

TEST REPORT

Applicant Name : Address : Shenzhen Qianyan Technology LTD FCC: No.3301, Block C, Section 1, Chuangzhi Yuncheng Building, Liuxian Avenue, Xili Community, Xili Street, Nanshan District, Shenzhen, China IC: No. 3301, Block C, Section 1, Chuangzhi Yuncheng Building, Liuxian Avenue, Xili Community, Xili Street, Nanshan District Shenzhen 518000 China RA230518-27488E-RF 2A7VD-H613E 28789-H613E

Test Standard (s)

Report Number :

FCC ID:

IC:

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247, ISSUE 2, FEBRUARY 2017

Sample Description

Product Type:	Govee RGB LED Strip Light
Model No.:	H613E
Multiple Model(s) No.:	H613A, H613B, H613C, H613D, H613G
Trade Mark:	Govee
Date Received:	2023/05/18
Report Date:	2023/06/25
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards above. **Prepared and Checked By:** Approved By:

Dave Liang

Dave Liang **EMC Engineer**

Candoy, Cr

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \star ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503290
 Web: www.atc-lab.com

Version 140: 2023-01-30

Page 1 of 52

FCC-BLE; RSS-BLE

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE Test Methodol ogy	
TEST METHODOLOGY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
Equipment Modifications	7
EUT EXERCISE SOFTWARE	
DUTY CYCLE Support Equipment List and Details	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	9
SUMMARY OF TEST RESULTS	10
TEST EQUIPMENT LIST	11
FCC §1.1307 (B) & §2.1091 – RF EXPOSURE	
Test Result	
RSS-102 § 2.5.2 –EXEMPTION LIMITS FOR ROUTINE EVALUATION-RF EXPOSURE EVAL	
APPLICABLE STANDARD	
FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (A), RSS-GEN §8.8 - AC POWER LINE CONDUCTED EMISSIONS	15
APPLICABLE STANDARD	15
EUT SETUP	-
EMI Test Receiver Setup Test Procedure	
TEST RESULTS SUMMARY	
TRANSD FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.209, §15.205 & §15.247(D), RSS-GEN § 8.10 & RSS-247 § 5.5 – UNWANTED EMISSION FREQUENCIES AND RESTRICTED BANDS.	21
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	22
Test Procedure	
Factor & Margin Calculation Test Results Summary	
TEST DATA	

Version 140: 2023-01-30

FCC §15.247(A) (2), RSS-GEN § 6.7 & RSS-247 § 5.2 (A) – 99% OCCUPIED BANDWIDTH & 6 DB

EMISSON BANDWIDTH	
STANDARD APPLICABLE	
Test Procedure	
Теят Дата	32
FCC §15.247(B) (3), RSS-247 §5.4 (D) - PEAK OUTPUT POWER MEASUREMENT	
APPLICABLE STANDARD	
Test Procedure	
Теят Дата	34
FCC §15.247(E), RSS-247 §5.2 (B) – POWER SPECTRAL DENSITY	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(D) & RSS-247 §5.5 – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
APPENDIX	
APPENDIX A: DTS BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	45
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	48
APPENDIX E: BAND EDGE MEASUREMENTS	51
Appendix F: Duty Cycle	52

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RA230518-27488E-RF	Original Report	2023/06/25

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

HVIN	H613E, H613A, H613B, H613C, H613D, H613G
Product	Govee RGB LED Strip Light
Tested Model	H613E, H613G
Multiple Model(s)	H613A, H613B, H613C, H613D
Frequency Range	BLE: 2402-2480MHz
Maximum Conducted Peak Output Power	BLE: -3.49dBm
Modulation Technique	BLE: GFSK
Antenna Specification*	5.31dBi (provided by the applicant)
Voltage Range	DC 24V from adapter
Sample serial number	25Y3-1 (RF Conducted Test) 25Y3-3(CE&RE, model H613E) 25Y3-4 (CE&RE, model H613G) (Assigned by ATC)
Sample/EUT Status	Good condition
Adapter 1 Information (for model H613A/B/C/D/E)	Model: BI12G-240050-BdU Input: AC 100-240V, 50/60Hz, 0.5A Output: DC 24V, 0.5A
Adapter 2 Information (for model H613G)	Model: BI18GL-240075-AdU Input: AC 100-240V, 50/60Hz, 0.8A Output: DC 24V, 0.75A

Note: all EUT model use same control box, the model H613E was selected for full test, model H613G was additional test "conducted emission" and "radiated emission (below 1GHz)" for the adapter 2.

Objective

This report is in accordance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209, 15.247 rules and RSS-GEN Issue 5, February 2021 Amendment 2 and RSS-247, Issue 2, February 2017 of the Innovation, Science and Economic Development Canada rules.

Test Methodology

All tests and measurements indicated in this document were performed in accordance ANSI C63.10-2013, RSS-GEN Issue 5, February 2021 Amendment 2 and RSS-247, Issue 2, February 2017.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Parameter		Uncertainty	
Harmoni	c Current	0.512%, k=2	
Occupied Chai	nnel Bandwidth	5%	
RF Fre	equency	0.082*10 ⁻⁷	
RF output pov	wer, conducted	0.71dB	
Unwanted Emis	ssion, conducted	1.6dB	
AC Power Lines	9k-30MHz	2.74dB, k=2	
Conducted Emissions	150kHz-30MHz	2.92dB, k=2	
Audio Freque	ency Response	0.1dB	
Low Pass Fi	lter Response	1.2dB	
Modulatio	on Limiting	1%	
	9kHz - 30MHz	2.06dB	
F · ·	30MHz - 1GHz	5.08dB	
Emissions, Radiated	1GHz - 18GHz	4.96dB	
Rudiuteu	18GHz - 26.5GHz	5.16dB	
	26.5GHz - 40GHz	4.64dB	
Temperature		1 °C	
Humidity		6%	
Supply voltages		0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the Floor 1, KuMaKe Building, Dongzhou Community, Guangming Street, Guangming District, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 30241.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

"BK32XX RF TEST v1.8.2"* software was used to test and power level as below:

Mode	Data rate	Power Level*		
Moue	Data l'att	Low Channel	Middle Channel	High Channel
BLE	1Mbps	2	2	2

The software and power level was provided by the applicant.

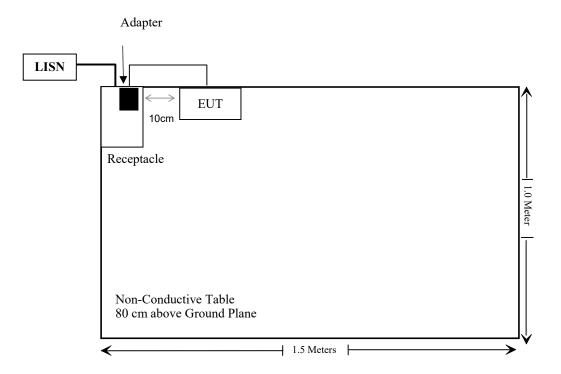
Version 140: 2023-01-30

Duty cycle

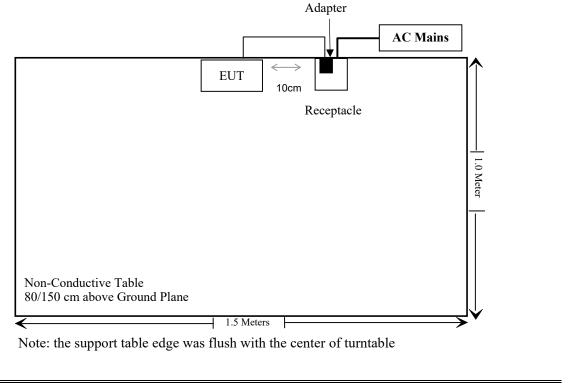
Test Result: Compliant. Please refer to the Appendix

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/


External I/O Cable

Cable Description	Length (m)	From Port	То
/	/	/	/


Report No.: RA230518-27488E-RF

Block Diagram of Test Setup

For conducted emission:

For Radiated Emissions:

