

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202205254F01

TEST Report

Applicant: Grand New Material (Shenzhen) Co.,Ltd

Address of Applicant: Room 725, Block B, Chengshishanhai Center, 11st Zhongxing

Road, Bantian Street, Longgang District, Shenzhen.

Manufacturer: Grand New Material (Shenzhen) Co.,Ltd

Address of Room 725, Block B, Chengshishanhai Center, 11st Zhongxing

Manufacturer: Road, Bantian Street, Longgang District, Shenzhen.

Equipment Under Test (EUT)

Product Name: wireless carplay adapter

Model No.: CP-101

Series model: CP-102, CP-200, CP-201, CP-202, CP-300, CP-301, CP-302,

CPAA300, CPAA301, CPAA302, CPAA303, Al10, Al20, Al30,

Al40, Al60, PAD1, PAD2, PAD3, PAD4

Trade Mark: N/A

FCC ID: 2A7AU-CP-101

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: May.12,2022

Date of Test: May.12,2022~June.04,2022

Date of report issued: June.04,2022

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	June.04,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	June.04,2022
	Project Engineer	_	
Check By:	Bruce Zhu	Date:	June.04,2022
	Reviewer		
Approved By :	Kevin Yang	Date:	June.04,2022
	Authorized Signature		

2. Contents

			Page
1.	. VEF	RSION	2
2.		NTENTS	
3.		ST SUMMARY	
4.	. GEN	NERAL INFORMATION	5
	4.1.	GENERAL DESCRIPTION OF EUT	5
	4.2.	TEST MODE	
	4.3.	DESCRIPTION OF SUPPORT UNITS	7
	4.4.	DEVIATION FROM STANDARDS	
	4.5.	ABNORMALITIES FROM STANDARD CONDITIONS	7
	4.6.	TEST FACILITY	7
	4.7.	TEST LOCATION	
	4.8.	ADDITIONAL INSTRUCTIONS	7
5.	. TES	ST INSTRUMENTS LIST	8
6.	. TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1.	CONDUCTED EMISSIONS	9
	6.2.	CONDUCTED PEAK OUTPUT POWER	
	6.3.	20DB EMISSION BANDWIDTH	
	6.4.	FREQUENCIES SEPARATION	17
	6.5.	HOPPING CHANNEL NUMBER	19
	6.6.	DWELL TIME	21
	6.7.	BAND EDGE	26
	6.7.	1. Conducted Emission Method	26
	6.7.	2. Radiated Emission Method	
	6.8.	Spurious Emission	
		1. Conducted Emission Method	
	6.8.	2. Radiated Emission Method	37
7.	. TES	ST SETUP PHOTO	45
8.	. EUT	CONSTRUCTIONAL DETAILS	45

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	30~1000MHz	3.45 dB	(1)			
Radiated Emission	1~6GHz	3.54 dB	(1)			
Radiated Emission	6~40GHz	5.38 dB	(1)			
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)			
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

4. General Information

4.1. General Description of EUT

Product Name:	wireless carplay adapter
Model No.:	CP-101
Series model:	CP-102, CP-200, CP-201, CP-202, CP-300, CP-301, CP-302, CPAA300, CPAA301, CPAA302, CPAA303, Al10, Al20, Al30, Al40, Al60, PAD1, PAD2, PAD3, PAD4
Test sample(s) ID:	HTT202205254-1(Engineer sample)
	HTT202205254-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	PCB Antenna
Antenna gain:	0 dBi
Power Supply:	DC 5V From External Circuit
Adapter Information	Mode: CD122
(Auxiliary test provided by the lab):	Input: AC100-240V, 50/60Hz, 500mA
	Output: DC 5V, 2A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

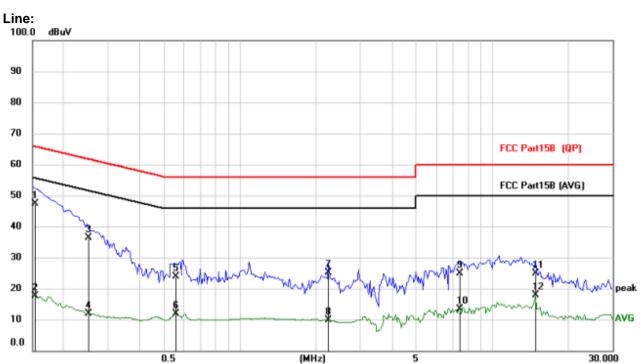
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

Shenzhen HTT Technology Co.,Ltd.

