Report No.: AIT23091514FW3

TEST REPORT

Client Information:

DOKE COMMUNICATION (HK) LIMITED Applicant:

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI Applicant add.:

HK CHINA

Manufacturer: Shenzhen DOKE Electronic Co.,Ltd

801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Manufacturer add.:

Guangming District, Shenzhen, China

Product Information:

Product Name: Mini PC

Model No.: MP200

Brand Name: Blackview

FCC ID: 2A7DX-MP200DK1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Prepared By:

Dongguan Yaxu (AiT) Technology Limited

No.22, Jinqianling 3rd Street, Jitigang, Huangjiang, Dongguan,

Guangdong, China

Tel.: +86-769-8202 0499 Fax.: +86-769-8202 0495

Date of Receipt: Sep. 15, 2023 Date of Test: Sep. 15, 2023~Sep. 24, 2023

Date of Issue: Sep. 25, 2023 Test Result:

This device described above has been tested by Dongguan Yaxu (AiT) Technology Limited and the test results show that the equipment under test (EUT) is in compliance with the FCC/ISED requirements. And it is applicable only to the tested sample identified in the report.

Note: This report shall not be reproduced except in full, without the written approval of Dongguan Yaxu (AiT) Technology Limited, this document may be altered or revised by Dongguan Yaxu (AiT) Technology Limited, personal only, and shall be noted in the revision of the document. This test report must not be used by the client to claim product endorsement.

Reviewed by: Simba Huah!

Approved by:

Page 2 of 46

1 Contents

СО	VER PAGE		Page
1	CONTENT	'S	2
2	TEST SUM	MMARY	5
	2.1 St	tatement of the Measurement Uncertainty	5
		easurement Uncertainty	
3	TEST FAC	SILITY	6
	3.1 De	eviation from standard	6
		bnormalities from standard conditions	
		est Location	
4	GENERAL	. INFORMATION	7
	4.1 Te	est frequencies	8
		UT Peripheral List	
		est Peripheral List	
		EST METHODOLOGY	
		escription of Test Modes	
5	EQUIPMEN	NT USED DURING TEST	12
6	TEST RES	SULTS AND MEASUREMENT DATA	13
		ntenna requirement	
	6.1.1	Standard requirement:	
	6.1.2	EUT Antenna:	
	_	n Time and Duty Cycle	
	6.2.1	Standard requirement:	
	6.2.2	Measuring Instruments and Setting:	
	6.2.3	Test Procedures	
	6.2.4		
	6.2.5	EUT Operation during Test	
	6.2.6	Test result	14
	6.3 Ma	aximum Conducted Output Peak Power Measurement	15
	6.3.1	Standard requirement:	15
	6.3.2	Measuring Instruments:	15
	6.3.3	Test Procedures:	15
	6.3.4	Test Setup Layout	15
	6.3.5	EUT Operation during Test	15
	6.3.6	Test result	15
	6.4 6	dB Spectrum Bandwidth Measurement	16
	6.4.1	Standard requirement:	16
	6.4.2	Measuring Instruments:	16
	6.4.3	Test Procedures	16

<u> 14</u>		Page 3 of 46	Report No.: AIT23091514FW3
	6.4.4	Test Setup Layout	16
	6.4.5	EUT Operation during Test	16
	6.4.6	Test result	16
6.5	99%	Occupy Bandwidth	17
6.6	Pow	er Spectral Density	18
	6.5.1	Standard requirement:	18
	6.5.2	Measuring Instruments and Setting:	18
	6.5.3	Test Procedures	18
	6.5.4	Test Setup Layout	18
	6.5.5	EUT Operation during Test	18
	6.5.6	Test result	19
6.7	Con	ducted Spurious Emissions and Band Edges Test	20
	6.6.1	Standard requirement:	20
	6.6.2	Measuring Instruments and Setting:	20
	6.6.3	Test Procedures	20
	6.6.4	Test Setup Layout	20
	6.6.5	EUT Operation during Test	20
	6.6.6	Test result	21
6.8	Res	rict-band Band-edge Measurements	22
	6.7.1	Standard requirement:	22
	6.7.2	Measuring Instruments and Setting:	22
	6.7.3	Test Procedures	22
	6.7.4	Test Setup Layout	23
	6.7.5	EUT Operation during Test	23
	6.7.6	Test result	23
6.9	Rad	ated Emissions Measurement	25
	6.8.1	Standard requirement:	
	6.8.2	Measuring Instruments and Setting:	26
	6.8.3	Test Procedures	26
	6.8.4	Test Setup Layout	29
	6.8.5	EUT Operation during Test	30
	6.8.6	Test result	30
6.1	0 Con	ducted Emissions	43
	6.9.1	Standard requirement:	43
	6.9.2	Test Setup Layout	43
	6.9.3	Test Procedures	43
	6.9.4	EUT Operation during Test	43
	6.9.5	Test result	43
TES	ST SETUR	PHOTOGRAPHS OF EUT	46
		PHOTOGRAPHS OF EUT	
		HOTOGRAPHS OF EUT	
INI	CKNAL P	DOTORKAPOS OF FUI	46

Revision History

Revision	Issue Date	Revisions	Revised By
000	Sep. 25, 2023	Initial Issue	Seal Chen

2 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	§15.203	Pass
On Time and Duty Cycle	1	1
Maximum Conducted Peak Output Power	§15.247 (b)(3)	Pass
Power Spectral Density	§15.247 (e)	Pass
6dB Bandwidth	§15.247 (a)(2)	Pass
Radiated and Conducted Spurious Emissions	§15.205/15.209	Pass
Emissions at Restricted Band	§15.205/15.209	Pass
Conducted Emissions	§15.207(a)	Pass
RF Exposure	§15.247(i)§2.1091	Pass

