

TEST REPORT

Applicant:	Zhejiang Shunshu Lighting CO.,LTD
Address of Applicant:	4th Floor North Building, 1732 Yanhua Industrial Park, Shangyu District, Shaoxing City, Zhejiang Province, China
Manufacturer/Factory:	Zhejiang Shunshu Lighting CO.,LTD
Address of Manufacturer/Factory:	4th Floor North Building, 1732 Yanhua Industrial Park, Shangyu District, Shaoxing City, Zhejiang Province, China
Equipment Under Test (E	EUT)
Product Name:	LED module
Model No.:	MODEL BEACON
FCC ID:	2A7EM-A19BEACON
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	June 27, 2022
Date of Test:	June 28, 2022-August 04, 2022
Date of report issued:	August 04, 2022
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	August 04, 2022	Original

Prepared By:

ger. Cher

Date:

August 04, 2022

Project Engineer

Check By:

opinson (m) Reviewer

Date:

August 04, 2022

Report No.: GTS202206000273F01

3 Contents

		Pa	ige
1	COV	ER PAGE	1
2	VER	SION	. 2
3	CON	ITENTS	. 3
4	TES	T SUMMARY	4
	TEO		
5	GEN	ERAL INFORMATION	. 5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	. 7
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6	TEST FACILITY	
	5.7	TEST LOCATION	
	5.8	ADDITIONAL INSTRUCTIONS	.7
6	TES	T INSTRUMENTS LIST	. 8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	Power Spectral Density	
	7.6	SPURIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS	
	7.6.1		
8	TES	Т SETUP PHOTO	33
•	-UT	CONSTRUCTIONAL DETAILS	
9	EUI	CONSTRUCTIONAL DETAILS	33

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Frequency Range	Measurement Uncertainty	Notes
9kHz-30MHz	9kHz-30MHz 3.1dB	
30MHz-200MHz	30MHz-200MHz 3.8039dB	
200MHz-1GHz	200MHz-1GHz 3.9679dB	
1GHz-18GHz 4.29dB		(1)
18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted 0.15MHz ~ 30MHz 3.44dB		(1)
	9kHz-30MHz 30MHz-200MHz 200MHz-1GHz 1GHz-18GHz 18GHz-40GHz	9kHz-30MHz 3.1dB 30MHz-200MHz 3.8039dB 200MHz-1GHz 3.9679dB 1GHz-18GHz 4.29dB 18GHz-40GHz 3.30dB

5 General Information

5.1 General Description of EUT

Product Name:	LED module
Model No.:	MODEL BEACON
Test sample(s) ID:	GTS202206000273-1
Sample(s) Status:	Engineer sample
Serial No.:	N/A
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	1.1dBi(declare by applicant)
Power Supply:	DC 3.3V

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

5.3 Description of Support Units

Manufacturer Description		Model	Serial Number	
Lenovo	Notebook PC	E40	N/A	
HP	Notebook PC	N/A	N/A	

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480

Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Test software provided by manufacturer
Power level setup	Default

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 02, 2020	July 01, 2025		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 22, 2022	April 21, 2023		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 21, 2022	March 20, 2023		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June 12, 2022	June 11, 2023		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 23, 2022	June 22, 2023		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	April 22, 2022	April 21, 2023		
9	Coaxial Cable	GTS	N/A	GTS211	April 22, 2022	April 21, 2023		
10	Coaxial cable	GTS	N/A	GTS210	April 22, 2022	April 21, 2023		
11	Coaxial Cable	GTS	N/A	GTS212	April 22, 2022	April 21, 2023		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	April 22, 2022	April 21, 2023		
13	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 23, 2022	June 22, 2023		
14	Band filter	Amindeon	82346	GTS219	June 23, 2022	June 22, 2023		
15	Power Meter	Anritsu	ML2495A	GTS540	June 23, 2022	June 22, 2023		
16	Power Sensor	Anritsu	MA2411B	GTS541	June 23, 2022	June 22, 2023		
17	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 22, 2022	April 21, 2023		
18	Splitter	Agilent	11636B	GTS237	June 23, 2022	June 22, 2023		
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 30, 2021	Nov. 29, 2022		
20	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 22, 2022	April 21, 2023		
21	Breitband hornantenna	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17, 2021	Oct. 16, 2022		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17, 2021	Oct. 16, 2022		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17, 2021	Oct. 16, 2022		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June 23, 2022	June 22, 2023		
25	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 22, 2022	April 21, 2023		

