

Page 1 of 60

TEST REPORT

Product millimeter wave radar CHUHANG TECH Trade mark Model/Type reference ARC2.33 2 Serial Number N/A **Report Number** EED32Q80639901 FCC ID 2A7HDARC233 : Jun. 18, 2024 Date of Issue **Test Standards** : 47 CFR Part 2 47 CFR Part 95 Subpart M PASS Test result Prepared for: Nanjing Chuhang Technology Co., Ltd.

12F, Building A, No. 9, Yunzheng Street Nanjing, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Ton Compiled by: Firazer. Lo Reviewed by: ERNATI Frazer Li Tom Chen avon Ma Date: Jun. 18, 2024 Aaron Ma Check No.:8614150524 **Report Seal**

Page 2 of 60

1 Content	
2 TEST SUMMARY	
3 GENERAL INFORMATION	4
 3.1 CLIENT INFORMATION	
4 EQUIPMENT LIST	7
5 TEST RESULTS AND MEASUREMENT DATA	9
 5.1 MODULATION CHARACTERISTICS 5.2 99% OCCUPIED BANDWIDTH 5.3 EIRP(EFFECTIVE ISOTROPIC RADIATED POWER) 5.4 UNWANTED EMISSIONS 5.5 FREQUENCY STABILITY 	
6 PHOTOGRAPHS OF TEST SETUP	36

2 Test Summary

Test Requirement	Result
47 CFR Part 95, Subpart M Section 95.3367 47 CFR Part 2, Subpart J Section 2.1046	PASS
47 CFR Part 2, Subpart J Section 2.1047	PASS
47 CFR Part 2, Subpart J Section 2.1049	PASS
47 CFR Part 95, Subpart M Section 95.3379 (a) 47 CFR Part 2, Subpart J Section 2.1053	PASS
47 CFR Part 95, Subpart M Section 95.3379 (b) 47 CFR Part 2, Subpart J Section 2.1055	PASS
	Test Requirement47 CFR Part 95, Subpart M Section 95.336747 CFR Part 2, Subpart J Section 2.104647 CFR Part 2, Subpart J Section 2.104747 CFR Part 2, Subpart J Section 2.104947 CFR Part 95, Subpart M Section 95.3379 (a)47 CFR Part 2, Subpart J Section 2.105347 CFR Part 95, Subpart M Section 2.105347 CFR Part 95, Subpart M Section 95.3379 (b)47 CFR Part 2, Subpart J Section 2.1055

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

3 General Information

3.1 Client Information

Applicant:	Nanjing Chuhang Technology Co., Ltd.	
Address of Applicant:	12F, Building A, No. 9, Yunzheng Street Nanjing, China	
Manufacturer:	Nanjing Chuhang Technology Co., Ltd.	2
Address of Manufacturer:	12F, Building A, No. 9, Yunzheng Street Nanjing, China	0
Factory:	Anqing Chuhang Electronic Technology Co., Ltd.	2
Address of Factory:	Building 1, New Energy Vehicle Industrial Park, Economic and Technological Development Zone, Anqing, 246000 Anhui, P.R. China	

Page 4 of 60

3.2 General Description of EUT

Product Name:	millimeter wave radar	(67)	(\mathcal{G})	
Model No.:	ARC2.33	\smile		
Trade mark:	CHUHANG TECH			
Product Type:	Mobile Dortable	Fix Location		13
Type of Modulation:	FMCW(Frequency Modulat	ted Continuous Wave)		0
Operating Frequency	77.80GHz	\bigcirc		\smile
Test Power Grade:	Default			
Test Software of EUT:	ChuHangDV1.4.10.exe	(3)	(3)	
Antenna Type:	PCB Antenna	(c.s.)	$(c^{(n)})$	
Antenna Gain:	11.90dBi		U	
Power Supply:	DC 9.0V to DC 32.0V			
Test Voltage:	DC 24V			-
Sample Received Date:	Jun. 04, 2024			
Sample tested Date:	Jun. 05, 2024 to Jun. 06, 20)24		C

