Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

	FCC PART 15.247
Report Reference No	CTA22061501001 2A7NK-H3000
position+printed name+signature):	File administrators Kevin Liu
Supervised by position+printed name+signature):	Project Engineer Kevin Liu
Approved by (position+printed name+signature):	RF Manager Eric Wang
Date of issue	Jun. 21, 2022
Testing Laboratory Name	Shenzhen CTA Testing Technology Co., Ltd.
Address	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community Fuhai Street, Baoʻan District, Shenzhen, China
Applicant's name	Shenzhen Qianyifeng Electronic Technology Co., Ltd.
Address	NO.421, 4 FLOOR, 3 Building, SEG TECH PARK, Huaqiangbei, Futian, Shenzhen, Guangdong, 518000
- CTA '	
Address Test specification: Standard Shenzhen CTA Testing Technology	Futian, Shenzhen, Guangdong, 518000 FCC Part 15.247 Co., Ltd. All rights reserved.
Test specification Standard Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Technology Technology C	Futian, Shenzhen, Guangdong, 518000 FCC Part 15.247
Test specification: Standard: Shenzhen CTA Testing Technology This publication may be reproduced ir Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech liability for damages resulting from the	Futian, Shenzhen, Guangdong, 518000 FCC Part 15.247 Co., Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the co., Ltd. is acknowledged as copyright owner and source of the nonology Co., Ltd. takes no responsibility for and will not assume a reader's interpretation of the reproduced material due to its
Test specification: Standard: Shenzhen CTA Testing Technology This publication may be reproduced ir Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech liability for damages resulting from the placement and context.	Futian, Shenzhen, Guangdong, 518000 FCC Part 15.247 Co., Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the co., Ltd. is acknowledged as copyright owner and source of the nonology Co., Ltd. takes no responsibility for and will not assume a reader's interpretation of the reproduced material due to its
Test specification	Futian, Shenzhen, Guangdong, 518000 FCC Part 15.247 Co., Ltd. All rights reserved. n whole or in part for non-commercial purposes as long as the co., Ltd. is acknowledged as copyright owner and source of the nology Co., Ltd. takes no responsibility for and will not assume e reader's interpretation of the reproduced material due to its Bluetooth sports headphones
Test specification : Standard : Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech liability for damages resulting from the placement and context. Test item description Trade Mark Manufacturer	Futian, Shenzhen, Guangdong, 518000 FCC Part 15.247 Y Co., Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the nology Co., Ltd. takes no responsibility for and will not assume a reader's interpretation of the reproduced material due to its Bluetooth sports headphones N/A Shenzhen Qianyifeng Electronic Technology Co., Ltd.
Test specification : Standard : Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech liability for damages resulting from the placement and context. Test item description Trade Mark Manufacturer Model/Type reference.	Futian, Shenzhen, Guangdong, 518000 FCC Part 15.247 Y Co., Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the nology Co., Ltd. takes no responsibility for and will not assume a reader's interpretation of the reproduced material due to its Bluetooth sports headphones N/A Shenzhen Qianyifeng Electronic Technology Co., Ltd.
Fest specification : Standard : Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Technology C placement and context. Trade Mark manufacturer Model/Type reference Listed Models	Futian, Shenzhen, Guangdong, 518000 FCC Part 15.247 Co., Ltd. All rights reserved. n whole or in part for non-commercial purposes as long as the co., Ltd. is acknowledged as copyright owner and source of the nology Co., Ltd. takes no responsibility for and will not assume a reader's interpretation of the reproduced material due to its Bluetooth sports headphones N/A Shenzhen Qianyifeng Electronic Technology Co., Ltd. H3000
Fest specification : Standard : Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech iability for damages resulting from the placement and context. Test item description Trade Mark Manufacturer Listed Models Modulation	Futian, Shenzhen, Guangdong, 518000 FCC Part 15.247 Co., Ltd. All rights reserved. n whole or in part for non-commercial purposes as long as the co., Ltd. is acknowledged as copyright owner and source of the nology Co., Ltd. takes no responsibility for and will not assume e reader's interpretation of the reproduced material due to its Bluetooth sports headphones N/A Shenzhen Qianyifeng Electronic Technology Co., Ltd. H3000 BT315, P13, M-F8, X10, YY-706, YY-716, U8, H106-TWS, X21, BT313, SM-R180, C4, LY1 GFSK, Π/4DQPSK, 8DPSK
Test specification : Standard : Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Technology C placement and context. Test item description Trade Mark Manufacturer Listed Models Modulation Frequency	Futian, Shenzhen, Guangdong, 518000 FCC Part 15.247 Co., Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the book, Ltd. is acknowledged as copyright owner and source of the nology Co., Ltd. takes no responsibility for and will not assume a reader's interpretation of the reproduced material due to its Bluetooth sports headphones N/A Shenzhen Qianyifeng Electronic Technology Co., Ltd. H3000 BT315, P13, M-F8, X10, YY-706, YY-716, U8, H106-TWS, X21, BT313, SM-R180, C4, LY1 GFSK, Π/4DQPSK, 8DPSK From 2402MHz to 2480MHz
Test specification : Standard : Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech liability for damages resulting from the placement and context. Test item description	Futian, Shenzhen, Guangdong, 518000 FCC Part 15.247 Co., Ltd. All rights reserved. n whole or in part for non-commercial purposes as long as the co., Ltd. is acknowledged as copyright owner and source of the nology Co., Ltd. takes no responsibility for and will not assume e reader's interpretation of the reproduced material due to its Bluetooth sports headphones N/A Shenzhen Qianyifeng Electronic Technology Co., Ltd. H3000 BT315, P13, M-F8, X10, YY-706, YY-716, U8, H106-TWS, X21, BT313, SM-R180, C4, LY1 GFSK, Π/4DQPSK, 8DPSK

Re	port No.: CTA22061501001	l				Page 2 of 4	8
	CTATESTING		TEST	R E P O R T			
	Equipment under Test	C	Bluetooth spo	orts headphones	CTATE		
	Model /Type		H3000				GTA CTATE
TESTIN	Listed Models	:		M-F8, X10, YY-706 (21, BT313, SM-R ⁻			
	Applicant	STI	G Shenzhen Qia	anyifeng Electronic	c Technology (Co., Ltd.	
	Address	:		OOR, 3 Building, S then, Guangdong,		NRK, Huaqiangbe	i, STING
	Manufacturer	:	Shenzhen Qia	anyifeng Electronic	c Technology (Co., Ltd.	
	Address	:		OOR, 3 Building, 5 then, Guangdong,		NRK, Huaqiangbe	i,
E	Test Resu	ilt:	CTATES	llac.	PASS	TING	
					TE	0	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTATESTING laboratory.