Con	Conducted Emission							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 14, 2022	May 13, 2025		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 24, 2022	April 23, 2023		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 23, 2022	June 22, 2023		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	April 22, 2022	April 21, 2023		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	JINCHUANG	GSP-8A	GTS639	April 28, 2022	April 27, 2023		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 15, 2022	April 14, 2023		
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 22, 2022	April 21, 2023		
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 22, 2022	April 21, 2023		

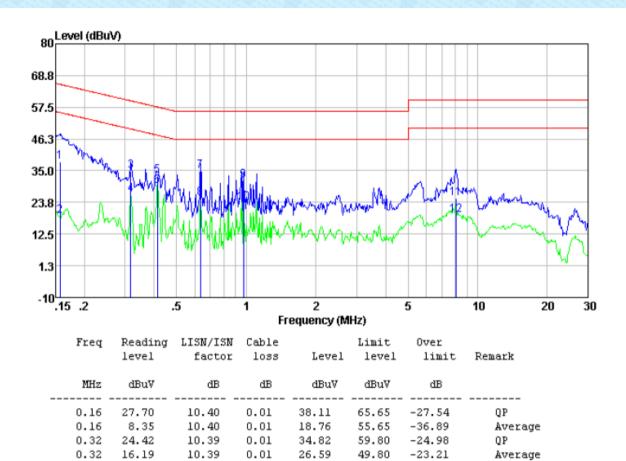
RF C	RF Conducted Test:									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 22, 2022	April 21, 2023				
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 22, 2022	April 21, 2023				
3	Spectrum Analyzer	Agilent	E4440A	GTS536	April 22, 2022	April 21, 2023				
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 22, 2022	April 21, 2023				
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 22, 2022	April 21, 2023				
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 22, 2022	April 21, 2023				
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 22, 2022	April 21, 2023				
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 22, 2022	April 21, 2023				

Ger	neral used equipment:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 25, 2022	April 24, 2023
2	Barometer	KUMAO	SF132	GTS647	July 26, 2022	July 25, 2023

7 Test results and Measurement Data

7.1 Antenna requirement

Standard	requirement:	FCC Part15 C Section 15.203 /247(c)						
15.203 req	uirement:							
responsible antenna th so that a b	e party shall be us at uses a unique	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited.						
15.247(c)	(1)(i) requiremen	t:						
operations maximum	may employ trans	2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the na exceeds 6dBi.						
E.U.T Ante	enna:							
The anten	na is PCB antenn	a, reference to the appendix II for details						


Report No.: GTS202206000273F01

7.2 Conducted Emissions	5						
Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto					
Limit:		Limit	(dBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30 * Decreases with the logarithm	60	50				
Test setup:	Reference Plane						
Test procedure:	LISN 40cm 80cm AUX equipment EU.T Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impediate 2. The peripheral devices are LISN that provides a 50ohm termination. (Please refer to photographs). 3. Both sides of A.C. line are o interference. In order to find	n network (L.I.S.N.). T edance for the measu also connected to the n/50uH coupling impe o the block diagram c checked for maximum	main power through a This provides a tring equipment. e main power through a edance with 500hm of the test setup and n conducted				
Test Instruments:	positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details	all of the interface ca 2013 on conducted m	ables must be changed				
Test mode:	Refer to section 5.2 for details						
Test environment:	Temp.: 25 °C Hum	nid.: 52%	Press.: 1012mbar				
Test voltage:	AC 120V						
Test results:	Pass						
	1 400						

