

RADIO TEST REPORT FCC ID: 2A7DX-PAD10

Product: Tablet Trade Mark: OSCAL, Blackview Model No.: Pad 10 Family Model: Tab 7 Pro Report No.: STR221010003002E Issue Date: Oct 27, 2022

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HONG KONG China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

Report No.: STR221010003002E

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	5
3	FACILITIES AND ACCREDITATIONS	
	3.1 FACILITIES	
	3.2 LABORATORY ACCREDITATIONS AND LISTINGS	
	3.3 MEASUREMENT UNCERTAINTY	
	GENERAL DESCRIPTION OF EUT	
4	GENERAL DESCRIPTION OF EUT	
5		
6	SETUP OF EQUIPMENT UNDER TEST	
(6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
(6.2 SUPPORT EQUIPMENT	
(6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS	
7	TEST REQUIREMENTS	14
,	7.1 CONDUCTED EMISSIONS TEST	14
	7.1.1 Applicable Standard	
	7.1.2 Conformance Limit	
	7.1.3 Measuring Instruments	
	7.1.4 Test Configuration	
	7.1.5 Test Procedure	14
	7.1.6 Test Results	
,	7.2 RADIATED SPURIOUS EMISSION	
	7.2.1 Applicable Standard	
	7.2.2 Conformance Limit	
	7.2.3 Measuring Instruments	
	7.2.4 Test Configuration	
	7.2.5 Test Procedure	
,	7.2.6 Test Results	
	7.3 6DB BANDWIDTH	
	7.3.1 Applicable Standard 7.3.2 Conformance Limit	
	7.3.2 Conformance Limit7.3.3 Measuring Instruments	
	7.3.4 Test Setup	
	7.3.5 Test Procedure	
	7.3.6 Test Results	
~	7.4 DUTY CYCLE	
	7.4.1 Applicable Standard	
	7.4.2 Conformance Limit	
	7.4.3 Measuring Instruments	27
	7.4.4 Test Setup	27
	7.4.5 Test Procedure	27
	7.4.6 Test Results	
,	7.5 PEAK OUTPUT POWER	
	7.5.1 Applicable Standard	
	7.5.2 Conformance Limit	
	7.5.3 Measuring Instruments	
	7.5.4 Test Setup	
	7.5.5 Test Procedure	
	7.5.6 Test Results	

Report No.: STR221010003002E

7.6 F	OWER SPECTRAL DENSITY	20
7.6.1	Applicable Standard	
7.6.2	Conformance Limit	
7.6.3	Measuring Instruments	
7.6.4	Test Setup	
7.6.5	Test Procedure	
7.6.6	Test Results	
	CONDUCTED BAND EDGE MEASUREMENT	
7.7.1	Applicable Standard	
7.7.2		
7.7.3	Measuring Instruments	
7.7.4	Test Setup	
7.7.5	Test Procedure	
7.7.6	Test Results	
7.8 \$	PURIOUS RF CONDUCTED EMISSIONS	
7.8.1	Conformance Limit	
7.8.2	Measuring Instruments	
7.8.3	Test Setup	
7.8.4	Test Procedure	
7.8.5	Test Results	. 33
7.9 A	ANTENNA APPLICATION	34
7.9.1	Antenna Requirement	
7.9.2	Result	. 34
8 TEST	RESULTS	25
	MAXIMUM CONDUCTED OUTPUT POWER	
	OCCUPIED CHANNEL BANDWIDTH	
8.1.3	MAXIMUM POWER SPECTRAL DENSITY LEVEL	
8.1.4	BAND EDGE	. 43
8.1.5	CONDUCTED RF SPURIOUS EMISSION	. 45
	MAXIMUM CONDUCTED OUTPUT POWER	
8.1.7		
8.1.8	MAXIMUM POWER SPECTRAL DENSITY LEVEL	
8.1.9		
8.1.10) CONDUCTED RF SPURIOUS EMISSION	. 59

1 TEST RESULT CERTIFICATION

Applicant's name:	DOKE COMMUNICATION (HK) LIMITED
Address:	RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HONG KONG China
Manufacturer's Name:	Shenzhen DOKE Electronic Co.,Ltd
Address:	801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China
Product description	
Product name:	Tablet
Model and/or type reference:	Pad 10
Family Model:	Tab 7 Pro
Test Sample Number	T220926001R003

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	Complied
ANSI C63.10-2013	Complied
KDB 558074 D01 15.247 Meas Guidance v05r02	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	Oct 11. 2022 ~ Oct 26, 2022	
Testing Engineer	:	Allen Liu)	
Authorized Signatory	:	(Alex Li)	

	FCC Part15 (15.247), Subpart	С	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.247 (a)(2)	6dB Bandwidth	PASS	
15.247 (b)	Peak Output Power	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247 (e)	Power Spectral Density	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

The Certificate Registration Number is L5516.
The Certificate Registration Number is 9270A.
CAB identifier:CN0074
Test Firm Registration Number: 463705.
Designation Number: CN1184
The Certificate Registration Number is 4298.01
This laboratory is accredited in accordance with the recognized
International Standard ISO/IEC 17025:2005 General requirements for
the competence of testing and calibration laboratories.
This accreditation demonstrates technical competence for a defined
scope and the operation of a laboratory quality management system
(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Shenzhen NTEK Testing Technology Co., Ltd.
1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Tablet			
Trade Mark	OSCAL, Blackview			
FCC ID	2A7DX-PAD10			
Model No.	Pad 10			
Family Model	Tab 7 Pro			
Model Difference	All models are the same circuit and RF module, except the Memory , software, LOGO			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Antenna Type	PIFA Antenna			
Antenna Gain	1.5dBi			
Power supply	DC 3.8V from battery or DC 5V from Adapter.			
Battery	DC 3.8V, 6580mAh			
Adapter	Model: QZ-01000AA00 Input: 100-240V~50/60Hz 0.3A Output: 5.0V2.0A(10.0W)			
HW Version	P30-T616-V1.0			
SW Version	Pad 10_NEU_P30_V1.0 Tab 7 Pro_NEU_P30_V1.0			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History				
Report No.	Version	Description	Issued Date	
STR221010003002E	Rev.01	Initial issue of report	Oct 27, 2022	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

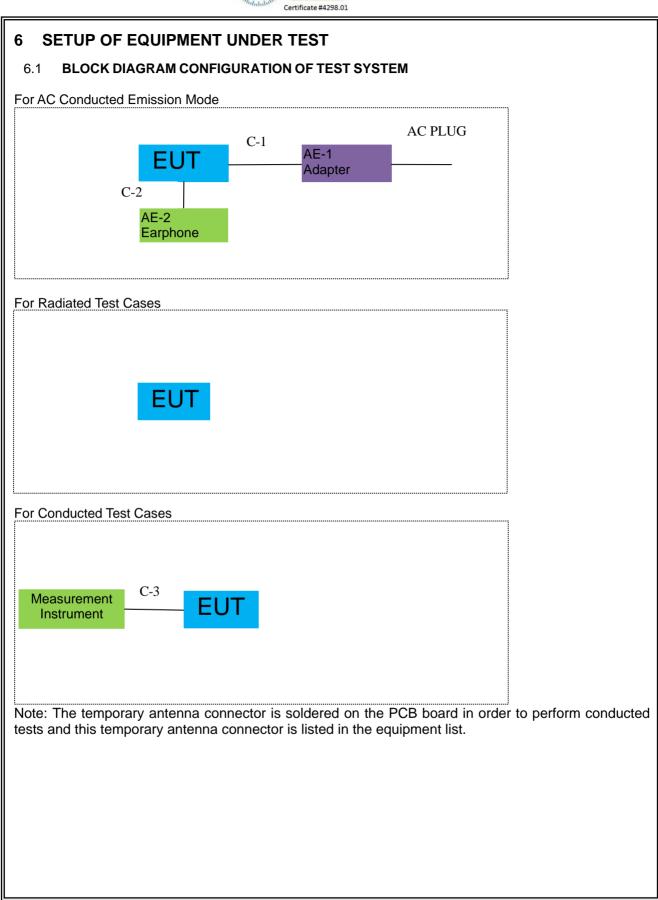
Those data rates (1Mbps/2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+kx2MHz k=0 to 39


The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases		
Test Item	Data Rate/ Modulation	
AC Conducted Emission	Mode 1: normal link mode	
	Mode 1: normal link mode	
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Conducted Test Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)

- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT built-in battery-powered, the battery is fully-charged.