3.3 Test Environment

Operating Environment:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar	G	(C)		

3.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	HP	14-ce0061TX	FCC&CE	СТІ

3.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

3.6 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
		4.3dB (30MHz-1GHz)
~		4.5dB (1GHz-18GHz)
<u>(</u>		3.4dB (18GHz-40GHz)
3	Radiated Spurious emission test	4.62dB (40GHz-60GHz)
		4.80dB (60GHz-90GHz)
		4.90dB (90GHz-140GHz)
		5.11dB (140GHz-220GHz)
		5.14dB (220GHz-325GHz)
4		3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

4 Equipment List

Page 7 of 60

	3M Semi-anechoic Chamber (2)					
Equipment	Manufacturer	Model	Serial No.	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	ток	SAC-3		05-22-2022	05-21-2025	
Receiver	R&S	ESCI7	100938-003	09-22-2023	09-21-2024	
Spectrum Analyzer	R&S	FSV40	101200	07-25-2023	07-24-2024	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-16-2024	04-15-2025	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-618	05-18-2024	05-17-2025	
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-16-2024	04-15-2025	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07-02-2023	07-01-2026	
Preamplifier	Agilent	11909A	12-1	03-22-2024	03-21-2025	
Preamplifier	EMCI	EMC051845SE	980380	12-14-2023	12-13-2024	
Preamplifier	CD	PAP-1840-60	6041.6042	07-04-2023	07-03-2024	
Spectrum Analyze	R&S	FSV3044	101509	01-17-2024	01-16-2025	
Receive unit	R&S	TC-RSE60	100729	N/A	N/A	
Receive unit	R&S	TC-RSE90	100721	N/A	N/A	
Receive unit	R&S	TC-RSE140	101254	N/A	N/A	
Receive unit	R&S	TC-RSE220	100716	N/A	N/A	
Receive unit	R&S	TC-RSE325	100638	N/A	N/A	

Note:

N/A:Calibrated by the equipment manufacturer.

CTI华测检测

Page 8 of 60

	3M full-anechoic Chamber (3)						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
RSE Automatic test software	JS Tonscend	JS36-RSE	10166				
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025		
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-19-2024	01-18-2025		
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-13-2024	01-12-2025		
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025		
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025		
Horn Antenna	ETS- LINDGREN	3117	57407	07-04-2021	07-03-2024		
Preamplifier	EMCI	EMC184055SE	980597	04-12-2024	04-11-2025		
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025		
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024		
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024		
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025		
Fully Anechoic Chamber	TDK	FAC-3	(01-09-2024	01-08-2027		
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	<u> </u>			
Cable line	Times	SFT205-NMSM-2.50M	394812-0002				
Cable line	Times	SFT205-NMSM-2.50M	394812-0003				
Cable line	Times	SFT205-NMSM-2.50M	393495-0001				
Cable line	Times	EMC104-NMNM-1000	SN160710	62			
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		·		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		/		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001				
Cable line	Times	HF160-KMKM-3.00M	393493-0001				
Spectrum Analyzer	R&S	FSV3044	100509	01-17-2024	01-16-2025		
Receive unit	R&S	TC-RSE60	100729	N/A	N/A		
Receive unit	R&S	TC-RSE90	100721	N/A	N/A		
Receive unit	R&S	TC-RSE140	101254	N/A	N/A		
Receive unit	R&S	TC-RSE220	100716	N/A	N/A		
Receive unit	R&S	TC-RSE325	100638	N/A	N/A		

Note:

N/A:Calibrated by the equipment manufacturer.