Measurement data:

Pre-scan all test modes, found worst case at 2480MHz, and so only show the test result of 2480MHz Line:

33.10

29.46

34.97

25.20

31.55

23.51

25.27

19.28

57.59

47.59

56.00

46.00

56.00

46.00

60.00

50.00

-24.49

-18.13

-21.03

-20.80

-24.45

-22.49

-34.73

-30.72

QP

QP

OP

QP

Average

Average

Average

Average

22.74

19.10

24.67

14.90

21.32

13.28

14.97

8.98

0.41

0.41

0.63

0.63

0.97

0.97

8.06

8.06

10.35

10.35

10.28

10.28

10.20

10.20

10.20

10.20

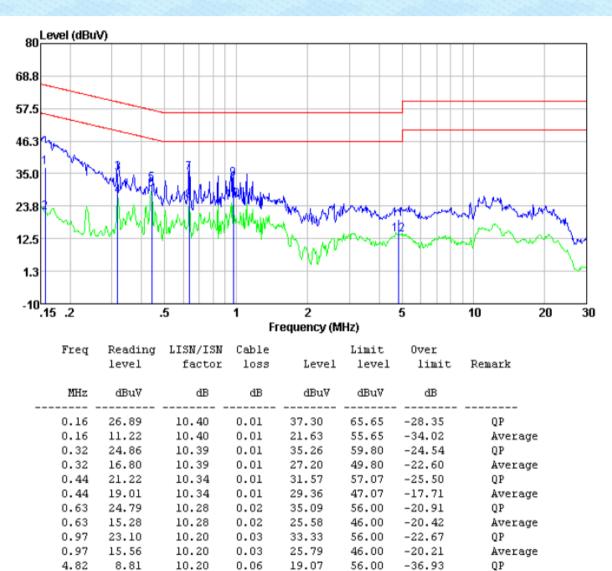
0.01

0.01

0.02

0.02

0.03


0.03

0.10

0.10

Neutral:

Report No.: GTS202206000273F01

Notes:

4.82

3.57

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

0.06

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

13.83

46.00

-32.17

3. Final Level =Receiver Read level + LISN Factor + Cable Loss

10.20

Average

Report No.: GTS202206000273F01

7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02				
Limit:	>500KHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

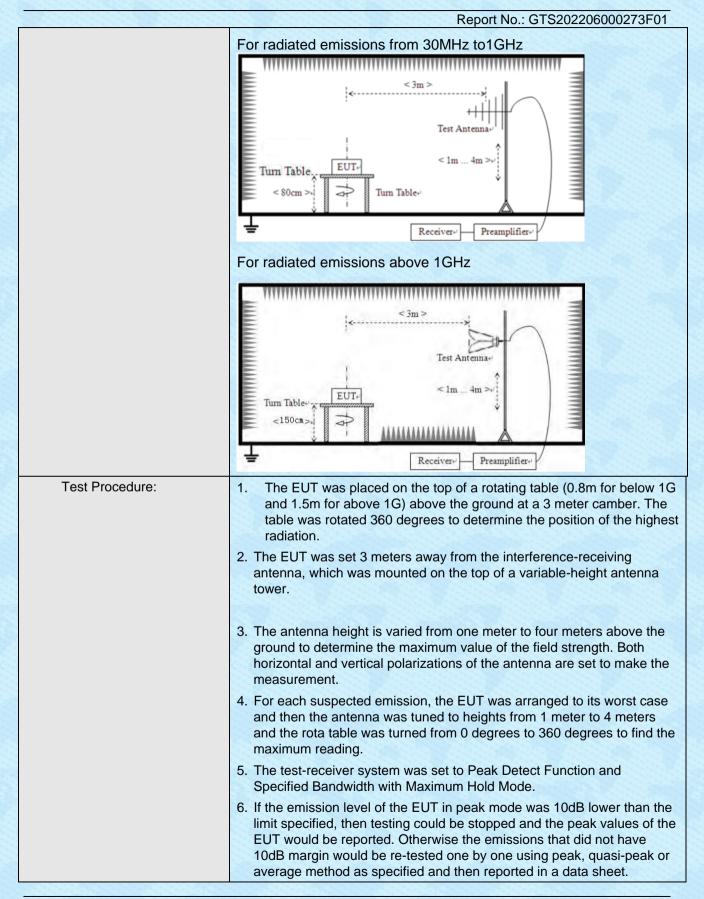
7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	8dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.6 Spurious Emission in Non-restricted & restricted Bands

