

FCC Test Report

Report No: FCS202206029W02

Issued for

Applicant:	Shenzhen zhiduojing Science and Technology Limited Company	
Address:	E206, second floor, building e, phase II, Huafeng International Robot Industrial Park, Hangcheng Avenue, Bao'an District, Shenzhen, Guangdong	
Product Name:	wooboobox	
Brand Name:	wooboobox	
Model Name:	Z4 BOX	
Series Model:	Z1 BOX, Z2 BOX, Z3 BOX, Z5 BOX, Z6 BOX, Z7 BOX, Z8 BOX	
FCC ID:	2A7G5-Z4BOX	
Issued By: Flux Compliance Service Laboratory Add: Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com		

TEST RESULT CERTIFICATION

Applicant's Name	Shenzhen zhiduojing Science and Technology Limited Company
Address	E206, second floor, building e, phase II, Huafeng International Robot Industrial Park, Hangcheng Avenue, Bao'an District, Shenzhen, Guangdong
Manufacture's Name:	Shenzhen zhiduojing Science and Technology Limited Company
Address	E206, second floor, building e, phase II, Huafeng International Robot Industrial Park, Hangcheng Avenue, Bao'an District, Shenzhen, Guangdong

Product Description

Product Name	wooboobox
Model Name	-
Series Model	Z1 BOX, Z2 BOX, Z3 BOX, Z5 BOX, Z6 BOX, Z7 BOX, Z8 BOX
Test Standards	Part15 Subpart E (Section 15.407)
Test Procedure	ANSI C63.10-2013 KDB 789033 D02 General UNII Test procedures New Rules 02 KDB558074 D01 Meas Guidance v05

This device described above has been tested by Flux Compliance Service Laboratory, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Flux Compliance Service Laboratory, this document may be altered or revised by Flux Compliance Service Laboratory, personal only, and shall be noted in the revision of the document..

Date of Test

Date (s) of performance of tests : June 7, 2022 ~ June 18, 2022

:

Date of Issue.....: June 18, 2022

Test Result: Pass

Tested by

Scott shen

(Scott Shen) Dutellion Reviewed by (Duke Qian) Approved by :

(Jack Wang)

Table of Contents

Page

1. SUMMARY OF TEST RESULTS	5
1.1 TEST FACTORY	;
1.2 MEASUREMENT UNCERTAINTY6	;
2. GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF THE EUT	7
2.2 802.11A/N/AC	}
2.3 TABLE FOR FILED ANTENNA 8	}
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED)
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS)
2.6 EQUIPMENTS LIST RADIATION TEST EQUIPMENT	
3. 26DB BANDWIDTH, 6DB BANDWIDTH AND 99% BANDWIDTH 12) -
3.1 LIMIT	
3.2 TEST PROCEDURE) -
3.3 TEST SETUP	<u>}</u>
3.4 TEST RESULTS	
3.5 ORIGINAL TEST DATA	ŀ
3.6 6DB BANDWITH TEST RESULT	
4 CONDUCTED OUTPUT POWER 19)
4.1 LIMIT)
4.2 TEST PROCEDURE)
4.3 TEST SETUP	
4.4 TEST RESULTS)
5. POWER SPECTRAL DENSITY) -
6. FREQUENCY STABILITY MEASUREMENT	3
7. BAND EDGE	
8. DUTY CYCLE	
9 RADIATED EMISSION MEASUREMENT	3
10 CONDUCTED EMISSION TEST)
11. ANTENNA REQUIREMENT	3

 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

 Tel: 769-27280901
 Fax: FCS-lab.com

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	June18, 2022	FCS202206029W02	N/A	Initial Issue

 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

 Tel: 769-27280901
 Fax: 769-27280901

 http://www.FCS-lab.com

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Standard Section	Test Item	Judgment	Remark
FCC 15.407 (e)	6/26db Bandwidth and 99% Bandwidth	PASS	
FCC 15.407 (a)	Maximum Conducted Output Power	PASS	
FCC 15.407 (a)	Power Spectral Density	PASS	
FCC 15.407 (g)	Frequency Stability Measurement	PASS	
FCC 15.407 (a) FCC 15.209 FCC 15.205	Emissions in restricted frequency bands	PASS	
FCC 15.407 (a) FCC 15.209 FCC 15.205	Band Edge Compliance	PASS	
FCC 15.207	Power Line Conducted Emission	PASS	
FCC 15.203	Antenna requirement	PASS	

1.1 TEST FACTORY

Company Name:	Flux Compliance Service Laboratory	
Address:	Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan	
Telephone:	+86-769-27280901	
Fax:	+86-769-27280901	
FCC Test Firm Registration Number: 514908 Designation number: CN0127 A2LA accreditation number: 5545.01		