Version 140: 2023-01-30

SUMMARY OF TEST RESULTS

FCC Rules	RSS Rules	Description of Test	Result
FCC §15.247 (i) & §1.1307 (b) (3) & §2.1091	RSS-102 § 2.5.2	RF Exposure & Exemption Limits For Routine Evaluation-RF Exposure Evaluation	Compliant
§15.203	RSS-Gen §6.8	Antenna Requirement	Compliant
§15.207 (a)	RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	RSS-GEN § 8.10 & RSS-247 § 5.5	Spurious Emissions	Compliant
§15.247 (a)(2)	RSS- Gen§6.7 RSS-247 § 5.2 (a)	99% Occupied Bandwidth & 6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	RSS-247 § 5.4(d)	Maximum Conducted Output Power	Compliant
§15.247(e)	RSS-247 § 5.2 (b)	Power Spectral Density	Compliant
§15.247(d)	RSS-247 § 5.5	100 kHz Bandwidth of Frequency Band Edge	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
		Conducted emis	sion test					
Rohde& Schwarz	EMI Test Receiver	ESCI	100784	2022/11/25	2023/11/24			
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2022/11/25	2023/11/24			
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2022/12/07	2023/12/06			
Unknown	RF Coaxial Cable	No.17	N0350	2022/11/25	2023/11/24			
Conducted Emission Test Software: e3 19821b (V9)								
		Radiated emiss	sion test					
Rohde& Schwarz	Test Receiver	ESR	102725	2022/11/25	2023/11/24			
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2022/11/25	2023/11/24			
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07			
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07			
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2022/11/08	2023/11/07			
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05			
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2022/11/30	2025/11/29			
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2022/12/26	2025/12/25			
	Radiated E	mission Test Softw	ware: e3 19821b (V	9)				
Unknown	RF Coaxial Cable	No.10	N050	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.11	N1000	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.12	N040	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.13	N300	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.14	N800	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.15	N600	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.16	N650	2022/11/25	2023/11/24			
Wainwright	High Pass Filter	WHKX3.6/18G -10SS	5	2022/11/25	2023/11/24			
		RF conducte	d test					
Tonscend	RF Control Unit	JS0806-2	19G8060182	2022/10/24	2023/10/23			
Rohde&Schwarz	Spectrum Analyzer	FSV-40	101590	2022/11/25	2023/11/24			
WEINSCHEL	10dB Attenuator	5324	AU 3842	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.31	RF-01	Each	time			

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Version 140: 2023-01-30

FCC §1.1307 (b) & §2.1091 – RF EXPOSURE

Applicable Standard

According to FCC §2.1091 and §1.1307(b), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.2 – 1-mW test Exemption:

Per § 1.1307(b)(3)(i)(A), a single RF source is exempt RF device (from the requirement to show data demonstrating compliance to RF exposure limits, as previously mentioned) if the available maximum time-averaged power is no more than 1 mW, regardless of separation distance.

This exemption applies to all operating configurations and exposure conditions, for the frequency range 100 kHz to 100 GHz, regardless of fixed, mobile, or portable device exposure conditions. This is a standalone exemption, and it cannot be applied in conjunction with any other test exemption.

Test Result

For worst case:

M.J.	Frequency	Maximum Tune-up	1		
Mode	(MHz)	(dBm) (mW)		1-mW test Exemption	
BLE	2402-2480	-3.0	0.50	Yes	

Note: The tune-up power was declared by the applicant.

Result: Compliant.

RSS-102 § 2.5.2 – EXEMPTION LIMITS FOR ROUTINE EVALUATION-RF EXPOSURE EVALUATION

Applicable Standard

According to RSS-102 § (2.5.2):

2.5.2 Exemption Limits for Routine Evaluation — RF Exposure Evaluation

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz⁶ and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is
 equal to or less than 22.48/f^{0.5} W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is
 equal to or less than 1.31 x 10⁻² f^{0.6834} W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

Calculated Data:

For worst case:

Mode	Frequency	Maximum tune-up conducted power	• • • • • • • • • • • • • • • • • • • •		Evaluation Distance	Limit	
	(MHz)	(dBm)	(dBi)	(dBm)	(W)	(cm)	(W)
BLE	2402-2480	-3.0	5.31	2.31	0.002	20	2.68

Note: The tune up conducted power and antenna gain was declared by the applicant.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: The RF Exposure evaluation can be exempted.

FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

According to FCC § 15.203, the applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

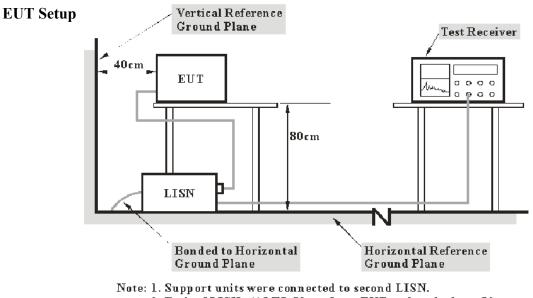
When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Connector Construction


The EUT has one internal antenna arrangement which was permanently attached and the maximum antenna gain is 5.31dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance

FCC §15.207 (A), RSS-GEN §8.8 - AC POWER LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207(a). RSS-Gen§8.8.

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits and RSS-Gen limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Test Results Summary

According to the EUT complied with the FCC 15.207/RSS-Gen.

Transd Factor & Margin Calculation

The Transd factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

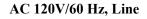
Factor = LISN VDF + Cable Loss

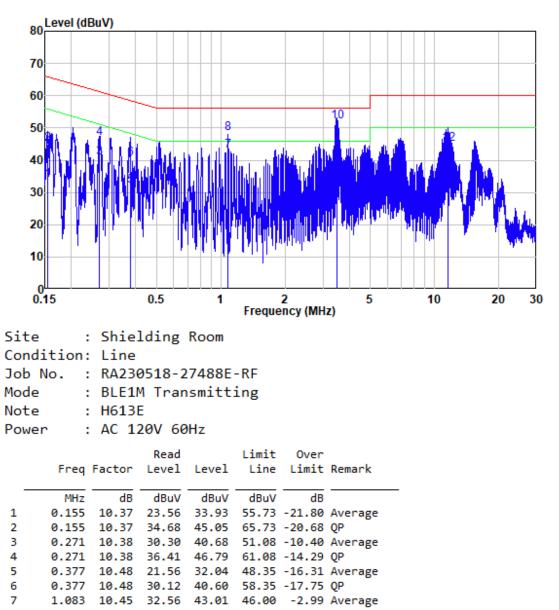
The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Test Data

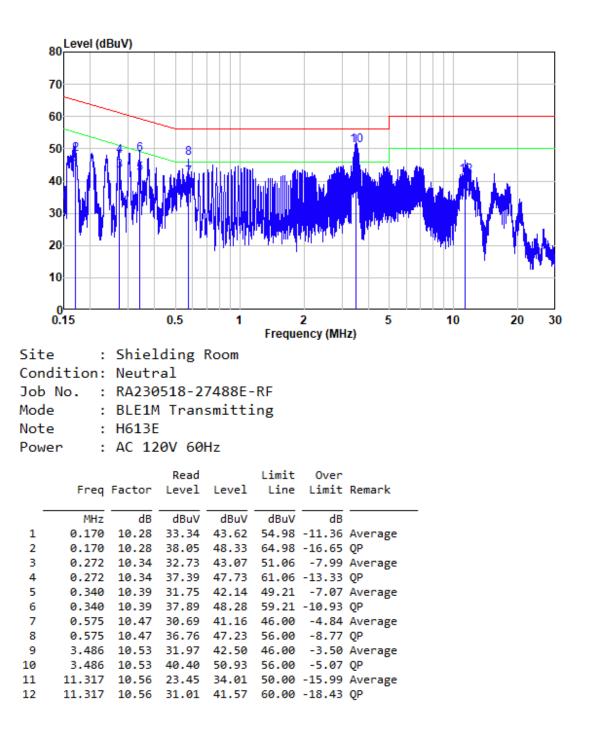
Environmental Conditions

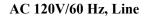

Temperature:	23 °C
Relative Humidity:	49 %
ATM Pressure:	101.0 kPa

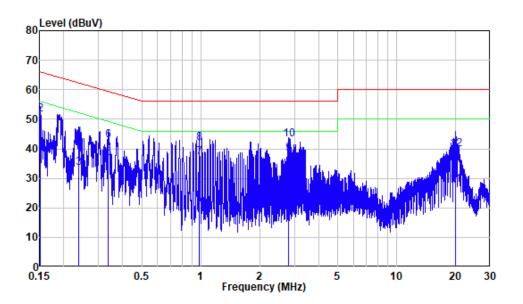

The testing was performed by Jason Wu on 2023-06-16.