Test Requirement: FCC Part15 C Section 15.247 (d) Test Method: ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer E.U.T Non-Conducted Table **Ground Reference Plane Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass

7.6.1 Conducted Emission Method


GTS

7.6.2 Radiated Emission Metr	lou	1.20						
Test Requirement:	FCC Part15 C Section	on 15	.209					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz					-		
Test site:	Measurement Distar	nce: 3	m					
Receiver setup:	Frequency	D	etector	RBV	N	VBW	Value	
	9KHz-150KHz	Qu	asi-peak	200H	Ηz	600Hz	Quasi-peak	
	150KHz-30MHz	Qu	asi-peak	9KH	lz	30KHz	Quasi-peak	
	30MHz-1GHz	Qu	asi-peak	120K	Hz	300KHz	Quasi-peak	
	Above 1GHz		Peak	1M⊦	łz	3MHz	Peak	
	Above TOTIZ		Peak	1M⊢	łz	10Hz	Average	
Limit:	Frequency		Limit (u\	′/m)	١	/alue	Measurement Distance	
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)	PK	/QP/AV	300m	
	0.490MHz-1.705M	Hz	24000/F(KHz)	QP		30m	
	1.705MHz-30MH	z	30			QP	30m	
	30MHz-88MHz		100			QP		
	88MHz-216MHz	2	150			QP		
	216MHz-960MH		200			QP	3m	
	960MHz-1GHz		500			QP		
	Above 1GHz	50				/erage		
			5000			Peak		
Test setup:	For radiated emiss		< 3m >	z to 30)	z		

7.6.2 Radiated Emission Method

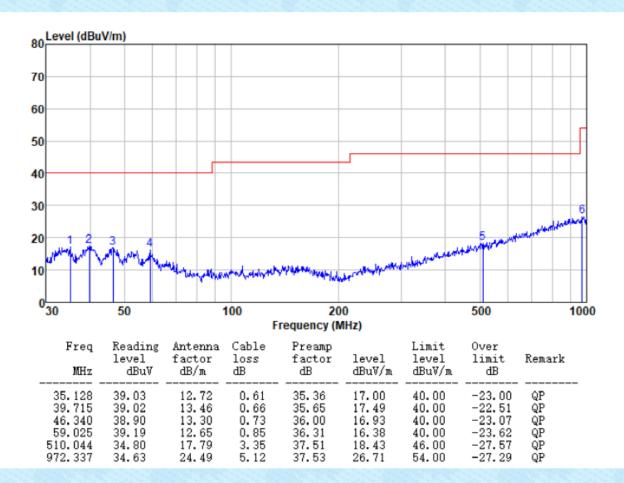
Global United Technology Services Co., Ltd. No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

			Service and	Report No.: (GTS2022060	00273F01
Test Instruments:	Refer to see	ction 6.0 for c	letails			
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AV 120V					
Test results:	Pass					