Report No.: CTA22061501001

Contents

1 de	TEST STANDARDS			4
	TEOT OTANDARDO			<u></u>
2	SUMMARY		~~S\"	
_			-< A 1	<u> </u>
2.1	General Remarks			5
2.2	Product Description			5
2.3	Equipment Under Test			
		automont under Teet (FUT	N	55
2.4	Short description of the E	quipment under Test (EUT)	
2.5	EUT operation mode			6
2.6	Block Diagram of Test Set	up		6
2.7	Related Submittal(s) / Gra	nt (s)		6
2.8	Modifications	.,		6
	ATA			-
3	TEST ENVIRONMEN	<u>NT</u>		
_	and the second sec	CTP		-INC
3.1	Address of the test labora	tory		757
3.2	Test Facility	No second	GTA CTA	7
3.3	Environmental conditions			7
3.4	Summary of measurement			8
3.5	Statement of the measure			8
3.6	Equipments Used during t	the lest		9
	TES!			
1	TEST CONDITIONS	AND PESILITS		10
<u>4</u>	TEST CONDITIONS	AND RESOLIS		
4.1	AC Power Conducted Emi	ission		10
4.2	Radiated Emission	331011		13
4.3	Maximum Peak Output Po	wer	GA CTATESTING	19
4.4	20dB Bandwidth			20
4.5	Frequency Separation			24
4.6	Number of hopping freque	ency		26
4.7	Time of Occupancy (Dwell	l Time)		28
4.8	Out-of-band Emissions	,		32
4.9	Pseudorandom Frequency	v Hopping Sequence		41
4.10	Antenna Requirement	, nopping coquonee		42
4.10	Antenna Nequirement			42
<u>5</u>	TEST SETUP PHOT	OS OF THE EUT	G	43
<u>v</u> _			25111	
				- C-
<u>6</u>	PHOTOS OF THE E	UT	-	
—				165
				760
			GTA CTA	
	TAV			
	TATESTING			
			-ESI"	
		CTATESTING	TATESTING	

1 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

2 SUMMARY

2.1 General Remarks

TATES		
2.1 General Remarks		
Date of receipt of test sample	: Jun.01, 202	22
Testing commenced on	: Jun.01, 202	22
Testing concluded on	: Jun.21, 202	22

2.2 Product Description

Testing commenced on		Jun.01, 2022	CTA CTA	
Testing concluded on	:	Jun.21, 2022		TAT
2.2 Product Descript	tion			
Product Name:	Bluetooth :	sports headphones		
Model/Type reference:	H3000	10		
Power supply:	DC 3.7V F	rom Battery and DC 5	5V From external circuit	
Adapter information (Auxiliary test supplied by testing Lab)		-TA20CBC 00-240V 50/60Hz 5V 2A	TATES .	
Hardware version:	V1.0		CIP	
Software version:	V1.0			1
Testing sample ID:		5010-1# (Engineer sa 5010-2# (Normal sam		
Bluetooth :				
Supported Type:	Bluetooth B	BR/EDR		
Modulation:	GFSK, π/4	DQPSK, 8DPSK	STING	
Operation frequency:	2402MHz~	-2480MHz	CTATE.	
Channel number:	79		G	TAT
Channel separation:	1MHz		GA C	
Antenna type:	Ceramic a	ntenna		
Antenna gain:	0.00 dBi	G		-

Equipment Under Test 2.3

Power supply system utilised

2.3 Equipment Under Tes	t						
Power supply system utilis	ed		CTA'				
Power supply voltage	:	Ο	230V / 50 Hz	0	120V / 60Hz	TES	
		0	12 V DC	0	24 V DC	CIA	
			Other (specified in bla	nk below]

DC 3.7V From Battery and DC 5V From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a Bluetooth sports headphones. For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:	CTA IL	
Channel	Frequency (MHz)	
00	2402	
01	2403	
TING		Contraction of the second s
38	2440	
39	2441	
40	2442	
Gr Ci'	STINE	
77	2479	
78	2480	
2.6 Block Diagram of Test Setup	GTA CTA	

Block Diagram of Test Setup 2.6

EUT

DC 5V from Adapter

2.7 Related Submittal(s) / Grant (s)

CTATE This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

TEST ENVIRONMENT 3

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao 'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement

ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

GA CTATESTING During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	Constant of the second	24 ° C
Humidity:		45 %
Atmospheric pressure:		950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C	
TESI		
Humidity:	46 %	CTING
Atmospheric pressure:	950-1050mbar	ATES
onducted testing:	GIA	
Temperature:	25 ° C	1

e en adoted teeting.	
Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
CTATES	CTATESTING

3.4 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
§15.247(a)(1	separation	GFSK N/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK N/4DQPSK 8DPSK	Middle	Compliant
§15.247(a)(1	channels	GFSK Π/4DQPSK 8DPSK	🛛 Full	GFSK	🛛 Full	Compliant
§15.247(a)(1	(dwell time)	GFSK Π/4DQPSK 8DPSK	 ☑ Lowest ☑ Middle ☑ Highest 	GFSK Π/4DQPSK 8DPSK	Middle	Compliant
§15.247(a)(1) Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK ∏/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§15.247(b)(1) Maximum output peak power	GFSK Π/4DQPSK 8DPSK	 ☑ Lowest ☑ Middle ☑ Highest 	GFSK T/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	Compliant
§15.205	Band edgecompliance radiated	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK Π/4DQPSK 8DPSK	 ☑ Lowest ☑ Middle ☑ Highest 	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK N/4DQPSK 8DPSK	Lowest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK Π/4DQPSK 8DPSK	 ☑ Lowest ☑ Middle ☑ Highest 	GFSK	Middle	Compliant

2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

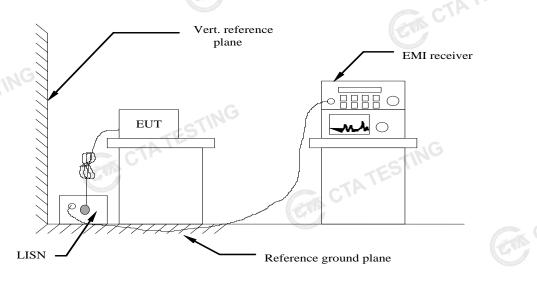
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

<p< th=""><th>Test</th><th>Range</th><th>Measurement Uncertainty</th><th>Notes</th></p<>	Test	Range	Measurement Uncertainty	Notes
	Radiated Emission	30~1000MHz	4.06 dB	(1)
	Radiated Emission	1~18GHz	5.14 dB	(1)
	Radiated Emission	18-40GHz	5.38 dB	(1)
	Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

