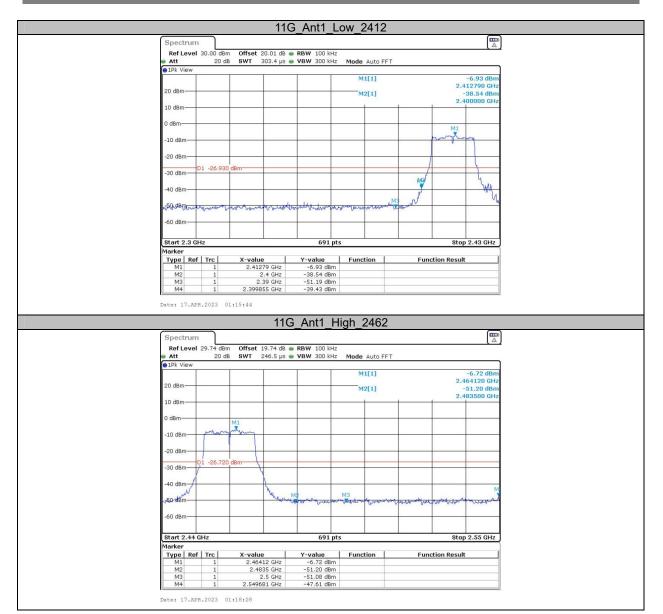

Test Graphs


Report No.: RA230403-09924E-RF


Report No.: RA230403-09924E-RF



Report No.: RA230403-09924E-RF


Report No.: RA230403-09924E-RF

Appendix E: Band edge measurements Test Graphs

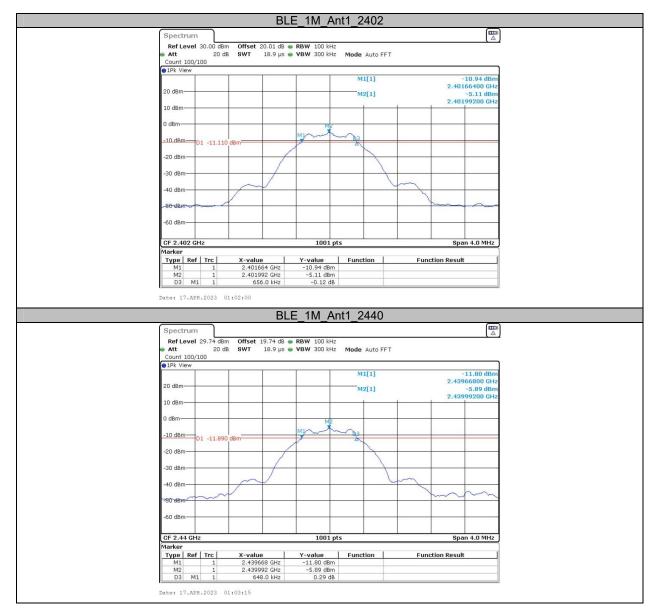
Report No.: RA230403-09924E-RF

Report No.: RA230403-09924E-RF

Appendix F: Duty Cycle Test Result

Test Mode	Antenna	Frequency[MHz]	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
11B	Ant1	2437	27.00	27.00	100.00
11G	Ant1	2437	27.00	27.00	100.00
11N20SISO	Ant1	2437	27.00	27.00	100.00

