

TEST Report

Applicant:	Shenzhen TwoTrees Technology Co., Ltd.
Address of Applicant:	Room 402, Building 11, No.9 Qilin Road, Nankeng Community Bantian Street, Longgang District, Shenzhen, China
Manufacturer :	Shenzhen TwoTrees Technology Co., Ltd.
Address of Manufacturer : Equipment Under Test (El	Room 402,Building 11,No.9 Qilin Road,Nankeng Community Bantian Street,Longgang District,Shenzhen,China JT)
Product Name:	Desktop CNC Milling Machines
Model No.:	TTC3018S
Series model:	TTC450,TTC4040,TTC-Max,TTC-Pro
Trade Mark:	N/A
FCC ID:	2A7F8-TTC3018S
Applicable standards: Date of sample receipt:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 Jun.17,2022
Date of Test:	Jun.17,2022~Jun.23,2022
Date of report issued:	Jun.23,2022
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Jun.23,2022	Original

Tested/ Prepared By

Ervin Xu

Jun.23,2022

Project Engineer

Check By:

Bruce Zhu Date:

Jun.23,2022

Reviewer

Approved By :

Kein Yang

Date:

Date:

Jun.23,2022

Authorized Signature

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200
 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
 Shenzhen, Guangdong, China

2. Contents

Page

1.	VER	SION	2
2.	CON	ITENTS	3
3.	TES	T SUMMARY	4
4.	GEN	IERAL INFORMATION	5
	4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8.	GENERAL DESCRIPTION OF EUT	7 7 7 7 7 7 7
5.	TES	T INSTRUMENTS LIST	7
э.	120		•
6.		T RESULTS AND MEASUREMENT DATA	
	TES 6.1. 6.2. 6.3. 6.4. 6.5. 6.5. 6.5. 6.6. 6.6. 6.6.	T RESULTS AND MEASUREMENT DATA 9 CONDUCTED EMISSIONS 12 CONDUCTED PEAK OUTPUT POWER 12 CHANNEL BANDWIDTH 13 POWER SPECTRAL DENSITY 14 BAND EDGE 14 1. Conducted Emission Method 14 2. Radiated Emission Method 24 3. Conducted Emission Method 24 2. Radiated Emission Method 24	9 92369924 <i>4</i> 9
	TES 6.1. 6.2. 6.3. 6.4. 6.5. 6.5. 6.5. 6.6. 6.6. 6.6.	T RESULTS AND MEASUREMENT DATA 9 CONDUCTED EMISSIONS 9 CONDUCTED PEAK OUTPUT POWER 12 CHANNEL BANDWIDTH 13 POWER SPECTRAL DENSITY 10 BAND EDGE 11 1. Conducted Emission Method 12 2. Radiated Emission Method 14 2. Radiated Emission Method 24 3. Conducted Emission Method 24 4. Conducted Emission Method 24 3. Conducted Emission Method 24 4. Conducted Emission Method 24	9 92369924 <i>4</i> 9

3. Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
6dB Bandwidth	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.45 dB	(1)
Radiated Emission	1~6GHz	3.54 dB	(1)
Radiated Emission	6~40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.			

4. General Information

4.1. General Description of EUT

Product Name:	Desktop CNC Milling Machines
Model No.:	TTC3018S
Series model:	TTC450,TTC4040,TTC-Max,TTC-Pro
Test sample(s) ID:	HTT202206345-1(Engineer sample) HTT202206345-2(Normal sample)
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11 802.11n(HT40):7
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(H20)/802.11n(HT40): Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	FPC Antenna
Antenna gain:	3.0dBi
Power Supply:	DC 24V, 4A
Adapter Information:	Mode: HXL-2022 Input: AC100-240V, 50/60Hz, 1.3A MAX Output: DC 12-15-16-17-19V, 4.5A MAX DC 20-24V, 5AMAX

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

-	Frequency (MHz)			
Test channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)		
Lowest channel	2412MHz	2422MHz		
Middle channel	2437MHz	2437MHz		
Highest channel	2462MHz	2452MHz		

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.				
Mode	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. **A2LA-Lab Cert. No.: 6435.01** Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:
Shenzhen HTT Technology Co.,Ltd.
1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China
Tel: 0755-23595200
Fax: 0755-23595201
I.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode	
Power level setup	Default	
5. Test Instruments list		

Item Test Equipment Manufacturer Model No. Inventory

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

Cal.Date

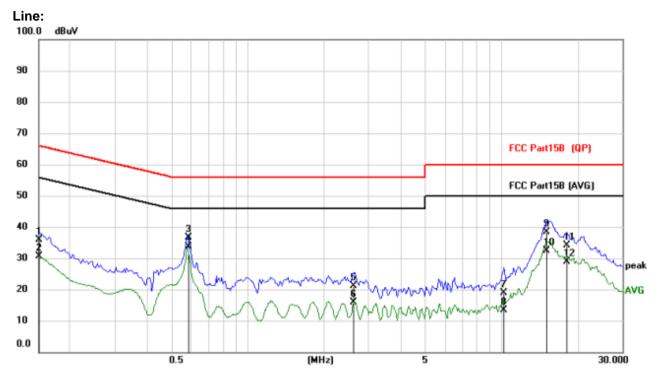
1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Cal.Due date