EUT operation mode: Transmitting (Worst case is middle channel)

Report No.: RA230518-27488E-RF

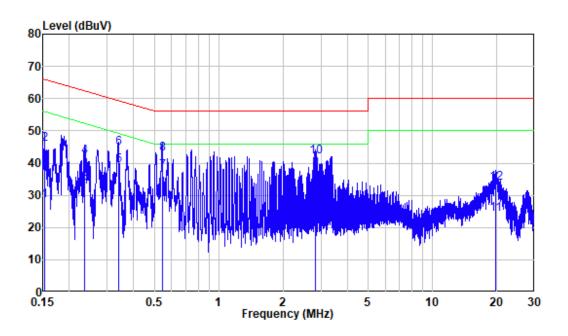

For Model H613E


8	1.083	10.45	37.87	48.32	56.00	-7.68	QP
9	3.488	10.51	32.00	42.51	46.00	-3.49	Average
10	3.488	10.51	41.51	52.02	56.00	-3.98	QP
11	11.605	10.46	25.15	35.61	50.00	-14.39	Average
12	11.605	10.46	34.66	45.12	60.00	-14.88	QP


AC 120V/60 Hz, Neutral

Report No.: RA230518-27488E-RF

For Model H613G



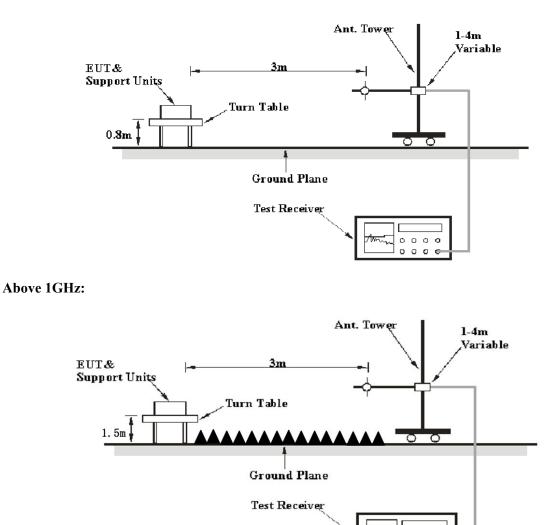
Site	:	Shielding Room
Condition	:	Line
Job No.	:	RA230518-27488E-RF
Mode	:	BLE1M Transmitting
Note	:	H613G
Power	:	AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.151	10.37	23.69	34.06	55.94	-21.88	Average
2	0.151	10.37	41.23	51.60	65.94	-14.34	QP
3	0.239	10.34	23.10	33.44	52.13	-18.69	Average
4	0.239	10.34	33.51	43.85	62.13	-18.28	QP
5	0.337	10.44	26.27	36.71	49.28	-12.57	Average
6	0.337	10.44	32.44	42.88	59.28	-16.40	QP
7	0.982	10.47	26.80	37.27	46.00	-8.73	Average
8	0.982	10.47	31.62	42.09	56.00	-13.91	QP
9	2.811	10.47	27.75	38.22	46.00	-7.78	Average
10	2.811	10.47	32.56	43.03	56.00	-12.97	QP
11	19.871	10.32	17.42	27.74	50.00	-22.26	Average
12	19.871	10.32	29.40	39.72	60.00	-20.28	QP

AC 120V/60 Hz, Neutral

Site :	Shielding Room
Condition:	Neutral
Job No. :	RA230518-27488E-RF
Mode :	BLE1M Transmitting
Note :	H613G
Power :	AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.153	10.27	18.20	28.47	55.81	-27.34	Average
2	0.153	10.27	35.60	45.87	65.81	-19.94	QP
3	0.235	10.32	23.49	33.81	52.26	-18.45	Average
4	0.235	10.32	31.68	42.00	62.26	-20.26	QP
5	0.339	10.39	28.85	39.24	49.23	-9.99	Average
6	0.339	10.39	34.26	44.65	59.23	-14.58	QP
7	0.543	10.47	27.07	37.54	46.00	-8.46	Average
8	0.543	10.47	32.48	42.95	56.00	-13.05	QP
9	2.845	10.52	27.78	38.30	46.00	-7.70	Average
10	2.845	10.52	31.43	41.95	56.00	-14.05	QP
11	19.635	10.22	13.83	24.05	50.00	-25.95	Average
12	19.635	10.22	23.67	33.89	60.00	-26.11	QP -


FCC §15.209, §15.205 & §15.247(D), RSS-GEN § 8.10 & RSS-247 § 5.5 – UNWANTED EMISSION FREQUENCIES AND RESTRICTED BANDS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205; RSS-247 §5.5, RSS-GEN §8.10.

EUT Setup

Below 1 GHz:

The radiated emission tests were performed in the 3meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.205, FCC 15.209, FCC 15.247, RSS-Gen and RSS-247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

Version 140: 2023-01-30

0000

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30MHz - 1000 MHz	100 kHz	300 kHz	120kHz	QP
	1MHz	3 MHz	/	РК
Above 1 GHz	1MHz	10 Hz ^{Note 1}	/	Average
	1MHz	$> 1/T^{Note 2}$	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Results Summary

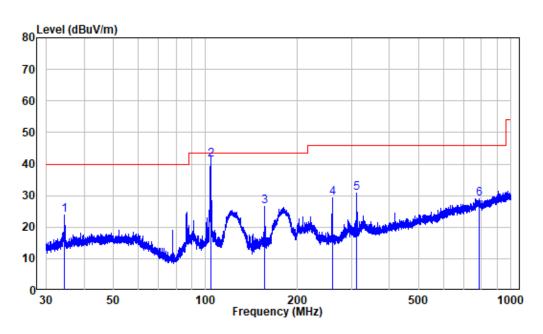
According to the data in the following table, the EUT complied with the FCC 15.205, FCC 15.209, FCC 15.247, RSS-Gen and RSS-247.

Test Data

Environmental Conditions

Temperature:	23~25.6 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Jason Liu on 2023-05-29 for below 1GHz and Jimi Zheng on 2023-05-23 for above 1GHz.

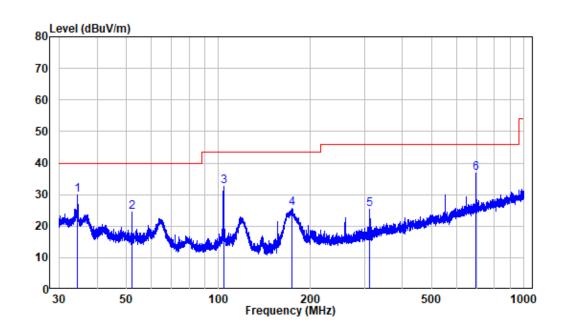

EUT operation mode: Transmitting(Pre-scan in the X, Y and Z axes of orientation, the worst case X-axes of orientation were recorded)

30MHz-1GHz: (Worst case is middle channel)

Note: When the test result of peak was less than the limit of QP more than 6dB, just peak value were recorded.