®

NTEK 北测

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	QZ-01000AA00	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06	2023.04.05	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06	2023.04.05	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.11.07	2022.11.06	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2021.11.07	2022.11.06	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

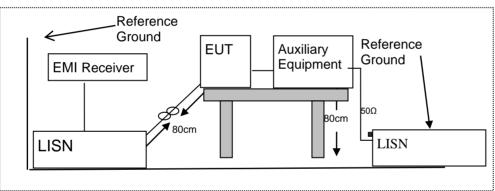
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted	d Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

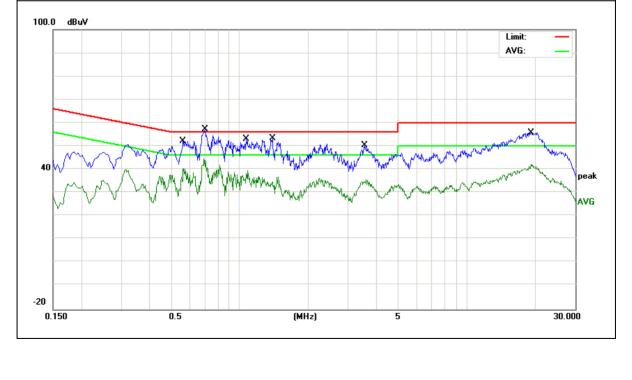
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results

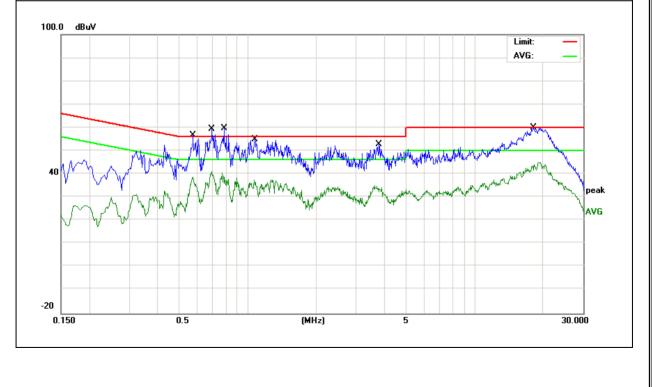

EUT:	Tablet	Model Name :	Pad 10
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.5620	42.45	9.67	52.12	56.00	-3.88	QP
0.5620	32.34	9.67	42.01	46.00	-3.99	AVG
0.7019	43.83	9.67	53.50	56.00	-2.50	QP
0.7019	35.07	9.67	44.74	46.00	-1.26	AVG
1.0660	43.39	9.68	53.07	56.00	-2.93	QP
1.0660	33.44	9.68	43.12	46.00	-2.88	AVG
1.3900	39.33	9.67	49.00	56.00	-7.00	QP
1.3900	27.23	9.67	36.90	46.00	-9.10	AVG
3.5620	40.71	9.74	50.45	56.00	-5.55	QP
3.5620	25.97	9.74	35.71	46.00	-10.29	AVG
19.2139	45.72	10.16	55.88	60.00	-4.12	QP
19.2139	32.19	10.16	42.35	50.00	-7.65	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


Version.1.3

EUT:		Tablet		I	Model Na	me :	Pad 10		
Temperature	:	22° C		I	Relative Humidity:		57%		
Pressure:		1010hPa			Phase :		N		
Test Voltage . DC 5V fro		DC 5V fro AC 120V	om Adapter		Test Mode:		Mode 1		
Frequency	Rea	ding Level	Correct Factor	Measu	ure-ment	Limits	Margin	Demente	
(MHz)	((dBµV)	(dB)	(0	dBµV)	(dBµV)	(dB)	- Remark	
0.5738		40.48	9.67	Ę	50.15	56.00	-5.85	QP	
0.5738		30.91	9.67	4	40.58	46.00	-5.42	AVG	
0.6940		41.33	9.67	Ę	51.00	56.00	-5.00	QP	
0.6940		31.40	9.67	4	41.07	46.00	-4.93	AVG	
0.7860		39.82	9.68	4	49.50	56.00	-6.50	QP	
0.7860		30.76	9.68	4	40.44	46.00	-5.56	AVG	
1.0740		40.54	9.68	Ę	50.22	56.00	-5.78	QP	
1.0740		30.34	9.68	4	40.02	46.00	-5.98	AVG	
3.7900		43.07	9.71	Ę	52.78	56.00	-3.22	QP	
3.7900		25.26	9.71	3	34.97	46.00	-11.03	AVG	
18.0980		43.89	10.11	Ę	54.00	60.00	-6.00	QP	
18.0980		34.96	10.11	4	45.07	50.00	-4.93	AVG	

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

Version.1.3

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 CC 1 art 13.203, restricted bands			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

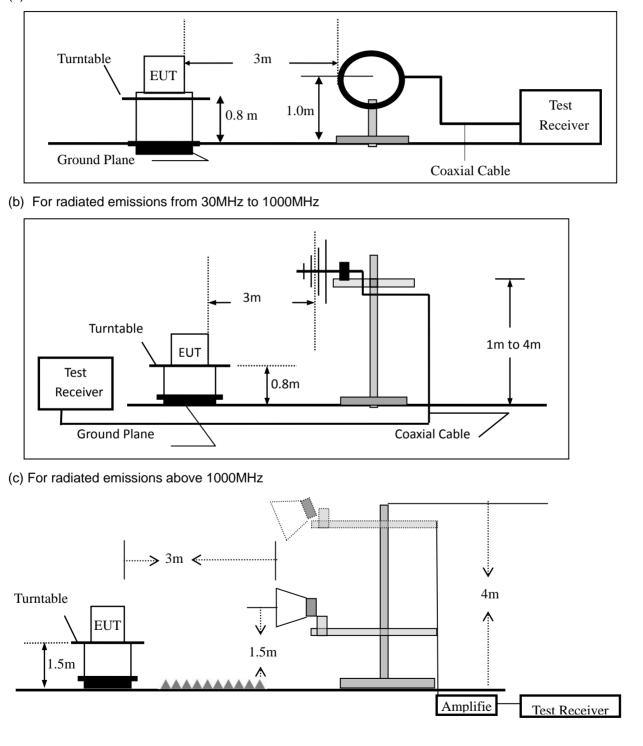
	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average			

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emi	uring the radiated emission test, the Spectrum Analyzer was set with the following configurations:								
Frequency Band (M	Hz) Function	Resolution bandwidth	Video Bandwidth						
30 to 1000	QP	120 kHz	300 kHz						
Alt avec 4000	Peak	1 MHz	1 MHz						
Above 1000	Average	1 MHz	1 MHz						

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

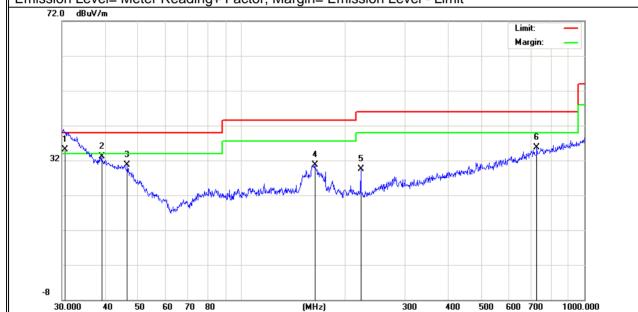
7.2.6 Test Results

	Spurious Emiss	on below 30MHz	(9KHz to 30MHz)
--	----------------	----------------	-----------------

EUT:	Tablet	Model No.:	Pad 10
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3/ Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.



Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: Tablet Model Name : Pad 10 **25** ℃ 55% Temperature: Relative Humidity: 1010hPa Test Mode: Mode 1 Pressure: DC 3.8V Test Voltage :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.6987	9.23	25.87	35.10	40.00	-4.90	QP
V	39.1613	11.91	21.17	33.08	40.00	-6.92	QP
V	46.5030	13.71	16.90	30.61	40.00	-9.39	QP
V	163.7549	12.77	17.95	30.72	43.50	-12.78	QP
V	222.9501	12.24	17.28	29.52	46.00	-16.48	QP
V	726.8052	7.42	28.26	35.68	46.00	-10.32	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Roman
Н	31.0705	5.20	25.80	31.00	40.00	-9.00	QP
Н	37.5478	6.85	22.09	28.94	40.00	-11.06	QP
Н	97.4560	5.95	17.38	23.33	43.50	-20.17	QP
Н	163.7550	9.12	17.95	27.07	43.50	-16.43	QP
H	280.0237	9.69	20.08	29.77	46.00	-16.23	QP
H Remark:	848.0562	7.33	29.85	37.18	46.00	-8.82	QP
72.0				5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