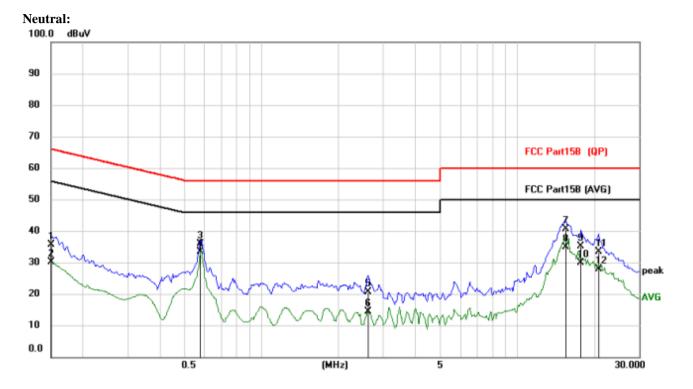
 ,				Kept	ort No.: H11202	2003451 05
				No.	(mm-dd-yy)	(mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 23 2021	May 22 2022
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 23 2021	May 22 2022
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 23 2021	May 22 2022
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 23 2021	May 22 2022
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 23 2021	May 22 2022
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 23 2021	May 22 2022
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	Aug. 22 2021	Aug. 21 2022
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	Aug. 22 2021	Aug. 21 2022
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Aug. 22 2021	Aug. 21 2022
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Aug. 22 2021	Aug. 21 2022
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 23 2021	May 22 2022
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 23 2021	May 22 2022
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 23 2021	May 22 2022
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 23 2021	May 22 2022
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 23 2021	May 22 2022
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 23 2021	May 22 2022
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 23 2021	May 22 2022
20	Attenuator	Robinson	6810.17A	HTT-E007	May 23 2021	May 22 2022
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 23 2021	May 22 2022
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 23 2021	May 22 2022
23	DC power supply	Agilent	E3632A	HTT-E023	May 23 2021	May 22 2022
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 23 2021	May 22 2022
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 23 2021	May 22 2022
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 23 2021	May 22 2022
27	Power sensor	Keysight	U2021XA	HTT-E027	May 23 2021	May 22 2022
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 23 2021	May 22 2022
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207	7	
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150KHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto	
Limit:		Lim	nit (dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
Test setup:	* Decreases with the logarithr Reference Plane		
Test procedure:	LISN 40cm 80cm AUX Equipment E.U.T Fequipment E.U.T Test table/Insulation plane Remarkc E.U.T. Equipment Under Test LISN. Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling impedance stabilization 500hm/50uH coupling impedance stabilization	EMI Receiver AC). This provides a suring equipment.
	 The peripheral devices are LISN that provides a 50ohr termination. (Please refer t photographs). Both sides of A.C. line are 	m/50uH coupling im o the block diagram	pedance with 50ohm n of the test setup and
	interference. In order to fin positions of equipment and according to ANSI C63.10:	all of the interface 2013 on conducted	cables must be changed
Test Instruments:	positions of equipment and	all of the interface 2013 on conducted	cables must be changed
Test Instruments: Test mode:	positions of equipment and according to ANSI C63.10:	I all of the interface 2013 on conducted	cables must be changed
	positions of equipment and according to ANSI C63.10:Refer to section 6.0 for detailsRefer to section 5.2 for details	I all of the interface 2013 on conducted	cables must be changed
Test mode:	positions of equipment and according to ANSI C63.10:Refer to section 6.0 for detailsRefer to section 5.2 for details	all of the interface 2013 on conducted	cables must be changed measurement.

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Report No.: HTT202206345F03

Measurement data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1500	25.56	10.37	35.93	66.00	-30.07	QP
2		0.1500	20.36	10.37	30.73	56.00	-25.27	AVG
3		0.5829	26.08	10.57	36.65	56.00	-19.35	QP
4	*	0.5829	23.17	10.57	33.74	46.00	-12.26	AVG
5		2.6187	10.27	10.84	21.11	56.00	-34.89	QP
6		2.6187	4.98	10.84	15.82	46.00	-30.18	AVG
7		10.2461	7.38	11.53	18.91	60.00	-41.09	QP
8		10.2461	1.88	11.53	13.41	50.00	-36.59	AVG
9		15.0900	26.29	12.10	38.39	60.00	-21.61	QP
10		15.0900	20.40	12.10	32.50	50.00	-17.50	AVG
11		18.1319	21.80	12.29	34.09	60.00	-25.91	QP
12		18.1319	16.54	12.29	28.83	50.00	-21.17	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit dBuV	Over dB	Detector
1		0.1500	25.44	10.27	35.71	66.00	-30.29	QP
2		0.1500	19.92	10.27	30.19	56.00	-25.81	AVG
3		0.5790	25.48	10.47	35.95	56.00	-20.05	QP
4	*	0.5790	22.94	10.47	33.41	46.00	-12.59	AVG
5		2.6148	9.91	10.84	20.75	56.00	-35.25	QP
6		2.6148	3.63	10.84	14.47	46.00	-31.53	AVG
7		15.4839	28.44	12.23	40.67	60.00	-19.33	QP
8		15.4839	22.77	12.23	35.00	50.00	-15.00	AVG
9		17.7849	22.83	12.37	35.20	60.00	-24.80	QP
10		17.7849	17.45	12.37	29.82	50.00	-20.18	AVG
11		20.8503	20.96	12.51	33.47	60.00	-26.53	QP
12		20.8503	15.41	12.51	27.92	50.00	-22.08	AVG