Note

- 1. Test according to ANSI C63.10:2013.
- 2. The measurement uncertainty is not included in the test result.
- 3. Test results in other test report (RF Exposure Evaluation Report)

2.1 Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the AiT quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.2 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	0.009MHz-30MHz	3.10dB	(1)		
Radiated Emission	30MHz-1GHz	3.75dB	(1)		
Radiated Emission	1GHz-18GHz	3.88dB	(1)		
Radiated Emission	18GHz-40GHz	3.88dB	(1)		
AC Power Line Conducted	0.15MHz ~ 30MHz	0.15MHz ~ 30MHz			
Emission	U. ISIVITIZ ~ SUIVITIZ	1.2005	(1)		
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

3 Test Facility

The test facility is recognized, certified or accredited by the following organizations: .CNAS- Registration No: L6177

Dongguan Yaxu (AiT) technology Limited is accredited to ISO/IEC 17025:2017 general Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the competence of testing and calibration laboratories) on April 18, 2022

FCC-Registration No.: 703111 Designation Number: CN1313

Dongguan Yaxu (AiT) technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC —Registration No.: 6819A CAB identifier: CN0122

The 3m Semi-anechoic chamber of Dongguan Yaxu (AiT) technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 6819A

A2LA-Lab Cert. No.: 6317.01

Dongguan Yaxu (AiT) technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

3.1 Deviation from standard

None

3.2 Abnormalities from standard conditions

None

3.3 Test Location

Dongguan Yaxu (AiT) Technology Limited

Address: No.22, Jingianling 3rd Street, Jitigang, Huangjiang, Dongguan, Guangdong, China

Tel.: +86-769-8202 0499 Fax.: +86-769-8202 0495

4 General Information

EUT Name:	Mini PC
Model No:	MP200
Serial Model:	N/A
Test sample(s) ID:	23091514-1
Sample(s) Status:	Engineer sample
Serial No.:	N/A
Operation frequency:	802.11b/802.11g /802.11n(HT20)/ax(HE20): 2412MHz~2462MHz 802.11n(HT40)/ax(HE40): 2422MHz~2452MHz
Channel Number:	802.11b/802.11g /802.11n(HT20)/ax(HT20): 11 802.11n(HT40)/ax(HE40):7
Channel separation:	5MHz
Modulation Technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(HT20)/ax(HE20)/802.11n(HT40)/ax(HT40): Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	FPC antenna
Antenna gain:	ANT1:3.743dBi ANT2:3.768dBi
H/W No.:	TK15-DK_V10
S/W No.:	win11 pro 22H2
Power supply:	DC19V from adapter
Model different:	N/A
Note:	For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: AIT23091514FW3

4.1 Test frequencies

EUT channels and frequencies list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412MHz	5	2432MHz	9	2452MHz
2	2417MHz	6	2437MHz	10	2457MHz
3	2422MHz	7	2442MHz	11	2462MHz
4	2427MHz	8	2447MHz	-	-

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Transmitting mode	Keep the EU	T in continuously transmit	tting mode.
Test software:		DRTU	
Frequency	2412 MHz	2437 MHz	2462 MHz
Parameters(802.11b)	Default	Default	Default
Parameters(802.11g)	Default	Default	Default
Parameters(802.11n20)	Default	Default	Default
Parameters(802.11ax20)	Default	Default	Default
Frequency	2422 MHz	2437 MHz	2452 MHz
Parameters(802.11n40)	Default	Default	Default
Parameters(802.11ax40)	Default	Default	Default

4.2 EUT Peripheral List

No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	Power cord	Signal cord
		SHENZHEN					
		KEYU					
1	A -l 4	POWER	05	KA120C-19	N1/A	N 1/A	NI/A
1	Adapter	SUPPLY	CE	06300H	N/A	N/A	N/A
		TECHNOLOG					
		Y CO.,LTD					

Page 9 of 46

4.3 Test Peripheral List

No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	Power cord	Signal cord
1	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Report No.: AIT23091514FW3

4.4 TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Dongguan Yaxu (AiT) Technology Limited

4.4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.4.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209, 15.247 under the FCC Rules Part 15 Subpart C, ANSI C63.10-2013.

4.4.3 General Test Procedures

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013.

Report No.: AIT23091514FW3

4.5 Description of Test Modes

The EUT has been tested under operating condition.

AC main conducted emission pre-test voltage at both AC 120V/60Hz and AC 240V/50Hz, recorded worst case;

AC main conducted emission pre-test at charge from power adapter modes, recorded worst case;

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be IEEE 802.11b mode (LCH).

Verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	IEEE 802.11b	IEEE 802.11g	IEEE 802.11n(HT20)	IEEE 802.11n(HT40)
		S	802.11ax(HE20)	802.11ax(HE40)
Data rate	1Mbps	6Mbps	MCS0	MCS7

Antenna & Bandwidth

Antenna	Chain 1 (ANT1)		Chain 2	Chain 2 (ANT2)		
Bandwidth Mode	20MHz	40MHz	20MHz	40MHz	/	
IEEE 802.11b			Ø			
IEEE 802.11g						
IEEE 802.11n		$\overline{\mathbf{V}}$				
IEEE 802.11ax	Ø	V	Ø	Ø	Ø	