UT:	Table	et	``	Мо	del No.:		Pad 10		
Temperature:	20 °C	2		Rel	ative Hum	idity:	48%		
Test Mode:	Mode	e2/Mode	3/Mode4		st By:	,	Allen Liu		
	mou	02/11/04C		100					
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m) (dB)		
			Low Ch	annel (240	02 MHz)(GFS	K)Above	1G		
4804.338	63.23	5.21	35.59	44.30	59.73	74.00	-14.27	Pk	Vertical
4804.338	42.80	5.21	35.59	44.30	39.30	54.00	-14.70	AV	Vertical
7206.107	60.20	6.48	36.27	44.60	58.35	74.00	-15.65	Pk	Vertical
7206.107	41.76	6.48	36.27	44.60	39.91	54.00	-14.09	AV	Vertical
4804.169	63.18	5.21	35.55	44.30	59.64	74.00	-14.36	Pk	Horizontal
4804.169	42.94	5.21	35.55	44.30	39.40	54.00	-14.60	AV	Horizontal
7206.214	61.88	6.48	36.27	44.52	60.11	74.00	-13.89	Pk	Horizontal
7206.214	41.17	6.48	36.27	44.52	39.40	54.00	-14.60	AV	Horizontal
	Mid Channel (2440 MHz)(GFSK)Above 1G								
4880.473	63.95	5.21	35.66	44.20	60.62	74.00	-13.38	Pk	Vertical
4880.473	43.28	5.21	35.66	44.20	39.95	54.00	-14.05	AV	Vertical
7320.265	65.47	7.10	36.50	44.43	64.64	74.00	-9.36	Pk	Vertical
7320.265	42.59	7.10	36.50	44.43	41.76	54.00	-12.24	AV	Vertical
4880.366	63.56	5.21	35.66	44.20	60.23	74.00	-13.77	Pk	Horizontal
4880.366	42.08	5.21	35.66	44.20	38.75	54.00	-15.25	AV	Horizontal
7320.234	60.52	7.10	36.50	44.43	59.69	74.00	-14.31	Pk	Horizontal
7320.234	43.73	7.10	36.50	44.43	42.90	54.00	-11.10	AV	Horizontal
			High Ch	annel (248	30 MHz)(GFS	K) Above	e 1G		
4960.482	62.75	5.21	35.52	44.21	59.27	74.00	-14.73	Pk	Vertical
4960.482	42.17	5.21	35.52	44.21	38.69	54.00	-15.31	AV	Vertical
7440.131	64.74	7.10	36.53	44.60	63.77	74.00	-10.23	Pk	Vertical
7440.131	49.55	7.10	36.53	44.60	48.58	54.00	-5.42	AV	Vertical
4960.326	64.27	5.21	35.52	44.21	60.79	74.00	-13.21	Pk	Horizontal
4960.326	44.67	5.21	35.52	44.21	41.19	54.00	-12.81	AV	Horizontal
7440.199	64.97	7.10	36.53	44.60	64.00	74.00	-10.00	Pk	Horizontal
7440.199	45.47	7.10	36.53	44.60	44.50	54.00	-9.50	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.


(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

UT:	Tablet			Model No.: Pa			Pad	Pad 10 48%		
Temperature:	20 ℃			Relativ	ve Humidit	y:	48%			
Test Mode:	Mode2/ N	ode2/ Mode4			sy:		Aller	n Liu		
	Meter	Cabla	Antonno	Draamp	Emission					
Frequency	Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ\	V/m)	(dB)	Туре	
				1Mbps	s(GFSK)					
2310.00	63.89	2.97	27.80	43.80	50.86	74	4	-23.14	Pk	Horizontal
2310.00	43.01	2.97	27.80	43.80	29.98	54	4	-24.02	AV	Horizontal
2310.00	61.15	2.97	27.80	43.80	48.12	74	4	-25.88	Pk	Vertical
2310.00	43.06	2.97	27.80	43.80	30.03	54	4	-23.97	AV	Vertical
2390.00	63.21	3.14	27.21	43.80	49.76	74	4	-24.24	Pk	Vertical
2390.00	42.86	3.14	27.21	43.80	29.41	54	4	-24.59	AV	Vertical
2390.00	63.99	3.14	27.21	43.80	50.54	74	4	-23.46	Pk	Horizontal
2390.00	42.84	3.14	27.21	43.80	29.39	54	4	-24.61	AV	Horizontal
2483.50	62.02	3.58	27.70	44.00	49.30	74	4	-24.70	Pk	Vertical
2483.50	42.58	3.58	27.70	44.00	29.86	54	4	-24.14	AV	Vertical
2483.50	66.06	3.58	27.70	44.00	53.34	74	4	-20.66	Pk	Horizontal
2483.50	44.29	3.58	27.70	44.00	31.57	54	4	-22.43	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

UT:	Tablet			Model	Model No.: F			Pad 10			
emperature:	perature: 20 °C		Relativ	Relative Humidity: 48				48%			
est Mode:	Mode: Mode2/ Mode4		Test B	Test By: Allen Liu							
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lir	nits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	uV/m)	(dB)	Туре		
3260	62.99	4.04	29.57	44.70	51.90	7	74	-22.10	Pk	Vertical	
3260	57.90	4.04	29.57	44.70	46.81	5	54	-7.19	AV	Vertical	
3260	65.87	4.04	29.57	44.70	54.78	7	74	-19.22	Pk	Horizontal	
3260	57.86	4.04	29.57	44.70	46.77	5	54	-7.23	AV	Horizontal	
3332	65.69	4.26	29.87	44.40	55.42	7	74	-18.58	Pk	Vertical	
3332	57.64	4.26	29.87	44.40	47.37	5	54	-6.63	AV	Vertical	
3332	66.06	4.26	29.87	44.40	55.79	7	74	-18.21	Pk	Horizontal	
3332	51.72	4.26	29.87	44.40	41.45	5	54	-12.55	AV	Horizontal	
17797	45.58	10.99	43.95	43.50	57.02	7	74	-16.98	Pk	Vertical	
17797	34.53	10.99	43.95	43.50	45.97	5	54	-8.03	AV	Vertical	
17788	44.50	11.81	43.69	44.60	55.40	7	74	-18.60	Pk	Horizontal	
17788	37.20	11.81	43.69	44.60	48.10	5	54	-5.90	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Tablet	Model No.:	Pad 10
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Tablet	Model No.:	Pad 10
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Tablet	Model No.:	Pad 10
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Tablet	Model No.:	Pad 10
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Tablet	Model No.:	Pad 10
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

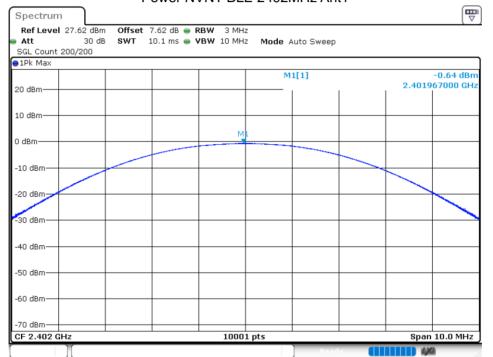
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

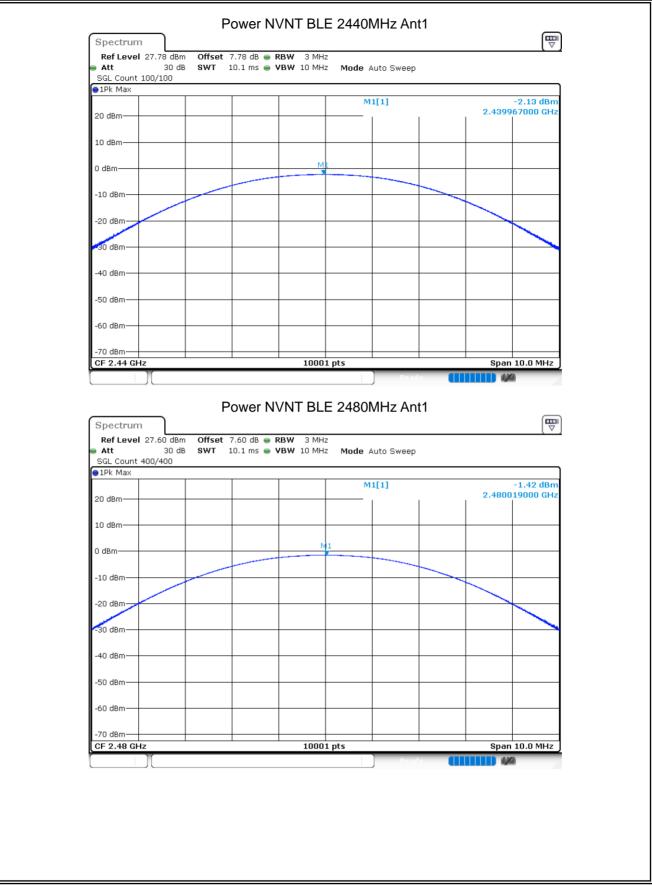
The EUT antenna is permanent attached PIFA antenna (Gain: 1.5 dBi). It comply with the standard requirement.