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Los

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200
 Fax: 0755-23595201

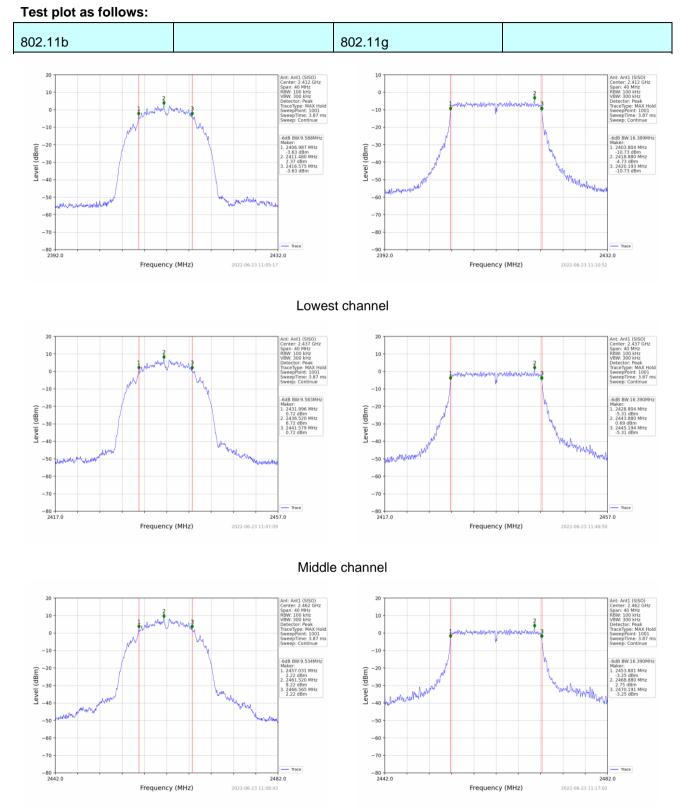
 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
 Shenzhen, Guangdong, China

Test Requirement: FCC Part15 C Section 15.247 (b)(3) KDB558074 D01 15.247 Meas Guidance v05r02 Test Method: Limit: 30dBm Power sensor and Spectrum analyzer Test setup: E.U.T Non-Conducted Table Ground Reference Plane **Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Pass Test results: 52% Press.: Test environment: Temp.: 25 °C Humid.: 1012mbar

6.2. Conducted Peak Output Power

Measurement Data

		Peak Outp				
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(dBm)	Result
Lowest	16.91	15.74	15.82	16.27		
Middle	21.28	21.20	21.36	20.94	30.00	Pass
Highest	22.77	23.15	23.19	20.85		


6.3. Channel Bandwidth

Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (a)(2)						
Test Method:	KDB55807	4 D01 15.247	' Meas Guida	ance v05r02				
Limit:	>500KHz							
Test setup:	Sp							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

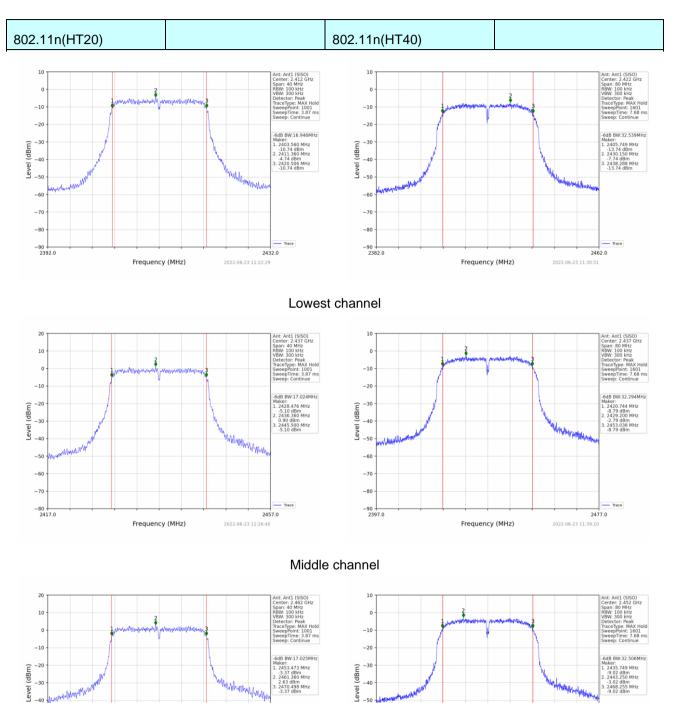
Measurement Data

		Channel E				
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(KHz)	Result
Lowest	9.588	16.389	16.946	32.539		
Middle	9.583	16.390	17.024	32.294	>500	Pass
Highest	9.534	16.390	17.025	32.506		

Highest channel

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200
 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
 Shenzhen, Guangdong, China


-40

-50

-60 -70

-80 2442.0

Report No.: HTT202206345F03

-50

-60 -70

-80

2482.0

2022-06-23 11:28:18

Frequency (MHz)

Trace

2492.0

2022-06-23 11:41:01

Frequency (MHz)

6.4. Power Spectral Density

Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (e)						
Test Method:	KDB55807	74 D01 15.24	47 Meas Guid	ance v05r02				
Limit:	8dBm/3kH	z						
Test setup:	S	Nor	n-Conducted Tab					
Test Instruments:	Refer to se	Refer to section 6.0 for details						
Test mode:	Refer to se	Refer to section 5.2 for details						
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