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±2.988 dB
3	Conducted Emission (9KHz-150KHz)	± 4.13 dB
4	Conducted Emission (150KHz-30MHz)	± 4.74 dB
5	All emissions,radiated(<1G) 30MHz-1000MHz	± 5.2 dB
6	All emissions, radiated 1GHz -18GHz	±4.66 dB
7	All emissions, radiated 18GHz -40GHz	±4.31 dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	wooboobox
Trade Name	wooboobox
Model Name	Z4 BOX
Series Model	Z1 BOX, Z2 BOX, Z3 BOX, Z5 BOX, Z6 BOX, Z7 BOX, Z8 BOX
Model Difference	The above product with same circuit, PCB layout, electrical parts, materials and wiring structures, the materials of decorative accessories is same, For the product appearance difference, the size is the same, but the color of the product is different
Channel List	Please refer to the Note 2.2.
Operation frequency	IEEE 802.11a/n/ac(HT20): U-NII-1 5180MHz ~5240MHZ
Number of channel	5180MHz ~5240MHZ(7CH)
Modulation:	OFDM
Power supply	Input: DC 5V 1A by adapter
Battery	N/A
Hardware version number	V1.0
Software version number	V1.0
Sample type	Protable equipment
Connecting I/O Port(s)	Please refer to the User's Manual

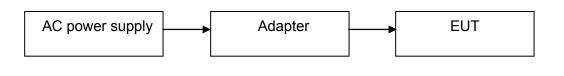
Note:

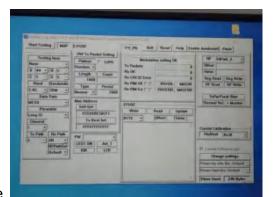
1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.2 802.11a/n/ac

U-NII-1 (5.15-5.25GHz)				
channel	Frequency(MHz)	channel	Frequency(MHz)	
36	5180	38	5190	
40	5200	42	5210	
44	5220	46	5230	
48	5240			

2.3 Table for Filed Antenna


Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	N/A	N/A	PCB antenna	N/A	1.0B dBi	WIFI Antenna 1



2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Block diagram of EUT configuration for test

Test software: the

The test softeware was used to control EUT work in continuous TX mode, and select test channel, Wireless mode as below table

For 802.11a/n/ac(HT20)	
U-NII-1	

channel	Frequency(MHz)	channel	Frequency(MHz)
36	5180	40	5200
48	5240		

Page 10 of 44

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
1	Adapter	HUAWEI	HW-050450C01	N/A	Test using
2	Display	Lenovo	LM16	N/A	Test using

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.6 EQUIPMENTS LIST Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESRP 3	FCS-E001	2022.02.10	2023.02.09
Signal Analyzer	R&S	FSV40-N	FCS-E012	2022.02.10	2023.02.09
Active loop Antenna	ZHINAN	ZN30900C	FCS-E013	2022.02.10	2023.02.09
Bilog Antenna	SCHWARZBECK	VULB 9168	FCS-E002	2022.02.10	2023.02.09
Horn Antenna	SCHWARZBECK	BBHA 9120D	FCS-E003	2022.02.10	2023.02.09
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	FCS-E018	2022.02.10	2023.02.09
Pre-Amplifier(0.1M-3G Hz)	EMCI	EM330N	FCS-E004	2022.02.10	2023.02.09
Pre-Amplifier (1G-18GHz)	N/A	TSAMP-0518SE	FCS-E014	2022.02.10	2023.02.09
Pre-Amplifier (18G-40GHz)	TERA-MW	TRLA-0400	FCS-E019	2022.02.10	2023.02.09
Temperature & Humidity	HTC-1	victor	FCS-E005	2022.02.10	2023.02.09

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESCI	FCS-E020	2022.02.10	2023.02.09
LISN	R&S	ENV216	FCS-E007	2022.02.10	2023.02.09
LISN	ETS	3810/2NM	FCS-E009	2022.02.10	2023.02.09
Temperature & Humidity	HTC-1	victor	FCS-E008	2022.02.10	2023.02.09

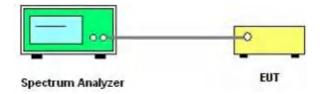
RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
MXA SIGNAL Analyzer	Keysight	N9020A	FCS-E015	2022.02.10	2023.02.09
Spectrum Analyzer	Agilent	E4447A	MY50180039	2022.02.10	2023.02.09
Spectrum Analyzer	R&S	FSV-40	101499	2022.02.10	2023.02.09

3. 26dB Bandwidth, 6dB Bandwidth and 99% Bandwidth

3.1 Limit

	FCC Part15, Subpart E	the second s
Test Item	Limit	Frequency Range (MHz)
	26 dB Bandwidth	5150-5250
	26 dB Bandwidth	5250-5350
Bandwidth	26 dB Bandwidth	For FCC:5470-5725 For IC:5470-5600 5650-5725
	Minimum 500kHz 6dB Bandwidth	5725-5850


3.2 Test Procedure

(1)) Connect EUT's antenna or	tput to s	pectrum and	lyzer b	y RF cable.
-----	----------------------------	-----------	-------------	---------	-------------

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 6dB Bandwidth: RBW=100kHz For 26dB Bandwidth: approximately 1% of the emission bandwidth.
VBW	For 6dB Bandwidth: VBW=300kHz For 26dB Bandwidth: >3RBW
Trace	Max hold
Sweep	Auto couple

(2) Allow the trace to stabilize, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26dB and 6dB relative to the maximum level measured in the fundamental emission.