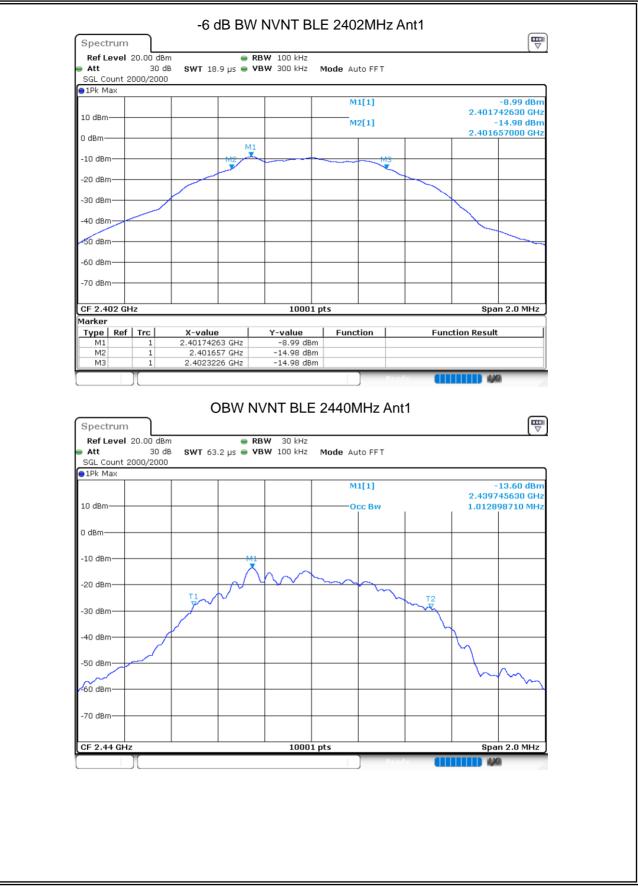
8 TEST RESULTS

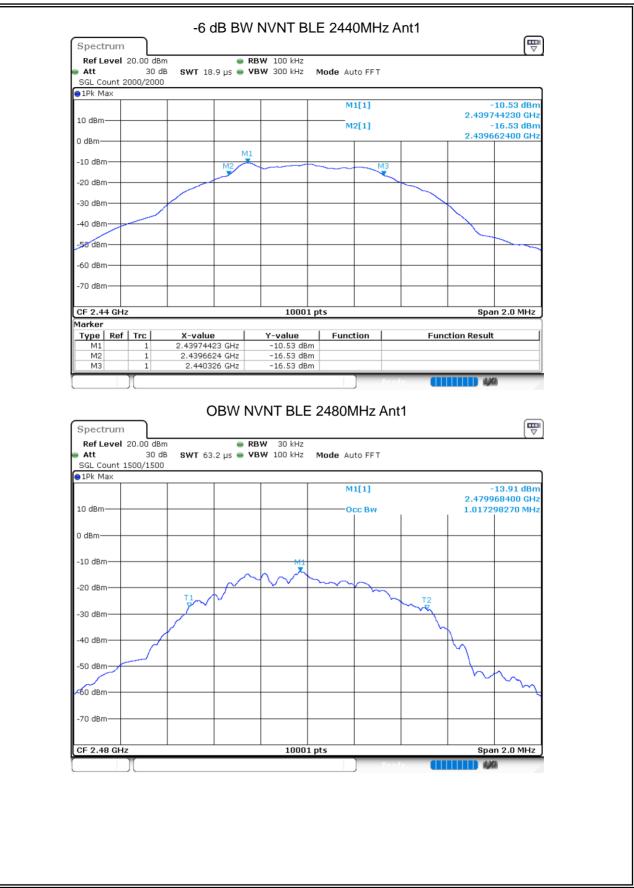
1M:

8.1.1 MAXIMUM CONDUCTED OUTPUT POWER

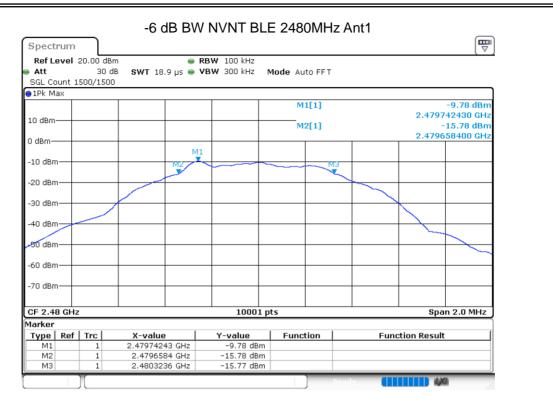

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	-0.638	30	Pass
NVNT	BLE	2440	Ant 1	-2.132	30	Pass
NVNT	BLE	2480	Ant 1	-1.415	30	Pass