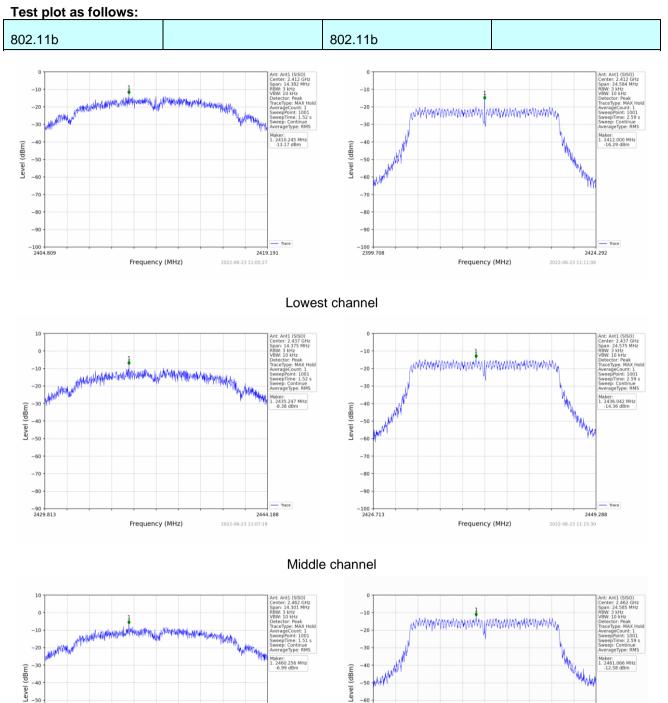
Measurement Data

		Power Spectra	Limit			
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	(dBm/3kHz)	Result
Lowest	-13.17	-16.29	-16.52	-16.28		
Middle	-8.38	-14.36	-13.93	-15.00	8.00	Pass
Highest	-6.99	-12.58	-12.70	-15.40		

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle

-40

-60


-70

-80

-90 -2454.85

Leve -50

Report No.: HTT202206345F03

2469.151 2022-06-23 11:08:54

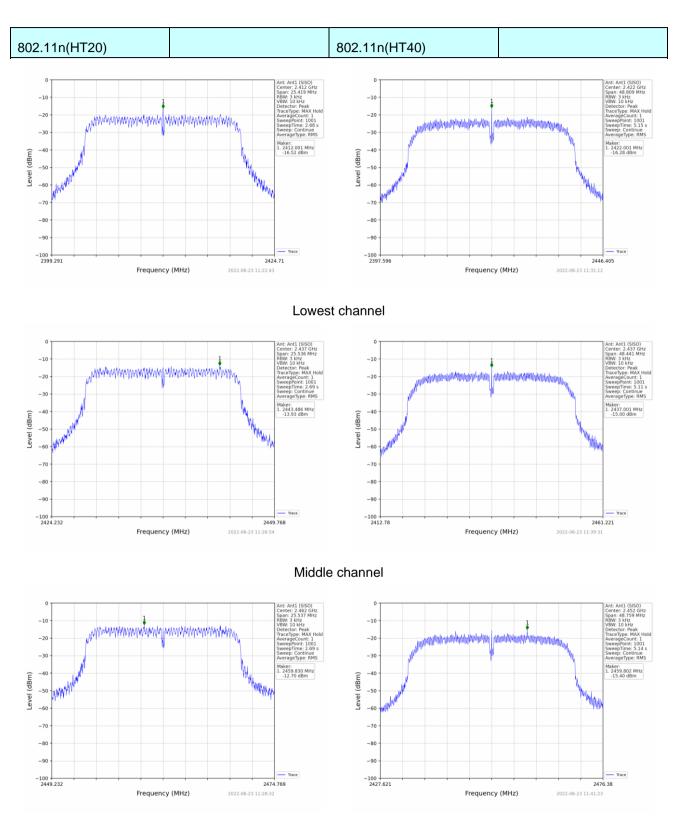
Frequency (MHz)

-50

-60

-70

-80


-90

2474.293

2022-06-23 11:17:16

Frequency (MHz)

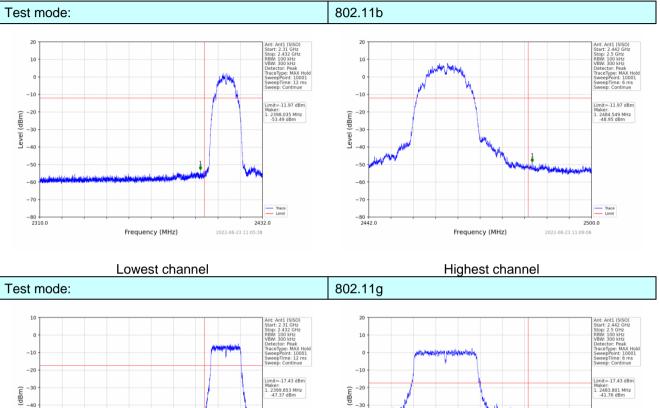
Highest channel

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200
 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
 Shenzhen, Guangdong, China

6.5. Band Edge

6.5.1. Conducted Emission Method


Test Requirement:	FCC Part1	5 C Section	15.247 (d)					
Test Method:	KDB55807	KDB558074 D01 15.247 Meas Guidance v05r02						
Limit:	spectrum in is produced the 100 kH	ntentional ra d by the inte lz bandwidtl d power, b	adiator is ope ntional radiat n within the b	rating, the ra or shall be at oand that con	dio frequenc least 20 dB tains the hig	the spread by power that below that in ghest level of r a radiated		
Test setup:	Spec			J.T				
Test Instruments:	Refer to se	ction 6.0 for	details					
Test mode:	Refer to se	ction 5.2 for	details					
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