3.3 Test setup

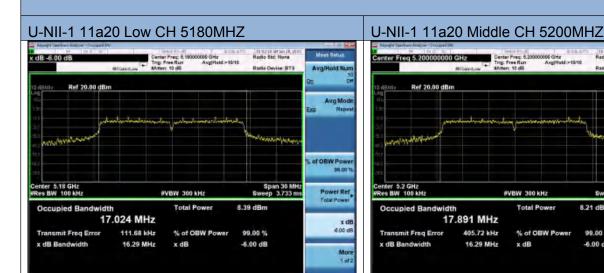
3.4 Test results

	1	Band U-NII-1		
TestMode	Channel (MHz)	26dB Bandwidth	99%OBW(MHz)	Verdict
		(MHz)		
802.11a20	5180MHz	20.43	16.523	Pass
802.11a20	5200MHz	20.33	16.539	Pass
802.11a20	5240MHz	20.29	16.539	Pass
802.11n20	5180MHz	20.69	17.636	Pass
802.11n20	5200MHz	20.72	17.647	Pass
802.11n20	5240MHz	20.52	17.622	Pass
802.11ac20	5180MHz	20.89	17.647	Pass
802.11 ac20	5200MHz	20.74	17.641	Pass
802.11 ac20	5240MHz	20.97	17.637	Pass

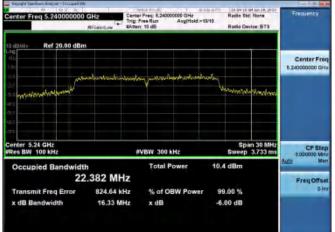
3.5 Original Test Data

Page 16 of 44

3.66dB Bandwith test result


TestMode	Channel (MHz)	6dB Bandwidth (MHz)	Verdict
802.11a20	5180MHz	16.29	Pass
802.11a20	5200MHz	16.29	Pass
802.11a20	5240MHz	16.33	Pass
802.11n20	5180MHz	16.76	Pass
802.11n20	5200MHz	17.53	Pass
802.11n20	5240MHz	17.26	Pass
802.11ac20	5180MHz	17.30	Pass
802.11 ac20	5200MHz	17.56	Pass
802.11 ac20	5240MHz	16.90	Pass

Freq Offs


99.00 %

-6.00 dB

U-NII-1 11a20 High CH 5240MHZ

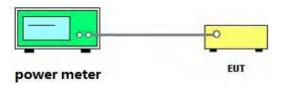
U-NII-1 11n(HT20) Middle CH 5200MHZ

Radio Std: None Center Pres: 6.20000000 GHz Trig: Pres Run Avg[Hold:+10/10 Radio Device: BTS Center Fre Span 30 MH eep 3.733 m CF St SV Total Power 8.21 dB