5. Test Instruments list

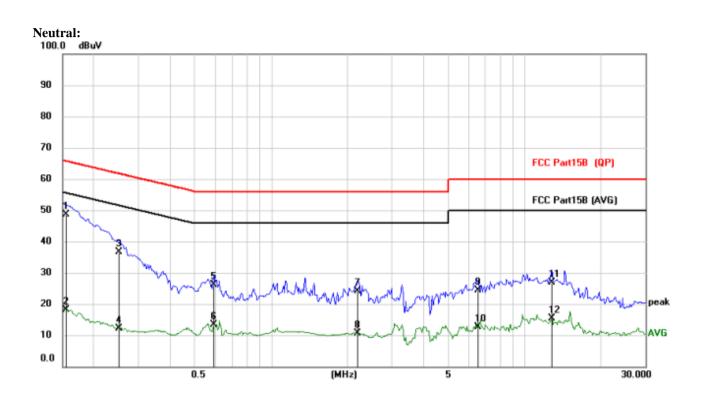
<u>J.</u>	rest mstrume			ı		1
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Shenzhen C.R.T Chamber technology co., LTD		9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 23 2022	May 22 2023
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 23 2022	May 22 2023
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 23 2022	May 22 2023
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 23 2022	May 22 2023
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 23 2022	May 22 2023
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 23 2022	May 22 2023
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	Aug. 22 2021	Aug. 21 2022
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	Aug. 22 2021	Aug. 21 2022
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Aug. 22 2021	Aug. 21 2022
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Aug. 22 2021	Aug. 21 2022
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 23 2022	May 22 2023
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 23 2022	May 22 2023
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 23 2022	May 22 2023
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 23 2022	May 22 2023
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 23 2022	May 22 2023
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 23 2022	May 22 2023
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 23 2022	May 22 2023
20	Attenuator	Robinson	6810.17A	HTT-E007	May 23 2022	May 22 2023
	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 23 2022	May 22 2023
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 23 2022	May 22 2023
23	DC power supply	Agilent	E3632A	HTT-E023	May 23 2022	May 22 2023
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 23 2022	May 22 2023
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 23 2022	May 22 2023
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 23 2022	May 22 2023
27	Power sensor	Keysight	U2021XA	HTT-E027	May 23 2022	May 22 2023
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 23 2022	May 22 2023
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

6. Test results and Measurement Data


6.1. Conducted Emissions

	<u> </u>								
Test Requirement:	FCC Part15 C Section 15.207								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	150KHz to 30MHz								
Class / Severity:	Class B	Class B							
Receiver setup:	RBW=9KHz, VBW=30KHz, \$	Sweep time=auto							
Limit:	Fraguency range (MHZ)	Limit	(dBuV)						
	Frequency range (MH2)	Frequency range (MHz) Quasi-peak Average							
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
Tank ank	* Decreases with the logarith								
Test setup: Test procedure:	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators	AUX Equipment E.U.T EMI Receiver Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m							
	line impedance stabilization 500hm/50uH coupling impedance. The peripheral devices are LISN that provides a 500h termination. (Please refer photographs). 3. Both sides of A.C. line are interference. In order to fir positions of equipment an according to ANSI C63.10	edance for the measure also connected to the m/50uH coupling impute to the block diagram of the checked for maximum at the maximum emisure all of the interface contents.	uring equipment. e main power througedance with 50ohm of the test setup and m conducted sion, the relative ables must be chang						
Test Instruments:	Refer to section 6.0 for detail	S							
Test mode:	Refer to section 5.2 for detail	S							
Test environment:	Temp.: 25 °C Hu	mid.: 52%	Press.: 1012n	nbar					
Test voltage:	AC 120V, 60Hz	L							
Test results:	Pass								
	17.7								

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.



Measurement data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1539	36.91	10.37	47.28	65.79	-18.51	QP
2		0.1539	7.19	10.37	17.56	55.79	-38.23	AVG
3		0.2519	25.94	10.40	36.34	61.69	-25.35	QP
4		0.2519	1.48	10.40	11.88	51.69	-39.81	AVG
5		0.5552	13.45	10.54	23.99	56.00	-32.01	QP
6		0.5552	1.26	10.54	11.80	46.00	-34.20	AVG
7		2.2443	14.20	10.83	25.03	56.00	-30.97	QP
8		2.2443	-1.05	10.83	9.78	46.00	-36.22	AVG
9		7.4465	13.49	11.44	24.93	60.00	-35.07	QP
10		7.4465	1.82	11.44	13.26	50.00	-36.74	AVG
11		14.8482	12.75	12.08	24.83	60.00	-35.17	QP
12		14.8482	5.84	12.08	17.92	50.00	-32.08	AVG

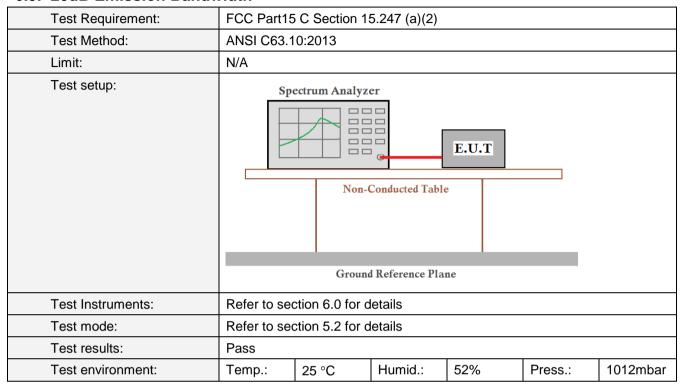
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1 *	0.1548	38.27	10.26	48.53	65.74	-17.21	QP
2	0.1548	7.96	10.26	18.22	55.74	-37.52	AVG
3	0.2514	26.32	10.22	36.54	61.71	-25.17	QP
4	0.2514	1.93	10.22	12.15	51.71	-39.56	AVG
5	0.5946	15.67	10.49	26.16	56.00	-29.84	QP
6	0.5946	2.88	10.49	13.37	46.00	-32.63	AVG
7	2.1975	13.33	10.83	24.16	56.00	-31.84	QP
8	2.1975	-0.17	10.83	10.66	46.00	-35.34	AVG
9	6.4882	13.47	10.92	24.39	60.00	-35.61	QP
10	6.4882	1.72	10.92	12.64	50.00	-37.36	AVG
11	12.7967	15.06	11.89	26.95	60.00	-33.05	QP
12	12.7967	3.50	11.89	15.39	50.00	-34.61	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