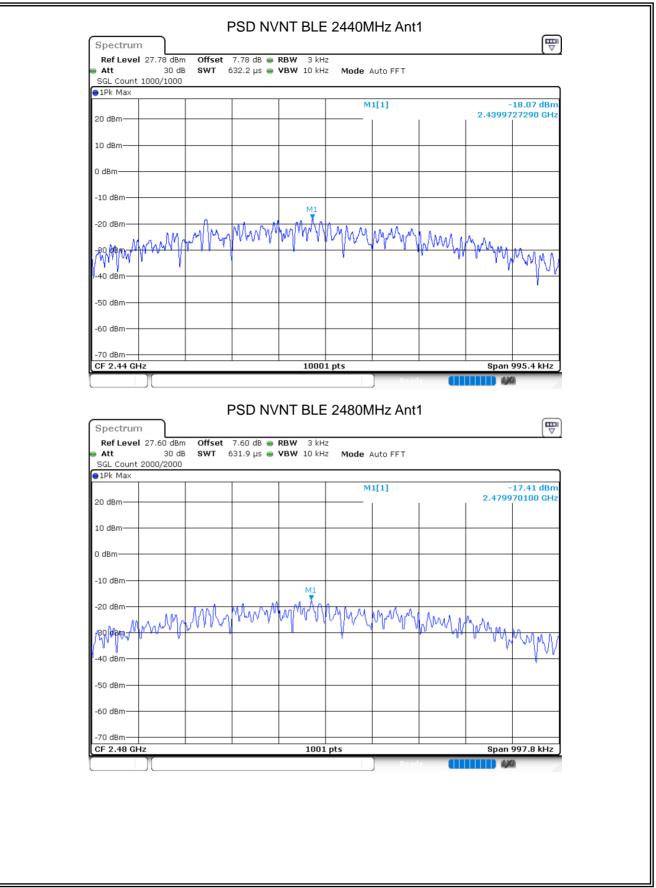
Power NVNT BLE 2402MHz Ant1

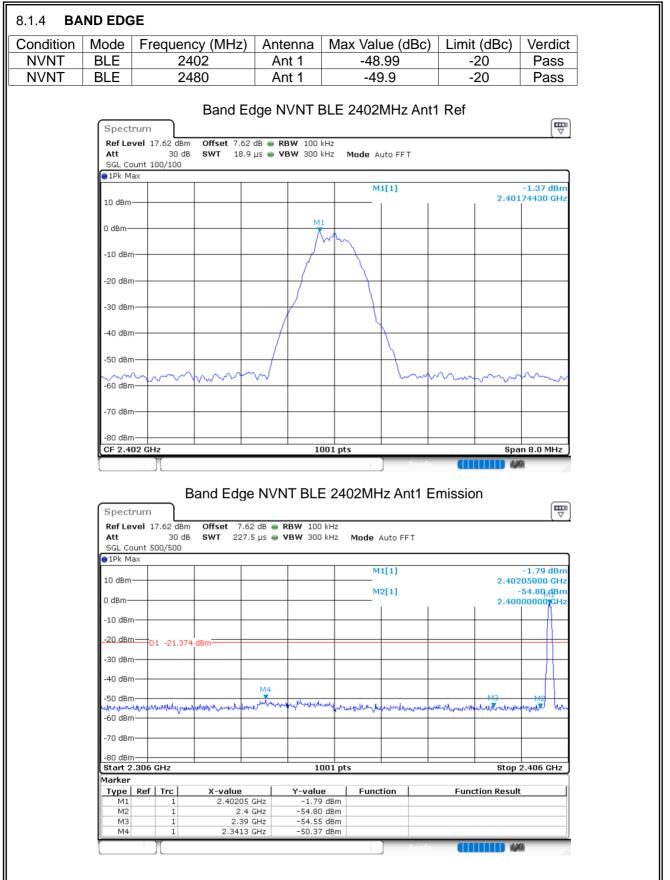


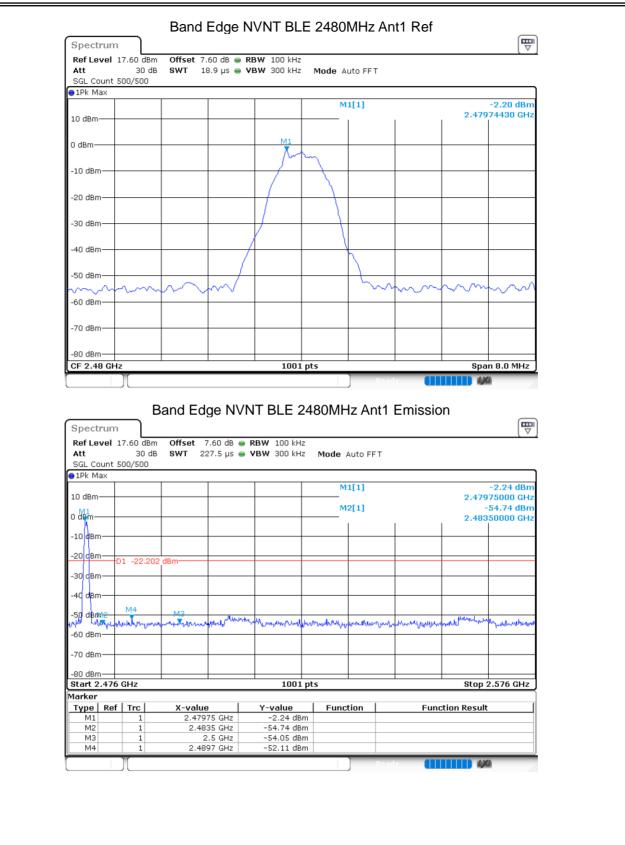

8.1.2 OCCUPIED CHANNEL BANDWIDTH

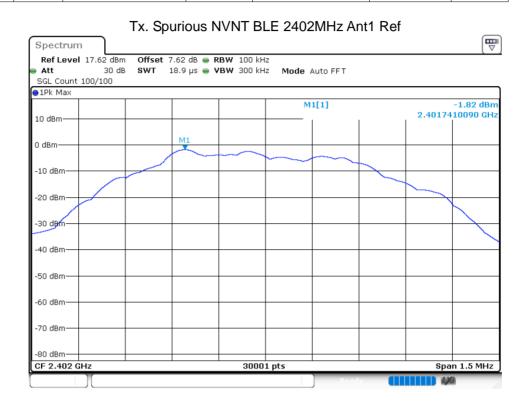
Condition	Mode	Frequency	Antenna	99%	-6 (it -6 dB	Verdic
		(MHz)		OBW	Bandy			ndwidth	
				(MHz)	(MF			MHz)	
NVNT	BLE	2402	Ant 1	1.0161	0.66			0.5	Pass
NVNT	BLE	2440	Ant 1	1.0129	0.66			0.5	Pass
NVNT	BLE	2480	Ant 1	1.0173	0.66	52		0.5	Pass
			OBW NVN	I BLE 240	2MHz Ant1				
	Spectru		- 55.00						
	 Ref Leve Att 	el 20.00 dBm 30 dB SWT	e RBW 63.2 μs e VBW		Auto FFT				
		t 2000/2000							
	●1Pk Max				M1[1]		-1	3.01 dBm	
							2.40197	2200 GHz	
	10 dBm				Occ Bw	1	1.01609	8390 MHz	
	0 dBm								
				MI					
	-10 dBm—								
	-20 dBm—			\sim \sim	\sim				
			\sim			T2			
	-30 dBm—					<u>\</u> +			
	-40 dBm—					7			
	-40 0.011						γ		
	-50 dBm						-		
	mon						• •	T m	
	-60 dBm—							`	
	-70 dBm—								