For model H613E

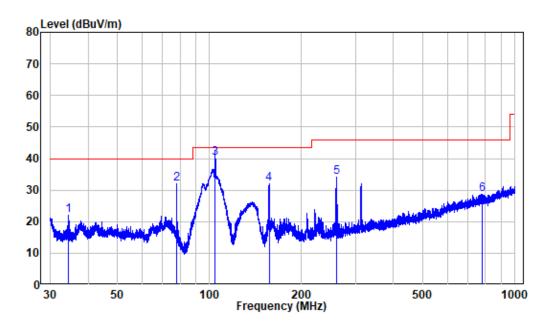
Horizontal



Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	RA230518-27488E-RF
Test Mode:	BLE 1M Transmitting
Note :	H613E

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	34.502	-11.70	35.54	23.84	40.00	-16.16	Peak
2	104.262	-11.77	53.10	41.33	43.50	-2.17	QP
3	156.321	-14.77	41.27	26.50	43.50	-17.00	Peak
4	260.601	-10.57	39.92	29.35	46.00	-16.65	Peak
5	312.864	-8.79	39.51	30.72	46.00	-15.28	Peak
6	784.406	-0.01	29.06	29.05	46.00	-16.95	Peak

Report No.: RA230518-27488E-RF

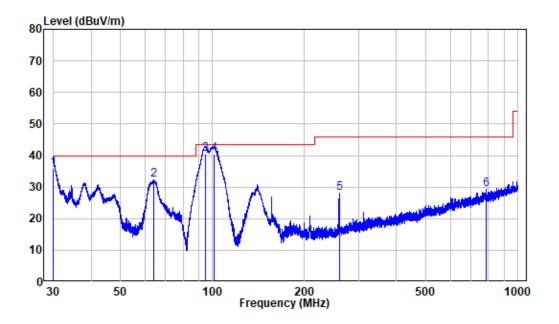


Site : chamber Condition: 3m VERTICAL Job No. : RA230518-27488E-RF Test Mode: BLE 1M Transmitting Note : H613E

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	34.487	-11.70	41.56	29.86	40.00	-10.14	Peak
2	52.002	-9.97	34.46	24.49	40.00	-15.51	Peak
3	104.262	-11.77	44.48	32.71	43.50	-10.79	Peak
4	173.509	-13.23	38.88	25.65	43.50	-17.85	Peak
5	312.727	-8.80	34.15	25.35	46.00	-20.65	Peak
6	696.246	-1.54	38.47	36.93	46.00	-9.07	Peak

For model H613G

Horizontal



Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	RA230518-27488E-RF
Test Mode:	BLE 1M Transmitting
Note :	H613G

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	34.487	-11.70	33.74	22.04	40.00	-17.96	Peak
2	78.002	-16.61	48.55	31.94	40.00	-8.06	Peak
3	103.897	-11.73	51.79	40.06	43.50	-3.44	QP
4	156.595	-14.73	46.75	32.02	43.50	-11.48	Peak
5	261.058	-10.56	44.64	34.08	46.00	-11.92	Peak
6	782.688	0.02	28.79	28.81	46.00	-17.19	Peak

Report No.: RA230518-27488E-RF

chamber
3m VERTICAL
RA230518-27488E-RF
BLE 1M Transmitting
H613G

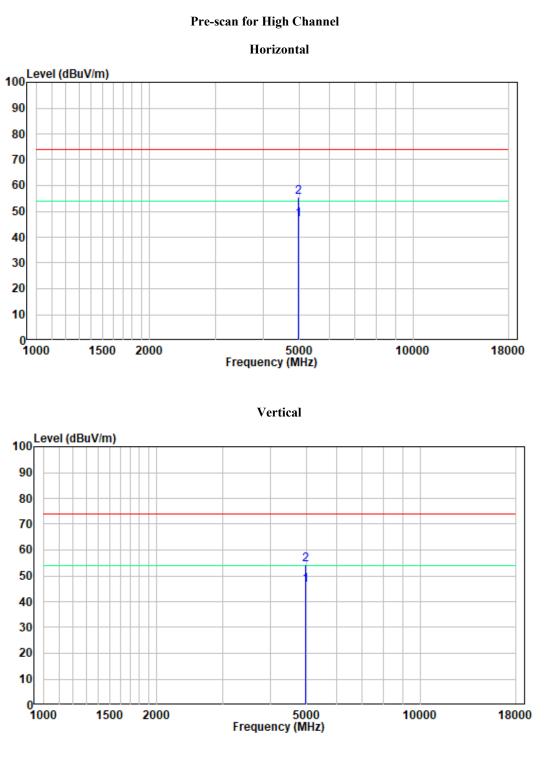
	Freq	Factor			Limit Line		Remark
1							0.0
_		-12.40					-
2	64.236	-12.23	44.67	32.44	40.00	-7.56	Peak
3	94.511	-12.58	53.00	40.42	43.50	-3.08	QP
4	101.244	-11.66	52.00	40.34	43.50	-3.16	QP
5	260.715	-10.57	38.58	28.01	46.00	-17.99	Peak
6	787.506	-0.08	29.51	29.43	46.00	-16.57	Peak

Report No.: RA230518-27488E-RF

1-25 GHz:

F	Re	ceiver	Turntable	Rx Ar	ntenna	Easter	Corrected	T ::4	Manala
Frequency (MHz)	Reading (dBµV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Low C	hannel(2	2402MH	[z)			
2350.2	69.06	РК	96	2	Н	-10.76	58.30	74	-15.70
2350.2	59.93	AV	96	2	Н	-10.76	49.17	54	-4.83
2350.7	69.07	РК	294	2.5	V	-10.76	58.31	74	-15.69
2350.7	60.20	AV	294	2.5	V	-10.76	49.44	54	-4.56
2390	65.57	РК	226	1.7	Н	-10.62	54.95	74	-19.05
2390	53.18	AV	226	1.7	Н	-10.62	42.56	54	-11.44
2390	65.51	РК	232	1.5	V	-10.62	54.89	74	-19.11
2390	53.18	AV	232	1.5	V	-10.62	42.56	54	-11.44
4804	60.44	РК	210	2.1	Н	-5.57	54.87	74	-19.13
4804	50.20	AV	210	2.1	Н	-5.57	44.63	54	-9.37
4804	60.26	PK	62	2.4	V	-5.57	54.69	74	-19.31
4804	49.67	AV	62	2.4	V	-5.57	44.10	54	-9.90
			Middle (Ì	/			
4880	60.57	PK	349	1.8	Н	-5.24	55.33	74	-18.67
4880	50.94	AV	349	1.8	Н	-5.24	45.7	54	-8.30
4880	59.93	РК	323	1.2	V	-5.24	54.69	74	-19.31
4880	50.45	AV	323	1.2	V	-5.24	45.21	54	-8.79
			High Cl	hannel(2	2480 MF	łz)			
2483.5	66.24	РК	43	1.9	Н	-10.46	55.78	74	-18.22
2483.5	53.51	AV	43	1.9	Н	-10.46	43.05	54	-10.95
2483.5	65.02	РК	211	2.4	V	-10.46	54.56	74	-19.44
2483.5	53.56	AV	211	2.4	V	-10.46	43.1	54	-10.90
2493.88	68.30	РК	123	1.4	Н	-10.37	57.93	74	-16.07
2493.88	53.54	AV	123	1.4	Н	-10.37	43.17	54	-10.83
2491.18	68.14	РК	311	2.3	V	-10.40	57.74	74	-16.26
2491.18	53.58	AV	311	2.3	V	-10.40	43.18	54	-10.82
4960	60.51	РК	3	1.1	Н	-4.90	55.61	74	-18.39
4960	51.52	AV	3	1.1	Н	-4.90	46.62	54	-7.38
4960	59.34	РК	135	2.3	V	-4.90	54.44	74	-19.56
4960	51.19	AV	135	2.3	V	-4.90	46.29	54	-7.71

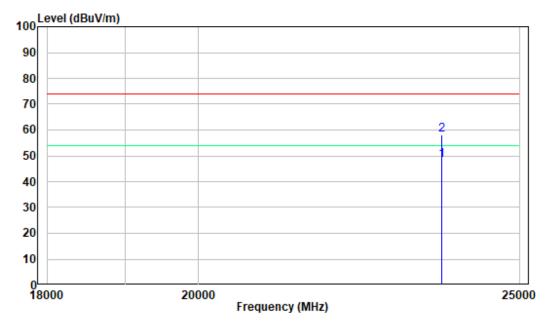
Note:

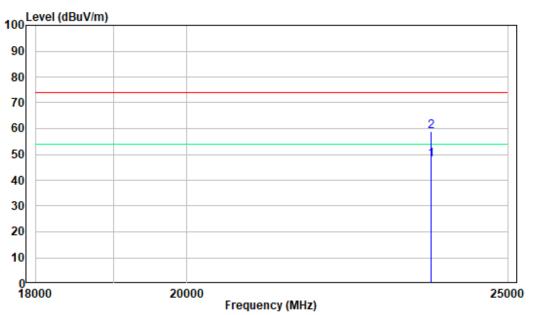

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading

Margin = Corrected. Amplitude - Limit

The other spurious emission which is in the noise floor level was not recorded.