U-NII-1 11n(HT20) Low CH 5180MHZ

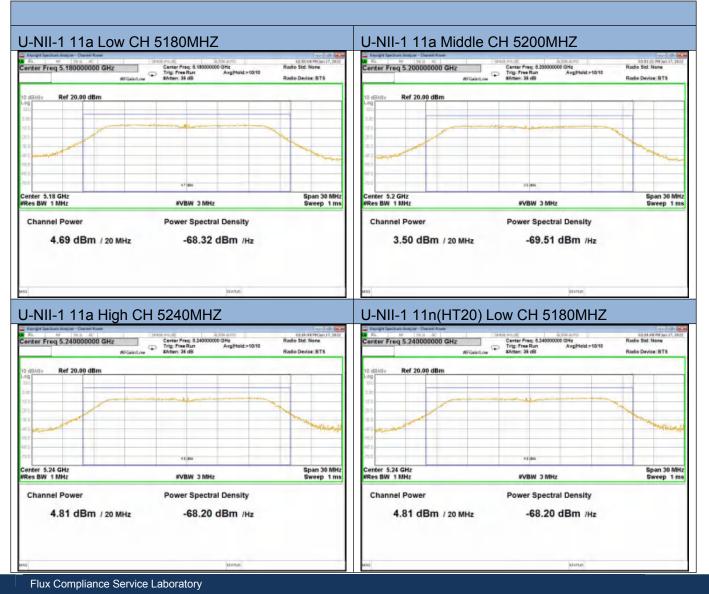
U-NII-1 11n(HT20)High CH 5240MHZ

4 CONDUCTED OUTPUT POWER

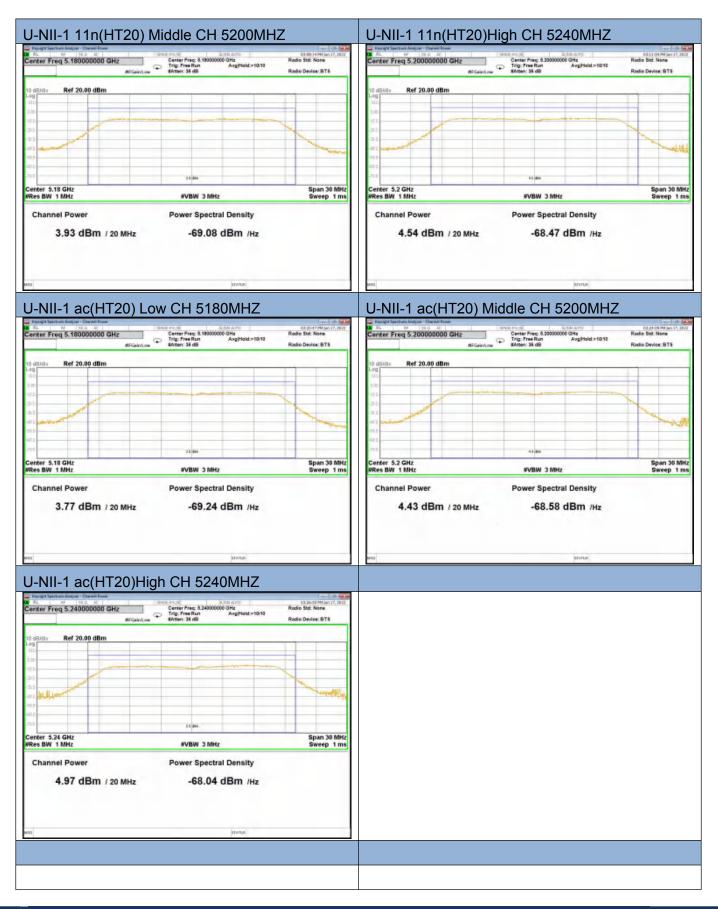

4.1 limit

Test Item	Limit	Frequency Range (MHz)
-	For FCC client devices: 250mW (24dBm)	5150-5250
	For RSS: e.i.r.p. power: not exceed 200 mW(23dBm) or 10 + 10 log10 B	5100-5200
Conducted	250mW (24dBm) or 11 + 10 log10 B	5250-5350
Output Power	250mW (24dBm) or 11 + 10 log10 B	For FCC:5470-5725 For IC:5470-5600 5650-5725
	1 Watt (30dBm)	5725-5850

4.2 test procedure


- a. Connect each EUT's antenna output to power meter by RF cable and attenuator
- b. Get each antenna port's output power of EUT.

4.3 TEST SETUP


4.4 test results

TestMode	Channel (MHz)	Result (dBm)	Limit (dBm)	Verdict
802.11a20	5180MHz	4.69	24	Pass
802.11a20	5200MHz	3.50	24	Pass
802.11a20	5240MHz	4.81	24	Pass
802.11n20	5180MHz	4.81	24	Pass
802.11n20	5200MHz	3.93	24	Pass
802.11n20	5240MHz	4.54	24	Pass
802.11ac20	5180MHz	3.77	24	Pass
802.11 ac20	5200MHz	4.43	24	Pass
802.11 ac20	5240MHz	4.97	24	Pass

Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com

5. POWER SPECTRAL DENSITY

5.1 LIMIT

	FCC Part15, Subpart E/ RSS-247	
Test Item	Limit	Frequency Range (MHz)
	For FCC: Other than Mobile and portable:17dBm/MHz Mobile and portable:11dBm/MHz	5150-5250
	For RSS eirp:10dBm/MHz	
Power Spectral Density	11dBm/MHz	5250-5350
Density	11dBm/MHz	For FCC:5470-5725 For IC:5470-5600 5650-5725
	30dBm/500kHz	5725-5850

5.2 TEST PROCEDURE

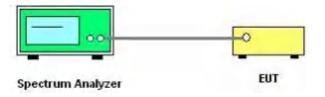
The transmitter output was connected to a spectrum analyzer. Power density was measured by spectrum analyzer with 1MHz RBW and 3MHz VBW.

Connect the UUT to the spectrum analyser and use the following settings:

5180MHz-5240MHz

Note:

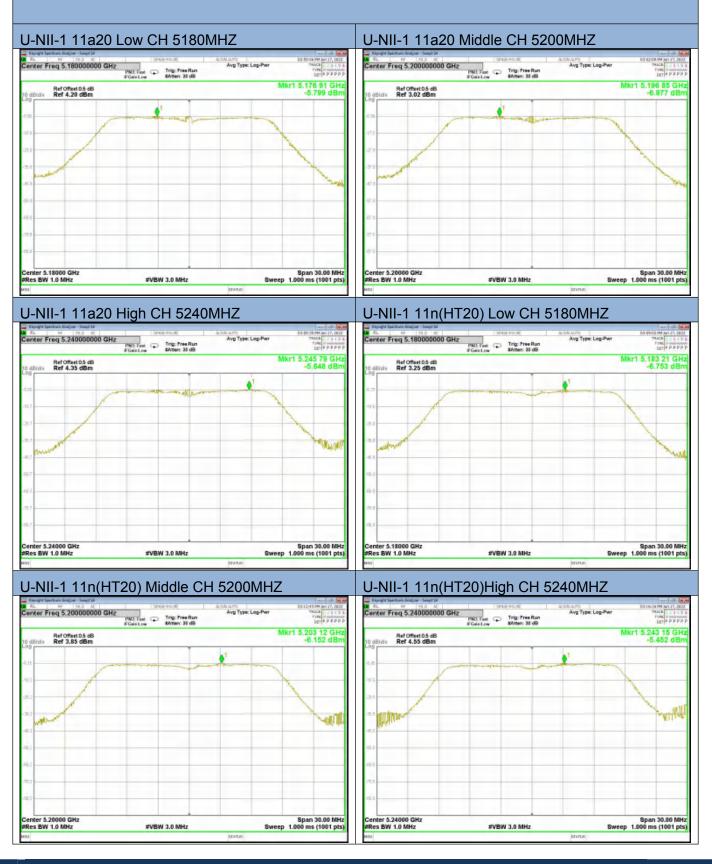
1. For UNII-3, according to KDB publication 789033 D02 General UNII Test Procedures New Rules v01, section II.F.5., it is acceptable to set RBW at 1MHz and VBW at 3MHz if the spectrum analyzer does not have 500kHz RBW.