Test Graphs

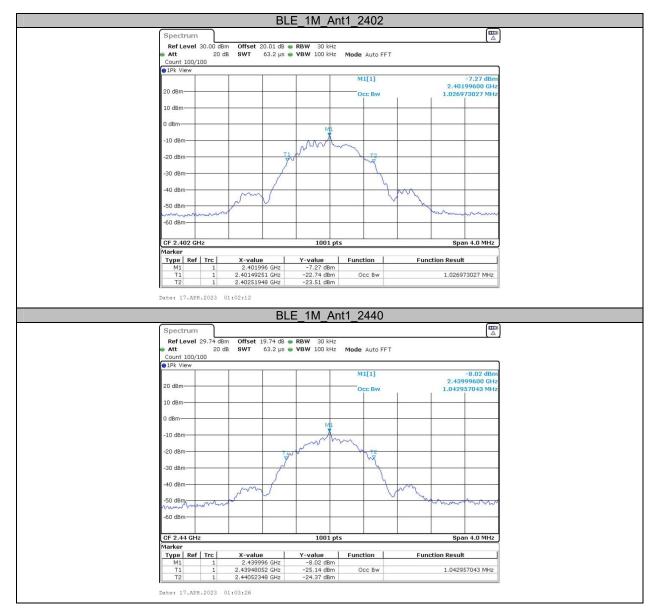

11B_Ant1_2437	
Spectrum	
Ref Level 29.74 dBm Offset 19.74 dB 🖷 RBW 10 MHz	
Att 20 dB ● SWT 27 ms ● VBW 10 MHz SGL Count 1/1 TRG:VID	
O1Pk Clnw	
20 dBm-	
10 dBm	
TRG 6.940 d8m	
0 dBm	
-10 dBm	
-20 dBm	
-30 dBm	
-40 dBm	
-50 dBm	
-60 dBm-	
CF 2.437 GHz 3001 pts 2.7 ms/	
Date: 17.APR.2023 01:20:54	
11G_Ant1_2437	
Spectrum	
Ref Level 29.74 dBm Offset 19.74 dB RBW 10 MHz	
Att 20 dB SWT 27 ms VBW 10 MHz SGL Count 1/1 TRG: VID	
IPk Cinw	
20 dBm-	
data da da ante da a la da da a da	
10 08m TRG 8.740 d8m	
0 dBm	
-10 dBm	
-20 dBm	
-30 dBm	
-40 dBm-	
-50 dBm	
-60 dBm	
CF 2.437 GHz 3001 pts 2.7 ms/	
Date: 17.APR.2023 01:16:33	
11NI205150 Ap+1 2427	
11N20SISO_Ant1_2437	
Spectrum Ref Level 29.74 dB Offset 19.74 dB RBW 10 MHz	
Att 20 dB ● SWT 27 ms ● VBW 10 MHz SGL Count 1/1 TRG:VID	
C 10k Chau	
e 1Pk Cirw	
20 dBm	
20 dBm	
20 dBm	
20 dBm TRG 6.340 dBm C C C C C C C C C C C C C C C C C C C	
20 dBm	
20 dBm TRG 6.340 dBm C C C C C C C C C C C C C C C C C C C	
20 dbm 100 dbm <th< td=""><td></td></th<>	
20 dBm Image: Subject of the subject of t	
20 dbm 100 dbm <th< td=""><td></td></th<>	
20 dBm Image: Subject of the subject of t	
20 dBm Image: state and st	

APPENDIX BLE

Appendix A: DTS Bandwidth Test Result

Test Mode	Antenna	Frequency[MHz]	DTS BW [MHz]	Limit[MHz]	Verdict
		2402	0.66	0.5	PASS
BLE_1M	Ant1	2440	0.65	0.5	PASS
		2480	0.66	0.5	PASS

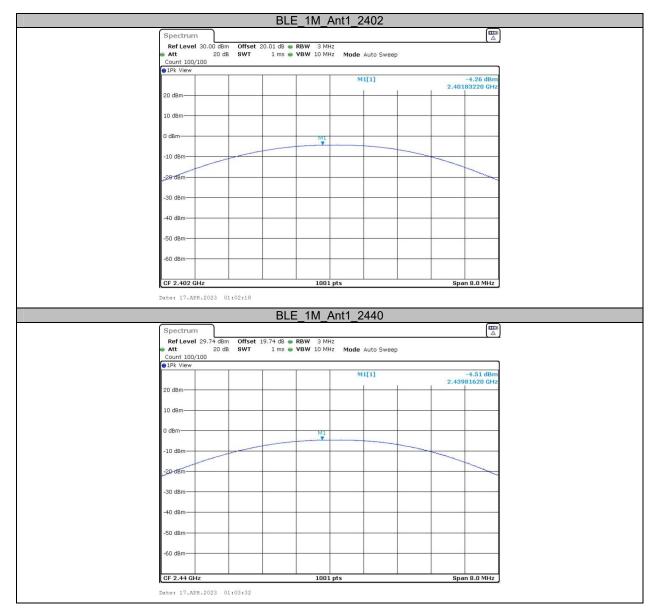
Test Graphs


Report No.: RA230403-09924E-RF

Appendix B: Occupied Channel Bandwidth Test Result

Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.027	2401.493	2402.519		
BLE_1M	Ant1	2440	1.043	2439.481	2440.523		
	-	2480	1.039	2479.485	2480.523		