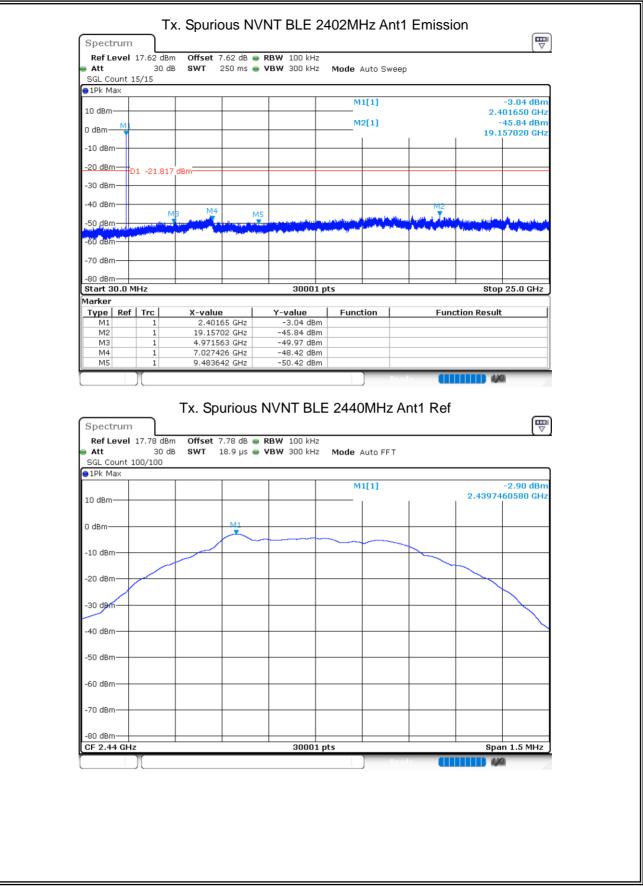




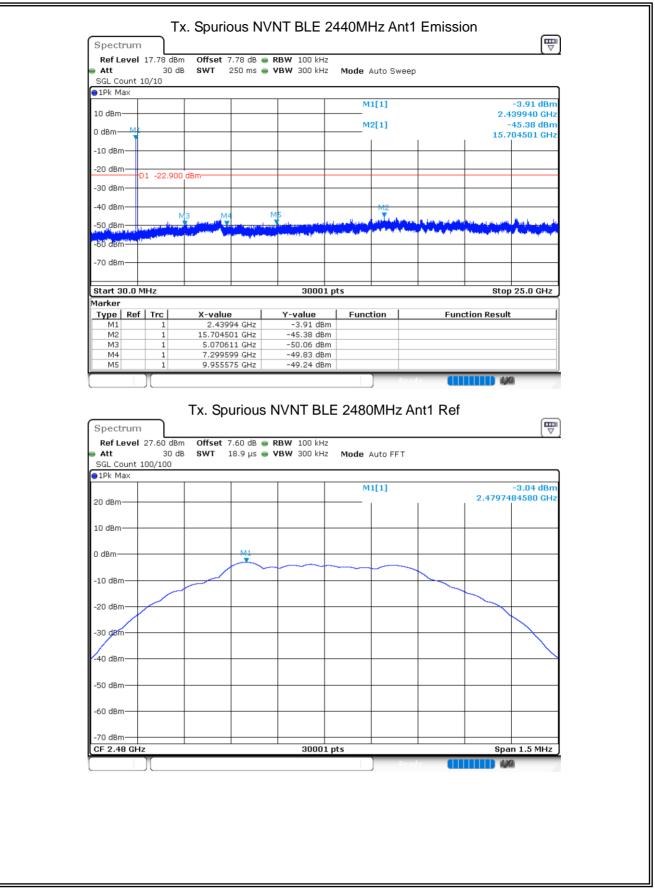


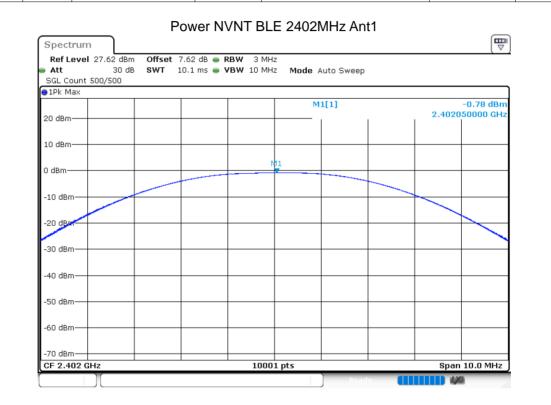




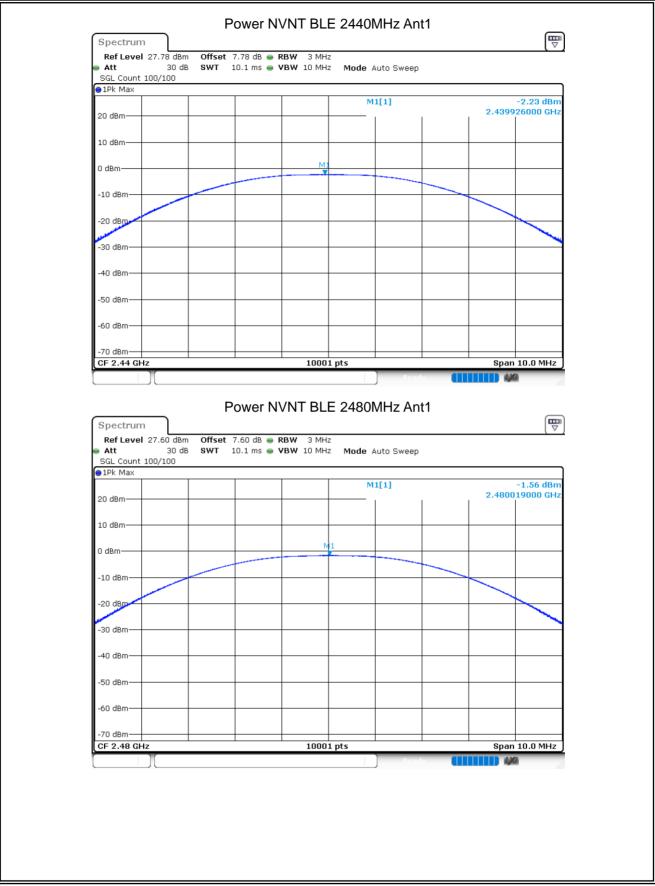


8.1.5 CONDUCTED RF SPURIOUS EMISSION

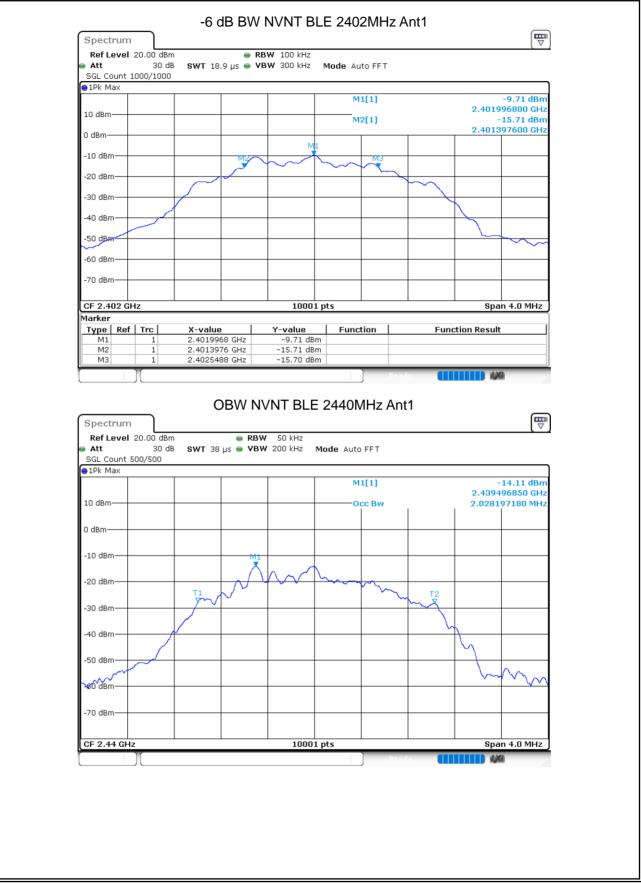

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-44.02	-20	Pass
Condition NVNT NVNT NVNT	BLE	2440	Ant 1	-42.48	-20	Pass
NVNT	BLE	2480	Ant 1	-42.39	-20	Pass

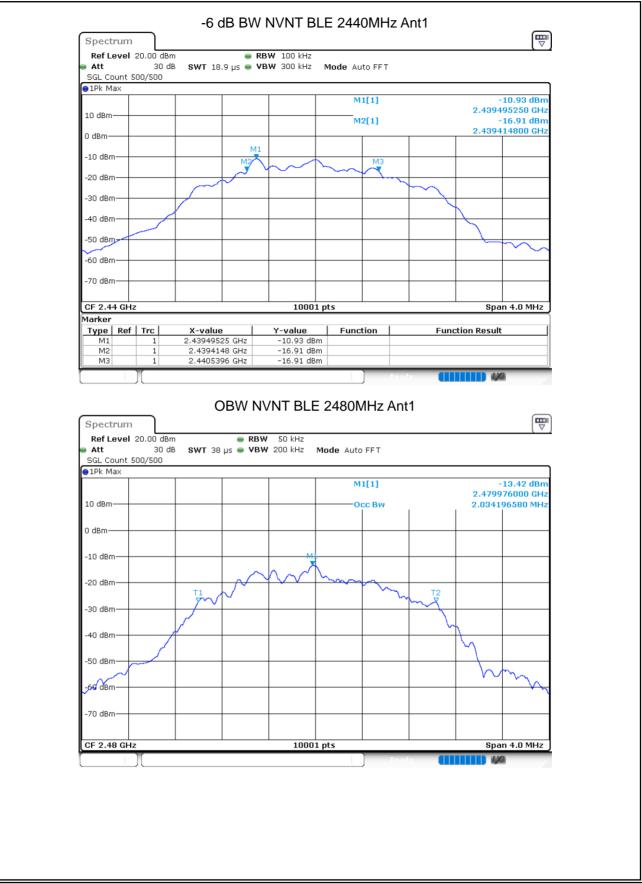

Att SGL Co	unt 30,	7.60 dBr 30 d /30			RBW 10 VBW 30		Mode A	uto Swee	p		
∋1Pk Ma	эх		-								
20 dBm·							M1	l[1]			-3.21 dBm +79890 GHz
20 00111							MS	2[1]			-45.43 dBm
10 dBm·											348263 GHz
	м								1		
0 dBm—	1										
-10 dBm											
10 000											
-20 dBm	- 01	-23.043	D dD m								
		-23.043	3 uBm								
-30 dBm											
-40 dBm	_							M2			
10 000		N	48 M	ŀ	MS			Y.a.			
-50 dBm	Inc. Laterty	apprent of the	A STATE OF THE OWNER OF	and in surgering the	والما والماجينين	الماد اللاطرية					
-60 dBm	Conception in the	a second s		Contraction of the second s						1	
-60 aBM											
-70 dBm						-+					
Start 3	0.0 MH	z				30001 p	ts		-	Sto	25.0 GHz
1arker											
Type	Ref	Trc	X-value		Y-val	ue	Funct	ion	Fun	ction Resul	t
M1		1	2.4798	39 GHz	-3.2	21 dBm					
M2		1	15.34820	53 GHz	-45.4	43 dBm					
MЗ		1	4.94742			37 dBm					
M4		1	7.39032			54 dBm					
M5		1	9.9930	D3 GHz	-48.9	96 dBm					

2M:

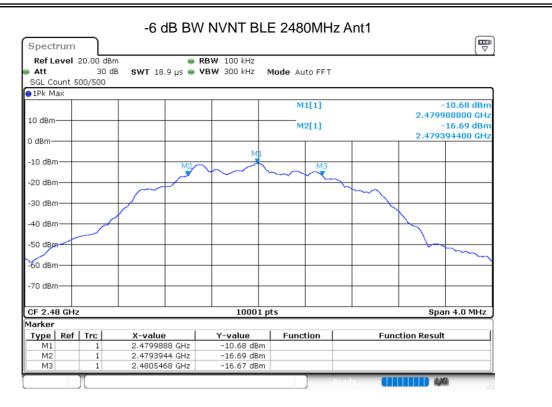

8.1.6 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	-0.775	30	Pass
NVNT	BLE	2440	Ant 1	-2.231	30	Pass
NVNT	BLE	2480	Ant 1	-1.555	30	Pass