Page 12 of 46

5 Equipment Used during Test

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date	
1	Spectrum Analyzer	R&S	FSV40	101470	2023.09.08	2024.09.07	
2	EMI Measuring Receiver	R&S	ESR	101160	2023.09.08	2024.09.07	
3	Low Noise Pre Amplifier	HP	HP8447E	AiT-F01319	2023.09.08	2024.09.07	
4	Low Noise Pre Amplifier	Tsj	MLA-0120-A02- 34	2648A04738	2023.09.08	2024.09.07	
5	Passive Loop	ETS	6512	00165355	2022.09.04	2024.09.03	
6	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3206	2021.08.29	2024.08.28	
7	Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	452	2021.08.29	2024.08.28	
8	SHF-EHF Horn Antenna 15-40GHz	SCHWARZBECK	BBHA9170	BBHA917036 7d	2020.11.24	2023.11.23	
9	EMI Test Receiver	R&S	ESCI	100124	2023.09.08	2024.09.07	
10	LISN	Kyoritsu	KNW-242 8-837-4		2023.09.08	2024.09.07	
11	LISN	R&S	ESH3-Z2	0357.8810.54- 101161-S2	2023.09.08	2024.09.07	
12	Pro.Temp&Humi.chamber	MENTEK	MHP-150-1C	MAA0811250 1	2023.09.08	2024.09.07	
13	RF Automatic Test system	MW	MW100-RFCB	21033016	2023.09.08	2024.09.07	
14	Signal Generator	Agilent	N5182A	MY50143009	2023.09.08	2024.09.07	
15	Wideband Radio communication tester	R&S	CMW500	1201.0002K5 0	2023.09.08	2024.09.07	
16	RF Automatic Test system	MW	MW100-RFCB	21033016	2023.09.08	2024.09.07	
17	DC power supply	ZHAOXIN	RXN-305D-2	2807000255 9	N/A	N/A	
18	RE Software	EZ	EZ EZ-EMC_RE Ver.Al		N/A	N/A	
19	CE Software	EZ	EZ-EMC_CE	Ver.AIT-03A	N/A	N/A	
20	RF Software	MW	MTS 8310	2.0.0.0	N/A	N/A	
21	temporary antenna connector(Note)	NTS	R001	N/A	N/A	N/A	

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6 Test results and Measurement Data

6.1 Antenna requirement

6.1.1 Standard requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

RSS-Gen Section 6.8

A transmitter can only be sold or operated with antennas with which it was approved.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. For transmitters of RF output power of 10 milliwatts or less, only the portion of the antenna gain that is in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power to demonstrate compliance with the radiated power limits specified in the applicable standard. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power

6.1.2 EUT Antenna:

The antenna is FPC antenna, the best case gain of the antenna1 is 3.743dBi, antenna2 is 3.768dBi reference to the Internal photos for details

6.2 On Time and Duty Cycle

6.2.1 Standard requirement:

None; for reporting purpose only


6.2.2 Measuring Instruments and Setting:

Please refer to equipments list in this report. The following table is the setting of the spectrum analyser.

6.2.3 Test Procedures

- 1. Set the centre frequency of the spectrum analyser to the transmitting frequency;
- 2. Set the span=0MHz, RBW=8MHz, VBW=50MHz, Sweep time=20.27ms;
- 3. Detector = peak;
- 4. Trace mode = Single hold

6.2.4 Test Setup Layout

6.2.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.2.6 Test result

For reporting purpose only.

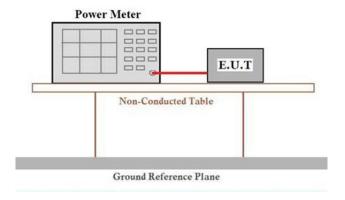
Please refer to Appendix C.1

6.3 Maximum Conducted Output Peak Power Measurement

6.3.1 Standard requirement:

According to §15.247(b): For systems using digital modulation in the 2400-2483.5 MHz and 5725-5850 MHz band, the limit for maximum peak conducted output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceeds 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi without any corresponding reduction in transmitter peak output power.


6.3.2 Measuring Instruments:

Please refer to equipment's list in this report.

6.3.3 Test Procedures:

According to KDB558074 D01 15.247 Meas Guidance v05r02 Section 9.1 Maximum peak conducted output power, 9.1.2 The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

6.3.4 Test Setup Layout

6.3.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.3.6 Test result

PASS

Please refer to Appendix C.2.

Remark:

- 1). Measured output power at difference data rate for each mode and recorded worst case for each mode.
 - 2). Test results including cable loss;
- 3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13Mbps at IEEE 802.11n HT40; 6.5Mbps at IEEE 802.11ax HE20; 13Mbps at IEEE 802.11ax HE40

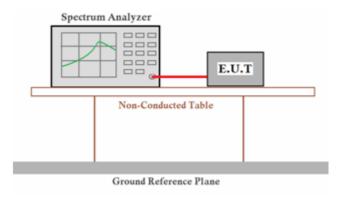
6.4 6 dB Spectrum Bandwidth Measurement

6.4.1 Standard requirement:

According to §15.247(a) (2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

6.4.2 Measuring Instruments:

Please refer to equipment's list in this report.


Please refer to equipment list in this report. The following table is the setting of the Spectrum Analyzer.

110172011	
Spectrum Parameter	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Span Frequency	30MHz
Detector	Peak

6.4.3 Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth and the video bandwidth were set according to KDB558074.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

6.4.4 Test Setup Layout

6.4.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.4.6 Test result

PASS

Please refer to Appendix C.3

Remark:

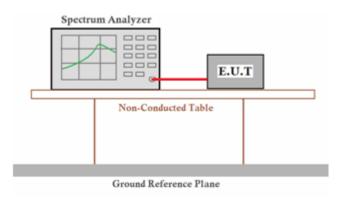
- 1). Measured 6dB Bandwidth at difference data rate for each mode and recorded worst case for each mode.
- 2). Test results including cable loss;
- 3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13Mbps at IEEE 802.11n HT40; 6.5Mbps at IEEE 802.11ax HE20; 13Mbps at IEEE 802.11ax HE40

6.5 99% Occupy Bandwidth

Standard requirement:

According to RSS-Gen section 6.7: The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

Measuring Instruments and Setting:


Please refer to equipment list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	100ms

Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. Set RBW = 1%~5% OBW; VBW≥3*RBW;
- 3. Measured the 99% occupied bandwidth by related function of the spectrum analyzer.