 ${\bf Shenzhen\ HTT\ Technology\ Co., Ltd.}$

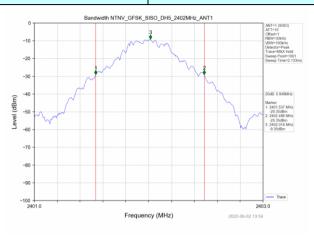
6.2. Conducted Peak Output Power


Test Requirement:	FCC Part15 C Section 15.247 (b)(3)						
Test Method:	ANSI C63.1	10:2013					
Limit:	30dBm(for	GFSK),20.97	dBm(for EDF	₹)			
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table						
		Ground Reference Pla	ane				
Test Instruments:	Refer to se	ction 6.0 for c	letails				
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

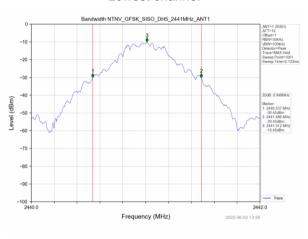
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	-6.69		
GFSK	Middle	-7.92	30.00	Pass
	Highest	-8.88		
	Lowest	-4.42		
π/4-DQPSK	Middle	-5.68	20.97	Pass
	Highest	-6.64		
	Lowest	-6.28		
8-DPSK	Middle	-6.69	20.97	Pass
	Highest	-7.92		

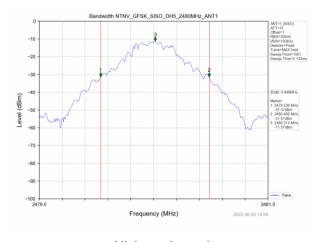
6.3. 20dB Emission Bandwidth


Measurement Data

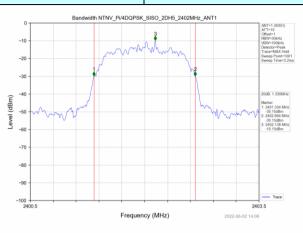
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.949	
GFSK	Middle	0.949	Pass
	Highest	0.949	
	Lowest	1.330	
π/4-DQPSK	Middle	1.350	Pass
	Highest	1.342	
	Lowest	1.315	
8-DPSK	Middle	1.319	Pass
	Highest	1.310	

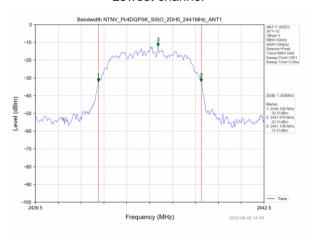


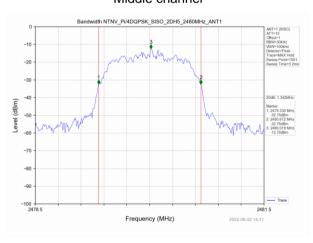
Test plot as follows:


Test mode: GFSK mode

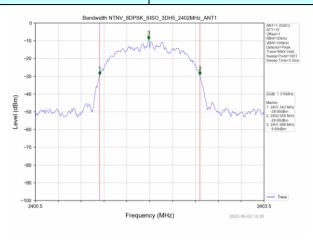
Lowest channel

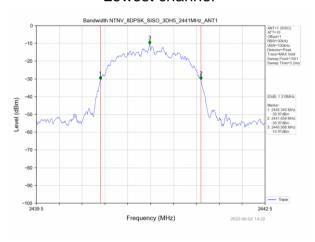

Middle channel

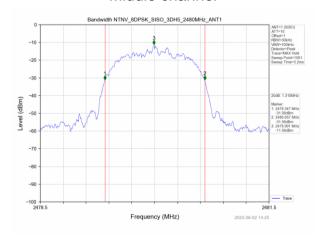

Highest channel


Test mode: π/4-DQPSK mode

Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

Lowest channel

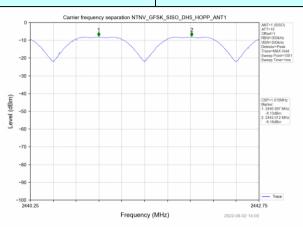
Middle channel

Highest channel

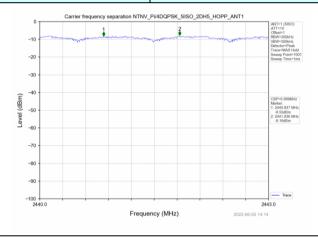
6.4. Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)							
Test Method:	ANSI C63.10:2013							
Receiver setup:		RBW=100KHz, VBW=300KHz, detector=Peak						
Limit:		GFSK: 20dB bandwidth π/4-DQPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)						
Test setup:	Sp							
Test Instruments:	Refer to se	ction 6.0 for o	details					
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

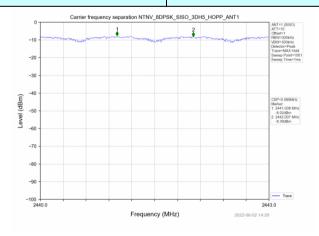
Measurement Data


Measurement Date	<u>a</u>			
Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	1.015	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	0.999	2/3*20dB	Pass
			bandwidth	
			25KHz or	
8-DPSK	Middle	0.999	2/3*20dB	Pass
			bandwidth	
	1	1		

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



Test plot as follows:

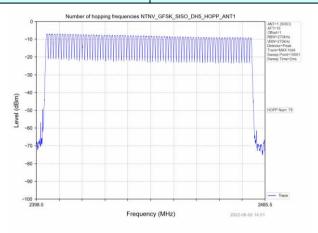

Modulation mode: GFSK

Test mode: $\pi/4$ -DQPSK

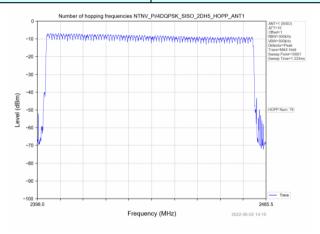
Shenzhen HTT Technology Co.,Ltd.