1-18 GHz:



18 -25GHz:

Pre-scan for High Channel

Horizontal

Vertical

Version 140: 2023-01-30

FCC §15.247(a) (2), RSS-GEN § 6.7 & RSS-247 § 5.2 (a) – 99% OCCUPIED BANDWIDTH & 6 dB EMISSON BANDWIDTH

Standard Applicable

According to FCC §15.247(a) (2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

According to RSS-247 §5.2 a) The minimum 6 dB bandwidth shall be 500 kHz.

According to RSS-Gen §6.7

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs. In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two

In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.8.1 & Clause 6.9.3

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

99% Occupied bandwidth test:

Use Occupied bandwidth test function, measure the 99% Occupied bandwidth.

Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Roger Ling on 2023-05-24

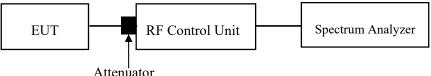
EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(b) (3), RSS-247 §5.4 (d) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.


According to RSS-247§5.4 d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(e), the e.i.r.p. shall not exceed 4 W.

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.9.1.1

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Roger Ling on 2023-05-24

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(e), RSS-247 §5.2 (b) – POWER SPECTRAL DENSITY

Applicable Standard

According to FCC §15.247(e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

According to RSS-247 §5.2 b):

b) The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.10.2

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \leq RBW \leq 100 kHz$.
- 3. Set the VBW \geq 3 \times RBW.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Attenuator

Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

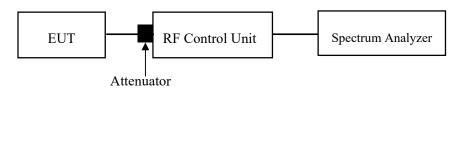
The testing was performed by Roger Ling on 2023-05-24

Test Mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(d) & RSS-247 §5.5 – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.11

- 1. Set the RBW =100 kHz.
- 2. Set the VBW \ge 3 \times RBW.
- 3. Detector = peak
- 4. Sweep time = auto couple.
- 5. Trace mode=max hold
- 6. All trace to fully stabilize
- Use the peak marker function to determine the maximum amplitude level. Ensure that amplitude of all unwanted emissions outside of the authorized frequency band(excluding restricted frequency bands) is attenuated by at least the minimum requirement specified in 11.11. Report the three highest emissions relative to the limit.

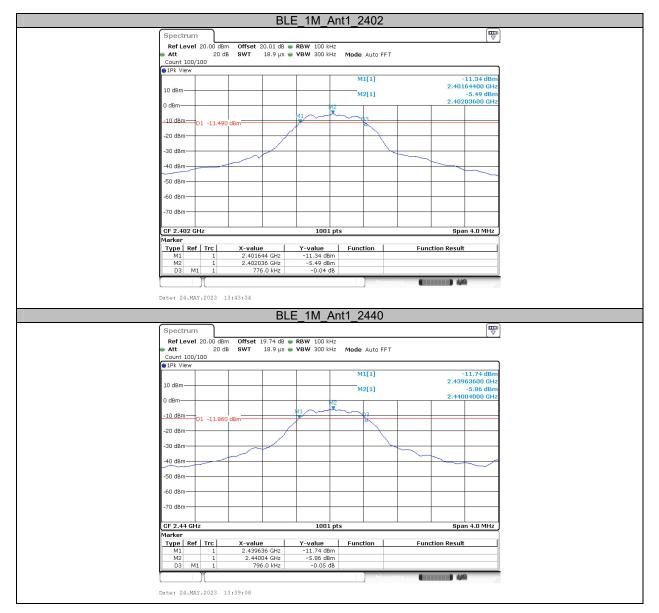
Test Data

Environmental Conditions

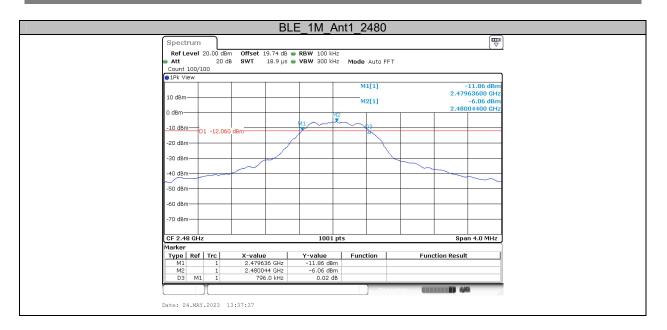
Temperature:	23 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Roger Ling on 2023-05-24

EUT operation mode: Transmitting

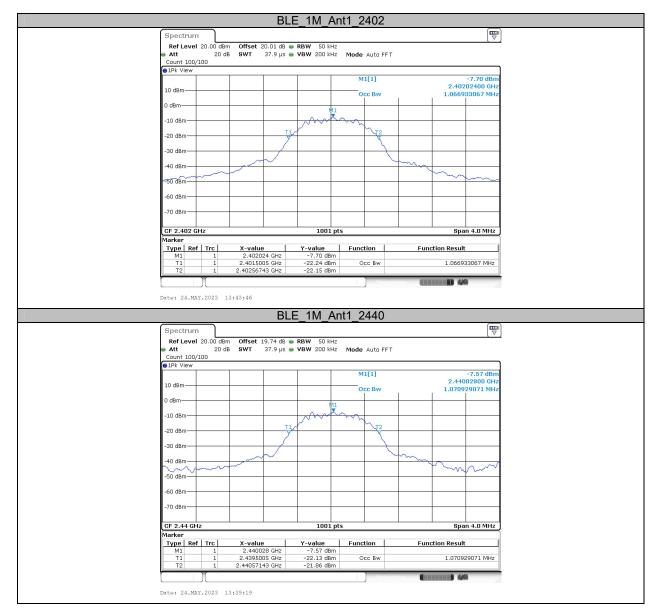

Test Result: Compliant. Please refer to the Appendix.

APPENDIX


Appendix A: DTS Bandwidth Test Result

Test Mode	Antenna	Frequency[MHz]	DTS BW [MHz]	Limit[MHz]	Verdict
		2402	0.78	0.5	PASS
BLE_1M	Ant1	2440	0.80	0.5	PASS
		2480	0.80	0.5	PASS

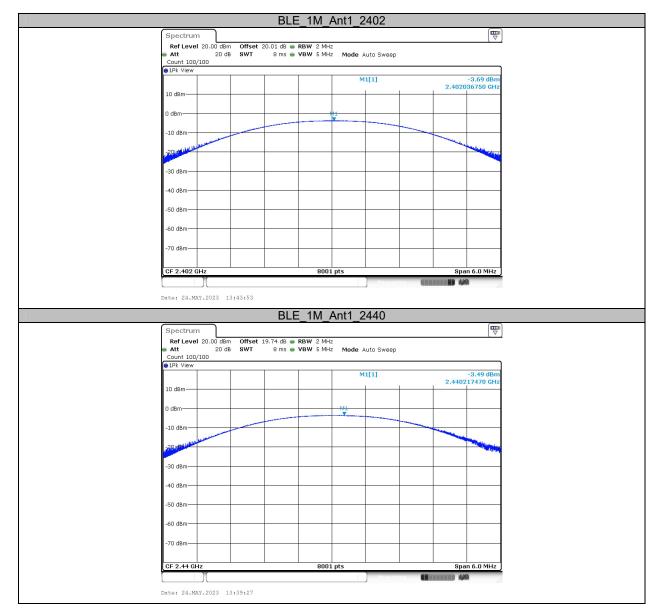
Test Graphs

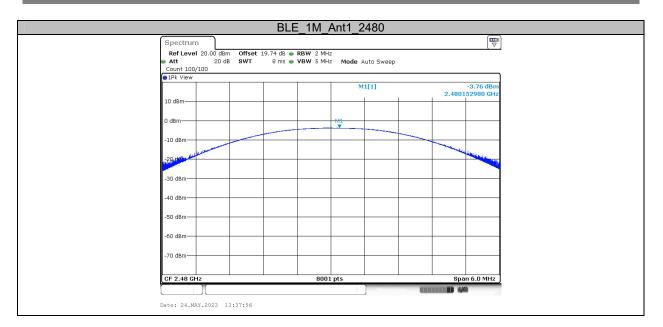

Report No.: RA230518-27488E-RF

Appendix B: Occupied Channel Bandwidth Test Result

Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.067	2401.500	2402.567		
BLE_1M	Ant1	2440	1.071	2439.500	2440.571		
		2480	1.063	2479.504	2480.567		