TATE


3.6 Equipments Used during the Test

	-65\"					
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2021/08/06	2022/08/05
	LISN	R&S	ENV216	CTA-314	2021/08/06	2022/08/05
	EMI Test Receiver	R&S	ESPI	CTA-307	2021/08/06	2022/08/05
	EMI Test Receiver	R&S	ESCI	CTA-306	2021/08/06	2022/08/05
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2021/08/06	2022/08/05
	Spectrum Analyzer	R&S	FSP	CTA-337	2021/08/06	2022/08/05
	Vector Signal generator	Agilent	N5182A	CTA-305	2021/08/06	2022/08/05
	Analog Signal Generator	R&S	SML03	CTA-304	2021/08/06	2022/08/05
	Universal Radio Communication	CMW500	R&S	CTA-302	2021/08/06	2022/08/05
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2021/08/06	2022/08/05
	Ultra-Broadband Antenna	G Schwarzbeck	VULB9163	CTA-310	2021/08/07	2022/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2022/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2022/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2021/08/06	2022/08/05
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2021/08/06	2022/08/05
	Directional coupler	NARDA	4226-10	CTA-303	2021/08/06	2022/08/05
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2021/08/06	2022/08/05
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2021/08/06	2022/08/05
TATE	Automated filter bank	Tonscend	JS0806-F	CTA-404	2021/08/06	2022/08/05
	Power Sensor	Agilent	U2021XA	CTA-405	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2021/08/06	2022/08/05
			GTA CTA		Gen CT	2022/06/05

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

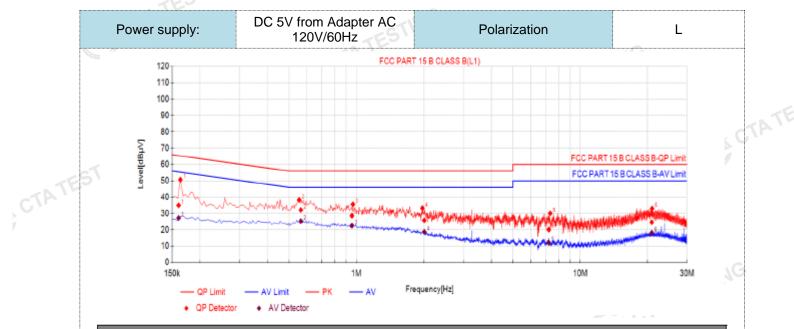
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency range (MHz)	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

* Decreases with the logarithm of the frequency.

TEST RESULTS

Remark:

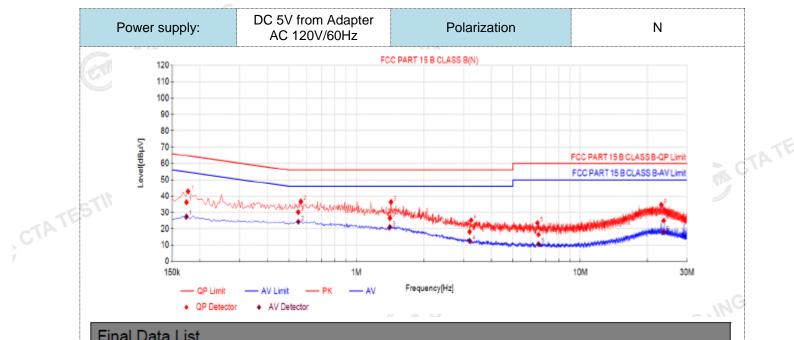

1. All modes of GFSK, Π/4 DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

ESTING

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

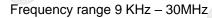

Fir	nal	Data Lis	st										
NO).	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1		0.1604	10.50	24.51	35.01	65.44	30.43	16.76	27.26	55.44	28.18	PASS	
2		0.5640	10.50	21.64	32.14	56.00	23.86	14.75	25.25	46.00	20.75	PASS	
3		0.9550	10.50	18.10	28.60	56.00	27.40	12.04	22.54	46.00	23.46	PASS	
4		2.0108	10.50	15.32	25.82	56.00	30.18	8.23	18.73	46.00	27.27	PASS	
5		7.2375	10.50	9.60	20.10	60.00	39.90	1.59	12.09	50.00	37.91	PASS	
6		20.8894	10.50	14.13	24.63	60.00	35.37	7.68	18.18	50.00	31.82	PASS	
2). Fa 3). QI	acto PM	P Value (c or (dB)=in: argin(dB) argin(dB)	sertion lo = QP Lii	oss of LIS mit (dBµ`	SN (dB) · V) - QP V	+ Cable √alue (dl	loss (dB) BµV)					GM	CTAT

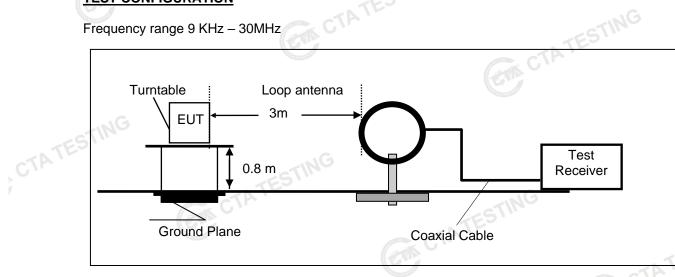
4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V) CTATESTING

Report No.: CTA22061501001

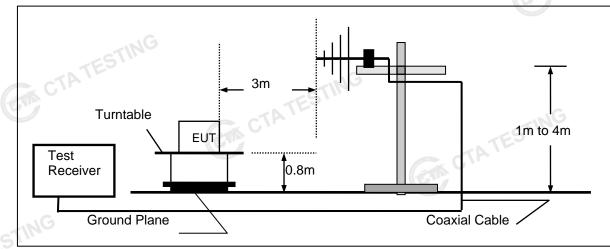
Page 12 of 48

CTATE

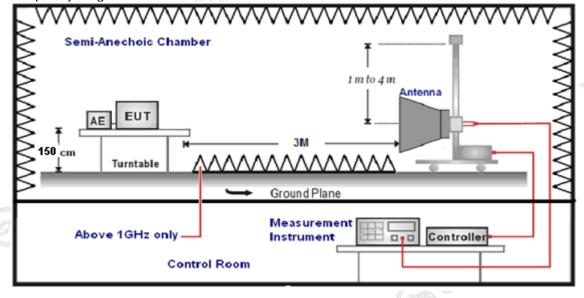



Final	Data Lis	st									
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1739	10.50	25.74	36.24	64.77	28.53	16.97	27.47	54.77	27.30	PASS
2	0.5501	10.50	19.64	30.14	56.00	25.86	13.76	24.26	46.00	21.74	PASS
3	1.4103	10.50	16.09	26.59	56.00	29.41	10.45	20.95	46.00	25.05	PASS
4	3.2068	10.50	7.72	18.22	56.00	37.78	2.04	12.54	46.00	33.46	PASS
5	6.5158	10.50	5.89	16.39	60.00	43.61	0.16	10.66	50.00	39.34	PASS
6	23.5945	10.50	14.55	25.05	60.00	34.95	7.56	18.06	50.00	31.94	PASS
). Fac	QP Value (tor (dB)=ir Vargin(dB	nsertion l	oss of LI	SN (dB)	+ Cable	loss (dB)	CTP	TED		
\ <u>^\/</u>	Jarain/dD	<u> </u>	mit (dDu)		/alua (dE	0\/\					

CTATESTING 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)


Radiated Emission 4.2

TEST CONFIGURATION



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

6.

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.