6.5. Hopping Channel Number

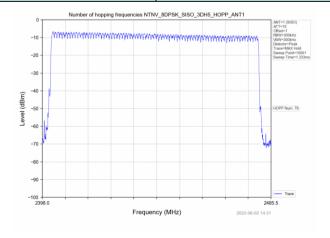
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)						
Test Method:	ANSI C63.10:2013						
Receiver setup:	RBW=100k Detector=Po	Hz, VBW=30 eak	0kHz, Frequ	ency range=2	2400MHz-248	33.5MHz,	
Limit:	15 channels	3					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to sec	ction 6.0 for d	letails				
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass



Test plot as follows:


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

Shenzhen HTT Technology Co.,Ltd.

6.6. Dwell Time

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (a)(1)(iii)						
Test Method:	ANSI C63.1	0:2013						
Receiver setup:	RBW=1MH	z, VBW=1MH	lz, Span=0Hz	z, Detector=P	eak eak			
Limit:	0.4 Second							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	DH1	0.399	127.680	400	Pass
Hopping	DH3	1.645	279.650	400	Pass
Hopping	DH5	2.893	286.407	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

$\pi/4$ -DOPSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	2DH1	0.409	130.880	400	Pass
Hopping	2DH3	1.659	250.509	400	Pass
Hopping	2DH5	2.903	313.524	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

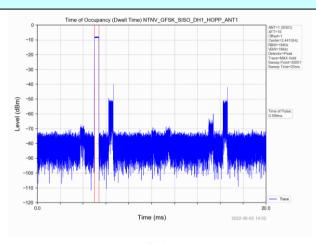
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

8-DPSK mode:

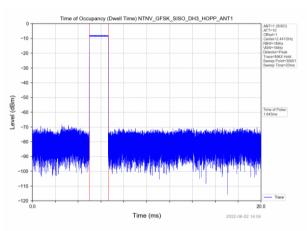
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	3DH1	0.407	130.240	400	Pass
Hopping	3DH3	1.661	244.167	400	Pass
Hopping	3DH5	2.912	317.408	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

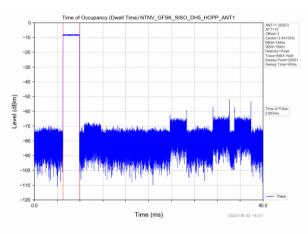
Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

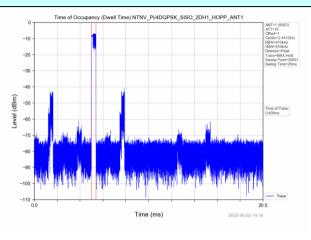
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

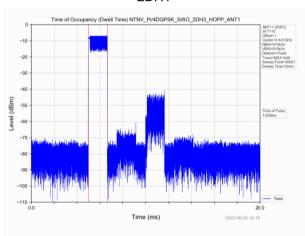


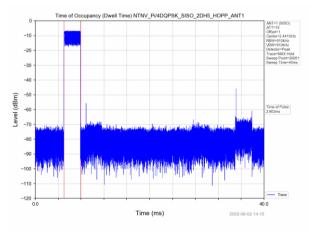
Test plot as follows:


GFSK mode

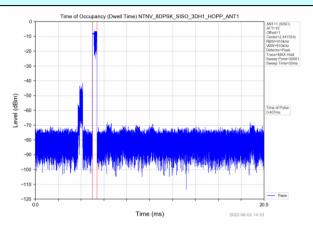
DH1


DH3

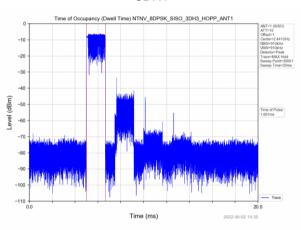

DH5

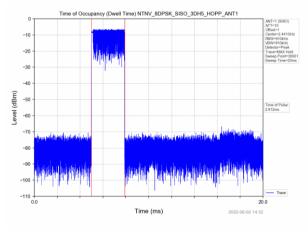

π/4-DQPSK mode

2DH1



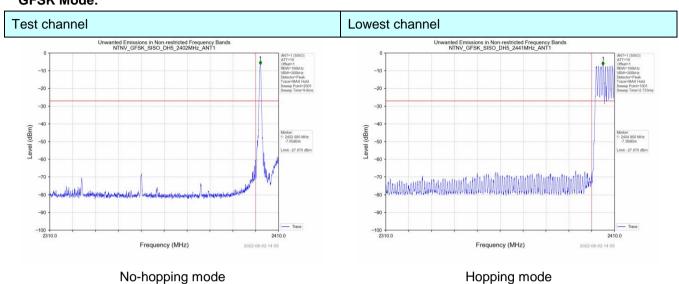
2DH3




8-DPSK mode

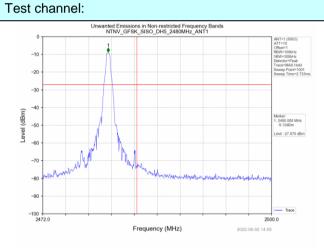
3DH3

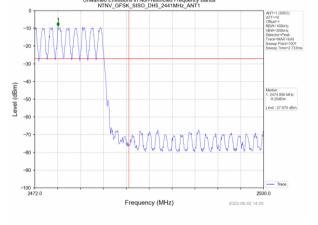
3DH5


6.7. Band Edge

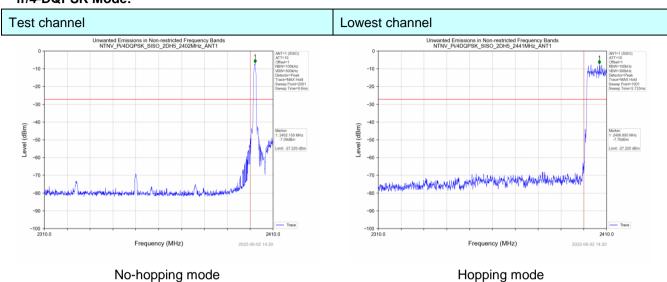
6.7.1. Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.10:2013								
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated neasurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								