Test Setup Layout

EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Test result

PASS

Please refer to Appendix C.4

Remark:

- 1). Measured 99% Bandwidth at difference data rate for each mode and recorded worst case for each mode.
- 2). Test results including cable loss;
- 3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13Mbps at IEEE 802.11n HT40; 6.5Mbps at IEEE 802.11ax HE20; 13Mbps at IEEE 802.11ax HE40;

1 age 10 01 10

6.6 Power Spectral Density

6.5.1 Standard requirement:

According to §15.247(e), RSS-247 section 5.2 b: For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


6.5.2 Measuring Instruments and Setting:

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

6.5.3 Test Procedures

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3. Set the RBW = 3 kHz.
- 4. Set the VBW ≥ 3*RBW
- 5. Set the span to 1.5 times the DTS channel bandwidth.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum power level.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 12. The resulting peak PSD level must shall not be greater than 8dBm in any 3 kHz..

6.5.4 Test Setup Layout

6.5.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.5.6 Test result

PASS

Please refer to Appendix C.5.

Remark:

- 1). Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode;
 - 2). Test results including cable loss;
- 3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13Mbps at IEEE 802.11n HT40; 6.5Mbps at IEEE 802.11ax HE20; 13Mbps at IEEE 802.11ax HE40

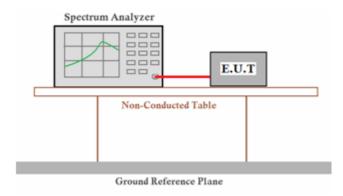
6.7 Conducted Spurious Emissions and Band Edges Test

6.6.1 Standard requirement:

According to §15.247 (d), RSS 247 section 5.5: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.6.2 Measuring Instruments and Setting:

Please refer to equipment list in this report. The following table is the setting of the spectrum analyzer.


Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
RB / VB (Emission in restricted band)	100KHz/300KHz
RB / VB (Emission in non-restricted band)	100KHz/300KHz

6.6.3 Test Procedures

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 9 kHz to 26.5GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

6.6.4 Test Setup Layout

6.6.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.6.6 Test result

PASS

Please refer to Appendix C.6 for conducted band edge emission.

Please refer to Appendix C.7 for conducted spurious emissions;

Remark:

- 1). Measured at difference data rate for each mode and recorded worst case for each mode.
- 2). Test results including cable loss;
- 3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13Mbps at IEEE 802.11n HT40; 6.5Mbps at IEEE 802.11ax HE20; 13Mbps at IEEE 802.11ax HE40
- 4). Not recorded test plots from 9 KHz to 30 MHz as emission levels 20dB lower than emission limit.

6.8 Restrict-band Band-edge Measurements

6.7.1 Standard requirement:

According to §15.247(d)/§15.209/ §15.205 or RSS-247§5.5/RSS-Gen

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

6.7.2 Measuring Instruments and Setting:

Please refer to equipment list in this report.

6.7.3 Test Procedures

According to KDB 558074 D01 for Antenna-port conducted measurement. Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

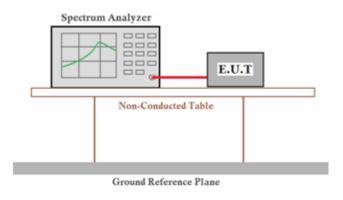
- 1). Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2). Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to an EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3). Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=1/B for AV detector.
- 4). Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5). Repeat above procedures until all measured frequencies were complete.
- 6). Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7). Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- 8). Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).
- 9). For devices with multiple antenna-ports, measure the power of each individual chain and sum the

EIRP of all chains in linear terms (e.g., Watts, mW).

10). Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

$$E = EIRP - 20log D + 104.77 = EIRP + 95.23$$

Where:


 $E = electric field strength in dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

- 11). Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.
- 12). Compare the resultant electric field strength level to the applicable regulatory limit.
- 13). Perform radiated spurious emission test duress until all measured frequencies were complete.

6.7.4 Test Setup Layout

6.7.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.7.6 Test result

PASS

Please refer to Appendix C.8

Remark:

Remark:

- 1). Test results including cable loss;
- 2). "---"means that the fundamental frequency not for 15.209 limits requirement;
- 3). The average measurement was not performed when the peak measured data under the limit of average detection.

- 4). Detector AV is setting spectrum/receiver. RBW=1MHz/VBW=10Hz/Sweep time=Auto/Detector =Peak.
- 5). Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.
- 6). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13Mbps at IEEE 802.11n HT40; 6.5Mbps at IEEE 802.11ax HE20; 13Mbps at IEEE 802.11ax HE40

6.9 Radiated Emissions Measurement

6.8.1 Standard requirement:

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

^{\1\} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Dongguan Yaxu (AiT) Technology Limited No.22, Jinqianling 3rd Street, Jitigang, Huangjiang, Dongguan, Guangdong, China.