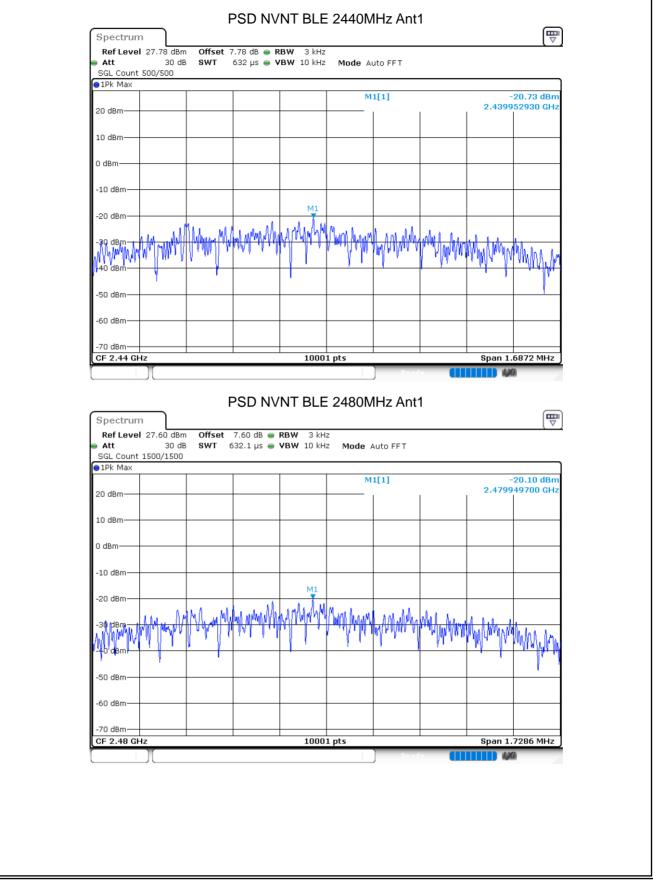


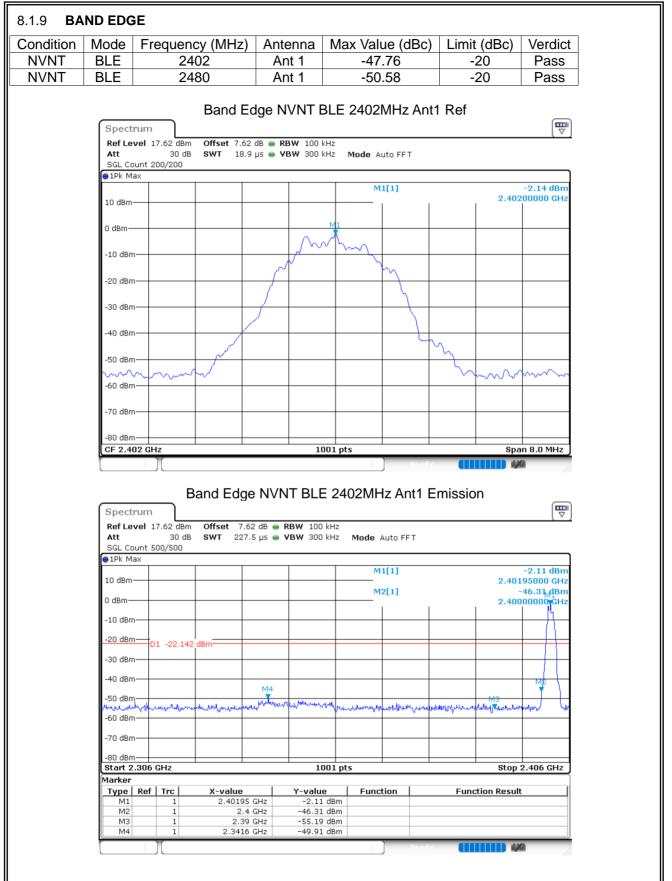

8.1.7 OCCUPIED CHANNEL BANDWIDTH

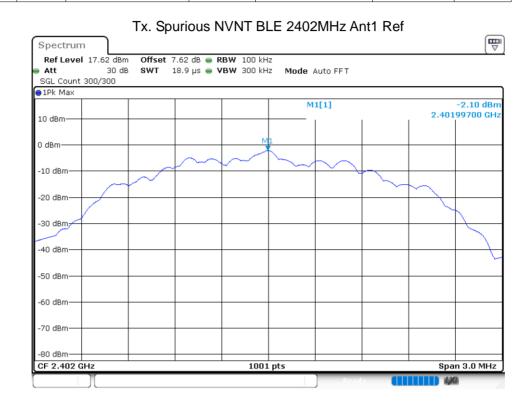
NVNT NVNT NVNT	🖷 Att	l 20.00 dBm	Ant 1 Ant 1 Ant 1 OBW NVN	50 kHz	1.1 1.1 02MHz Ant Auto FFT	512 248 524 11		0.5 0.5 0.5	Pass Pass Pass
	BLE Spectrum Ref Leve • Att SGL Count	2480 m 1 20.00 dBm 30 dB swT	Ant 1 OBW NVN	2.0342 T BLE 240	1.1 D2MHz An	524		0.5	
NVNT	Spectrum Ref Leve Att SGL Count	n 1 20.00 dBm 30 dB SWT		T BLE 24()2MHz An				Pass
	Ref Leve Att SGL Count	1 20.00 dBm 30 dB SWT :	e RBW S	50 kHz	Auto FFT	:1			
	Ref Leve Att SGL Count	1 20.00 dBm 30 dB SWT :	e RBW S	50 kHz	Auto FFT				
	SGL Count	30 dB SWT	_						
		1 1			M1[1]			12.49 dBm 76800 GHz	
	10 dBm				Occ Bw			96780 MHz	
	0 dBm								
	-10 dBm—			M					
	-20 dBm—	T1			-	T2			
	-30 dBm					~			
	-40 dBm						$\overline{\nabla}$		
	-50 dBm						\sim	\sim	
	-60 dBm								
	-70 ubiii								



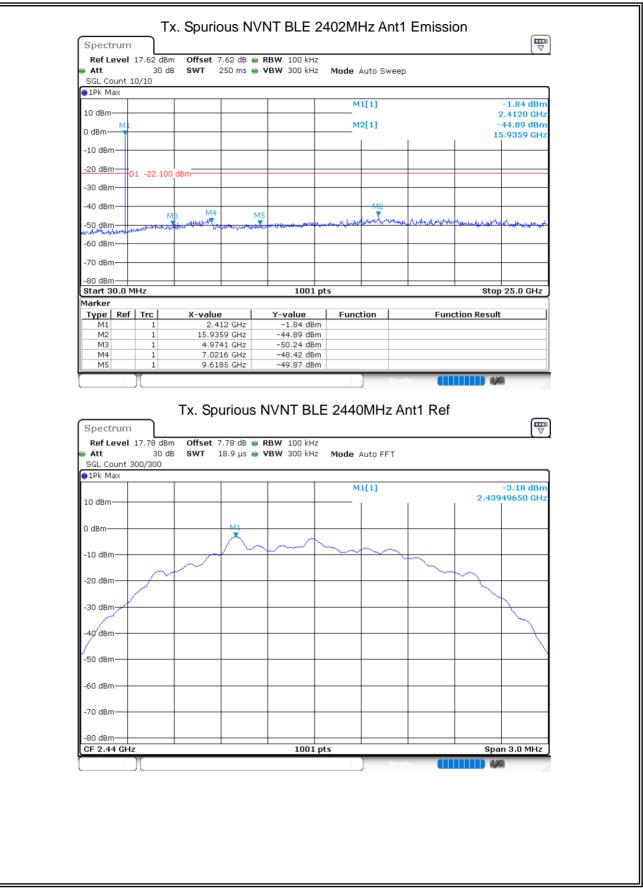
Version.1.3



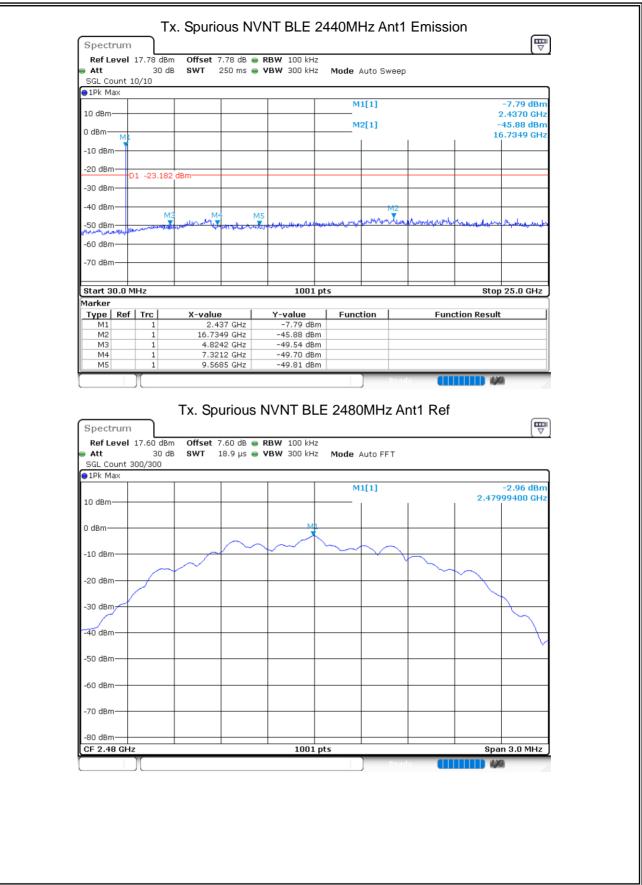

ondition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verd
NVNT	BLE	2402	Ant 1	-19.179	8	Pas
NVNT	BLE	2440	Ant 1	-20.727	8	Pas
NVNT	BLE	2480	Ant 1	-20.096	8	Pas
	🕳 Att	rum 2vel 27.62 dBm Offset 7.62 30 dB SWT 632 unt 500/500 3X	dB • RBW 3 i μs • VBW 10 i	Mode Auto FFT	-19.18 dBm 2.401949930 GHz	
	-60 dBm -70 dBm					
	CF 2.40	02 GHz	10	001 pts	Span 1.7268 MHz	