The distance between test antenna and EUT as following table states: Test Frequency range Test Antenna Type Test Distance 9KHz-30MHz Active Loop Antenna 3 20MHz Littre Breadband Antenna 3					
Test Frequency range	Test Antenna Type	Test Distance			
9KHz-30MHz	Active Loop Antenna	3			
30MHz-1GHz	Ultra-Broadband Antenna	3			
1GHz-18GHz	Double Ridged Horn Antenna	3			
18GHz-25GHz	Horn Anternna	1			

Setting test receiver/spectrum as following table states: 7.

Setting test receiver/spectrum as following table states.								
Test Frequency range	Test Receiver/Spectrum Setting	Detector						
9KHz-150KHz	QP							
150KHz-30MHz	QP							
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP						
	Peak Value: RBW=1MHz/VBW=3MHz,							
1GHz-40GHz	Sweep time=Auto	Peak						
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,							
	Sweep time=Auto							

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows:	
FS = RA + AF + CL - AG	CTATES
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

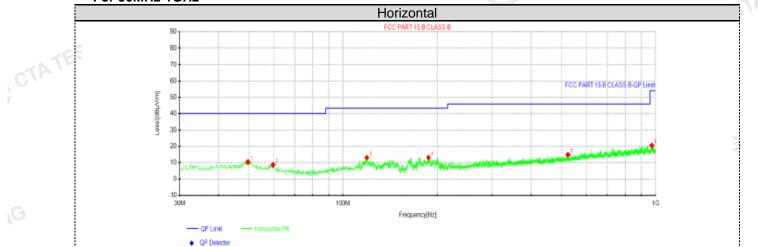
The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
1.705-30	3	20log(30)+ 40log(30/3)	30		
30-88	3	40.0	100		
88-216	3	43.5	150		
216-960	3	46.0	200		
Above 960	3	54.0	500		

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

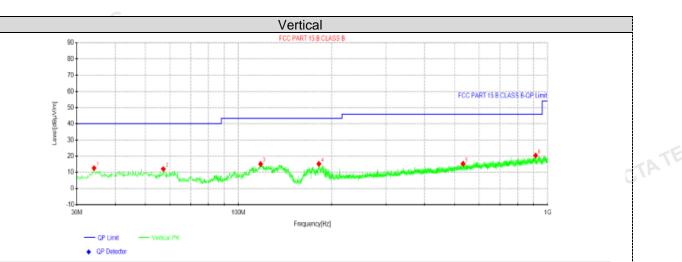
TATE


GM CTATESTING

TEST RESULTS

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. We measured Radiated Emission at GFSK, $\pi/4$ DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 3. For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- 4. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.


For 30MHz-1GHz

Suspe	Suspected Data List											
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity			
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	49.6425	26.57	10.48	-16.09	40.00	29.52	100	285	Horizontal			
2	59.7062	26.86	8.71	-18.15	40.00	31.29	100	91	Horizontal			
3	119.24	33.33	13.15	-20.18	43.50	30.35	100	163	Horizontal			
4	187.625	33.23	13.17	-20.06	43.50	30.33	100	205	Horizontal			
5	524.215	28.98	15.07	-13.91	46.00	30.93	100	230	Horizontal			
6	972.355	29.27	20.55	-8.72	54.00	33.45	100	181	Horizontal			

Note:1).Level (dB μ V/m)= Reading (dB μ V)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dBµV/m) Level (dBµV/m)

Suspected Data List

CTATE

Jushe	ecteu Data	LISU								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folanty	
1	34.1225	30.68	12.67	-18.01	40.00	27.33	100	122	Vertical	
2	57.16	29.70	12.10	-17.60	40.00	27.90	100	122	Vertical	
3	117.906	35.25	15.26	-19.99	43.50	28.24	100	220	Vertical	
4	181.926	35.78	15.36	-20.42	43.50	28.14	100	243	Vertical	
5	532.46	29.26	15.45	-13.81	46.00	30.55	100	3	Vertical	
6	913.427	29.65	20.45	-9.20	46.00	25.55	100	252	Vertical	

COM CTATESTIN

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

For 1GHz to 25GHz

Note: GFSK , $\pi/4$ DQPSK and 8DPSK all have been tested, only worse case GFSK is reported. GFSK (above 1GHz)

	GFSK (above TGHZ)											
Freque	ncy(MHz)	:	24	02	Pola	arity:	HORIZONTAL					
Frequency (MHz) Emission Level (dBuV/m)		vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)			
4804.00	61.08	PK	74	12.92	65.35	32.33	5.12	41.72	-4.27			
4804.00	45.11	AV	54	8.89	49.38	32.33	5.12	41.72	-4.27			
7206.00	54.11	PK	74	19.89	54.63	36.6	6.49	43.61	-0.52			
7206.00	43.04	AV	54	10.96	43.56	36.6	6.49	43.61	-0.52			

Frequency(MHz):		2402		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	60.10	PK	74	13.90	64.37	32.33	5.12	41.72	-4.27
4804.00	43.55	AV	54	10.45	47.82	32.33	5.12	41.72	-4.27
7206.00	52.55	PK	74	21.45	53.07	36.6	6.49	43.61	-0.52
7206.00	41.48	AV	54	12.52	42.00	36.6	6.49	43.61	-0.52

Frequency(MHz):			2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	60.58	PK	74	13.42	64.46	32.6	5.34	41.82	-3.88
4882.00	45.99	AV	54	8.01	649.87	32.6	5.34	41.82	-3.88
7323.00	53.61	PK	74	20.39	53.72	36.8	6.81	43.72	-0.11
7323.00	43.36	AV	54	10.64	43.47	36.8	6.81	6 43.72	-0.11
C V							STIL		

				251					
Frequency(MHz):			2441		Polarity:		VERTICAL		
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	59.02	PK	74	14.98	62.90	32.6	5.34	41.82	-3.88
4882.00	44.34	AV	54	9.66	48.22	32.6	5.34	41.82	-3.88
7323.00	52.05	PK	74	21.95	52.16	36.8	6.81	43.72	-0.11
7323.00	41.80	AV	54	12.20	41.91	36.8	6.81	43.72	-0.11
	ES.								