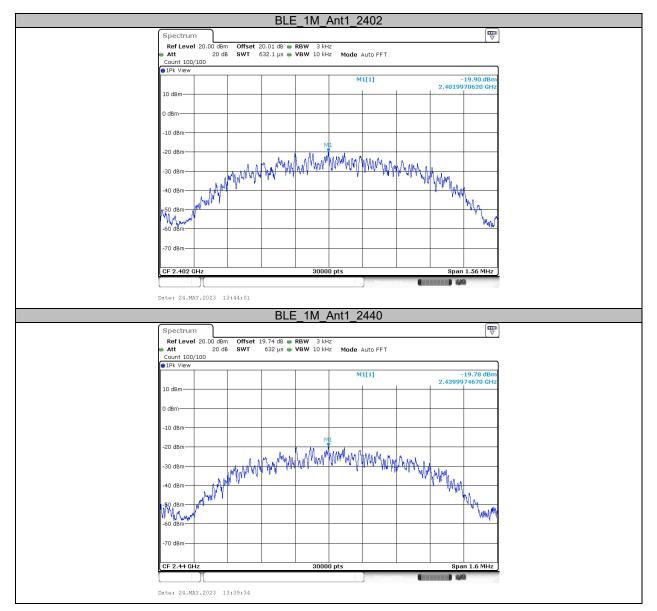
Test Graphs

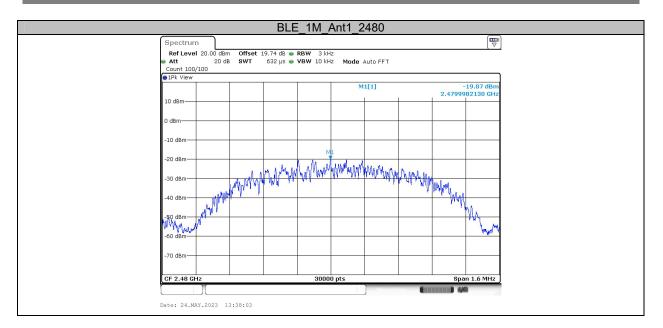

Report No.: RA230518-27488E-RF


Appendix C: Maximum conducted output power Test Result Peak

Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Conducted Limit [dBm]	Antenna Gain [dBi]	EIRP [dBm]	EIRP Limit [dBm]	Verdict
		2402	-3.69	≤30	5.31	1.62	≤36	PASS
BLE_1M	Ant1	2440	-3.49	≤30	5.31	1.82	≤36	PASS
		2480	-3.76	≤30	5.31	1.55	≤36	PASS

Test Graphs Peak


Report No.: RA230518-27488E-RF


Appendix D: Maximum power spectral density Test Result

Test Mode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-19.90	≤8.00	PASS
BLE_1M	Ant1	2440	-19.78	≤8.00	PASS
_		2480	-19.87	≤8.00	PASS