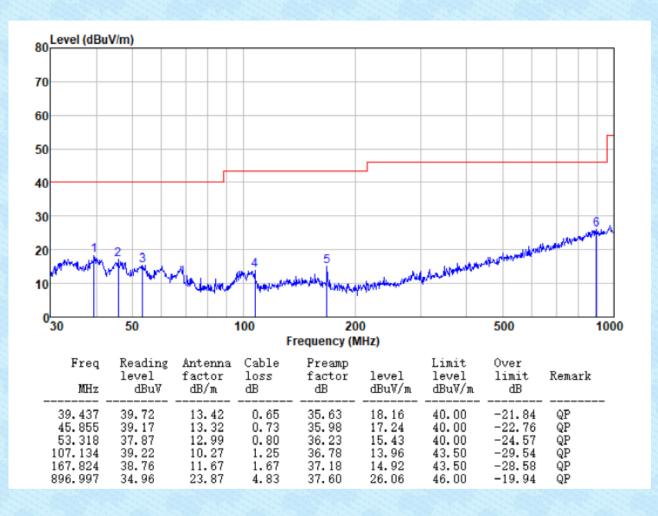
Measurement data:

Remark:

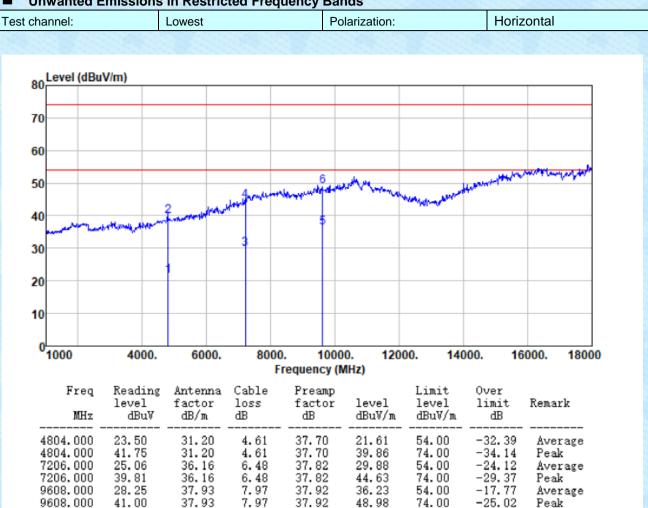
Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

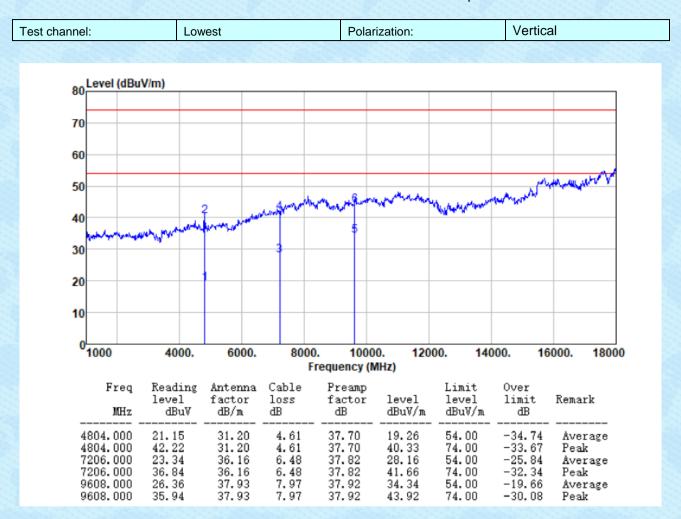

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


Below 1GHz

Pre-scan all test modes, found worst case at 2480MHz, and so only show the test result of 2480MHz **Horizontal:**

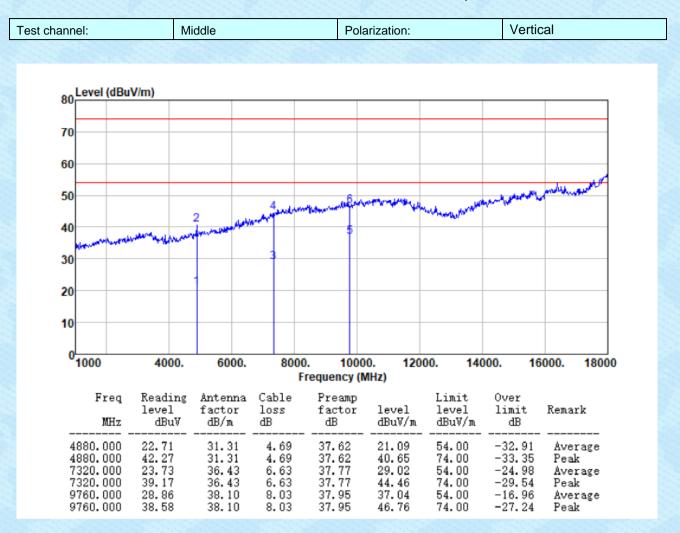

Vertical:


Report No.: GTS202206000273F01

Above 1GHz

Unwanted Emissions in Restricted Frequency Bands

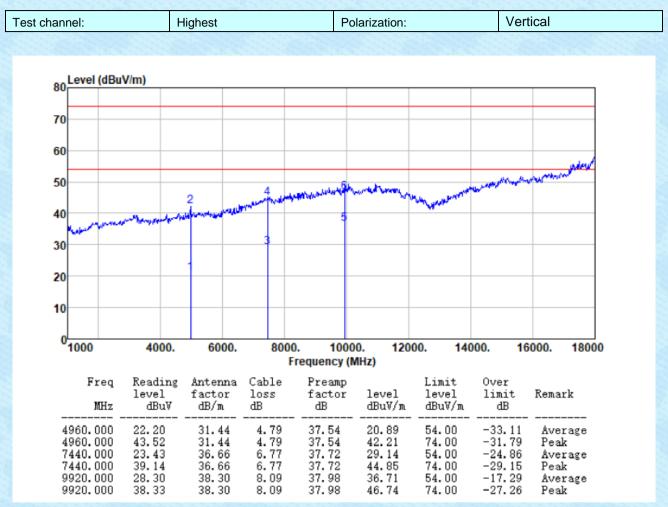
Report No.: GTS202206000273F01



Report No.: GTS202206000273F01

channel:		Middle		P	olarization:		Hor	izontal
Level (dBu)	V/m)							
0								
0								
io			4	La mundiche	mout		we with marked	and i dente that
10 when an av	an a	2maples of Alex	Alter and a second s	5		War werden		
0			-1					
20		1						
0								
01000	4000.	6000.	8000 F). 1000 requency (N		00. 140	000. 16	6000. 1800
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBu∛/m	Limit level dBuV/m	Over limit dB	Remark
	20.55	31.31	4.69	37.62	18.93	54.00	-35.07	Average