Frequency(MHz):		2480		Polarity:		HORIZONTAL			
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.46	PK	74	13.54	63.54	32.73	5.66	41.47	-3.08
4960.00	45.51	AV	54	8.49	48.59	32.73	5.66	41.47	-3.08
7440.00	55.32	PK	74	18.68	54.87	37.04	7.25	43.84	0.45
7440.00	44.11	PK	54	9.89	43.66	37.04	7.25	43.84	0.45

Emission (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dB) Antenna Factor (dB/m) Cable Factor (dB/m) Pre- amplifier (dB) Correction Factor (dB/m) 4960.00 58.90 PK 74 15.10 61.98 32.73 5.66 41.47 -3.08 4960.00 43.95 AV 54 10.05 47.03 32.73 5.66 41.47 -3.08 7440.00 53.15 PK 74 20.85 52.70 37.04 7.25 43.84 0.45 7440.00 42.55 PK 54 11.45 42.10 37.04 7.25 43.84 0.45	Frequency(MHz):			2480		Polarity:		VERTICAL		
4960.0043.95AV5410.0547.0332.735.6641.47-3.087440.0053.15PK7420.8552.7037.047.2543.840.457440.0042.55PK5411.4542.1037.047.2543.840.45		Lev	vel			Value	Factor	Factor	amplifier	Factor
7440.00 53.15 PK 74 20.85 52.70 37.04 7.25 43.84 0.45 7440.00 42.55 PK 54 11.45 42.10 37.04 7.25 43.84 0.45	4960.00	58.90	PK	74 G	15.10	61.98	32.73	5.66	41.47	-3.08
7440.00 42.55 PK 54 11.45 42.10 37.04 7.25 43.84 0.45	4960.00	43.95	AV	54	10.05	47.03	32.73	5.66	41.47	-3.08
	7440.00	53.15	PK	74	20.85	52.70	37.04	7.25	43.84	0.45
REMARKS:	7440.00	42.55	PK	54	11.45	42.10	37.04	7.25	43.84	0.45
NEW WINC.	REMARKS	5:					Contractory and a second second			CTP

Report No.: CTA22061501001

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

				GFS	Κ				
Freque	ncy(MHz)	:	24	02	Pola	arity:	н	ORIZONTA	AL
Frequency (MHz)	Emis Le [.] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.41	PK	74 G	12.59	71.83	27.42	4.31	42.15	-10.42
2390.00	43.95	AV	54	10.05	54.37	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le [.] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.70	PK	74	14.30	70.12	27.42	4.31	42.15	-10.42
2390.00	42.39	AV	54	11.61	52.81	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	80	Pola	arity:	н	HORIZONTAL	
Frequency (MHz)	Emis Le ⁻ (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.88	PK	74	13.12	70.99	27.7	4.47	42.28	-10.11
2483.50	42.42	AV	54	11.58	52.53	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le ^s (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	59.21	ΡK	74	14.79	69.32	27.7	4.47	42.28	-10.11
2483.50	40.86	AV	54	13.14	50.97	27.7	4.47	42.28	-10.11

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

3. Margin value = Limit value- Emission level.

4. -- Mean the PK detector measured value is below average limit.

GA CTATESTING 5. The other emission levels were very low against the limit.

Maximum Peak Output Power 4.3

Limit P

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration CTA TESTING

Test Results

Туре				
	Channel	Output power (dBm)	Limit (dBm)	Result
	00	0.54		TES
GFSK	39	0.04	20.97	Pass
	78	0.64		
la.	3 00	0.35		
π/4DQPSK	39	0.95	20.97	Pass
	78	0.87		
1	00	0.39	ING	
8DPSK	39	0.95	20.97	Pass
	78	0.81	CTA .	

20dB Bandwidth 4.4

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

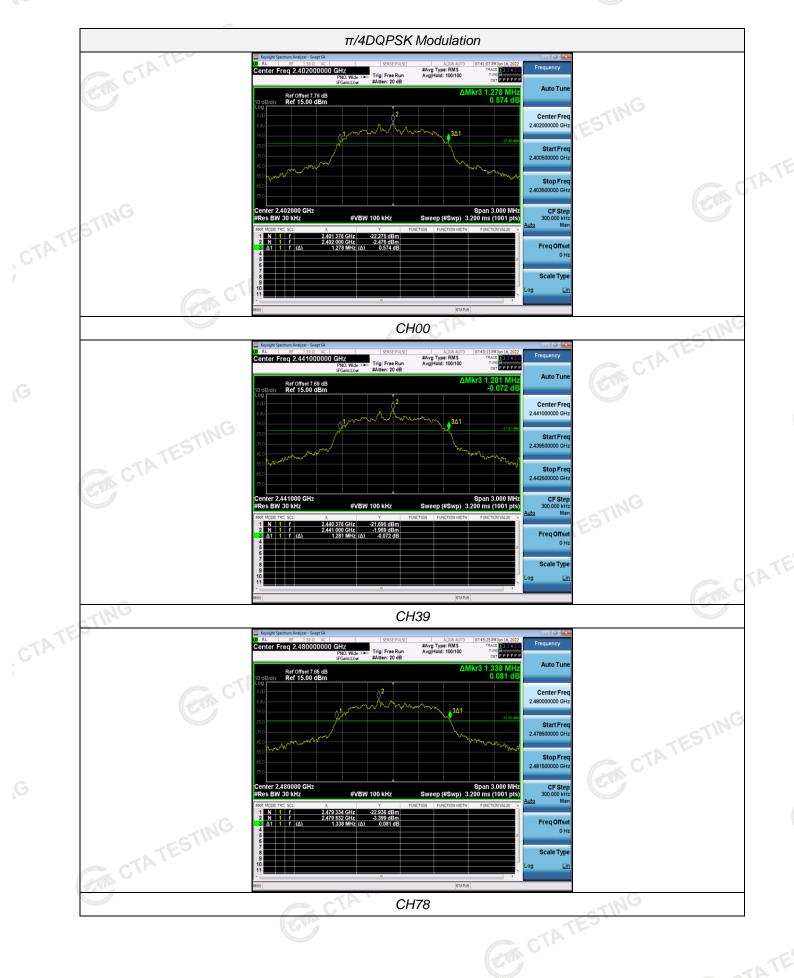
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

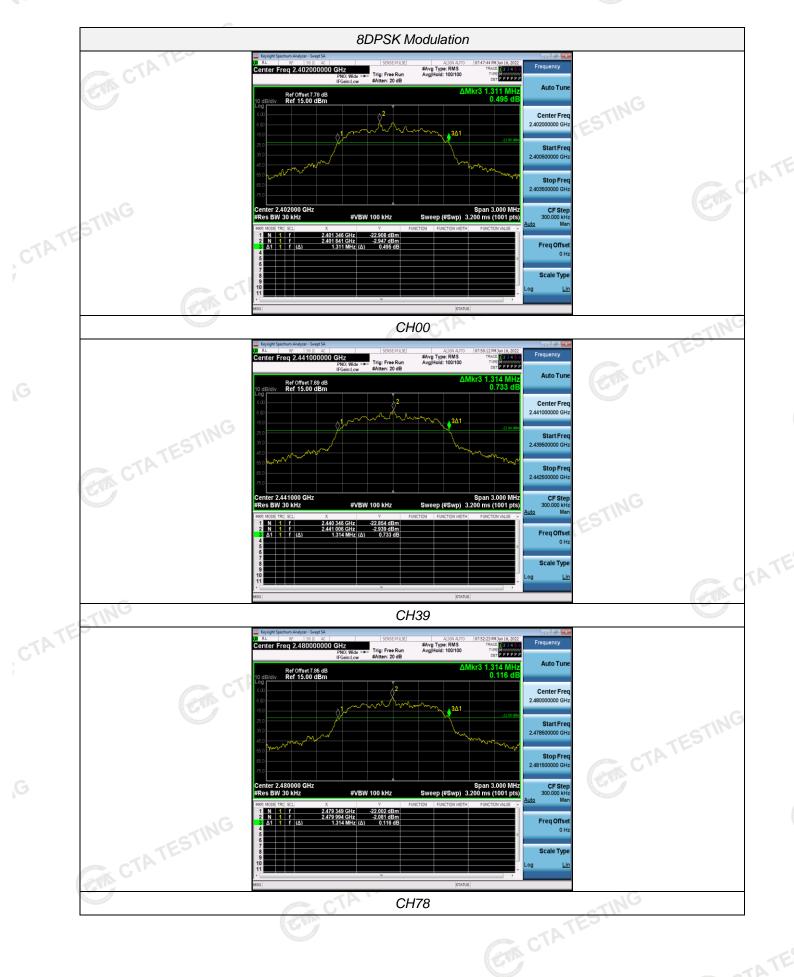
The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