Test Graphs

Report No.: RA230518-27488E-RF

Appendix E: Band edge measurements Test Graphs

Spectrum W Ref Level 20.00 d8m Offset 20.01 d8 RBW 100 bHz Mdde Auto FFT Image: Spectrum Image: Spectrum Image: Spectrum -6.00 d8m ID d8m Image: Spectrum M1[1] -6.00 d8m ID d8m Image: Spectrum M1[1] 2.4020130 dFz -0.0 d8m Image: Spectrum -6.00 d8m -2.400000 dFz -0.0 d8m Image: Spectrum Spectrum -2.400000 dFz -0.0 d8m Image: Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Notker Image: Spectrum Spectrum Spectrum Notker Image: Spectrum Spectrum Spectrum Spectrum Notker Image: Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum						BLE	1M Ant	1_Low_	2402			
Ber Level 20.0 dBm Offset 20.01 dB R BW 100 Hz Matter 20 dB SWT 132.7 µs VBW 300 Hz Matter ID dBm ID dBm ID dBm 2.4000100 Gtz -6.00 Gtm ID dBm ID dBm ID dBm ID dBm 2.4000000 Gtz -10 dBm ID dBm ID dBm ID dBm ID dBm ID dBm -20 dBm ID dBm <td></td> <td>trum</td> <td>n 1</td> <td>٦</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(B)</td>		trum	n 1	٦								(B)
	Ref Lev		1 20.00									(*)
ID dBm -6.00 dBm 0 dBm -45.17 dBm 0 dBm -45.17 dBm -10 dBm -46.17 dBm -20 dBm -46.00 dBm -30 dBm -46.00 dBm -70 dBm -46.00 dBm -70 dBm -46.00 dBm -70 dBm -50.00 dBm -70 dBm -50.00 dBm -70 dBm -50.00 dBm -70 dBm -2.400.15 GHz -70 dBm -2.400.25 GHz -70 dBm -2.400.25 GHz -70 dBm -2.400.25 GHz -70 dBm -2.400.25 GHz -70 dBm -2.400.26 GHz -70				20 dB	SWT	132.7 µs	😑 VBW 300 k	Hz Mode Au	ito FFT			
10 dBm	O 1PK Viev	iew		-				M1[1	1		-	6.00 dBm
0 dbm	10 dBm-										2.402	0150 GHz
0 dein								M2[1	1		-4	5.17 dBm
10 dbm 20 dbm 10 - 26,000 dBm 10 - 26,000 dBm -30 dbm -0 - 26,000 dBm -0 - 26,000 dBm 10 - 26,000 dBm -50 dbm -0 - 26,000 dBm -0 - 26,000 dBm 10 - 26,000 dBm -50 dbm -0 - 26,000 dBm -0 - 26,000 dBm 10 - 26,000 dBm -50 dbm -0 - 26,000 dBm -0 - 26,000 dBm -0 - 26,000 dBm -70 dbm -2,40215 GHz -6,000 dBm Function Result Marker	0 dBm	-									2.100	M1
Stort 2.35 GHz Old Addition Mile Mil	-10 dBm-	m——										<u>A</u>
Stort 2.35 GHz Old Addition Mile Mil	-20 dBm-											
-30 dbm -40 dbm		D1	D1 -26	26.000 d	iBm							
Sor dBm M3 M3 <t< td=""><td>-30 dBm-</td><td>m</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-30 dBm-	m										
-00 d8m	440 dBm-	m——									M	
Spectrum Stop 2.405 GHz 0 dBm 1 2.4 GHz 691 pts Stop 2.405 GHz Marker Type [Ref Trc X-value Y-value Function Result M1 1 2.4 GHz -45.17 dBm -45.17 dBm -45.17 dBm M3 1 2.33 GHz -48.62 dBm -45.17 dBm -6.00 dBm -6.00 dBm M4 1 2.35 GHz -43.30 dBm -6.00 dBm -6.00 dBm -6.00 dBm Date: 24.MMY.2023 13:44:11 Image: 20 dB SWT 1.1 ms WBW 300 kHz -6.00 dBm -6.00 dBm <td< td=""><td>Lain valettan</td><td>menon</td><td>-</td><td>malan</td><td>and.</td><td>Monallina</td><td>many planners</td><td>مر المر سريوم ال</td><td>manate de la</td><td>vid X.m. august</td><td>- And and and</td><td>" he</td></td<>	Lain valettan	menon	-	malan	and.	Monallina	many planners	مر المر سريوم ال	manate de la	vid X.m. august	- And and and	" he
Jone Jone Jone Jone Stop 2.405 GHz Narker Type Ref Trc X-value Y-value Function Function Result Mai 1 2.4 GHz -45.17 dBm -45.17 dBm -45.17 dBm Mai 1 2.3 GHz -48.62 dBm -47.57 dBm -47.57 dBm Date: 24.947.2023 13:44:11 Image: Constraint of the second dBm					- 0			N.V.	- Inv			
Start 2.35 GHz 91 pts Stop 2.405 GHz Marker Type Ref Trc 2.40015 GHz 45.07 dBm Function Function Result M1 1 2.40215 GHz -6.00 dBm Function Function Result M3 1 2.39 GHz -48.62 dBm Function Function Result M4 1 2.35 GHz -43.30 dBm Function Function Date: 24.MWY.2023 13:44:11 Function Function Function Spectrum Velocity Velocity Velocity Function Function Function Ref Level 20.00 dBm Offset 19.74 dB RBW 100 kHz Velocity -400010 GHz • Att 20 dB SWT 1.1 ms VBW 300 kHz Mde Auto Sweep -6.00 dBm 0 dBm M1 -6.00 dBm M2[1] 2.480500 GHz -40.40 GHz -00 dBm M1 -9.400 M3 M2[1] -40.40 GHz -40.40 GHz -00 dBm M3 -9.400 M3 -9.41 GHz -9.41 GHz </td <td>-60 dBm-</td> <td>m —</td> <td></td>	-60 dBm-	m —										
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402015 GHz -6.00 dBm -6.00 dBm<	-70 dBm-	m——	-									
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402015 GHz -6.00 dBm Function Result Function Result M2 1 2.460215 GHz -45.17 dBm Function Result Function Result M4 1 2.35 GHz -43.30 dBm Function Result Function Result Date: 24.MAY.2023 13:44:11 Function Result Function Result Function Result Ref Level 20.00 dBm Offset 19.74 dB RBW 100 kHz Function Result Function Result Att 20 dB SWT 1.1 ms VBW 300 kHz Mode Auto Sweep Ft View I dBm M1 2.480010 GHz -6.00 dBm 2.480010 GHz -46.36 dBm 1 dBm M1 2.480010 GHz -46.36 dBm -46.36 dBm -46.36 dBm -0 dBm M1 -46.36 dBm -40 dBm -46.36 dBm -46.36 dBm -40 dBm -46.36 dB												
Type Ref Trc X-value Function Function M1 1 2:402015 GHz -6:00 dBm -6:00 dBm -6:00 dBm M2 1 2:39 GHz -4:8:62 dBm -4:0:00 dBm -6:00 dBm M4 1 2:39 GHz -4:8:00 dBm -6:00 dBm -6:00 dBm Date: 24.MAY.2023 13:44:11 -6:00 dBm -6:00 dBm -6:00 dBm Ref Level 20:00 dBm Offset 19:74 dB RBW 100 kHz -6:00 dBm -6:00 dBm 0 dBm 1:1 ms VBW 300 kHz Mode Auto Sweep -6:00 dBm -4:00010 GHz 0 dBm 1:1 ms VBW 300 kHz M2[1] -6:00 dBm -4:0010 GHz 1:0 dBm -0:0 dBm -0:0 dBm -0:0 dBm -4:0:0 GHz -4:0:0 GHz -10 dBm -0:0 dBm -0:0 dBm -0:0 dBm -4:0:0 GHz -4:0:0 GHz -2:0 dBm -0:0 dBm -0:0 dBm -0:0 dBm -0:0 dBm -0:0 dBm -0:0 dBm -0:0 dBm -0:0 dBm -0:0 dBm -0:0 dBm <td></td> <td></td> <td>GHz</td> <td></td> <td></td> <td></td> <td>691</td> <td>pts</td> <td></td> <td></td> <td>Stop 2</td> <td>.405 GHz</td>			GHz				691	pts			Stop 2	.405 GHz
M1 1 2.4 GH2 -6.00 dBm M3 1 2.39 GH2 -48.62 dBm M4 1 2.39 GH2 -43.30 dBm M4 1 2.35 GH2 -43.62 dBm Date: 24.MAY.2023 13:44:11 Mage: 24.May.2023 13:44:11 Dete: 24.MAY.2023 Mage: 20.00 dBm Note: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan= 2"Colspan="2">Colspan= 2"Colspan="2">Colspan= 2"Colspan="2">Colspan= 2"Colspan="2"Colspa="2"Colspan="2"Colspan="2"C			f Tre	cl	X-valu	e	Y-value	Function	n	Funct	tion Result	
M3 1 2.39 GHz -48.62 dBm M4 1 2.35 GH2 -43.30 dBm Date: 24.MAY.2023 13:44:11 BLE_1M_Ant1_High_2480 Spectrum Ref Level 20.00 dBm Mail 1 OFR View Mail 1 OFR View Mail 1 O B OFR View Mail 1 O B OFR View Mail 1 O B O B O B O B O B O B O B O B O B O B O B O B O B O B O B O B O B O B O B	M1		1	1	2.4020	015 GHz	-6.00 dB	m				
M4 1 2.35 GHz -43.30 dBm Date: 24.MAY.2023 13:44:11 BLE_1M_Antl_High_2480 Colspan="2">Colspan="2"Colspa=""2"Colspan="2"Colspan="2"Colspa="2"Colspan="2"Col					2	2.4 GHz .39 GHz	-45.17 de -48.62 de	m m				
Date: 24.MAY.2023 13:44:11 BLE_1M_Ant1_High_2480 Spectrum Image: Constraint of the second of the s												
BLE_1M_Ant1_High_2480 Spectrum Ref Level 20.00 dbm Offset 19.74 db @ RBW 100 kH2 Att 20 db SWT 1.1 ms @ VBW 300 kH2 Made Auto Sweep @ IPk View M1[1] -6.00 dbm -6.00 dbm -6.00 dbm -46.36 dbm <									Measuring		4/6	
BLE_1M_Ant1_High_2480 Spectrum Ref Level 20.00 dbm Offset 19.74 db @ RBW 100 kHz Att 20 db SWT 1.1 ms @ VBW 300 kHz Made Auto Sweep @ JPk View M1[1] -6.00 dBm 10 dBm M2[1] 2.480310 GHz 10 dBm M2[1] 2.4803500 GHz -10 dBm M1 -40 dBm -40 dBm -20 dBm -26.000 dBm M3 M4 -30 dBm M3 M4 -40 dBm -50 dBm M3 -60 dBm -60 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm -60 dBm -60 dBm -60 dBm -70 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm </td <td>Date: 24.</td> <td>24.MAY.2</td> <td>AY.202</td> <td>23 13:</td> <td>:44:11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Date: 24.	24.MAY.2	AY.202	23 13:	:44:11							
Spectrum Image: Spectrum Ref Level 20.00 dBm Offset 19.74 dB @ RBW 100 kH2 Att 20 dB SWT 1.1 ms VBW 300 kH2 Mode Auto Sweep Image: Swr M1[1] -6.00 dBm 10 dBm M2[1] -6.00 dBm 0 dBm M2[1] -10 dBm -46.36 dBm -20 dBm -46.36 dBm -30 dBm -46.000 dBm -30 dBm -46.000 dBm -30 dBm -46.000 dBm -30 dBm -46.000 dBm -30 dBm -40 dBm -70 dBm -40 dBm		_				D I -	414	4 112 1	0.400			
Ref Level 20.0 dbm Offset 19.74 db RBW 100 kHz Mode Auto Swep 1.1 ms VBW 300 kHz Mode Auto Swep IPK View MI[1] -6.00 dbm 2.480010 GHz -46.36 dbm 0 dbm MI[1] -46.36 dbm 2.480200 GHz -46.36 dbm 0 dbm MI 2.480200 GHz -46.36 dbm -46.36 dbm -10 dbm MI 2.480200 GHz -46.36 dbm -46.36 dbm -20 dbm D1 -26.000 dbm -40 dbm -46 -46.46 dbm -30 dbm MI -40 dbm M4 -40.42 dbm				_		RLF	_1M_Ant	T_High_	2480			
Ref Level 20.0 dbm Offset 19.74 dB RBW 100 kHz Mode Auto Swep Swep <td>Spectri</td> <td>trum</td> <td>n</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Spectri	trum	n	1								
• IPk View M1[1] -6.00 dBm 10 dBm M2[1] -46.36 dBm 0 dBm M2[1] -46.36 dBm 0 dBm M1 -10 dBm 9 -20 dBm 01 -30 dBm 01 -30 dBm 01 -40 dBm M3 -50 dBm M3 -70 dBm M3 -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -511 bs -70 dBm -70 dBm -70 dBm		.evel 20										
10 dBm M1[1] -6.00 dBm 10 dBm M2[1] 2.480300 GHz 0 dBm M2[1] 2.483500 GHz -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -30 dBm -10 dBm -10 dBm -40 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -70 dBm -10 dBm <		/iew		20 dB	SWT	1.1 ms	🖶 VBW 300 k	HZ Mode Au	ito Sweep			
10 dBm 2.480010 GHz 0 dBm M2[1] -46.36 dBm 0 dBm M1 2.483500 GHz -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -30 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -30 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -70 dBm -10 dBm -10 dBm								M1[1	1		-	6.00 dBm
0 dBm 2.483500 GHz -10 dBm -10 dBm -20 dBm -10 -26.000 dBm -30 dBm -10 -26.000 dBm -40 dBm -10 -26.000 dBm -50 dBm -10 -26.000 dBm -40 dBm -10 -26.000 dBm -50 dBm -10 -26.000 dBm -70 dBm -10 -26.0	10 dBm-										2.48	0010 GHz
0 dBill M1 -10 dBm -10 -20 dBm -10 -30 dBm -10 -40 dBm -10 -40 dBm -10 -50 dBm -10 -10 dBm -10 -30 dBm -10 -40 dBm -10 -50 dBm -10 -60 dBm -10 -70 dBm -10 Start 2.47 GHz 691 pts Starker -10 Type Ref Trc X-value Y-value Function Function Result 10	0.48							W2[1	u			
-20 dBm 01 -26.000 dBm 01 -20 d	J asm-	MI	M1									
-30 dBm 01 - 26.000 dBm M4 -30 dBm M2 M3 -40 dBm M2 M4 -50 dBm M3 M4 -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm	-10 dBm-	m <mark>⊢†A</mark>	H			-						
-30 dBm 01 - 26.000 dBm M4 -30 dBm M2 M3 -40 dBm M3 M4 -50 dBm M3 -50 dBm M3 -60 dBm M3 -70 dBm M3 -70 dBm M3 -70 dBm M3 -70 dBm Stor 2.55 GHz Marker Type Ref Trc X-value Y-value Function Function Result		m→↓Ŭ	ЦЦ				_					
-30 dBm M2 M3 M4 -40 dBm M2 M3 M4 -50 dBm M3 M3 M4 -60 dBm M3 M3 M4 -70 dBm M3 M3 M4 -60 dBm M3 M3 M4 -70 dBm M3 M3 M4 -70 dBm M3 M3 M3 Start 2.47 GHz 691 pts Stop 2.55 GHz Marker Type Ref Trc X-value Y-value Function	-20 dBm-	D1	D1 -26	26.000 d	lBm							
-40 dem -60 dem -60 dem -70 dem Start 2.47 GHz 691 pts Storker Storker		m -+//	11			1	-					
-50 dBm		- IJ *							1			
-60 d8m -60 d8m -70	-30 dBm-		\downarrow	. M2			_			M4		
-70 dBm	-30 dBm- -40 dBm-	m	\mathcal{A}	M2 Winner	سلمعرس	M	3 Marcana	and a start and a start and a start and a start	num	M4	muhman	سلسهاب السايع
Start 2.47 GHz 691 pts Stop 2.55 GHz Marker Type Ref Trc X-value Y-value Function Function Result	-30 dBm- -40 dBm-	m	Д	M2 Whene	الملاحك	muner	3 Burrennennen	ware water and	Webernarah	M4	mahama	whysowyba
Start 2.47 GHz 691 pts Stop 2.55 GHz Marker Type Ref Trc X-value Y-value Function	-30 dBm- -40 dBm- -50 dBm-	m	A	M2 Whene	handenmente	M	3 Michaelennin-uin-uin-	ana sa ata ang ang ang ang ang ang ang ang ang an	Welward	M4	mahymm	aling the started
Marker Type Ref Trc X-value Y-value Function Function Result	-30 dBm- -40 dBm- -50 dBm- -60 dBm-	m	A	M2		M	3 Burrannannanna	and the state of the	www.ma	M4 under An	uhyman-p	alling the straffic
Type Ref Trc X-value Y-value Function Function Result	-30 dBm- -40 dBm- -50 dBm- -60 dBm-	m	4	M2		M	3 Antonionana	lene en la management	hulman	M4 umput An	muhyan	alingstruthelju
Type Ref Trc X-value Y-value Function Function Result	-30 dBm- -40 dBm- -50 dBm- -60 dBm- -70 dBm- Start 2.4	m m m 2.47 GHz		M2		M		pts	Webson and	M4 umbus An		
M1 1 2.48001 GHz -6.00 dBm	-30 dBm- -40 dBm- -50 dBm- -70 dBm- <u>Start 2.4</u> <u>Marker</u>	m m m 2.47 GHz	GHz	Vene			691			undered An	Stop :	
M2 1 2.4835 GHz -46.36 dBm	-30 dBm- -40 dBm- -50 dBm- -70 dBm- Start 2.0 Marker Type I	mm mm mm 2.47 GHz	GHz f Trc	c	X-valu 2.480	e	691 Y-value	Functio	n	undered An	Stop :	
M3 1 2.5 GHz -48.65 dBm M4 1 2.532029 GHz -42.19 dBm	-30 dBm- -40 dBm- -50 dBm- -50 dBm- -70 dBm- -70 dBm- <u>Start 2.4</u> <u>Marker</u> <u>Type 1</u> <u>M1</u> <u>M2</u>	mmmmmm	GHz f Trc	c 1	2.480	e 001 GHz	691 Y-value -6.00 dB -46.36 dB	Function m m	n	undered An	Stop :	
	-30 dBm- -40 dBm- -50 dBm- -60 dBm- -70 dBm- Start 2. Marker Type M1 M2 M3	mmmmm	GHz f Trc 1	C 1 1 1	2.480	e 001 GHz 335 GHz 2.5 GHz	691 -6.00 db -46.36 db -48.65 db	Function m m m	n	undered An	Stop :	
	-30 dBm- -40 dBm- -50 dBm- -50 dBm- -70 dBm- -70 dBm- <u>Start 2.4</u> <u>Marker</u> <u>Type 1</u> <u>M1</u> <u>M2</u>	mmmmm	GHz f Trc 1	c 1	2.480	e 001 GHz 335 GHz 2.5 GHz	691 Y-value -6.00 dB -46.36 dB	Function m m m	n	undered An	Stop :	
Date: 24.MAY.2023 13:30:13	-30 dBm- -40 dBm- -50 dBm- -60 dBm- -70 dBm- Start 2. Marker Type M1 M2 M3	mmmmm	GHz f Trc 1	C 1 1 1	2.480	e 001 GHz 335 GHz 2.5 GHz	691 -6.00 db -46.36 db -48.65 db	Function m m m	n hannan	undered An	Stop :	