Page 9 of 60

5 Test results and Measurement Data

5.1 Modulation characteristics

Conclusion

According to § 2.1047, A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed Comments from manufacturer on modulation characteristics according to KDB:

Parameter	
Duty Cycle %:	51%
Time RF on(ms):	51
Time RF off(ms):	49
Power:	Constant during RF on
Steepness of Ramps(GHz/s):	0.0117
Calibration:	N/A
Antenna Beam Steering(TX):	±50°
Characteristics	
Type of Modulation:	FMCW(Frequency Modulated Continuous Wave)
Sweep Width(MHz):	468.75
Sweep Time(µ s):	67 or 60
Chirp Bandwidth(MHz):	400
Chirp Time(µ s):	40
Chirp Rate(MHz/ µ s):	11.718
Chirp Length(µ s):	40

Page 11 of 60

5.2 99% Occupied bandwidth

	Test Requirement:	47 CFR Part 2, Subpart J Section 2.1049		
	Test Method:	ANSI C63.26:2015 Section 5.4		
	Limit:	Within the designated 76~81GHz frequency band		
	Test Setup:	Antenna + Mixer Spectrum Analyzer h (Turntable) h=1.5m,d=1.0m		
<i>D</i>	h=1.5m,d=1.0m Test Procedure: 1. The signal analyzer's automatic bandwidth measurement capa used to perform the 99% occupied bandwidth. The bandwidth me was not influenced by any intermediatepower nulls in the fundam emission. 2.Span equal to approximately 1.5 times the OBW, centered on t frequency. 3.RBW, prefer 1% to 5% of OBW, or a minimum of 1MHz if this is possible due to a large OBW. 4.VBW approximately 3*RBW. 5.Detector = Peak. 6.Trance mode = Max hold. 7.Sweep = Auto couple. 8.The trace was allowed to stabilize. 9.If necessary, step 2~6 were repeated after changing the RBW would be within 1%~5 % of the 99% occupied bandwidth observer.			
	Test Mode:	TX mode_Make EUT continuously emit radar signals.		

Page 12 of 60

Test data:

99% emission bandwidth	Lowest Frequency	Highest Frequency	Limit	Pocult
(MHz)	(GHz)	(GHz)	(GHz)	Result
468.56556508	77.557652	78.026218	76 to 81	Pass

Test	graph:							
	Mu Ref TDF	ttiView = Spectrum Level 47.00 dBm SWT 3 ms "TC-RSE90_1538" Inp: ExtMix I cupied Bandwidth	● RBW 6 MHz ● VBW 10 MHz Mode Auto JSER	D Sweep			• 1Pk Max Auto ID	
	40 d 30 d 20 d		Janna karakara	nanihan hana hana hanab	Alexandro Marchauna Marana Alexandro Mar	441 ¹⁷²	M1[1] 23.43 dBm 77.560 120 GHz	
	0 dE -10: -20:	Bm IBm JBm , July galler Kelly Martin	port 1			half a line line line line line line line line	1v9.mapping.upping.upping.	
	40 -50 -57 2 M	IBm 7.8 GHz retret Table	20	001 pts	100.0 MHz/		Span 1.0 GHz	
	07:2	Implex Ref Trc A1 1 I1 1 I2 1 ~ ~ 4:16 PM 06/05/2024	X-Value 77.560 12 GHz 77.557 652 GHz 78.026 218 GHz	Y-Value 23.43 dBm 22.64 dBm 18.79 dBm	Function Occ Bw Occ Bw Centroid Occ Bw Freq Offset	Fun 468.56 77.7 -8.06 ▼ Measuring	ction Result 5 556 08 MHz 91 934 851 GHz 55 148 825 MHz 2024-06-05 19:24:16	

Page 13 of 60

Report No. :EED32Q80639901

5.3 EIRP(Effective Isotropic Radiated Power)

Page 14 of 60

Test data:

Frequency (GHz)	Distance (m)	Polarity	EIRP (dBm/MHz)	FMCW Chirps Correction Factor (dB)	Corrected EIRP (dBm/MHz)	EIRP Limit (dBm/MHz)	Result	Remark
		Horizontal	-7.38	7.22	-0.16	≤55.0	Pass	Peak
76 45	1.0	Vertical	17.47	7.22	24.69	≤55.0	Pass	Peak
70.45	1.0	Horizontal	-37.31	7.22	-30.09	≤50.0	Pass	AVG
(GT)	2	Vertical	-12.78	7.22	-5.56	≤50.0	Pass	AVG

Remark:

①This is a radiated test,and test distance of 1.0m was used for the fundamental emissions measurement. ②EIRP(dBm/MHz) has added free space loss of 1.0m distance.