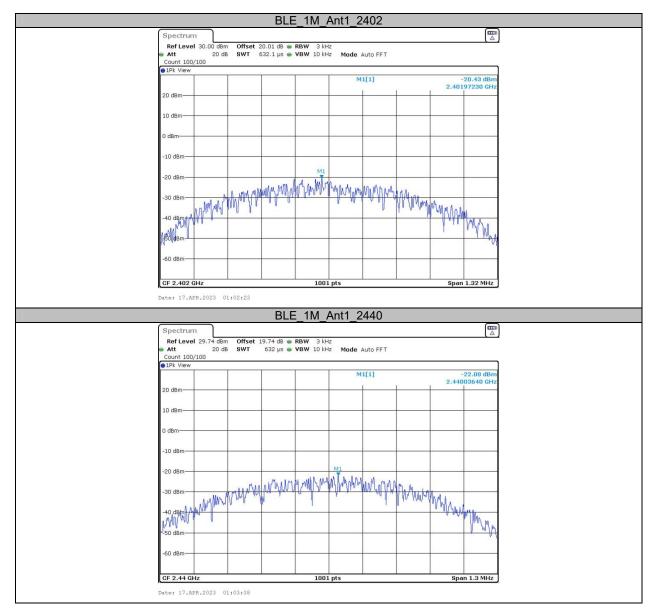
Test Graphs


Report No.: RA230403-09924E-RF

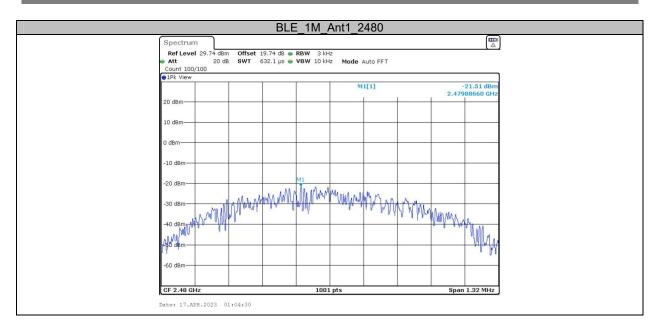
Appendix C: Maximum conducted output power Test Result Peak

Test Mode	Antenna	Frequency[MHz]	Conducted Peak Power[dBm]	Conducted Limit[dBm]	Antenna Gain [dBi]	EIRP[dBm]	EIRP Limit[dBm]	Verdict
		2402	-4.26	≤30	2.28	-1.98	≤36	PASS
BLE_1M	Ant1	2440	-4.51	≤30	2.28	-2.23	≤36	PASS
		2480	-4.86	≤30	2.28	-2.58	≤36	PASS

Test Graphs Peak


Report No.: RA230403-09924E-RF

Spectrun							
Ref Leve	29.74 dBm Offset	19.74 dB 🖷 RBN	N 3 MHz				
Att	20 dB SWT	1 ms 🖷 VB	W 10 MHz Mode	Auto Sweep			
Count 100, P1Pk View	100						
TEK VIEW				11[1]		-4.86 dBm	
					2.	48023980 GHz	
20 dBm		+ +		+ +			
				1 1			
10 dBm		-	-	-			
				1 1			
0 dBm			M1	-			
			¥				
-10 dBm							
				1 1		-	
-20.d8m-				+ +		the second second	
				1 1			
-30 dBm				+ +			
				1 1			
-40 dBm			-				
				1 1			
-50 dBm							
				1 1			
-60 dBm							
00 0011							
CF 2.48 GH	Iz		1001 pts			Span 8.0 MHz	

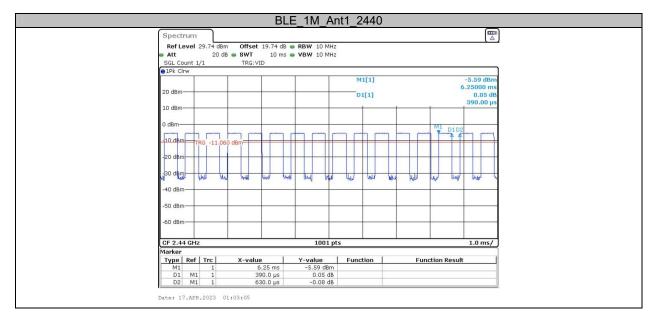

Appendix D: Maximum power spectral density Test Result

Test Mode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE_1M	Ant1	2402	-20.43	≤8.00	PASS
		2440	-22.08	≤8.00	PASS
		2480	-21.51	≤8.00	PASS