2. The value measured with RBW=1MHz is to be added with 10log(500kHz/1MHz) which is - 3dB. For example, if the measured value is +10dBm using RBW=1MHz (that is +10dBm/MHz), then the converted value will be +7dBm/500kHz.

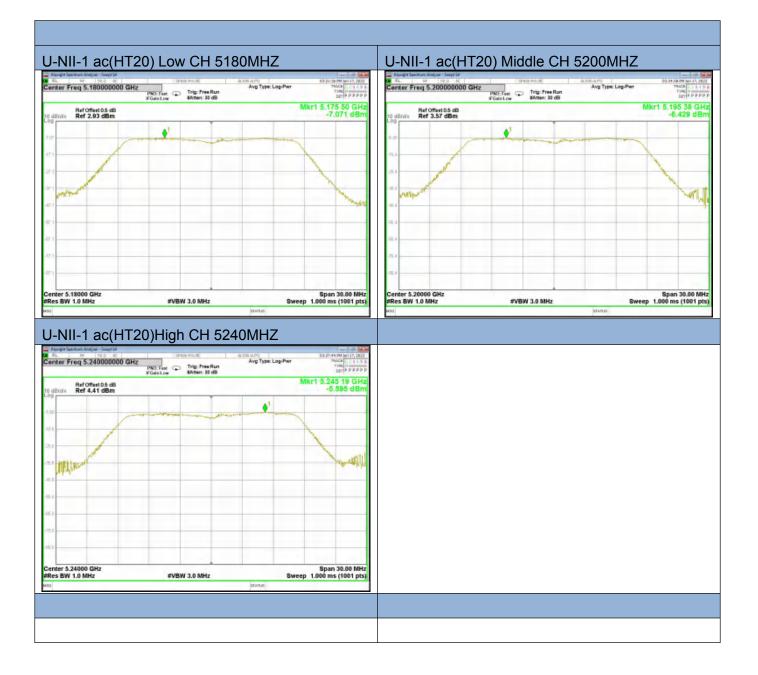
Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

Page 23 of 44

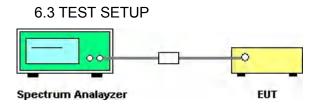
5.3 TEST SETUP



5.4 TEST RESULTS


	Power_Density,UNII(B1)									
Condition	Mode	Frequency (MHz)	Power	Limit(dBm/3KHz)	Results	Remark				
			Density(dBm/3KHz)							
NVNT	11a20	5180	-5.80	11	Pass					
NVNT	11a20	5200	-6.98	11	Pass					
NVNT	11a20	5240	-5.65	11	Pass					
NVNT	11n20	5180	-6.75	11	Pass					
NVNT	11n20	5200	-6.15	11	Pass					
NVNT	11n20	5240	-5.45	11	Pass					
NVNT	11ac20	5180	-7.07	11	Pass					
NVNT	11ac20	5200	-6.43	11	Pass					
NVNT	11ac20	5240	-5.59	11	Pass					

5.5 ORIGINAL TEST DATA


6. FREQUENCY STABILITY MEASUREMENT

6.1 LIMIT

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual

6.2 TEST PROCEDURE

- (1) To ensure emission at the band edge is maintained within the authorized band, those values shall be measured by radiation emissions at upper and lower frequency points, and finally compensated by frequency deviation as procedures below.
- (2) The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.
- (3) The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

6.4 TEST RESULTS

Temperaturel (°c)	Power Supply (DC)	Frequency Error (Hz)	Frequency Error (PPm)	Limit (PPm)
50		1	/	1
45		1807	2.1599	20
30		1800	2.1516	20
20	5V	1806	2.1587	20
10		1800	2.1516	20
0		1803	2.1552	20
-10		1800	2.1516	20
-15		1809	2.1623	20
-30		1	1	1
20	4.5V	1810	2.1635	20
20	5.5 V	1798	2.1492	20

7. Band edge

7.1 LIMIT

For transmitters operating in the 5.15-5.25 GHz and 5.725-5.85G band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.

-27 dBm/MHz Limit=95.2+EIRP[dBm]=95.2-27=68.2 dBµV/m

7.2 TEST PROCEDURE

(1) EUT height should be 0.8m for below 1GHz at a semi anechoic chamber while EUT height should be 1.5m for above 1GHz at full chamber or semi anechoic chamber ground with absorbers

(2) Test antenna was located 3m from the EUT on an adjustable mast, and the antenna used as below table.