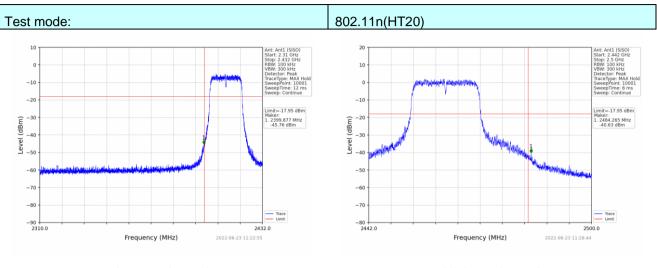
Level (

Report No.: HTT202206345F03

Test plot as follows:

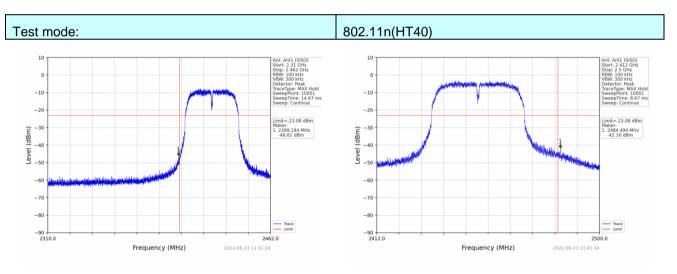
-30 Level (-5 -6 -54 -70 -60 -70 -81 Trace Limit -80 2432.0 Frequency (MHz) 2022-06-23 11:11:18 Frequency (MHz)

Lowest channel


Highest channel

Trace Limit

2500.0


2022-06-23 11:17:28

Lowest channel

Highest channel

Lowest channel

Highest channel

6.5.2. Radiated E	Emission Method								
Test Requirement:	FCC Part15 0	C Section 1	5.209 a	and 15.20	05				
Test Method:	ANSI C63.10	ANSI C63.10: 2013							
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.								
Test site:	Measuremen	t Distance:	3m						
Receiver setup:	Frequency	Deteo	ctor	RBW	/ VBW	/ Re	emark		
	Above 1GH	Peak 1MHz 3MHz					k Value		
		2 Pea	ak 📃	1MHz	z 10Hz	z Avera	ge Value		
Limit:	Frec	quency	l		uV/m @3m		emark		
	Abov	e 1GHz			4.00		ge Value		
Test setup:				1	4.00	Pea	k Value		
	<pre></pre>								
	Receiver Preamputter 1. The EUT was placed on the top of a rotating table 1.5 meters above the								
Test Procedure:	 ground at determine 2. The EUT vantenna, vanten v	a 3 meter c the position was set 3 m which was n na height is determine t and vertica hent. suspected e he antenna ta table was reading. eceiver syst Bandwidth v ssion level o fied, then te d be reporte gin would bo	amber. of the eters a nounter varied he max l polari missio was tu s turner em wa with Ma f the E sting c ed. Oth e re-tes	The tab highest away from d on the from on kimum va zations o n, the EL ined to h d from 0 s set to F aximum H UT in pe ould be s erwise th sted one	ole was rota radiation. In the interfe- top of a var- ne meter to alue of the for the anten JT was arra- leights from degrees to Peak Detec Hold Mode. eak mode w stopped an- ne emission by one usin	ted 360 deg erence-recei riable-height four meters field strength na are set to anged to its v 1 meter to 4 360 degree	rees to ving antenna above the b. Both o make the worst case 4 meters s to find the and rer than the alues of the ot have asi-peak or		
Test Instruments:	Refer to sect								
Test mode:	Refer to sect	ion 5.2 for c	letails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humi	d.: 5	52%	Press.:	1012mbar		

6.5.2. Radiated Emission Method

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

Measurement Data

Remark: During the test, pre-scan the 802.11b/802.11g/802.11n (H20)/802.11n (H40) modulation, and found the 802.11b modulation which it is worse case.

	Test mode:	802.11b	Test channel:	Lowest
--	------------	---------	---------------	--------

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	60.25	26.20	5.72	33.30	58.87	74.00	-15.13	peak
2390	46.31	26.20	5.72	33.30	44.93	54.00	-9.07	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	61.29	26.20	5.72	33.30	59.91	74.00	-14.09	peak
2390	44.98	26.20	5.72	33.30	43.60	54.00	-10.40	AVG