Test Graphs

Report No.: RA230403-09924E-RF

Appendix E: Band edge measurements Test Graphs


	_		BLE '	1M Ant	I LOW	2402			
Spectrur									
		m Offset	20.01 dB 👄	RBW 100 kH	7				
e Att				VBW 300 kH		Auto FFT			
Count 300	/300								
●1Pk View	1	1	-	T T	M1	[1]			-5.16 dBm
00 40-								2.40	20150 GHz
20 dBm-					M2	[1]			52.36 dBm
10 dBm					- 1		i - I	2.40	00000 GH2
0 dBm-									
0 dBm									NIT.
-10 dBm				+ +					<u> </u>
-20 dBm									1
-20 0611	D1 -25.16	0 dBm							
-30 dBm		0.000		+ +					
-40 dBm-									14
- to abiii							M3	M4	
59. dBa	mynu	alimiteroury	manunt	monorman	wetter une	window .	an towner	molenn	12 h
-60 dBm				100	12				
oo dolli									
Start 2.35	GHz			691 p	ots			Stop 2	.405 GHz
Marker									
Type Re	f Trc	X-valu		Y-value	Functi	on	Func	tion Result	
	1	2,402	015 GHz 2.4 GHz	-5.16 dBn -52.36 dBn					
M1 M2									
M1 M2 M3	1	2	2.39 GHz	-50.88 dBn	n				
M2		2	2.39 GHz 116 GHz	-50.88 dBn -48.32 dBn					
M2 M3 M4	1	2.3963							
M2 M3	1	2.3963	116 GHz	-48.32 dBn	n				
M2 M3 M4	1	2.3963	116 GHz		n	2480)		
M2 M3 M4 Date: 17.A	1 1 PR.2023	2.3963	116 GHz	-48.32 dBn	n	_2480)		(m
M2 M3 M4 Date: 17.A	1 1 PR.2023	2 2.3963 01:02:33	BLE_1	-48.32 dBn	1_High	_2480)		
M2 M3 M4 Date: 17.A Spectrur Ref Leve	1 1 PR.2023	2.3963 01:02:33 m Offset	BLE_1 19.74 dB	-48.32 dBn	n 1_High Iz				
M2 M3 M4 Date: 17.A Spectrur Ref Leve Att Count 300	1 1 PR.2023 m 29.74 dE 20	2.3963 01:02:33 m Offset	BLE_1 19.74 dB	-48.32 dBn	n 1_High Iz				
M2 M3 M4 Date: 17.A Spectrur Ref Leve Att	1 1 PR.2023 m 29.74 dE 20	2.3963 01:02:33 m Offset	BLE_1 19.74 dB	-48.32 dBn	n 1_High ¹² ¹² Mode #	Auto Swee			
M2 M3 M4 Date: 17.A Spectrur Ref Leve Att Count 300 PIPK View	1 1 PR.2023 m 29.74 dE 20	2.3963 01:02:33 m Offset	BLE_1 19.74 dB	-48.32 dBn	n 1_High Iz	Auto Swee			-6.18 dBm
M2 M3 M4 Date: 17.A Spectrur Ref Leve Att Count 300	1 1 PR.2023 m 29.74 dE 20	2.3963 01:02:33 m Offset	BLE_1 19.74 dB	-48.32 dBn	n 1_High ¹² ¹² Mode #	Auto Swee		2.4	-6.18 dBm 80010 GHz 50.49 dBm
M2 M3 M4 Date: 17.A Spectrur Ref Leve Att Count 300 PIPk View 20 dBm-	1 1 PR.2023 m 29.74 dE 20	2.3963 01:02:33 m Offset	BLE_1 19.74 dB	-48.32 dBn	n 1_High ¹² ¹² Mode A M1	Auto Swee		2.4	-6.18 dBm 80010 GHz
M2 M3 M4 Date: 17.A Ref Leve Att Count 300 @1Pk View 20 dBm	1 1 PR.2023 m 29.74 dE 20	2.3963 01:02:33 m Offset	BLE_1 19.74 dB	-48.32 dBn	n 1_High ¹² ¹² Mode A M1	Auto Swee		2.4	-6.18 dBm 80010 GHz 50.49 dBm
M2 M3 M4 Date: 17.A Spectrur Ref Leve Att Count 300 PIPk View 20 dBm-	1 1 PR.2023 m 29.74 dE 20	2.3963 01:02:33 m Offset	BLE_1 19.74 dB	-48.32 dBn	n 1_High ¹² ¹² Mode A M1	Auto Swee		2.4	-6.18 dBm 80010 GHz 50.49 dBm