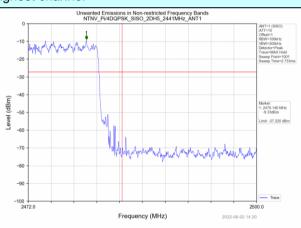

Test plot as follows: GFSK Mode:

Highest channel



No-hopping mode

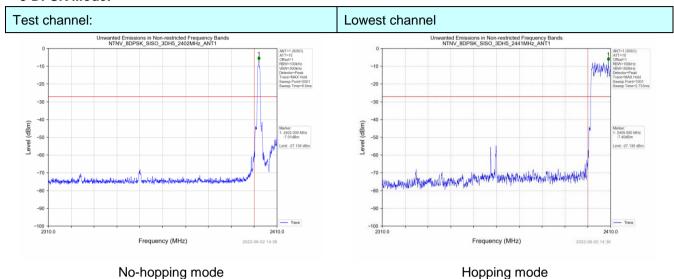
Hopping mode


π/4-DQPSK Mode:

Test channel:

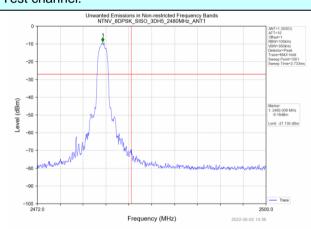
Unwanted Emissions in Non-restricted Frequency Bands NTNV_PIABOLPSK_SISO_2DHS_2480MHz_ANT1 ATT-16 A

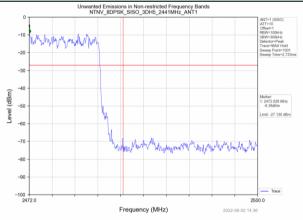
Highest channel



No-hopping mode

Hopping mode




8-DPSK Mode:

Test channel:

Highest channel

No-hopping mode

Hopping mode

6.7.2. Radiated Emission Method

- Tradiator	Lillission Meti	104									
Test Requirement:	FCC Part15 C	Section 15.	209 a	nd 15.205							
Test Method:	ANSI C63.10:	2013									
Test Frequency Range:		All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.									
Test site:	Measurement	Measurement Distance: 3m									
Receiver setup:	Frequency										
·	Above 1GHz	Above 1GHz Peak 1MHz 10Hz Average V									
Limit:	Freq	uency	L	.imit (dBuV	/m @3m) Re	mark				
	Above	Above 1GHz 54.00 Average Value 74.00 Peak Value									
Test setup:	Tum Table	EUT+	< 3m >	Test Antenna	?						
Test Procedure:	1. The EUT w	van planad ar				lo 1 5 motor	a above the				
	ground at a determine 2. The EUT wantenna, watower. 3. The antenry ground to composite the formula and then the and the rote maximum 5. The test-resident and the emission limit specific EUT would margin work.	a 3 meter car the position of was set 3 met which was mo ha height is v determine the and vertical p ent. uspected em he antenna w ha table was t reading. eceiver syster with Maximu	nber. of the sers averaged aried aried e max colariz ission as tur urned m was m Ho he El ing co . Othe ed on	The table way from the form one not imum value actions of the from 0 decays and the form of the form o	was rotated diation. The interfer of a variance of the free antenral was arragrees to the free and the free a	erence-receiviable-height four meters a ield strength ha are set to anged to its value of the peak val	ving antenna above the Both make the vorst case meters to find the add Specified er than the alues of the thave 10dB k or				
Test Instruments:	Refer to section										
Test mode:	Refer to section	on 5.2 for de	tails								
Test results:	Pass			1			I				
Test environment:	Temp.: 2	25 °C I	Humic	d.: 52%	o O	Press.:	1012mbar				

Shenzhen HTT Technology Co.,Ltd.

Measurement Data

Remark: GFSK, Pi/4 DQPSK,8-DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2390	59.24	26.20	5.72	33.30	57.86	74.00	-16.14	peak
2390	45.31	26.20	5.72	33.30	43.93	54.00	-10.07	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	58.57	26.20	5.72	33.30	57.19	74.00	-16.81	peak
2390	44.96	26.20	5.72	33.30	43.58	54.00	-10.42	AVG