^{\2\} Above 38.6

6.8.2 Measuring Instruments and Setting:

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Page 26 of

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

6.8.3 Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

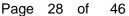
Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

Page 27 of

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

46


- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

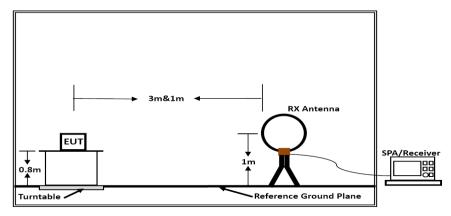
Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

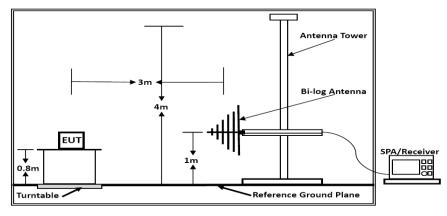
46

Page 29 of

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

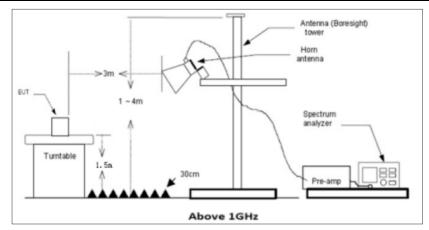

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.


Final measurement:

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

6.8.4 Test Setup Layout



Below 30MHz

Below 1GHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

6.8.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.8.6 Test result

Temperature	25.5℃	Humidity	52.4%
Test Engineer	Simba Huang	Configurations	IEEE 802.11b/g/n

Remarks:

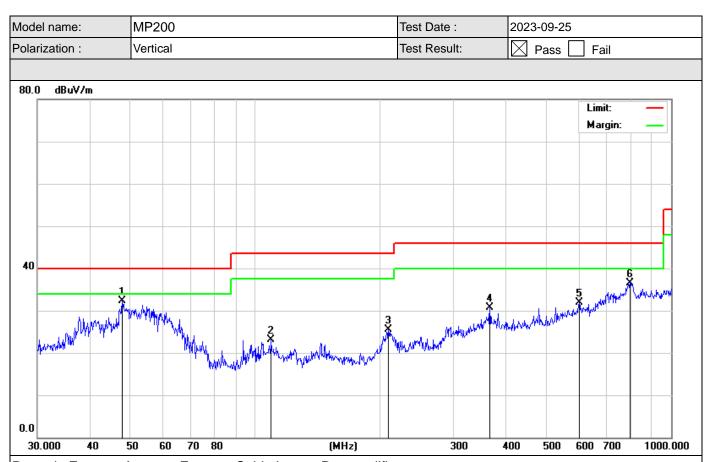
- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ Results of Radiated Emissions (9 KHz~30MHz)

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

■ Results of Radiated Emissions (30MHz~1GHz)

Pre-scan all test modes, found worst case at IEEE 802.11b (High Channel), recorded the worst case results in this report (IEEE 802.11b (High Channel)).

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	47.9940	31.85	0.38	32.23	40.00	-7.77	QP
2		109.4116	24.91	-1.74	23.17	43.50	-20.33	QP
3		209.3129	23.60	1.97	25.57	43.50	-17.93	QP
4		366.8231	25.28	5.44	30.72	46.00	-15.28	QP
5		601.4265	23.62	8.22	31.84	46.00	-14.16	QP
6		796.1830	23.71	12.89	36.60	46.00	-9.40	QP

Mod	el name	e:	MF	MP200 T				Test Dat	Test Date :		2023-09-25					
Pola	rization	:	Но	rizonta	al				Test Res	sult:		Pass	F	ail		
80.0	0 dBu	V/m														
														nit:	-	
ı													M	argin:		
ı																
1																
															ШН	
40															6	
								3 downtre whole							AMM/M	
										4		5 X	Johnson	NAME OF THE PARTY OF		
			1							MAN AND	A. J. millighted	MANAGEN	HW.			
		J	lî	4 Jul 2				3 X		1 1 201 18	TON DE					
	الإيدالهيديه	Marketande	ALINE TAN	almaniti.	white body	Marina No.	MANUAL PARTIES	With the many of the Colonial	A Allen							
						and details										
0.0																
30	0.000	40	50	60	70	80		(MHz)		300	400	500	600	700	1000.0	000

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		52.0251	26.29	-1.37	24.92	40.00	-15.08	QP
2		64.8865	22.82	-2.56	20.26	40.00	-19.74	QP
3	,	151.0666	22.13	-0.24	21.89	43.50	-21.61	QP
4	,	305.6800	27.71	1.54	29.25	46.00	-16.75	QP
5	į	528.2458	24.27	6.94	31.21	46.00	-14.79	QP
6	* (860.0352	25.05	13.72	38.77	46.00	-7.23	QP

Results for Radiated Emissions (1- 26 GHz)

Note: All the modes have been tested and recorded worst mode in the report. (ANT1)

Test mode: 802.11b Test channel: Lowest

Page 33 of 46

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	
4824.000	49.57	5.08	54.65	74.00	-19.35	PEAK
4824.000	38.60	5.08	43.68	54.00	-10.32	AVG
7326.000	43.85	7.55	51.40	74.00	-22.60	PEAK
7326.000	33.33	7.55	40.88	54.00	-13.12	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Dottoolor Typo
4824.000	47.95	5.08	53.03	74.00	-20.97	PEAK
4824.000	38.07	5.08	43.15	54.00	-10.85	AVG
7236.000	40.78	7.55	48.33	74.00	-25.67	PEAK
7236.000	32.45	7.55	40.00	54.00	-14.00	AVG

Test mode:	802.11b	Test channel:	Middle
------------	---------	---------------	--------

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Dottoolor Typo
4874.000	49.31	5.13	54.44	74.00	-19.56	PEAK
4874.000	37.61	5.13	42.74	54.00	-11.26	AVG
7311.000	43.38	7.49	50.87	74.00	-23.13	PEAK
7311.000	33.18	7.49	40.67	54.00	-13.33	AVG