M2 M3 M4 Date: 17.A Spectrur RefLeve Att Count 300 @1Pk View 20 dBm	1 1 1 PR.2023	2.3963 01:02:33 m Offset	BLE_1 19.74 dB	-48.32 dBn	n 1_High ¹² ¹² Mode A M1	Auto Swee		2.4	-6.18 dBm 80010 GHz 50.49 dBm
M2 M3 M4 Date: 17.A Ref Leve Att Count 300 @1Pk View 20 dBm	1 1 1 PR.2023	2.3963 01:02:33 m Offset	BLE_1 19.74 dB	-48.32 dBn	n 1_High ¹² ¹² Mode A M1	Auto Swee		2.4	-6.18 dBm 80010 GHz 50.49 dBm
M2 M3 M4 Date: 17.A Spectrur RefLeve Att Count 300 @1Pk View 20 dBm	1 1 1 PR.2023	2.3963 01:02:33 m Offset	BLE_1 19.74 dB	-48.32 dBn	n 1_High ¹² ¹² Mode A M1	Auto Swee		2.4	-6.18 dBm 80010 GHz 50.49 dBm
M2 M3 M4 Date: 17.A Spectrur RefLeve Att Count 300 9 IPk View 20 dBm— 10 dBm— -10 dBm— -20 dBm—	1 1 PR.2023 PR.2023 20 1/300 M1	2.3963 01:02:33 m Offset	BLE_1 19.74 dB	-48.32 dBn	n 1_High ¹² ¹² Mode A M1	Auto Swee		2.4	-6.18 dBm 80010 GHz 50.49 dBm
M2 M3 M4 Date: 17.A Spectrur Ref Leve Att Count 300 © 1Pk View 20 dBm- 10 dBm- -10 dBm-	1 1 PR.2023 PR.2023 20 1/300 M1	2 2.3963 01:02:33 m Offset B SWT	BLE_1 19.74 dB	-48.32 dBn	n 1_High ¹² ¹² Mode A M1	Auto Swee		2.4	-6.18 dBm 80010 GHz 50.49 dBm
M2 M3 M4 Date: 17.A Spectrur RefLeve Att Count 300 9 IPk View 20 dBm— 10 dBm— -10 dBm— -20 dBm—	1 1 PR.2023 PR.2023 20 1/300 M1	2 2.3963 01:02:33 m Offset B SWT	BLE_1 19.74 dB	-48.32 dBn	n 1_High ¹² ¹² Mode A M1	Auto Swee	p	2.4	-6.18 dBm 80010 GHz 50.49 dBm
M2 M3 M4 Date: 17.A Spectrur Ref Leve Att Count 300 PIR: View 20 dBm— 10 dBm— -10 dBm— -20 dBm— -30 dBm—	1 1 PR.2023 PR.2023 20 1/300 M1	2 2.3963 01:02:33 m Offset B SWT	BLE_1 19.74 dB	-48.32 dBn	n 1_High ¹² ¹² Mode A M1	Auto Swee	p	2.4	-6.18 dBm 80010 GHz 50.49 dBm
M2 M3 M4 Date: 17.A Spectrur RefLeve Att Count 300 • 1Pk View 20 dBm— 10 dBm— -10 dBm— -20 dBm— -30 dBm—	M1 M1 -26.18	2 2.3963 01:02:33 m Offset B SWT	BLE_1 9.74 dB 1.1 ms	-48.32 dBn	n 1_High ¹² ¹² Mode A M1	Auto Swee		2.4	-6.18 dBm 80010 GHz 50.49 dBm
M2 M3 M4 Date: 17.A Ref Leve Att Count 300 ● 1Pk View 20 dBm— 10 dBm— -10 dBm— -20 dBm— -30 dBm— -30 dBm—	M1 M1 -26.18	2 2.3963 01:02:33 m Offset B SWT	BLE_1 9.74 dB 1.1 ms	-48.32 dBn	n 1_High ¹² ¹² Mode A M1	Auto Swee	p	2.4	-6.18 dBm 80010 GHz 50.49 dBm
M2 M3 M4 Date: 17.A Spectrur Ref Leve Att Count 300 PIR: View 20 dBm— 10 dBm— -10 dBm— -20 dBm— -30 dBm—	M1 M1 -26.18	2 2.3963 01:02:33 m Offset B SWT	BLE_1 9.74 dB 1.1 ms	-48.32 dBn	n 1_High ¹² ¹² Mode A M1	Auto Swee	p	2.4	-6.18 dBm 80010 GHz 50.49 dBm
M2 M3 M4 Date: 17.A Spectrur Ref Leve Att Count 300 PIPk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	M1 -26.18 M2 -26.18	2 2.3963 01:02:33 m Offset B SWT	BLE_1 9.74 dB 1.1 ms	-48.32 dBn	n 1_High, 12 M11 M2 M2	Auto Swee	p	2.4 2.4	-6.18 dBm 80010 GHz 50.49 dBm 83500 GHz