Test frequency range	Test antenna used	Test distance
9kHz-30MHz	Active Loop antenna	3m
30MHz-1GHz	Trilog Broadband Antenna	3m
1GHz-18GHz	Double Ridged Hom Antenna(1GHz-18GHz)	3m
18GHz-40GHz	Horn Antenna(18GHz-40GHz)	1m

According ANSI C63.10:2013 clause 6.4.4.2 and 6,5.3, for measurements below 30 MHz, the loop antenna was positioned with its plane vertical from the EUT and rotated about its vertical axis for maximum response at each azimuth position around the EUT. And the loop antenna also be positioned with its plane horizontal at the specified distance from the EUT. The center of the loop is 1 m above the ground. for measurement above 30MHz, the Trilog Broadband Antenna or Horn Antenna was located 3m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength.

(4) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9kHz to 40GHz:

(a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT was rotated 360 degree, the antenna height was varied from 1m to 4m (Except loop antenna, it's fixed 1m above ground.)

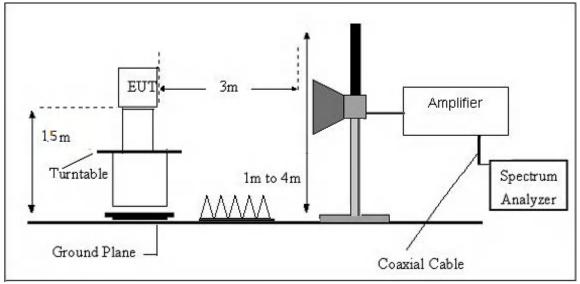
(b) Change work frequency or channel of device if practicable.

(c) Change modulation type of device if practicable.

(d) Change power supply range from 85% to 115% of the rated supply voltage

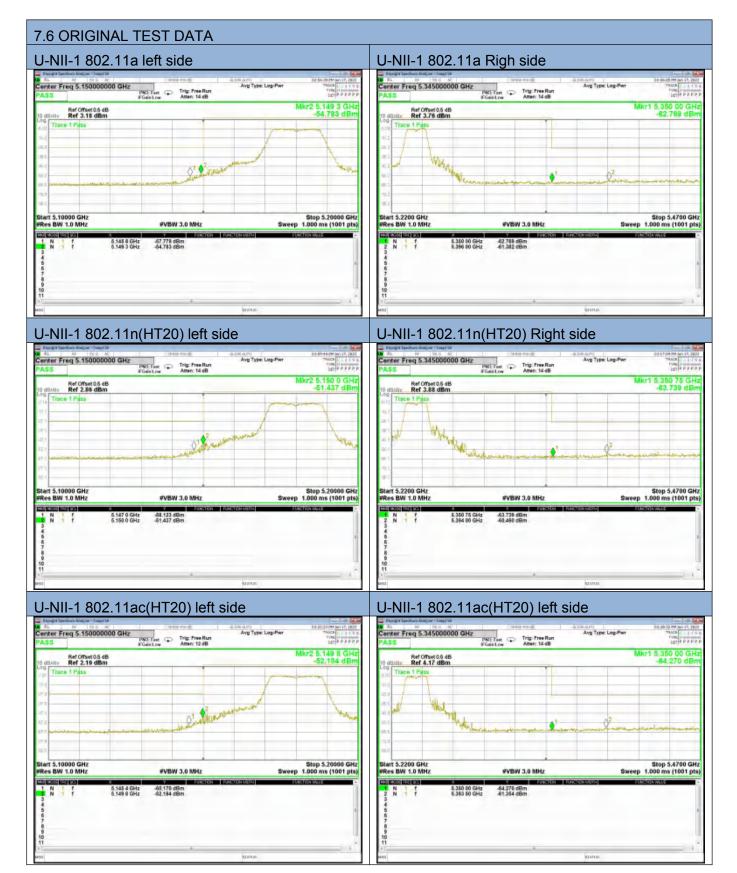
(e) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions.

Spectrum frequency from 9kHz to 40GHz (tenth harmonic of fundamental frequency) was investigated, and no any obvious emission were detected from 9kHz to 30MHz and 18GHz to 40GHz, so below final test was performed with frequency range from 30MHz to 18GHz.

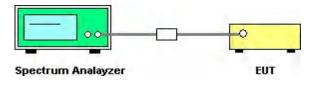

(6) The emissions from 9kHz to 1GHz were measured based on CISPR QP detector except for the frequency bands 9-90kHz, 110-490kHz, for emissions from 9kHz-90kHz,110kHz-490kHz and above 1GHz were measured based on average detector, for emissions above 1GHz, peak emissions also be measured and need comply with Peak limit

(7) The emissions from 9kHz to 1GHz, QP or average values were measured with EMI receiver with below RBW

Frequency band	RBW
9kHz-150kHz	200Hz
150kHz-30MHz	9kHz
30MHz-1GHz	120kHz


(8) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz, Peak detector for Peak measure, RMS detector for AV value

7.5 TEST RESULTS


8. Duty Cycle

8.1 TEST REQUIREMENT 47 CFR Part 15C 15.407 and 789033 D02 General UNII Test Procedures New Rules v02r01(December 14, 2017), Section (B) ANSI C63.10: 2013