Report No.: RA230518-27488E-RF

Appendix F: Duty Cycle Test Result

Test Mode	Antenna	Frequency[MHz]	ON Time [ms]	Period [ms]	Duty Cycle [%]	1/TMinimum VBW[KHz]
BLE_1M	Ant1	2440	0.28	0.67	41.79	3.57

Test Graphs

		BL	_E_1M_Ar	nt1_2440			
Spectra	um						
Ref Le	vel 20.00 dBm	Offset 19.74 dB	🖷 RBW 10 MHz			(.)	
e Att			. VBW 10 MHz				
SGL Cou	nt 1/1	TRG: VID					
1Pk Clrv	v						
				M1[1]		-7.59 dBm	
10 dBm—						-1.24000 ms	
				D1[1]		3.09 dB 280.00 µs	
0 dBm	www.worker		12 martine D			200.00 µ3	
-10 dBm-			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•			
-10 001-							
-20 dBm-							
					00		
- JAR ARM-		Alternation of the state of the		Uniced with the low better place	1.1.1.1.1.1	wayaballygebaby	
-40 dBm-					C	0 0 10 10 4	
10 45.11							
-50 dBm-	-						
-60 dBm-							
-70 dBm-							
-) 0 dbii							
CF 2.44	CH2		1001 pt			200.0 µs/	
Marker	9112		1001 pt	.5		200.0 µs/	
	Ref Trc	X-value	Y-value	Function	Funct	ion Result	
M1	1	-1.24 ms	-7.59 dBm		T diffet		
	M1 1	280.0 µs	3.09 dB				
D2	M1 1	670.0 μs	-23.42 dB				
					eady		
Date: 24	MAY.2023 13	:42:35					

***** END OF REPORT *****