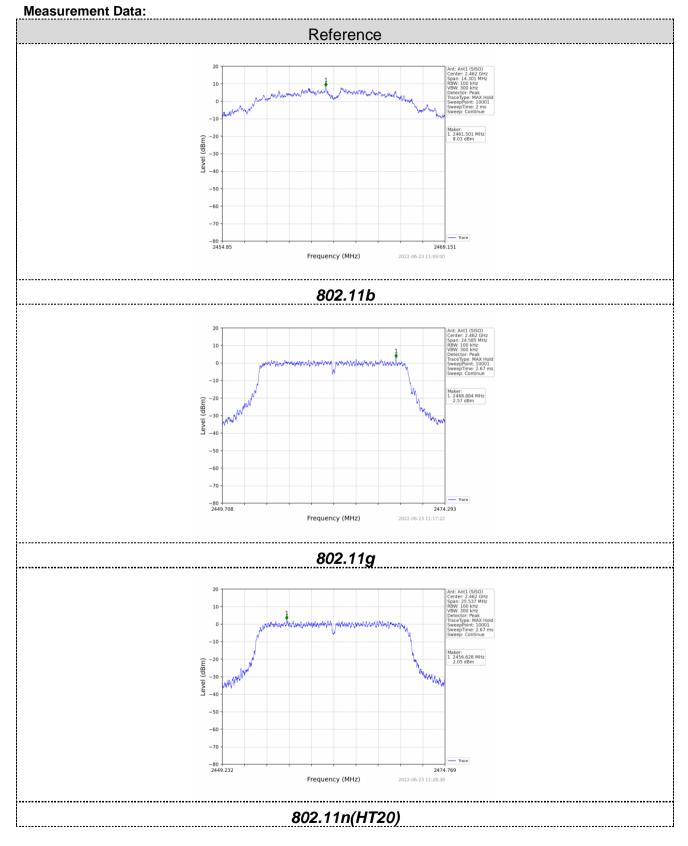
Test mode:	802.11b	Test channel:	Highest

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.39	28.60	6.97	32.70	59.26	74.00	-14.74	peak
2483.5	44.19	28.60	6.97	32.70	47.06	54.00	-6.94	AVG

Vertical:

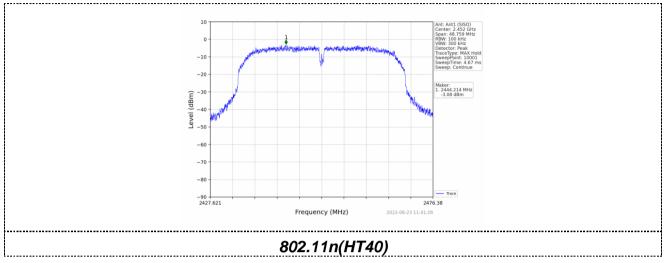
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	58.16	28.60	6.97	32.70	61.03	74.00	-12.97	peak
2483.5	44.30	28.60	6.97	32.70	47.17	54.00	-6.83	AVG

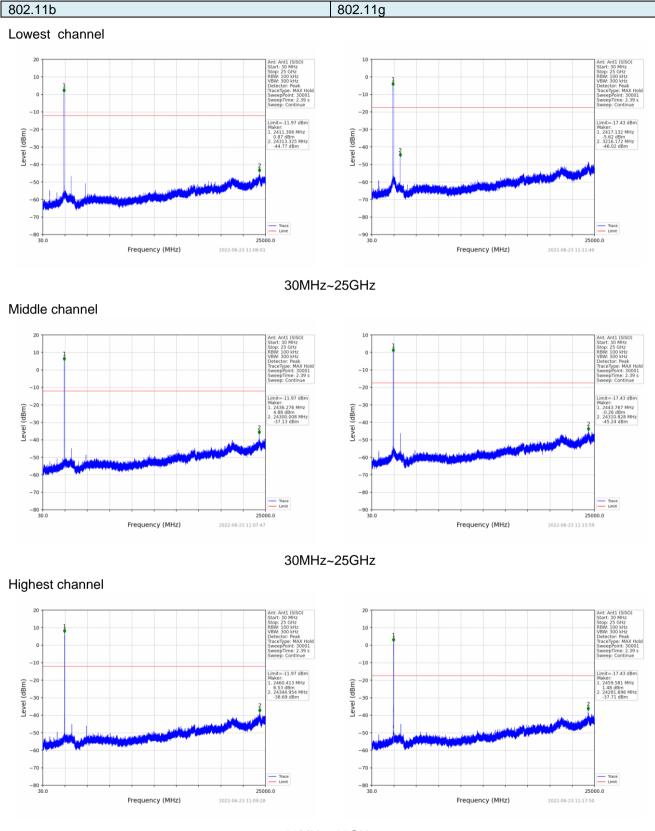


6.6. Spurious Emission

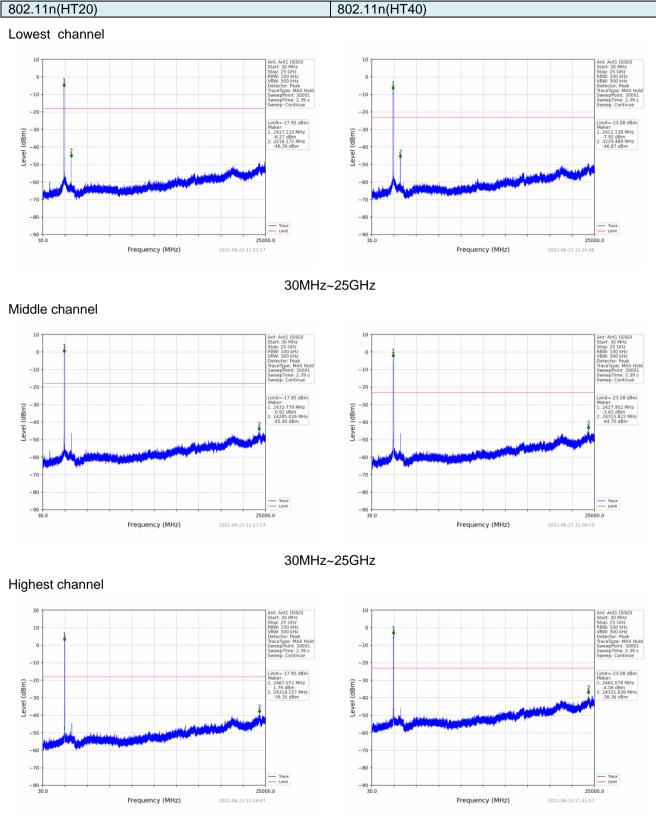
6.6.1. Conducted Emission Method

Test Requirement:	FCC Part18	5 C Section 1	5.247 (d)							
Test Method:	KDB558074	4 D01 15.247	7 Meas Guida	nce v05r02						
Limit:	spectrum ir is produced the 100 kH the desired	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Sp	Non-								
Test Instruments:	Refer to se	ction 6.0 for o	details							
Test mode:	Refer to se	ction 5.2 for (details							
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				