V

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Dottoolor Typo
4874.000	45.58	5.13	50.71	74.00	-23.29	PEAK
4874.000	37.04	5.13	42.17	54.00	-11.83	AVG
7311.000	42.69	7.49	50.18	74.00	-23.82	PEAK
7311.000	31.60	7.49	39.09	54.00	-14.91	AVG

Page 34 of 46

Test mode: 802.11b Test channel: Highest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4824.000	48.02	5.18	53.20	74.00	-20.80	PEAK
4824.000	37.31	5.18	42.49	54.00	-11.51	AVG
7326.000	40.17	7.82	47.99	74.00	-26.01	PEAK
7326.000	33.90	7.82	41.72	54.00	-12.28	AVG

V

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data eter Tuna
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4824.000	45.90	5.18	51.08	74.00	-22.92	PEAK
4824.000	36.82	5.18	42.00	54.00	-12.00	AVG
7236.000	42.41	7.82	50.23	74.00	-23.77	PEAK
7236.000	32.68	7.82	40.50	54.00	-13.50	AVG

Test mode:	802.11g	Test channel:	lowest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data eter Tuna
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4824.000	48.20	5.08	53.28	74.00	-20.72	PEAK
4824.000	39.19	5.08	44.27	54.00	-9.73	AVG
7326.000	43.62	7.55	51.17	74.00	-22.83	PEAK
7326.000	31.73	7.55	39.28	54.00	-14.72	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Doto stor Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4824.000	47.02	5.08	52.10	74.00	-21.90	PEAK
4824.000	36.49	5.08	41.57	54.00	-12.43	AVG
7236.000	43.59	7.55	51.14	74.00	-22.86	PEAK
7236.000	33.44	7.55	40.99	54.00	-13.01	AVG

Page 35 of 46 Report No.: AIT23091514FW3

Test mode: 802.11g Test channel: Middle

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	48.23	5.13	53.36	74.00	-20.64	PEAK
4874.000	38.81	5.13	43.94	54.00	-10.06	AVG
7311.000	42.23	7.49	49.72	74.00	-24.28	PEAK
7311.000	31.56	7.49	39.05	54.00	-14.95	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	45.86	5.13	50.99	74.00	-23.01	PEAK
4874.000	37.99	5.13	43.12	54.00	-10.88	AVG
7311.000	40.21	7.49	47.70	74.00	-26.30	PEAK
7311.000	31.56	7.49	39.05	54.00	-14.95	AVG

Test mode:	802.11g	Test channel:	Highest
TOOL THOUGO.	1 002.119	Tool orialition.	riigiioot

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data eter Tune
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(Db)	Detector Type
4924.000	48.91	5.18	54.09	74.00	-19.91	PEAK
4924.000	36.82	5.18	42.00	54.00	-12.00	AVG
7386.000	41.93	7.82	49.75	74.00	-24.25	PEAK
7386.000	32.29	7.82	40.11	54.00	-13.89	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ator Tuna
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924.000	45.16	5.18	50.34	74.00	-23.66	PEAK
4924.000	38.02	5.18	43.20	54.00	-10.80	AVG
7386.000	43.52	7.82	51.34	74.00	-22.66	PEAK
7386.000	31.76	7.82	39.58	54.00	-14.42	AVG

Test mode: 802.11n(HT20) Test channel: Lowest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotootor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4824.000	48.53	5.08	53.61	74.00	-20.39	PEAK
4824.000	38.24	5.08	43.32	54.00	-10.68	AVG
7326.000	42.27	7.55	49.82	74.00	-24.18	PEAK
7326.000	33.63	7.55	41.18	54.00	-12.82	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data stor Tuna
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4824.000	46.51	5.08	51.59	74.00	-22.41	PEAK
4824.000	39.80	5.08	44.88	54.00	-9.12	AVG
7236.000	42.47	7.55	50.02	74.00	-23.98	PEAK
7236.000	31.00	7.55	38.55	54.00	-15.45	AVG

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotootor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	48.40	5.13	53.53	74.00	-20.47	PEAK
4874.000	38.13	5.13	43.26	54.00	-10.74	AVG
7311.000	42.01	7.49	49.50	74.00	-24.50	PEAK
7311.000	32.32	7.49	39.81	54.00	-14.19	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	45.81	5.13	50.94	74.00	-23.06	PEAK
4874.000	36.99	5.13	42.12	54.00	-11.88	AVG
7311.000	41.32	7.49	48.81	74.00	-25.19	PEAK
7311.000	30.73	7.49	38.22	54.00	-15.78	AVG

Page 37 of 46 Report No.: AIT23091514FW3

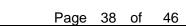
Test mode: 802.11n(HT20) Test channel: Highest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ator Tuna
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924.000	49.08	5.18	54.26	74.00	-19.74	PEAK
4924.000	37.53	5.18	42.71	54.00	-11.29	AVG
7386.000	40.86	7.82	48.68	74.00	-25.32	PEAK
7386.000	31.41	7.82	39.23	54.00	-14.77	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ator Tuna
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924.000	47.29	5.18	52.47	74.00	-21.53	PEAK
4924.000	38.90	5.18	44.08	54.00	-9.92	AVG
7386.000	42.73	7.82	50.55	74.00	-23.45	PEAK
7386.000	29.43	7.82	37.25	54.00	-16.75	AVG


Test mode: 802.11n(HT40) Test channel: Lowest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data eter Tuna
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844.000	47.14	5.11	52.25	74.00	-21.75	PEAK
4844.000	34.73	5.11	39.84	54.00	-14.16	AVG
7266.000	41.21	7.29	48.50	74.00	-25.50	PEAK
7266.000	30.43	7.29	37.72	54.00	-16.28	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Tupo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844.000	46.47	5.11	51.58	74.00	-22.42	PEAK
4844.000	37.42	5.11	42.53	54.00	-11.47	AVG
7266.000	40.73	7.29	48.02	74.00	-25.98	PEAK
7266.000	30.02	7.29	37.31	54.00	-16.69	AVG