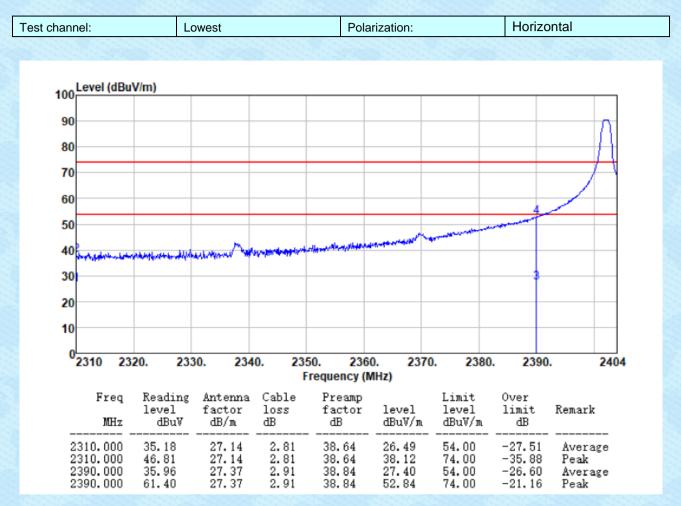
Report No.: GTS202206000273F01



Report No.: GTS202206000273F01

Highest	Polarization:	Horizontal
		1 setter and been the
a with row with	reparent and when the way	A AND WALLAND AND AND AND AND AND AND AND AND AND
charles and have a state of the	5	
3		
00. 6000. 8000.	10000. 12000. 14	1000. 16000. 18000
Fre	equency (MHz)	
l factor loss	Preamp Limit factor level level	Over limit Remark
1∛ dB/m dB	dB dBu∛/m dBu∛/m 	dB
	37.54 20.67 54.00 37.54 37.88 74.00	-33.33 Average -36.12 Peak
36.66 6.77	37.72 30.56 54.00	-23.44 Average
3 36.66 6.77	37.72 44.49 74.00	-29.51 Peak
	00. 6000. 8000. Free ing Antenna Cable factor loss iV dB/m dB	00. 6000. 8000. 10000. 12000. 14 1 1 1 1 1 1 1 00. 6000. 8000. 10000. 12000. 14 1

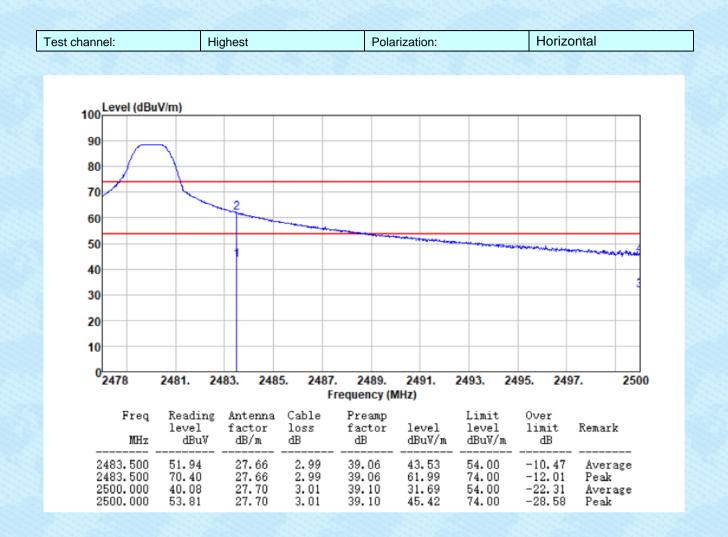
Report No.: GTS202206000273F01


Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Unwanted Emissions in Non-restricted Frequency Bands



Report No.: GTS202206000273F01

est channel:		Lowest		Polari	zation:		Vertical	
100 Level (dE	BuV/m)							
90								
80								
								Д
70								
60							4	
50							Sand and the second second	
40	and man and references on	Lawrender and	أمغ بأحدر ومعاددتهم	to cast wanted / Burger	and the second	Anna and a second		
30								
20								
10								
⁰ 2310 2	2320. 23	330. 234		50. 236). 2380	. 2390	. 2404
				Frequency (N	1Hz)			
Freq	level	factor	Cable loss	Preamp factor	level	Limit level	Over limit	Remark
MH2	dBu∛	dB/m 	dB 	dB 	dBu∛/m 	dBu∛/m 	dB 	
2310.000 2310.000		27.14 27.14	2.81 2.81	38.64 38.64	24.99 37.55	54.00 74.00	-29.01 -36.45	Average Peak
2390.000	35.76	27.37	2.91	38.84	27.20	54.00	-26.80	Average
2390.000	61.48	27.37	2.91	38.84	52.92	74.00	-21.08	Peak

Report No.: GTS202206000273F01

est channel:	Highest			Polarization:			Vertical	
100 Level (dBuV/m)								
90								
80								
70	2							
60								
50								
40								
30								
20								
10								
0 <mark>2478 2481</mark>	. 2483. 248		2489. equency (N		2493. 24	95. 249	7. 2500	
lev	ding Antenna el factor Bu∛ dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark	
2483.500 49. 2483.500 71. 2500.000 42. 2500.000 55.	81 27.66 07 27.70	2.99 2.99 3.01 3.01	39.06 39.06 39.10 39.10 39.10	40.67 63.40 33.68 47.32	54.00 74.00 54.00 74.00 74.00	-13.33 -10.60 -20.32 -26.68	Average Peak Average Peak	

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----