8.2 TEST PROCEDURE

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

7.3 TEST SETUP

8.4 TEST RESULTS

	802.11	a mode	
channel	On time(ms)	Period(ms)	Duty Cycle(%)
36	100	100	100
52	100	100	100
149	100	100	100
	802.11n(H	T20) mode	
channel	On time(ms)	Period(ms)	Duty Cycle(%)
36	100	100	100
52	100	100	100
149	100	100	100
	802.11ac(H	T20) mode	
channel	On time(ms)	Period(ms)	Duty Cycle(%)
36	100	100	100
52	100	100	100
149	100	100	100

9 RADIATED EMISSION MEASUREMENT

9.1 RADIATED EMISSION LIMITS

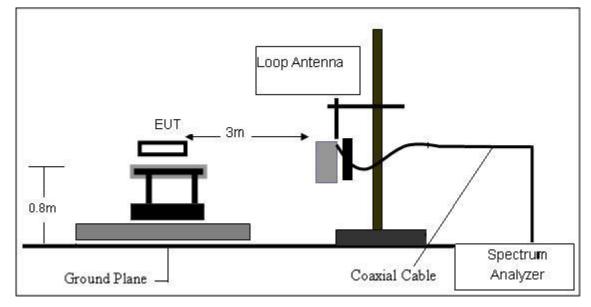
In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

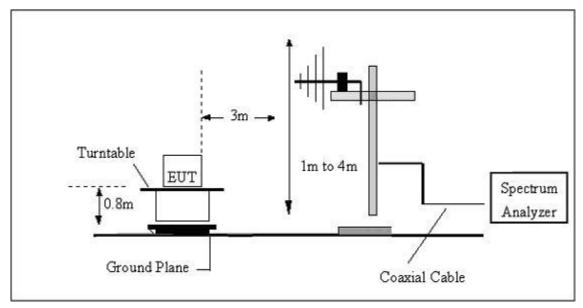
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

For Radiated Emission

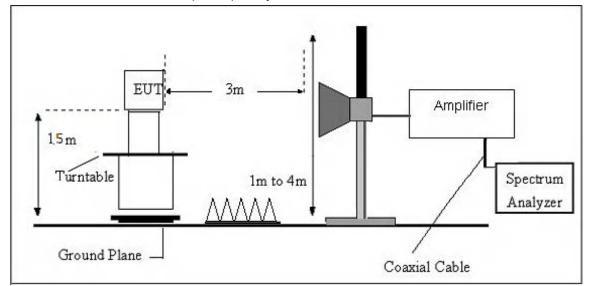
Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/AV
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier hamonic(Peak/AV)
RB / VB (emission in restricted	
band)	PK=1MHz / 1MHz, AV=1 MHz /10 Hz


9.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

- 9.3 TESTSETUP
- (A) Radiated Emission Test-Up Frequency Below 30MHz


(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Page 36 of 44

(C) Radiated Emission Test-Up Frequency Above 1GHz

9.4. TEST RESULTS (9KHZ-30MHZ) Frequency Range : 9 kHz – 30MHz

and the second second	Total	Limit	Margin
(H/V)	dBuV/m	dBuV/m	dB
	(H/V)		

Note:

1. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

2. Distance extrapolation factor = 40*log (specific distance / test distance) (dB)

3. Limit line = specific Limits (dBuV) + Distance extrapolation factor

4. The test results for below 30 MHz is correlated to an open site.

The result on OFS is about 2 dB higher than semi-anechoic chamber(10 m chamber)

9.5(ABOVE1GHZ) RESTRICTED BAND AND SPURIOUS EMISSION REQUIREMENTS

Channel:36CH

Frequency [MHz]	Reading [dBuV]	A.F.+C.LA.G+D.F.	ANT. POL	Total [dBuV/m]	Limit (dBuV/m)	Margin	Measuremen
[IVITI2]	[ODUV]	[dB]	fund	lapawult	lapawuit	[dB]	Туре
10360	59.76	4.10	V	63.86	68.20	4.34	PK
15540	54.97	5.36	V	60.33	73.98	13.65	PK
15540	40.63	5.36	v	45.99	53.98	7.99	AV
10360	59.11	4.10	н	63.21	68.20	4.99	PK
15540	54.84	5.36	н	60.20	73.98	13.78	PK
15540	40.51	5.36	н	45.87	53.98	8.11	AV

Channel:40CH

Frequency [MHz]	Reading [dBuV]	A.F.+C.LA.G+D.F. [dB]	ANT. POL	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
10400	60.68	3.87	v	64.55	68.20	3.65	PK
15600	53.96	4.75	v	58.71	73.98	15.27	PK
15600	37.71	4.75	v	42.46	53.98	11.52	AV
10400	59.42	3.87	н	63.29	68.20	4.91	PK
15600	53.88	4.75	н	58.63	73.98	15.35	PK
15600	37.56	4.75	н	42.31	53.98	11.67	AV

Channel:48CH

Frequency	Reading	A.F.+C.LA.G+D.F.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
10400	60.68	3.87	V	64.55	68.20	3.65	PK
15600	53.96	4.75	V	58.71	73.98	15.27	PK
15600	37.71	4.75	v	42.46	53.98	11.52	AV
10400	59.42	3.87	н	63.29	68.20	4.91	PK
15600	53.88	4.75	н	58.63	73.98	15.35	PK
15600	37.56	4.75	н	42.31	53.98	11.67	AV

Note:

All model are tested. Only show worst data on report.