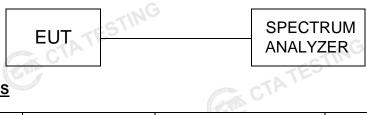
Test Results


Test Results			CTA TESTIN
Modulation	Channel	20dB bandwidth (MHz)	Result
NG	CH00	0.939	
GFSK	CH39	0.951	-
CTA	CH78	0.996	
S.	CH00	1.278	NG.
π/4DQPSK	CH39	1.281	Pass
	CH78	1.338	
	CH00	1.311	
8DPSK	CH39	1.314	G
ING	CH78	1.314	G

CTATESTING Test plot as follows:



Frequency Separation 4.5


LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

TEST RESULTS		GTA CTATE			
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
GFSK	CH38	1.208	25KHz or 2/3*20dB	Pass	
Grok	CH39	1.200	bandwidth	F 035	
π/4DQPSK	CH38	1.280	25KHz or 2/3*20dB	Daga	
II/4DQPSK	CH39	1.200	bandwidth	Pass	
8DPSK	CH38	1.012	25KHz or 2/3*20dB	Page	
ODFSK	CH39	1.012	bandwidth	Pass	


Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows: CTA TESTING

Report No.: CTA22061501001

Page 25 of 48

Number of hopping frequency 4.6

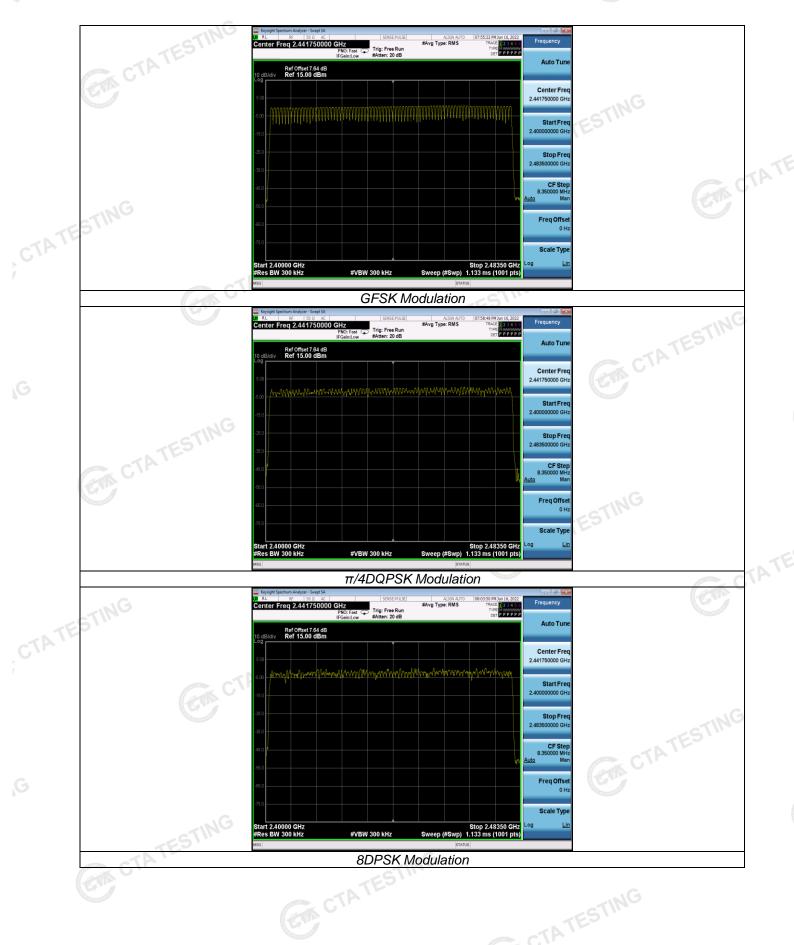
Limit CTP

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

GTA CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration CTATES


Test Results

Test Results			
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	G	A C.
π/4DQPSK	79	≥15	Pass
8DPSK	79		
GTIN			<u> </u>

Test plot as follows:

Page 27 of 48

4.7 Time of Occupancy (Dwell Time)

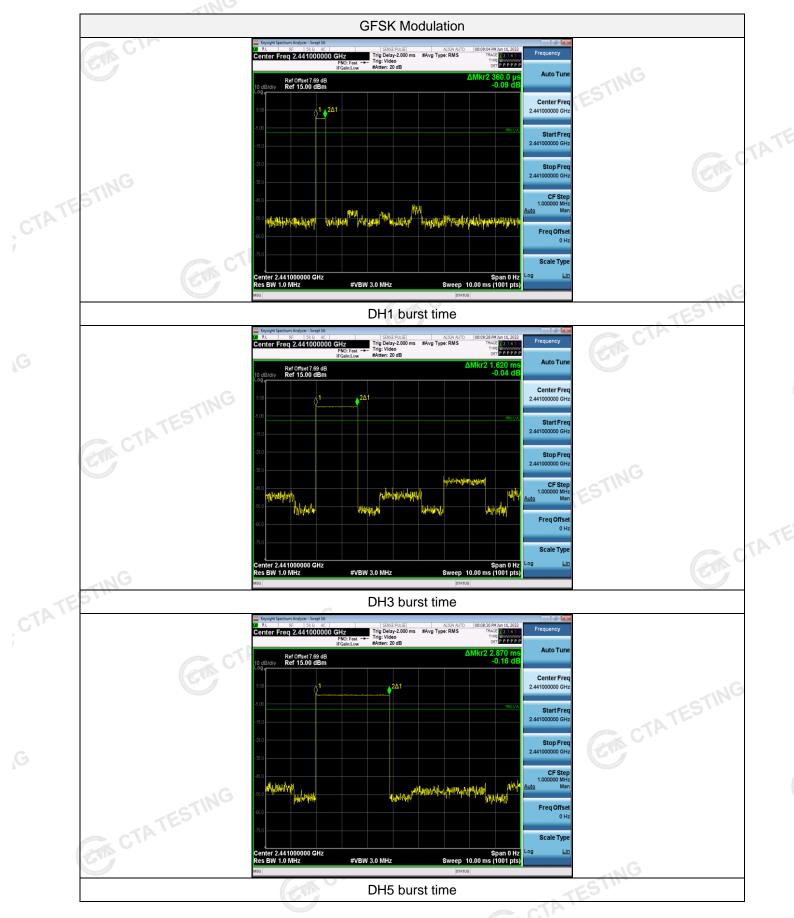
Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