③The FMCW Chirps Correction Factor was calculated using the formula:

$$CF_{chirp} = 5 * \log \left(1 + K * \left(\frac{Span}{t * RBW^2}\right)^2\right)$$

With t being the length of the chirp and K a correction factor for the setting process of the gaussian shaped filter (\sim 0.1947).

Sample calculation for FMCW chirps correction factor:

 $CF_{chirp}=5*log_{10}(1+0.1947*(468.75MHz/(40\mu s*1MHz^2))^2=7.22dB$

Note:Span=468.75MHz,t=40us,refer to the section of 5.1,claimed by the customer. ④Guidance for calculating the correction factor is from Application Note 1EF107-1E Rohde & Schwarz Peak and Mean Power measurements on wideband FMCW radar signals. ⑤Corrected EIRP(dBm/MHz)=EIRP(dBm/MHz)+FMCW Chirps Correction Factor(dB). ⑥Only the worst case data was recorded in the report.

Page 15 of 60

Page 16 of 60

5.4 Unwanted emissions

	Test Requirement:	47 CFR Part 95, Subpart M Section 95.3379 (a), KDB 653005 D01 76-81 GHz Radars v01r01 Section 4 e)										
	Test Method:	ANSI C63.26:2015 Section 5.5 The power density of any emissions outside the 76GHz-81GHz ban										
Ś	Limit:	The power density of consist solely of spurio (1) Radiated emission shown in the following	the 76GHz-81GHz band shall not exceed the following: ot exceed the field strength as									
		Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)								
		0.009 ~ 0.490	2400/F(kHz)	300								
		0.490 ~ 1.705	24000/F(kHz)	30								
		1.705 ~ 30.0	30	30								
		30 ~ 88	100	3								
		88 ~ 216	150	3								
		216 ~ 960	200	3								
		Above 960	500	3								
		 (ii) The minis in the emissions and not the unwanted emissions shift (iii) The emissions line employing a CISPR quies of the emissions and etector with a 1MHz F (2) The power density above 40GHz shall employing an average (i) For radiated emissions distance of 3 meters from the exterior (3) For field disturbance 81GHz band, the spe 243GHz). 	e fundamental frequencies nall not exceed the level nits shown in the table asi-peak detector except asi-peak detector except asi-peak detector except asi-peak detector except asions above 1000MHz of radiated emissions of not exceed the follow detector with a 1MHz. sions between 40GHz a com the exterior surface of sions above 200GHz: 1 or surface of the radiating as sensors and radar sy ctrum shall be investigation	cy. However, the level of any of the fundamental frequency. are based on measurements it for the frequency bands 9kHz- Radiated emissions limits in ments employing an average outside the 76GHz-81GHz band wing,based on measurements and 200GHz: 600pW/cm ² at a of the radiating structure. 000pW/cm ² at a distance of 3 g structure. //stems operating in the 76GHz- ated up to 231GHz (preferably								

Page 18 of 60

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 19 of 60

	The measurement frequency range form 9kHz - 231GHz was investigated (preferably 243GHz).
Test Mode:	TX mode_Make EUT continuously emit radar signals.

Radiated Spurious Emission below 30MHz:

9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

Radiated Spurious Emission 30MHz-1GHz:

Note:

Measurement(dBuV/m)=Reading Level(dBuV)+Correct Factor(dB);
 Margin(dB)=Measurement(dBuV/m)-Limit(dBuV/m);

Page 21 of 60

Page 22 of 60

Note:

Measurement(dBuV/m)=Reading Level(dBuV)+Correct Factor(dB);
 Margin(dB)=Measurement(dBuV/m)-Limit(dBuV/m);

Page 23 of 60

Radiated Spurious Emission 1GHz-18GHz:

Test data:

X	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
5	1	1997.3998	-24.22	74.11	49.89	74.00	24.11	PASS	Horizontal	PK
	2	2390.6927	-22.26	63.69	41.43	74.00	32.57	PASS	Horizontal	PK
	3	2657.0438	-21.10	60.87	39.77	74.00	34.23	PASS	Horizontal	PK
	4	2985.7324	-19.94	61.81	41.87	74.00	32.13	PASS	Horizontal	PK
	5	7196.3464	-8.27	51.26	42.99	74.00	31.01	PASS	Horizontal	PK
	6	13946.9298	5.41	41.53	46.94	74.00	27.06	PASS	Vertical	PK
	7	1443.1629	-26.17	61.83	35.66	74.00	38.34	PASS	Vertical	PK
	8	1999.6666	-24.20	68.07	43.87	74.00	30.13	PASS	Vertical	PK
	9	2663.8443	-21.08	59.25	38.17	74.00	35.83	PASS	Vertical	PK
	10	5328.4886	-12.30	49.73	37.43	74.00	36.57	PASS	Vertical	PK
13	11	7775.5184	-4.65	46.27	41.62	74.00	32.38	PASS	Vertical	PK
	12	14233.6822	6.43	40.41	46.84	74.00	27.16	PASS	Vertical	PK
V	/									

Radiated Spurious Emission 18GHz-41GHz:

Test data:

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	20019.4808	-23.15	61.53	38.38	74.00	35.62	PASS	Horizontal	PK
2	22225.729	-24.67	61.03	36.36	74.00	37.64	PASS	Horizontal	PK
3	25991.4397	-19.09	59.14	40.05	74.00	33.95	PASS	Horizontal	PK
4	27847.1539	-20.24	59.46	39.22	74.00	34.78	PASS	Horizontal	PK
5	32566.9427	-16.30	54.83	38.53	74.00	35.47	PASS	Horizontal	PK
6	36592.1037	-14.17	51.62	37.45	74.00	36.55	PASS	Horizontal	PK
7	40095.6038	-11.00	46.97	35.97	93.57	57.60	PASS	Horizontal	PK
8	19567.7427	-23.94	62.47	38.53	74.00	35.47	PASS	Vertical	PK
9	23304.9322	-22.97	59.63	36.66	74.00	37.34	PASS	Vertical	PK
10	26387.0555	-19.45	59.05	39.60	74.00	34.40	PASS	Vertical	PK
11	30070.8828	-19.68	57.65	37.97	74.00	36.03	PASS	Vertical	PK
12	33637.8655	-15.51	55.05	39.54	74.00	34.46	PASS	Vertical	PK
13	39094.6038	-10.79	48.53	37.74	74.00	36.26	PASS	Vertical	PK
14	40046.8419	-11.03	47.25	36.22	93.57	57.35	PASS	Vertical	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
- Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
 2) For 40GHz to 41GHz, the limit is 600pW/cm² equivalent to an electric field strength of 93.57dBuV/m@3m.
- Only the worst case data was recorded in the report.

Radiated Spurious Emission 41GHz-243GHz:

(S)

Test data:

	Test Frequency (GHz)	Polarity	EIRP/1MHz (dBm)	Power density(pW/cm²) @3m distance	Limit of Power density(pW/cm ²) @3m distance	Result
-	41.002750	Horizontal	-33.12	0.43	≪600	Pass
	41.005750	Vertical	-33.12	0.43	≪600	Pass
	60.015750	Horizontal	-32.62	0.48	≪600	Pass
	63.099700	Vertical	-23.91	3.59	≤600	Pass
	99.629630	Horizontal	-31.17	0.68	≪600	Pass
	103.692580	Vertical	-20.72	7.49	≪600	Pass
	130.210700	Horizontal	-32.91	0.45	≪600	Pass
	130.894030	Vertical	-32.68	0.48	≪600	Pass
	139.368790	Horizontal	-32.65	0.48	≤600	Pass
2	139.149800	Vertical	-32.03	0.55	≤600	Pass
2	140.587240	Horizontal	-37.32	0.16	≤600	Pass
	140.629240	Vertical	-36.31	0.21	≪600	Pass
	203.558460	Horizontal	-45.50	0.02	≤1000	Pass
	202.184470	Vertical	-45.57	0.02	≤1000	Pass
	222.061160	Horizontal	-40.73	0.07	≤1000	Pass
	221.719670	Vertical	-40.69	0.08	≤1000	Pass
	237.536980	Horizontal	-45.50	0.02	≤1000	Pass
	235.018580	Vertical	-45.59	0.02	≤1000	Pass

Note:

 $(\ensuremath{\texttt{1}EIRP}(dBm/MHz)$ has added free space loss of 1.0m distance.