10 CONDUCTED EMISSION TEST

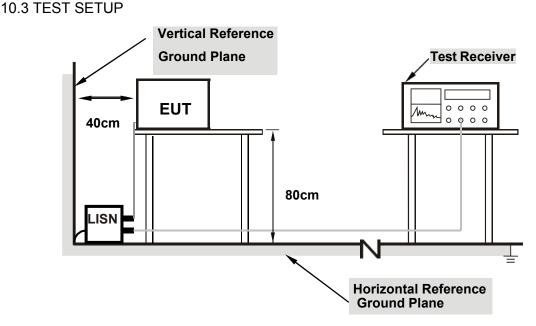
10.1.1 POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

	Conducted Emissionlimit (dBuV)			
FREQUENCY (MHz)	Quasi-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 -30.0	60.00	50.00		

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

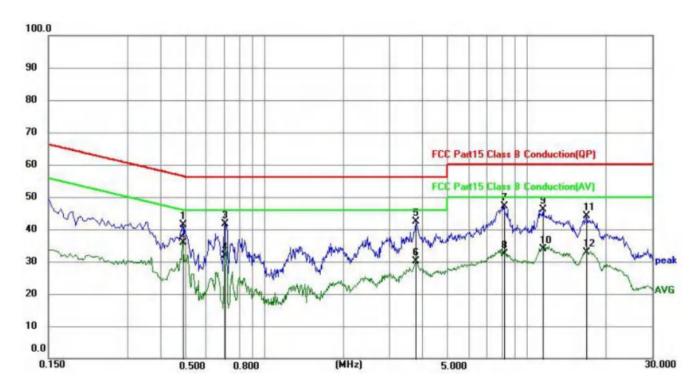

The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		

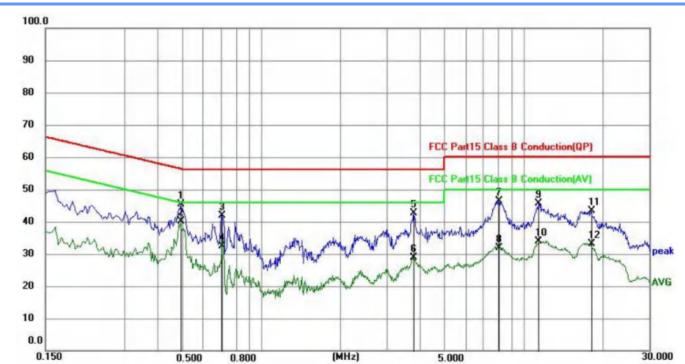
10.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note: 1.Support units were connected to second LISN.


2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

10.4 TEST RESULT


Temperature:	22.1 ℃	Relative Humidity:	56%
Test Voltage:	DC 5V	Phase:	L/N
Test Mode:	Worst mode		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.4875	31.49	9.87	41.36	56.21	14.85	QP
2	0.4875	25.90	9.87	35.77	46.21	10.44	AVG
3	0.7080	31.66	9.89	41.55	56.00	14.45	QP
4	0.7080	22.04	9.89	31.93	46.00	14.07	AVG
5	3.7725	24.43	17.90	42.33	56.00	13.67	QP
6	3.7725	12.17	17.90	30.07	46.00	15.93	AVG
7	8.1555	27.25	20.00	47.25	60.00	12.75	QP
8	8.1555	12.33	20.00	32.33	50.00	17.67	AVG
9	11.5034	26.08	20.04	46.12	60.00	13.88	QP
10	11.5034	13.93	20.04	33.97	50.00	16.03	AVG
11	16.7685	23.90	20.13	44.03	60.00	15.97	QP
12	16.7685	12.82	20.13	32.95	50.00	17.05	AVG

Page 42 of 44

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.4920	35.46	9.87	45.33	56.13	10.80	QP
2	0.4920	30.33	9.87	40.20	46.13	5.93	AVG
3	0.7080	32.01	9.89	41.90	56.00	14.10	QP
4	0.7080	22.38	9.89	32.27	46.00	13.73	AVG
5	3.8130	24.69	18.00	42.69	56.00	13.31	QP
6	3.8130	10.88	18.00	28.88	46.00	17.12	AVG
7	8.0070	26.35	20.14	46.49	60.00	13.51	QP
8	8.0070	11.80	20.14	31.94	50.00	18.06	AVG
9	11.3549	25.56	20.19	45.75	60.00	14.25	QP
10	11.3549	13.72	20.19	33.91	50.00	16.09	AVG
11	17.9790	23.14	20.24	43.38	60.00	16.62	QP
12	17.9790	12.79	20.24	33.03	50.00	16.97	AVG

11. ANTENNA REQUIREMENT

11.1 STANDARD REQUIREMENT

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2 RESULT

The antennas used for this product are PCB antenna and other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is1.0.dBi.

* * * * * END OF THE REPORT * * * *