M2 M3 M4 Date: 17.A Spectrum Ref Leve Att Count 300 PIPk View 20 dBm— 10 dBm— -10 dBm— -20 dBm— -30 dBm— -30 dBm— -40 dBm— S50-dBtn -60 dBm—	M1 -26.18 M2 -26.18	2 2.3963 01:02:33 m Offset B SWT	BLE_1 9.74 dB 1.1 ms	-48.32 dBn	n 1_High, 12 M11 M2 M2	Auto Swee	p	2.4 2.4	-6.18 dBm 80010 GHz 50.49 dBm
M2 M3 M4 Date: 17.A Spectrur Ref Leve Att Count 300 IPK View 20 dBm— 10 dBm— -10 dBm— -20 dBm— -30 dBm— -40 dBm— -60 dBm— Start 2.47 Marker	1 1 PR.2023 PR.2023 PR.2023 PR.2023 PR.2023 PR.2023 PR.2023 PR.2023 PR.2023 PR.2023 PR.2024	2 2.3963 01;02;33 m Offset B SWT	BLE_1 I9.74 dB I.1 ms M3 M3 M4 BLE_1 BLE_1 BL	-48.32 dBn 1M_Ant1 RBW 100 kH VBW 300 kH	n 1_High 1z Mode A M11 M2 M2 M1 M2 M1 M2 M2 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	لىلەن Swee	P 	2.4 2.4	-6.18 dBm 80010 GHz 50.49 dBm 83500 GHz
M2 M3 M4 Date: 17.A Ref Leve Att Count 300 IPR View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm Start 2.47 Marker Type IR	M1 M1 PR.2023 PR.2023 PR.2023 PR.2023 PR.2024 201 201 201 201 201 201 201 201	2 2.3963 01;02;33 m Offset IB SWT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BLE_1 9.74 dB 1.1 ms 19.74 dB 1.1 ms 10.1 m	-48.32 dBn IM_Ant1 RBW 100 kH VBW 300 kH G91 F Y-value -6.18 dBn	1_High	لىلەن Swee	P 	2.4 	-6.18 dBm 80010 GHz 50.49 dBm 83500 GHz
M2 M3 M4 Date: 17.A Ref Leve Att Count 300 ● 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm Start 2.47 Marker Type Re M1	1 1 1 1 PR.2023 20 M1 20 V300 40 M1 40 M1 40 M2 40 M1 40 M2 40 GHz 40 1 1 1 1	2 2.3963 01:02:33 m Offset B SWT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BLE_1 I9.74 dB I.1 ms M3 M3 M3 M3 M3 M3 M3 M3 M3 M	-48.32 dBn IM_Ant1 RBW 100 kH VBW 300 kH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n 1_High iz iz M11 M2 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M2 M1 M2 M2 M1 M2 M2 M2 M2 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	لىلەن Swee	P 	2.4 	-6.18 dBm 80010 GHz 50.49 dBm 83500 GHz
M2 M3 M4 Date: 17.A Ref Leve Att Count 300 IPR View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm Start 2.47 Marker Type IR	M1 M1 PR.2023 PR.2023 PR.2023 PR.2023 PR.2024 201 201 201 201 201 201 201 201	2 3963 01;02;33 m Offset IB SWT 0 0 dBm 0 0 dBm 2 48 2,48 2,48	BLE_1 9.74 dB 1.1 ms 19.74 dB 1.1 ms 10.1 m	-48.32 dBn IM_Ant1 RBW 100 kH VBW 300 kH G91 F Y-value -6.18 dBn	1_High	لىلەن Swee	P 	2.4 	-6.18 dBm 80010 GHz 50.49 dBm 83500 GHz

Report No.: RA230403-09924E-RF

Appendix F: Duty Cycle Test Result

Test Mode	Antenna	Frequency[MHz]	ON Time [ms]	Period [ms]	Duty Cycle [%]	1/T minimum VBW setting[kHz]
BLE_1M	Ant1	2440	0.39	0.63	61.90	2.56

Test Graphs

***** END OF REPORT *****