0 Only the worst case data was recorded in the report.

③Power density(pW/cm²)= $10^{\text{EIRP/1MHz(dBm)+10*}}10^9$ ÷[4* π *(3m*100)²];

Page 25 of 60

Test graph:

Page 26 of 60

Page 27 of 60

Page 28 of 60

Page 29 of 60

Page 30 of 60

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 31 of 60

Page 32 of 60

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 33 of 60

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

5.5 Frequency stability

	Test Requirement:	47 CFR Part 95, Subpart M Section 95.3379 (b), KDB 653005 D01 76 81 CHz Padars v01r01 Section 4 d)				
	Test Method [.]	ANSI C63 26:2015 Section 5.6				
8	Limit:	Fundamental emissions must be contained within the frequency band				
		specified in this section during all conditions of operation.				
	Test Setup:	RF Absorber Sheets RF Transparent Foam Plug EUT Antenna EUT EUT EUT EUT EUT EUT EUT EUT EUT EUT				
		Figure 23—Example of a frequency stability setup configuration				
	Test Procedure:	Figure 23—Example of a frequency stability setup configuration The carrier frequency of the transmitter is measured at room temperature. (20°C to provide a reference) At 10°C intervals of temperatures between -30°C and +50°C at the manufacturer's rated supply voltage, and At +20°C temperature and ±15% supply voltage variations. If a product is specified to operate over a range of input voltage then the -15% variation is applied to the lowermost voltage and the +15% is applied to the uppermost voltage. Measurement data showing variation in transmitter output frequency from a cold start and the elapsed time necessary for the frequency to stabilize within the applicable tolerance. Tests shall be made after temperature stabilization at each of the ambient temperature levels; the lower temperature limit, 0°C and + 30°C with no primary power applied. Beginning at each temperature level , the frequency shall be measured within one minute after application of primary power to the transmitter and at intervals of no more than one minute thereafter until ten minutes have elapsed or until sufficient measurements are obtained to indicate clearly that the frequency has stabilized within the applicable tolerance, whichever time period is greater.				

Page 35 of 60

٦	Test data:						
	Voltage (%)	Power (V/DC)	Temperature (℃)	Frequency Left (GHz)	Frequency Right (GHz)	Limit (GHz)	Result
[-40	77.560565	78.023927	76 to 81	Pass
100		10-	-30	77.561428	78.023837	76 to 81	Pass
(2)		(1)	-20	77.56075	78.023505	76 to 81	Pass
6)	G	-10	77.560757	78.025142	76 to 81	Pass
~			0	77.560752	78.023174	76 to 81	Pass
			+10	77.561130	78.023380	76 to 81	Pass
	100	24.0	+20	77.563620	78.022020	76 to 81	Pass
	100	24.0	+30	77.560360	78.024510	76 to 81	Pass
			+40	77.559020	78.023900	76 to 81	Pass
	(G)	6	+50	77.558540	78.028480	76 to 81	Pass
			+60	77.559040	78.028260	76 to 81	Pass
			+70	77.558500	78.027420	76 to 81	Pass
			+80	77.558080	78.029760	76 to 81	Pass
13	0	12	+85	77.558860	78.029340	76 to 81	Pass
$\langle \mathcal{A} \rangle$	115	32.0	+20	77.560200	78.028360	76 to 81	Pass
(V)	85	9.0	+20	77.559040	78.028170	76 to 81	Pass

Note:The extreme voltage and extreme temperature is specified by the manufacturer.