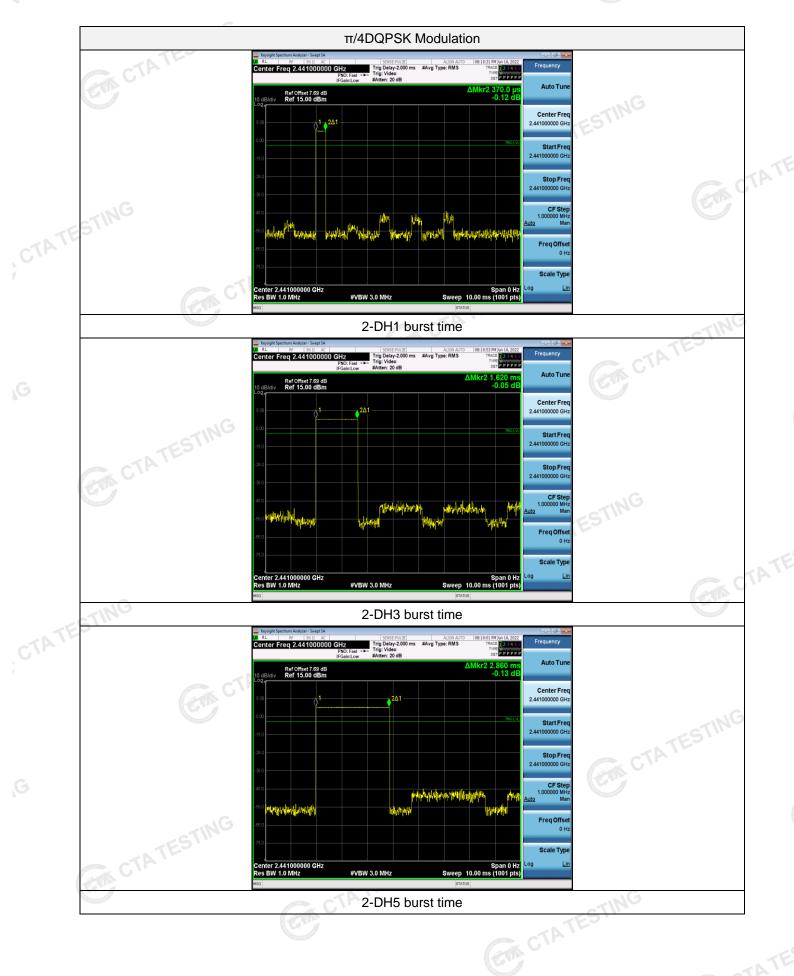
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

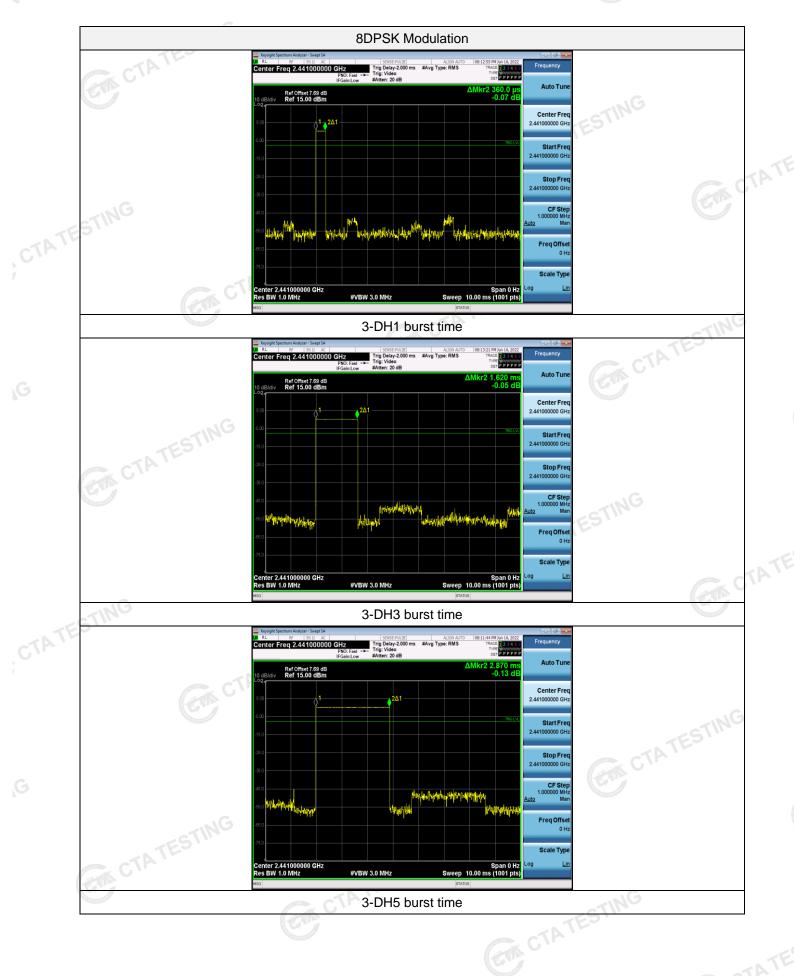
Test Configuration


Test Results

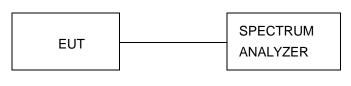
		G			- NTES
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.36	0.115		
GFSK	GDH3	1.62	0.259	0.40	Pass
TES	DH5	2.87	0.306		
CIL	2-DH1	0.37	0.118		
π/4DQPSK	2-DH3	1.62	0.259	0.40	Pass
	2-DH5	2.86	0.305	TESTIN	
	3-DH1	0.36	0.115	CTA '	
8DPSK	3-DH3	1.62	0.259	0.40	Pass
	3-DH5	2.87	0.306		C


Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel. Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1 Dwell time=Pulse time (ms) x (1600 ÷ 4 ÷ 79) x31.6 Second for DH3, 2-DH3, 3-DH3 Dwell time=Pulse time (ms) x (1600 ÷ 6 ÷ 79) x31.6 Second for DH5, 2-DH5, 3-DH5

Report No.: CTA22061501001


Test plot as follows:

4.8 **Out-of-band Emissions**

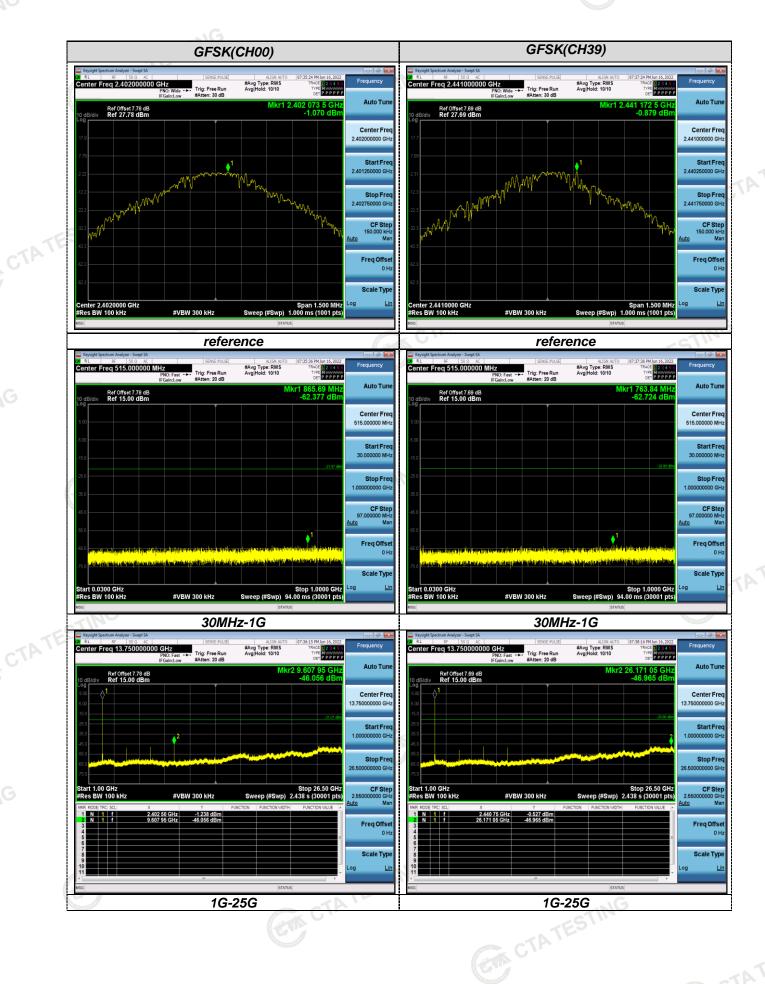

Limit C

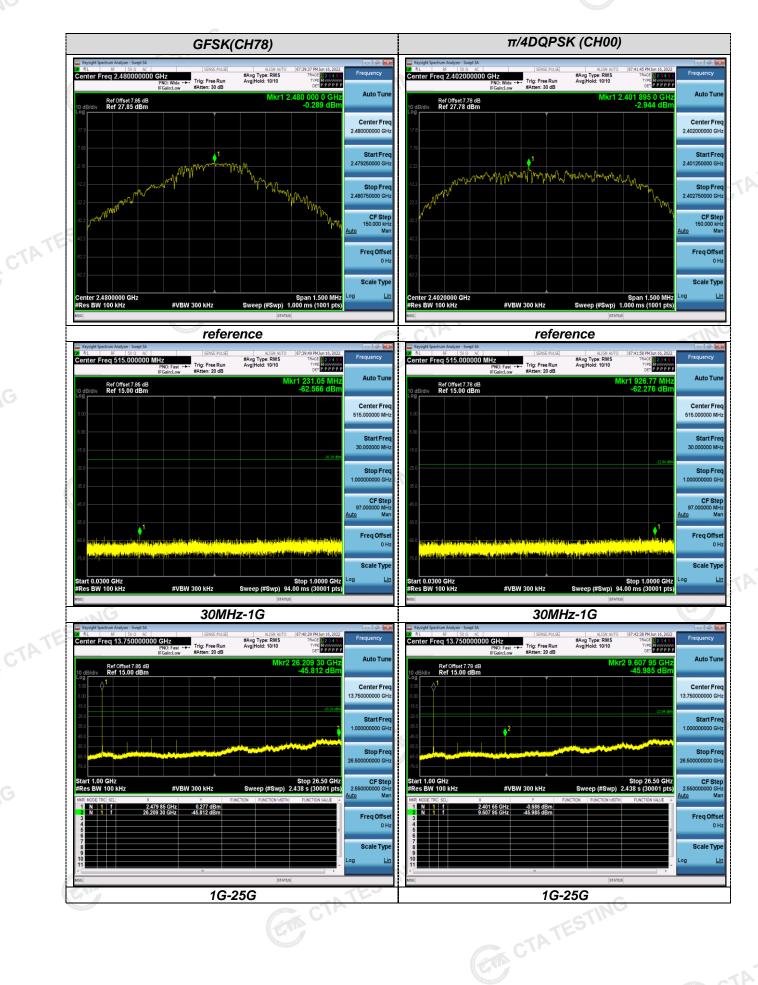
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

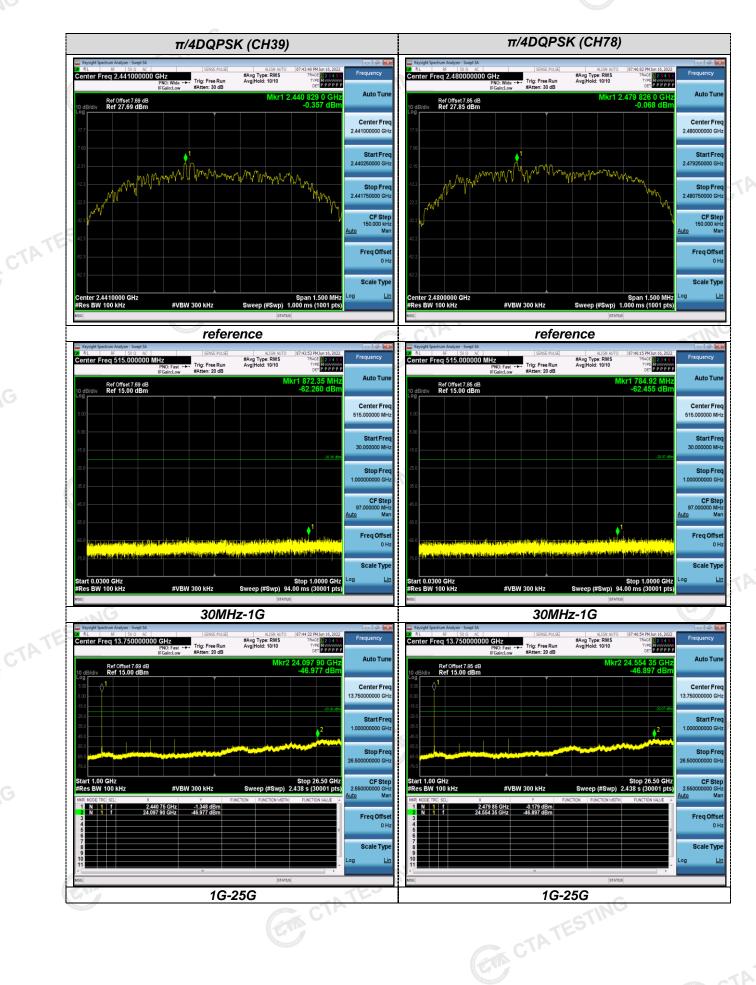
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration




Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