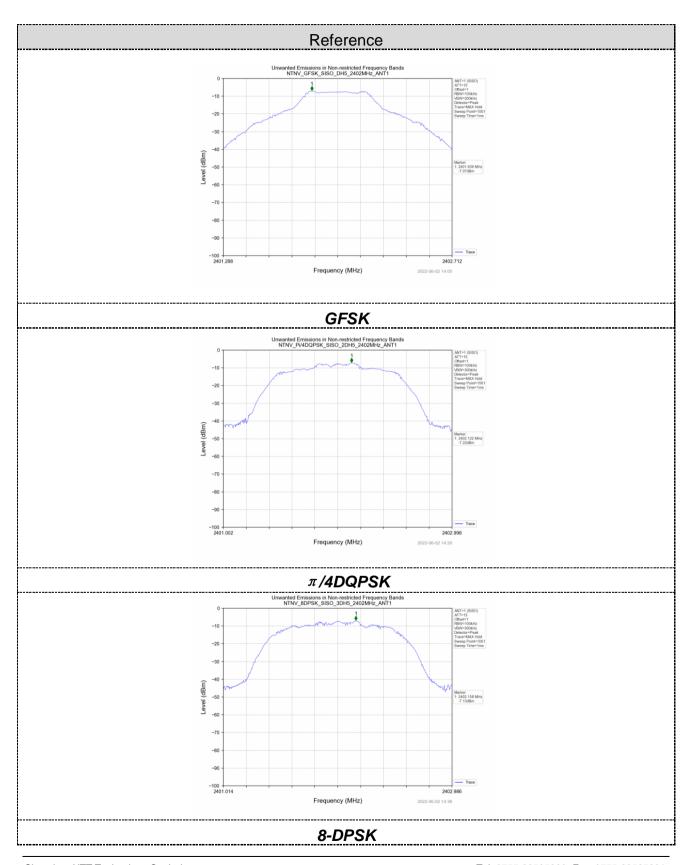
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	55.36	28.60	6.97	32.70	58.23	74.00	-15.77	peak
2483.5	41.25	28.60	6.97	32.70	44.12	54.00	-9.88	AVG

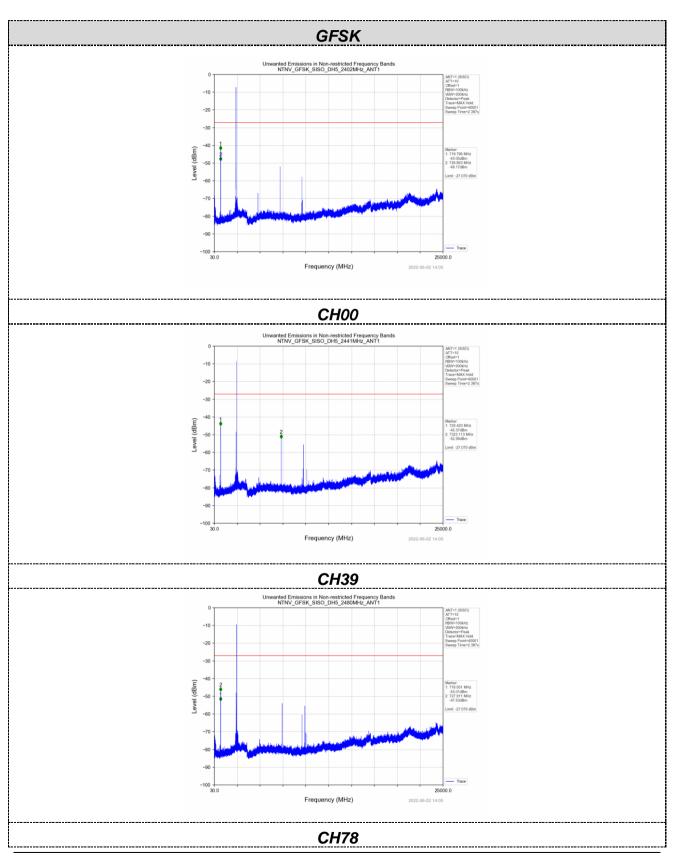
Vertical:

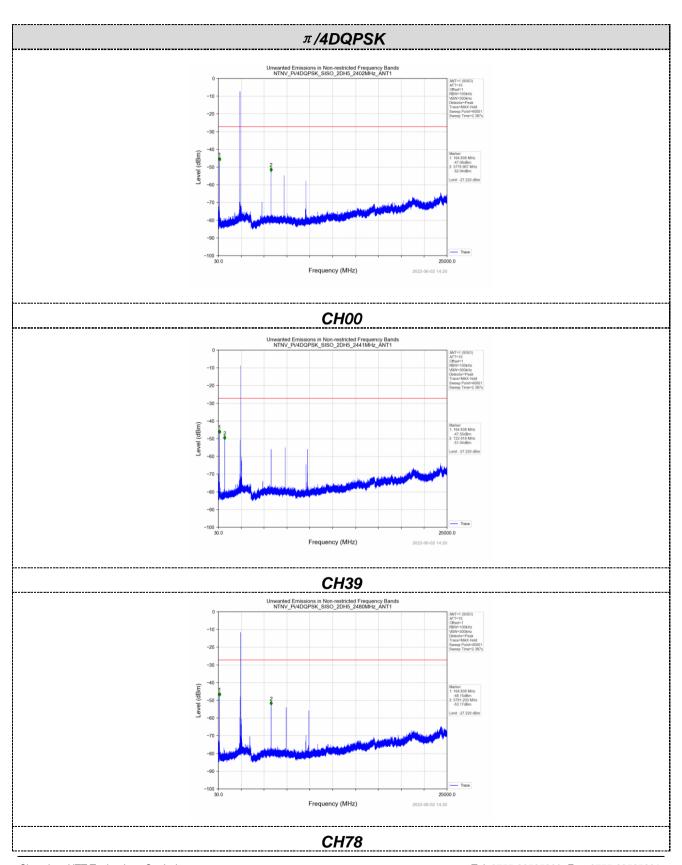
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	56.14	28.60	6.97	32.70	59.01	74.00	-14.99	peak
2483.5	42.78	28.60	6.97	32.70	45.65	54.00	-8.35	AVG