 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200
 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
 Shenzhen, Guangdong, China



30MHz~25GHz

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200
 Fax: 0755-23595201

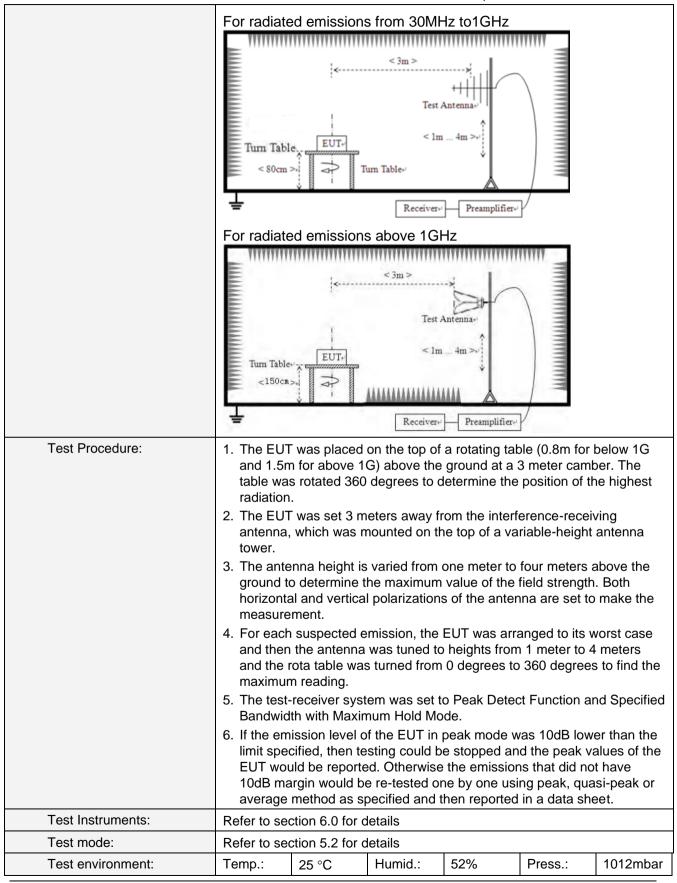
 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
 Shenzhen, Guangdong, China

30MHz~25GHz

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,

 Shenzhen, Guangdong, China


 Page 28 of 37

6.6.2. Radiated E	mission Method							
Test Requirement:	FCC Part15 C Section	on 15	5.209					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency		Detector	RB۱	N	VBW	'	Value
	9KHz-150KHz	Qı	lasi-peak	200H	Ηz	600Hz	z	Quasi-peak
	150KHz-30MHz	Qu	uasi-peak	9K⊢	lz	30KH:	z	Quasi-peak
	30MHz-1GHz	Qu	uasi-peak	120K	Hz	300KH	łz	Quasi-peak
	Above 1GHz		Peak	1M⊦	lz	3MHz	Z	Peak
	710070 10112		Peak	1M⊦	łz	10Hz	-	Average
Limit:	Frequency		Limit (u∖	//m)	V	alue	Ν	leasurement Distance
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP		300m
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP		30m
	1.705MHz-30MH	Z	30	30		QP		30m
	30MHz-88MHz		100			QP		
	88MHz-216MHz		150			QP		
	216MHz-960MH	Z	200			QP		3m
	960MHz-1GHz		500		QP			
	Above 1GHz		500		Average			
			5000		P	Peak		
Test setup:	For radiated emiss	ions	from 9kH	z to 30	MH	Z		_
	Tum Table		< 3m > Test A um Table-	ntenna lm Receiver)			

6.6.2. Radiated Emission Method

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Report No.: HTT202206345F03

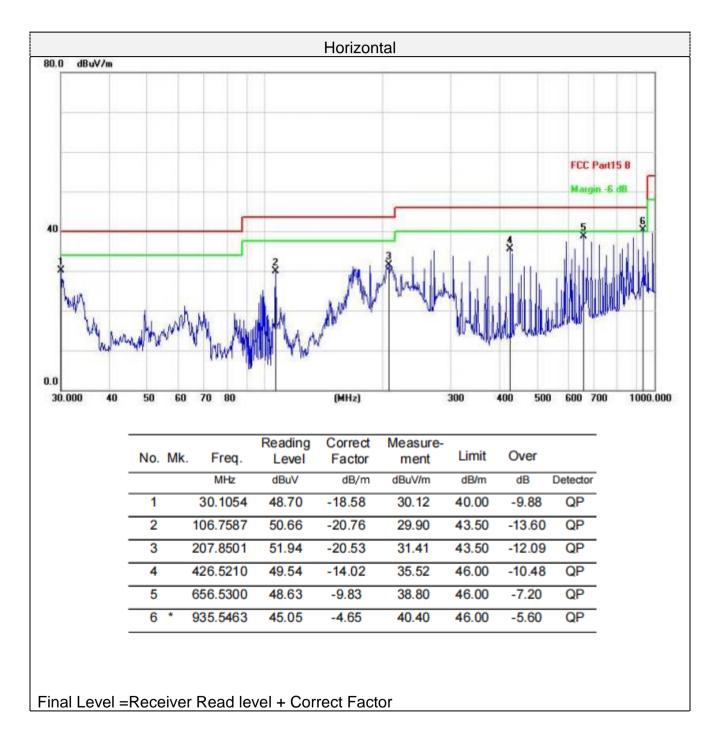
Test voltage:	AC 120V, 60Hz
Test results:	Pass