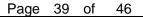
Test mode: 802.11n(HT40) Test channel: Middle

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ator Tuna
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	47.48	5.13	52.61	74.00	-21.39	PEAK
4874.000	36.11	5.13	41.24	54.00	-12.76	AVG
7311.000	40.24	7.49	47.73	74.00	-26.27	PEAK
7311.000	30.12	7.49	37.61	54.00	-16.39	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Doto otor Tuno
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	45.22	5.13	50.35	74.00	-23.65	PEAK
4874.000	36.15	5.13	41.28	54.00	-12.72	AVG
7311.000	40.81	7.49	48.30	74.00	-25.70	PEAK
7311.000	28.29	7.49	35.78	54.00	-18.22	AVG


|--|

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904.000	46.69	5.16	51.85	74.00	-22.15	peak
4904.000	36.41	5.16	41.57	54.00	-12.43	AVG
7356.000	38.55	7.69	46.24	74.00	-27.76	peak
7356.000	30.91	7.69	38.60	54.00	-15.40	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotootor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904.000	44.90	5.16	50.06	74.00	-23.94	peak
4904.000	35.35	5.16	40.51	54.00	-13.49	AVG
7356.000	38.93	7.69	46.62	74.00	-27.38	peak
7356.000	30.04	7.69	37.73	54.00	-16.27	AVG

Test mode: 802.11ax(HE20) Test channel: Lowest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotootor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4824.000	48.33	5.08	53.41	74.00	-20.59	PEAK
4824.000	37.29	5.08	42.37	54.00	-11.63	AVG
7326.000	42.46	7.55	50.01	74.00	-23.99	PEAK
7326.000	32.41	7.55	39.96	54.00	-14.04	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data stor Tuna
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4824.000	46.19	5.08	51.27	74.00	-22.73	PEAK
4824.000	38.31	5.08	43.39	54.00	-10.61	AVG
7236.000	42.48	7.55	50.03	74.00	-23.97	PEAK
7236.000	31.37	7.55	38.92	54.00	-15.08	AVG

Test mode:	802.11ax(HE20)	Test channel:	Middle

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotootor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	48.57	5.13	53.70	74.00	-20.30	PEAK
4874.000	36.86	5.13	41.99	54.00	-12.01	AVG
7311.000	41.84	7.49	49.33	74.00	-24.67	PEAK
7311.000	31.25	7.49	38.74	54.00	-15.26	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	47.20	5.13	52.33	74.00	-21.67	PEAK
4874.000	36.54	5.13	41.67	54.00	-12.33	AVG
7311.000	42.90	7.49	50.39	74.00	-23.61	PEAK
7311.000	30.48	7.49	37.97	54.00	-16.03	AVG

Page 40 of 46 Report No.: AIT23091514FW3

Test mode: 802.11ax(HE20) Test channel: Highest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924.000	47.66	5.18	52.84	74.00	-21.16	PEAK
4924.000	37.44	5.18	42.62	54.00	-11.38	AVG
7386.000	41.27	7.82	49.09	74.00	-24.91	PEAK
7386.000	33.01	7.82	40.83	54.00	-13.17	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data eter Tuna
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924.000	46.82	5.18	52.00	74.00	-22.00	PEAK
4924.000	38.03	5.18	43.21	54.00	-10.79	AVG
7386.000	42.70	7.82	50.52	74.00	-23.48	PEAK
7386.000	31.04	7.82	38.86	54.00	-15.14	AVG

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data eter Tuna
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844.000	47.19	5.11	52.30	74.00	-21.70	PEAK
4844.000	35.35	5.11	40.46	54.00	-13.54	AVG
7266.000	41.12	7.29	48.41	74.00	-25.59	PEAK
7266.000	30.65	7.29	37.94	54.00	-16.06	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Tupo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844.000	45.21	5.11	50.32	74.00	-23.68	PEAK
4844.000	36.53	5.11	41.64	54.00	-12.36	AVG
7266.000	41.18	7.29	48.47	74.00	-25.53	PEAK
7266.000	32.20	7.29	39.49	54.00	-14.51	AVG

age 41 of 46 Report No.: AIT23091514FW3

Test mode: 802.11ax(HE40) Test channel: Middle

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data eter Tuna
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	47.97	5.13	53.10	74.00	-20.90	PEAK
4874.000	37.18	5.13	42.31	54.00	-11.69	AVG
7311.000	41.81	7.49	49.30	74.00	-24.70	PEAK
7311.000	32.18	7.49	39.67	54.00	-14.33	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data eter Tuna
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874.000	45.21	5.13	50.34	74.00	-23.66	PEAK
4874.000	36.38	5.13	41.51	54.00	-12.49	AVG
7311.000	41.20	7.49	48.69	74.00	-25.31	PEAK
7311.000	29.92	7.49	37.41	54.00	-16.59	AVG

Test mode: 802.11ax(HE40) Test channel: Highest

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotootor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904.000	46.66	5.16	51.82	74.00	-22.18	peak
4904.000	35.16	5.16	40.32	54.00	-13.68	AVG
7356.000	39.32	7.69	47.01	74.00	-26.99	peak
7356.000	29.30	7.69	36.99	54.00	-17.01	AVG

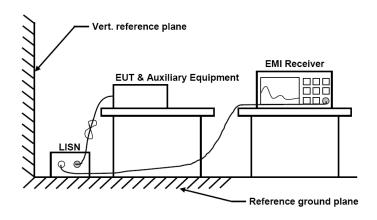
٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904.000	44.14	5.16	49.30	74.00	-24.70	peak
4904.000	36.55	5.16	41.71	54.00	-12.29	AVG
7356.000	38.41	7.69	46.10	74.00	-27.90	peak
7356.000	29.10	7.69	36.79	54.00	-17.21	AVG