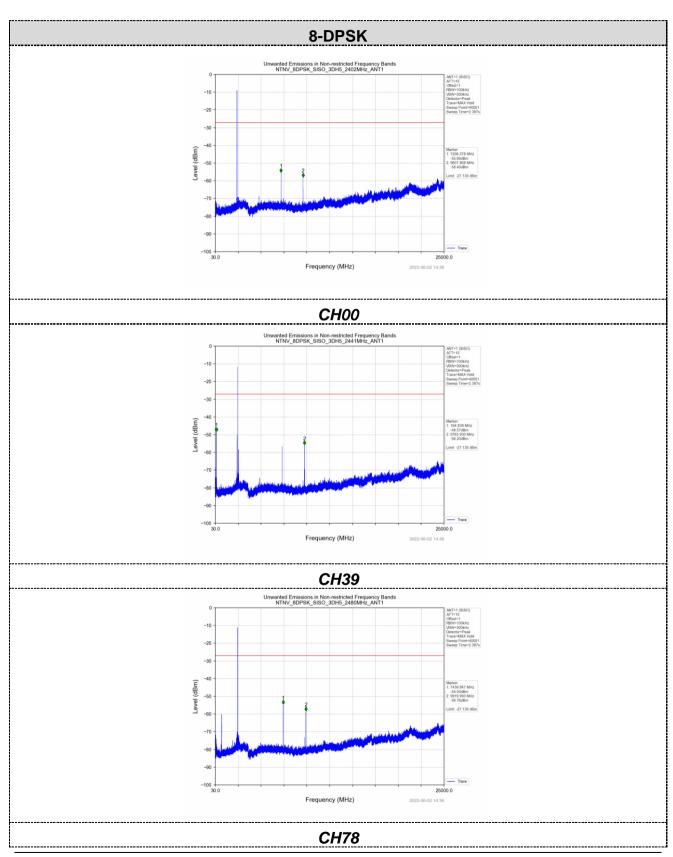


6.8. Spurious Emission

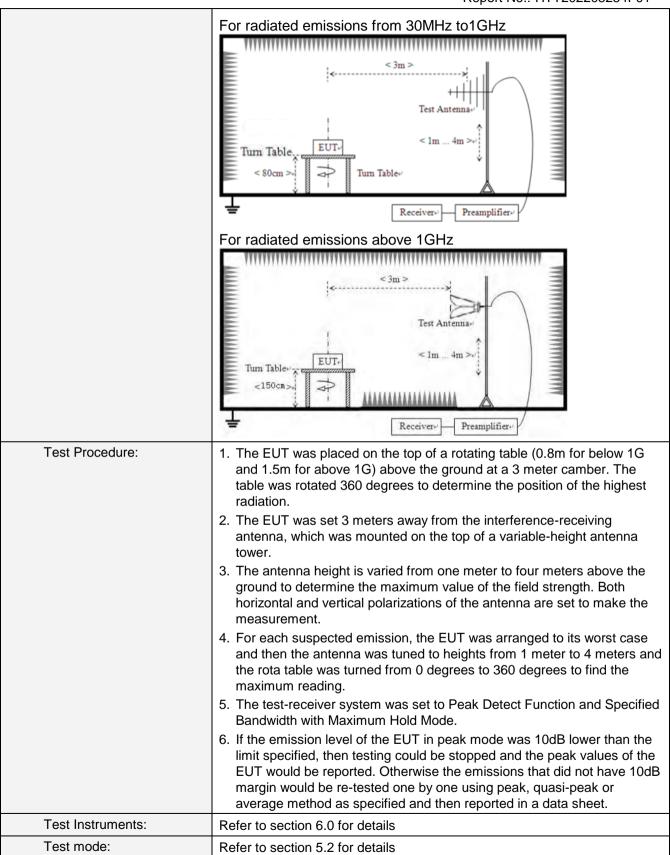
6.8.1. Conducted Emission Method


Test Requirement:	FCC Part15	5 C Section 1	5.247 (d)			
Test Method:	ANSI C63.1	10:2013				
Limit:	spectrum ir produced b 100 kHz ba	ntentional rad y the intentio Indwidth with wer, based or	liator is opera nal radiator s in the band th	e frequency bating, the radio hall be at least nat contains the conducted o	o frequency p st 20 dB belo ne highest lev	ower that is w that in the
Test setup:	Sp					
Test Instruments:	Refer to se	ction 6.0 for o	details			
Test mode:	Refer to se	ction 5.2 for o	details			
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar


Shenzhen HTT Technology Co.,Ltd.


Shenzhen HTT Technology Co.,Ltd.

Shenzhen HTT Technology Co.,Ltd.


Shenzhen HTT Technology Co.,Ltd.