Remarks:

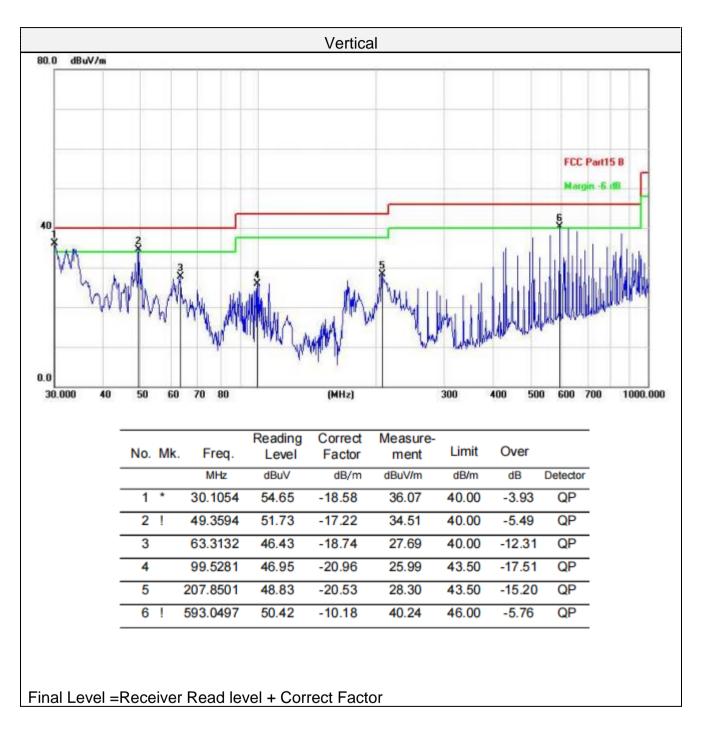
1. Only the worst case Main Antenna test data.

2.Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:


■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.



Below 1GHz

Pre-scan all test modes, found worst case at 802.11b 2437MHz, and so only show the test result of 802.11b 2437MHz

Above 1-25GHz

Note: During the test, pre-scan the 802.11b/802.11g/802.11n (H20)/802.11n (H40) modulation, and found the 802.11b modulation which it is worse case.

802.11b:Lowest

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
	Ť							Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	51.86	31.40	8.18	31.50	59.94	74.00	-14.06	peak
4824	37.45	31.40	8.18	31.50	45.53	54.00	-8.47	AVG
7236	46.18	35.80	10.83	31.40	61.41	74.00	-12.59	peak
7236	29.07	35.80	10.83	31.40	44.30	54.00	-9.70	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

VOI								
		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	52.67	31.40	8.18	31.50	60.75	74.00	-13.25	peak
4824	38.08	31.40	8.18	31.50	46.16	54.00	-7.84	AVG
7236	44.69	35.80	10.83	31.40	59.92	74.00	-14.08	peak
7236	28.51	35.80	10.83	31.40	43.74	54.00	-10.26	AVG
			1					

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

802.11b:Middle

Horizontal:

		Antenna		Preamp				1
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	51.39	31.40	9.17	32.10	59.86	74.00	-14.14	peak
4874	38.45	31.40	9.17	32.10	46.92	54.00	-7.08	AVG
7311	45.16	35.80	10.83	31.40	60.39	74.00	-13.61	peak
7311	29.47	35.80	10.83	31.40	44.70	54.00	-9.30	AVG
Remark: Fact	or = Antenna Fact	or + Cable Los	s – Pre-amplifier					

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	52.66	31.40	9.17	32.10	61.13	74.00	-12.87	peak
4874	37.15	31.40	9.17	32.10	45.62	54.00	-8.38	AVG
7311	44.96	35.80	10.83	31.40	60.19	74.00	-13.81	peak
7311	27.89	35.80	10.83	31.40	43.12	54.00	-10.88	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

802.11b:Highest

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	49.27	31.40	9.17	32.10	57.74	74	-16.26	peak
4924	36.15	31.40	9.17	32.10	44.62	54	-9.38	AVG
7386	46.28	35.80	10.83	31.40	61.51	74	-12.49	peak
7386	30.21	35.80	10.83	31.40	45.44	54	-8.56	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	52.39	31.40	9.17	32.10	60.86	74	-13.14	peak
4924	36.14	31.40	9.17	32.10	44.61	54	-9.39	AVG
7386	45.98	35.80	10.83	31.40	61.21	74	-12.79	peak
7386	27.96	35.80	10.83	31.40	43.19	54	-10.81	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the **appendix I** for details.

8. EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----