Notes:

- 1). Measuring frequencies from 9 KHz 10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.
- 2). Radiated emissions measured in frequency range from 9 KHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.
- 3). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13Mbps at IEEE 802.11n HT40; 6.5Mbps at IEEE 802.11ax HE20; 13Mbps at IEEE 802.11ax HE40
- 5). Margin=Reading level + Factor Limit

6.10 Conducted Emissions


6.9.1 Standard requirement:

According to §15.207 (a), RSS-Gen Issue 5: For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBμV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

^{*} Decreasing linearly with the logarithm of the frequency

6.9.2 Test Setup Layout

6.9.3 Test Procedures

The transmitter output is connected to EMI receiver. The resolution bandwidth is set to 9 kHz. The video bandwidth is set to 30 kHz, Sweep time=Auto

The spectrum from 150 kHz to 30MHz is investigated with the transmitter set to the lowest, middle, and highest channels.

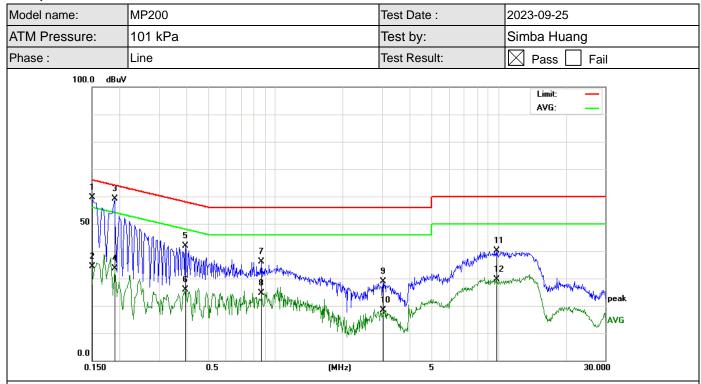
6.9.4 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.9.5 Test result

PASS

The test data please refer to following page.


Temperature	Temperature 25.8°C		52.5%	
Test Engineer	Simba Huang	Configurations	IEEE 802.11b/g/n	

Measurement data:

AC Conducted Emission of charge from Adapter mode @ AC 120V/60Hz @ IEEE 802.11b (worst case)

Page 44 of 46

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1500	47.71	11.94	59.65	65.99	-6.34	QP
2	0.1500	22.47	11.94	34.41	55.99	-21.58	AVG
3 *	0.1900	47.88	11.26	59.14	64.03	-4.89	QP
4	0.1900	22.47	11.26	33.73	54.03	-20.30	AVG
5	0.3940	31.76	10.10	41.86	57.98	-16.12	QP
6	0.3940	15.89	10.10	25.99	47.98	-21.99	AVG
7	0.8620	26.33	9.91	36.24	56.00	-19.76	QP
8	0.8620	14.65	9.91	24.56	46.00	-21.44	AVG
9	3.0340	18.89	9.98	28.87	56.00	-27.13	QP
10	3.0340	8.41	9.98	18.39	46.00	-27.61	AVG
11	9.8460	29.99	10.14	40.13	60.00	-19.87	QP
12	9.8460	19.38	10.14	29.52	50.00	-20.48	AVG

ATM Pressure: 101 kPa Phase: Neutral Test by: Simba Huang Phase: Pass Fail 100.0 dBuv Limit: AVG: — AVG: — 100.0 dBuv 100.0 dBuv	Model name:	MP200	Test	t Date :		
100.0 dBuV Limit: AVG:	ATM Pressure:	101 kPa	Tes	t by:		
100.0 dBuV Limit: AVG:	Phase :	Neutral	Test	t Result:		
3	100.0 dBuV	i	•			
50 T T T T T T T T T T T T T						
50 T T T T T T T T T T T T T						
50 T T T T T T T T T T T T T						
5 7 7 9 9 Man Andrew Man Avg	*3 *					
MANUTO AND	50	Mu			11	
MANUTO AND		The state of the s	7 ************************************	A STATE OF THE STA	12 Mary	
		Mary Mary Characater and a fine of the contraction	* White All Market And	Why was have and a supply of the supply of t	AVG	
		P	MALAN	πγγ:		
0.150 0.5 (MHz) 5 30.000						

Page 45 of 46

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1499	50.35	11.94	62.29	66.00	-3.71	QP
2		0.1499	32.56	11.94	44.50	56.00	-11.50	AVG
3		0.1624	47.96	11.67	59.63	65.34	-5.71	QP
4		0.1624	32.54	11.67	44.21	55.34	-11.13	AVG
5		0.3660	29.46	10.15	39.61	58.59	-18.98	QP
6		0.3660	16.60	10.15	26.75	48.59	-21.84	AVG
7		1.1700	27.54	9.95	37.49	56.00	-18.51	QP
8		1.1700	15.54	9.95	25.49	46.00	-20.51	AVG
9		3.3260	21.79	10.04	31.83	56.00	-24.17	QP
10		3.3260	10.48	10.04	20.52	46.00	-25.48	AVG
11		10.9259	30.83	10.32	41.15	60.00	-18.85	QP
12		10.9259	21.30	10.32	31.62	50.00	-18.38	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7 Test Setup Photographs of EUT

Please refer to separated files for Test Setup Photos of the EUT.

8 External Photographs of EUT

Please refer to separated files for External Photos of the EUT.

9 Internal Photographs of EUT

Please refer to separated files for Internal Photos of the EUT.

-----End-----