6.8.2. Radiated Emission Method

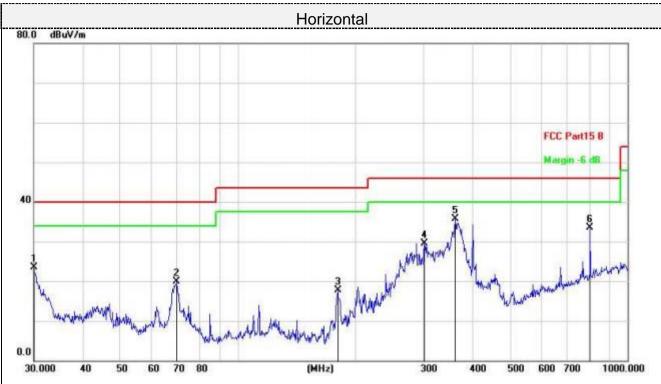
Test Requirement:	FCC Part15 C Section	on 15	5.209					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar							
Receiver setup:	Frequency	Detector		RBW		VBW	'	Value
	9KHz-150KHz	Qı	ıasi-peak	200l	Ηz	600H	z	Quasi-peak
	150KHz-30MHz	Q	ıasi-peak	9KF	Ηz	30KH	z	Quasi-peak
	30MHz-1GHz		ıasi-peak	120K	Hz	300KH	lz	Quasi-peak
	Above 1GHz		Peak	1MF	Ηz	3MHz	Z	Peak
	Above 10112		Peak	1MF	Ηz	10Hz	<u>-</u>	Average
Limit:	Frequency		Limit (u\	//m)	٧	'alue	N	Measurement Distance
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP		300m
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP		30m
	1.705MHz-30MH	Z	30		QP			30m
	30MHz-88MHz		100		QP			
	88MHz-216MHz	<u>'</u>	150			QP		
	216MHz-960MH	Z	200 500			QP		3m
	960MHz-1GHz				QP			OIII
	Above 1GHz	500		Averag		erage		
	7,5000 10112		5000		F	Peak		
Test setup:	For radiated emiss	sions	from 9kH	z to 30	ЭМН	Z		
	For radiated emissions from 9kHz to 30MHz Tum Table Tum Table Receiver							

Shenzhen HTT Technology Co.,Ltd.

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

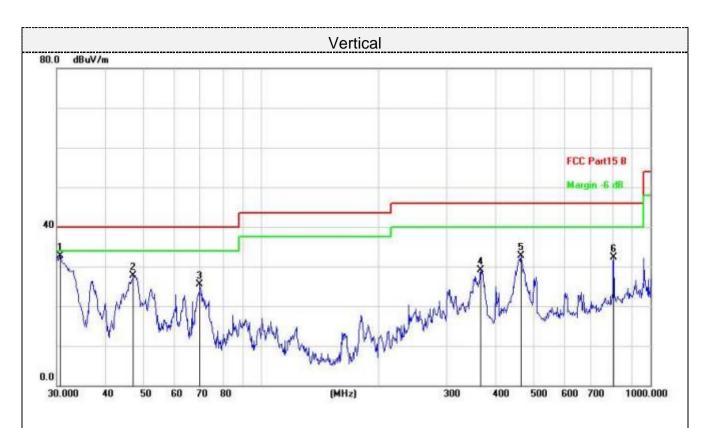
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		30.0000	42.09	-18.59	23.50	40.00	-16.50	QP
2		69.8450	39.87	-19.94	19.93	40.00	-20.07	QP
3		180.6488	37.16	-19.49	17.67	43.50	-25.83	QP
4		301.4224	46.90	-17.46	29.44	46.00	-16.56	QP
5	*	361.7139	52.78	-17.14	35.64	46.00	-10.36	QP
6		801.7863	40.07	-6.47	33.60	46.00	-12.40	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1	*	30.6379	51.29	-18.53	32.76	40.00	-7.24	QP
2		47.1599	45.11	-17.31	27.80	40.00	-12.20	QP
3		69.8450	45.49	-19.94	25.55	40.00	-14.45	QP
4		366.8231	45.93	-16.85	29.08	46.00	-16.92	QP
5		465.5994	47.18	-14.50	32.68	46.00	-13.32	QP
6		804.6028	38.70	-6.44	32.26	46.00	-13.74	QP

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK were test at Low, Middle, and

High

channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4804	51.22	31.40	8.18	31.50	59.30	74.00	-14.70	peak
4804	37.15	31.40	8.18	31.50	45.23	54.00	-8.77	AVG
7206	45.36	35.80	10.83	31.40	60.59	74.00	-13.41	peak
7206	28.16	35.80	10.83	31.40	43.39	54.00	-10.61	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	51.37	31.40	8.18	31.50	59.45	74.00	-14.55	peak
4804	37.15	31.40	8.18	31.50	45.23	54.00	-8.77	AVG
7206	42.69	35.80	10.83	31.40	57.92	74.00	-16.08	peak
7206	28.36	35.80	10.83	31.40	43.59	54.00	-10.41	AVG

CH Middle (2441MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880	51.45	31.40	9.17	32.10	59.92	74.00	-14.08	peak
4880	36.57	31.40	9.17	32.10	45.04	54.00	-8.96	AVG
7320	43.00	35.80	10.83	31.40	58.23	74.00	-15.77	peak
7320	28.64	35.80	10.83	31.40	43.87	54.00	-10.13	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880	51.26	31.40	9.17	32.10	59.73	74.00	-14.27	peak
4880	37.45	31.40	9.17	32.10	45.92	54.00	-8.08	AVG
7320	42.67	35.80	10.83	31.40	57.90	74.00	-16.10	peak
7320	28.05	35.80	10.83	31.40	43.28	54.00	-10.72	AVG
Remark: Facto	or = Antenna Fact	tor + Cable Los	s – Pre-amplifier					

CH High (2480MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	52.42	31.40	9.17	32.10	60.89	74.00	-13.11	peak
4960	37.11	31.40	9.17	32.10	45.58	54.00	-8.42	AVG
7440	42.86	35.80	10.83	31.40	58.09	74.00	-15.91	peak
7440	27.56	35.80	10.83	31.40	42.79	54.00	-11.21	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	51.26	31.40	9.17	32.10	59.73	74.00	-14.27	peak
4960	37.45	31.40	9.17	32.10	45.92	54.00	-8.08	AVG
7440	43.06	35.80	10.83	31.40	58.29	74.00	-15.71	peak
7440	27.84	35.80	10.83	31.40	43.07	54.00	-10.93	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