●1Pk N		00/200							
10 dBn						M1[1]		2.480	-3.07 dBm 100000 GHz
0 dBm-									
-10 dB	n					m -			
-20 dBi				<u> </u>		hy			
-30 dBi	n			7			5		
-40 dB	n			J			\square		
-50 dB	n		+		<u> </u>		- M		
-60 dBi	~~	m	\sim				~	h	m
-00 UBI	"								
-70 dBi	n+								
-80 dB									
	8 CH:	,			1001 pt:	s		Spa	n 8.0 MHz
CF 2.4 Spec Ref Le	trum	.7.60 dBm	Offset 7.6	60 dB 👄	NT BLE 24	80MHz An		n	
Spec Ref Le Att SGL C	trum evel 1	.7.60 dBm	Offset 7.6	60 dB 👄	NT BLE 24	80MHz An		on	0
Spec RefLa SGL C 9 1Pk M	trum evel 1 ount 1 lax	7.60 dBm 30 dB	Offset 7.6	60 dB 👄	NT BLE 24	80MHz An			-3.06 dBm
Spec RefLa SGL C 1Pk N 10 dBn	trum evel 1 ount 1 lax	7.60 dBm 30 dB	Offset 7.6	60 dB 👄	NT BLE 24	80MHz An Mode Auto FF		2.480	-3.06 dBm 055000 GH2 54.74 dBm
Spec RefLa SGL C 1Pk N 10 dBn 0 dBn	trum evel 1 lax	7.60 dBm 30 dB	Offset 7.6	60 dB 👄	NT BLE 24	80MHz An Mode Auto FF		2.480	-3.06 dBm 055000 GHz
Spec RefLa SGL C • 1Pk N 10 dBm 0 dBm-	trum evel 1 lax	7.60 dBm 30 dB	Offset 7.6	60 dB 👄	NT BLE 24	80MHz An Mode Auto FF		2.480	-3.06 dBm 055000 GH2 54.74 dBm
Spec Ref Le SGL C 9 1Pk N 10 dBm - 10 dBm - 20 dB	trum evel 1 lax	7.60 dBm 30 dB	Offset 7 SWT 227	60 dB 👄	NT BLE 24	80MHz An Mode Auto FF		2.480	-3.06 dBm 055000 GH2 54.74 dBm
Spec Ref Lo Att SGL C IPk M 10 dBm 0 dBm -10 dBm -20 dB -30 dB	trum evel 1 lax	7.60 dBm 30 dE 00/100	Offset 7 SWT 227	60 dB 👄	NT BLE 24	80MHz An Mode Auto FF		2.480	-3.06 dBm 055000 GH2 54.74 dBm
Spec Ref Le SGL C 1Pk N 10 dBm -10 dBm -20 dBm -30 dB -30 dB -30 dB -30 dB -30 dB -30 dB	trum evel 1 lax n n n	T.60 dBm 30 dE 00/100	Offset 7.6 SWT 227	60 dB ● '.5 μs ●	NT BLE 24	80MHz An Mode Auto FF 	T	2.480	-3.06 dBm 05000 GH2 54.74 dBm 50000 GH2
Spec Ref Le SGL C 1Pk N 10 dBm -10 dBm -20 dBm -30 dB -30 dB -30 dB -30 dB -30 dB -30 dB	n n n n	7.60 dBm 30 dE 00/100	Offset 7.6 SWT 227	60 dB ● '.5 μs ●	NT BLE 24	80MHz An Mode Auto FF 	T	2.480	-3.06 dBm 05000 GH2 54.74 dBm 50000 GH2
Spec Ref Lo SGL C 9 1Pk N 10 dBn -10 dBn -20 dB -20 dB -30 dB -50 dB	n n n n n n n n n n n n n n n n n n n	T.60 dBm 30 dE 00/100	Offset 7.6 SWT 227	60 dB ● '.5 μs ●	NT BLE 24	80MHz An Mode Auto FF 	T	2.480	-3.06 dBm 05000 GH2 54.74 dBm 50000 GH2
Spec Ref Lo Att SGL C 1Pk N 10 dBm -10 dBm -20 dB -20 dB -30 dB -50 dB -50 dB	n n n n n	T.60 dBm 30 dE 00/100	Offset 7.6 SWT 227	60 dB ● '.5 μs ●	NT BLE 24	80MHz An Mode Auto FF 	T	2.480	-3.06 dBm 05000 GH2 54.74 dBm 50000 GH2
Spec: Ref La Att SGL C 1Pk N 10 dBm -10 dBm -20 dB -20 dB -30 dB -40 dB -50 dB -50 dB -70 dB Start 1 -20 dB	n n n n n n n n n n n n n n n n n n n	T.60 dBm 30 dE 00/100	Offset 7.6 SWT 227	60 dB ● '.5 μs ●	NT BLE 24	80MHz An Mode Auto FF 	T	2.480 2.483	-3.06 dBm 05000 GH2 54.74 dBm 50000 GH2
Spec Ref La Att SGL C 10 dBn 10 dBn -10 dB -20 dB -30	n n n n n n n n n n n n n n n n n n n	E 7.60 dBm 30 dE 00/100 1 -23.06 1 -23.06 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	Offset 7.6 SWT 227	60 dB ● .5 μs ●	NT BLE 244	80MHz An Mode Auto FF 	T	2.480 2.483	-3.06 dBm 05000 GH; 554.74 dBm 554.74 dBm 550000 GH; 2.576 GHz
Spec Ref Lt Att SGL C 10 dBn 0 dBm -10 dBn -20 dB -30 dB -30 dB -30 dB -30 dB -30 dB -50 dB -50 dB -50 dB -70 dB Start Type Minken Minken	n n n n n n n n n n n n n n n n n n n	E 7.60 dBm 30 dE 00/100 1 -23.06 1 -23.06 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	Offset 7.0 SWT 227	60 dB ● '.5 μs ● 	NT BLE 244	80MHz An Mode Auto FF 	T	2.480 2.483 9000000000000000000000000000000000000	-3.06 dBm 05000 GH; 554.74 dBm 554.74 dBm 550000 GH; 2.576 GHz
Spec Ref La SGL C JIPK N 10 dBn -10 dBn -20 dBn -20 dBn -20 dBn -20 dBn -70 dBn -70 dBn -70 dBn -70 dBn -80 dBn -70 dBn -80 dBn -70 dBn -80 dBn -8	trum vel 1 lax n n n n n n n n n n n n n	E 7.60 dBm 30 dE 00/100 1 -23.06 1 -23.06 M4 M4 M4 M4 M4 M4 M4	Offset 7.0 SWT 227	60 dB ● 7.5 µs ● 1.5 GHZ 5 GHZ 5 GHZ	NT BLE 244	80MHz An Mode Auto FF 	T	2.480 2.483 9000000000000000000000000000000000000	-3.06 dBm 05000 GH; 554.74 dBm 554.74 dBm 550000 GH; 2.576 GHz



8.1.10 CONDUCTED RF SPURIOUS EMISSION


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-42.79	-20	Pass
NVNT	BLE	2440	Ant 1	-42.7	-20	Pass
NVNT	BLE	2480	Ant 1	-42.89	-20	Pass

Spectrum		Tx. Spurious		. 100101127		
Ref Level	17.60 I	dBm Offset 7.60 dB	3 🖷 RBW 100 kHz			
Att	30	dB SWT 250 ms	s 👄 VBW 300 kHz	Mode Auto S	weep	
SGL Count 1	5/15					
1Pk Max						
				M1[1]		-5.95 dBm
10 dBm						2.4870 GHz
				M2[1]		-45.85 dBm
						19.7064 GHz
-10 dBm						
-20 dBm	1 00.	960 dBm				
	1 -22.	900 UBIII				
-30 dBm						
-40 dBm						
-+o ubiii		M3M4	M5		1012	
-50 dBm	whether	and and any well	Land the state of the second s	الم يعليهما المحمد العولي يعمينه المعالمه والم	Munumberly Month Muser	where and have have a second
- William and a second and a second	Q.0	•				
-60 dBm						
-70 dBm						
-80 dBm						
Start 30.0 M	Hz		1001 p	nts		Stop 25.0 GHz
1arker						
Type Ref	Tre	X-value	Y-value	Function	Function	n Result
M1	1	2.487 GHz			- i unction	
M2	1	19.7064 GHz				
M3	1	5.049 GHz				
M4	1	7.5959 GHz				
M5	1	9.9431 GHz	-49.79 dBm	ı		

END OF REPORT

Version.1.3