

Global United Technology Services Co., Ltd.

Report No.: GTS202112000039F01

TEST REPORT

Applicant:	arad technologies LTD
Address of Applicant:	4 Hamada Street, Yoqneam, Israel
Manufacturer/Factory:	arad technologies LTD
Address of Manufacturer/Factory:	4 Hamada Street, Yoqneam, Israel
Equipment Under Test (E	UT)
Product Name:	OCTAVE Ultrasonic Meter
Model No.:	Octave-5
Trade Mark:	Octave
FCC ID:	2A7AA-OC524B
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	December 01, 2021
Date of Test:	December 02, 2021-January 17, 2022
Date of report issued:	January 17, 2022
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	January 17, 2022	Original

Prepared By:

(ger. Che

Date:

January 17, 2022

Project Engineer

Check By:

opinson (un)

Date:

January 17, 2022

Reviewer

3 Contents

		Pa	age
1	CO	VER PAGE	1
2	VE	RSION	2
3	CO	NTENTS	3
4	TES	ST SUMMARY	4
5	CE	NERAL INFORMATION	-
Э	GE		
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6	TEST FACILITY	
	5.7	TEST LOCATION	7
	5.8	Additional Instructions	7
6	TES	ST INSTRUMENTS LIST	8
7	TES	ST RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED OUTPUT POWER	
	7.3	CHANNEL BANDWIDTH	
	7.4	Power Spectral Density	
	7.5	Spurious Emission in Non-restricted & restricted Bands	
	7.5		
	7.5		
			0.0
8	TES	ST SETUP PHOTO	42
9		T CONSTRUCTIONAL DETAILS	40
9	EU		42

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not applicable.
- 3. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz-30MHz	3.1dB	(1)
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

5 General Information

5.1 General Description of EUT

Produc	t Name:		OCTAVE U	Itrasonic Meter		
Model	No.:		OCTAVE-5			
			D - du			
ltem	Size	Standard	Body Material	Connection	Ext Bat. / PRS ready	
1	1.5"	ISO	Polymer	Threaded	N	
2	1.5"	ISO	St. St.	Threaded	N	
3	2"	ISO	Polymer	Threaded	N	
4	2"	AWWA	Polymer	Threaded	N	
5	2"	ISO	St. St.	Threaded	N	
6	2"	ISO	St. St.	Floating Flanges	N	
7	2"	AWWA	St. St.	Floating Flanges	N	
8	3"	ISO	St. St.	Floating Flanges	N	
9	3"	AWWA	St. St.	Floating Flanges	N	
10	4"	ISO	St. St.	Floating Flanges	N	
11	4"	AWWA	St. St.	Floating Flanges	N	
12	6"	ISO	St. St.	Floating Flanges	N	
13	6"	AWWA	St. St.	Floating Flanges	N	
14	2"	ISO	St. St.	Floating Flanges	Y	
15	2"	AWWA	St. St.	Floating Flanges	Y	
16	3"	ISO	St. St.	Floating Flanges	Y	
17	3"	AWWA	St. St.	Floating Flanges	Y	
18	4"	ISO	St. St.	Floating Flanges	Y	
19	4"	AWWA	St. St.	Floating Flanges	Y	
20	6"	ISO	St. St.	Floating Flanges	Y	
21	6"	AWWA	St. St.	Floating Flanges	Y	
22	8" OHF	ISO	St. St.	Floating Flanges	Y	
23	8"	AWWA	St. St.	Floating Flanges	Y	
24	10"	ISO /AWWA	St. St.	Floating Flanges	Y	
25	12"	ISO/AWWA	St. St.	Floating Flanges	Y	
Test sa	ample(s) ID	:	GTS202112	2000039-1		
Sample	e(s) Status:		Engineer sa	ample		
S/N:			N/A			
Hardwa	are Versior	n:	V2.X		a particular	1
Software Version:			51. X			
	ion Freque		2402MHz~2480MHz			
	el Numbers		40			
Chann	el Separati	on:	2MHz			

	Report No.: GTS202112000039F01
Modulation Type:	GFSK
Antenna Type:	Integral Antenna
Antenna Gain:	0dBi(Declare by applicant)
Power Supply:	DC 3.6V Battery

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz	
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz	
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz	
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz	
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz	
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz	
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz	
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz	
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz	
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: New battery is used during all test.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: • FCC—Registration No.: 381383 Designation Number: CN5029 Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. • IC —Registration No.: 9079A CAB identifier: CN0091 The 3m Semi-anechoic chamber of Global United Technology Services Co. Ltd. has been registered

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Test software provided by manufacturer
Power level setup	Default

6 Test Instruments list

Rad	Radiated Emission:									
Item	Test Equipment	Test Equipment Manufacturer		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025				
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A				
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022				
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022				
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022				
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022				
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022				
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022				
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022				
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022				
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022				
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022				
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022				
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022				
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022				
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022				
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022				
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022				
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022				
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17 2021	Oct. 16 2022				
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17 2021	Oct. 16 2022				
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17 2021	Oct. 16 2022				
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022				

RF C	RF Conducted Test:									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022				
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022				
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022				
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022				
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022				
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022				
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022				
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022				

General used equipment:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022			
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022			

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	irement: FCC Part15 C Section 15.203 /247(c)								
15.203 requirement:									
responsible party shall be us antenna that uses a unique so that a broken antenna ca	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.								
15.247(c) (1)(i) requiremen	15.247(c) (1)(i) requirement:								
operations may employ tran- maximum conducted output	(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.								
E.U.T Antenna:									
The antenna is integral antenna	The antenna is integral antenna, reference to the appendix II for details								

GTS

Report No.: GTS202112000039F01

7.2 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02							
Limit:	30dBm							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							

GTS

Report No.: GTS202112000039F01

7.3 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02							
Limit:	>500KHz							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							

GTS

Report No.: GTS202112000039F01

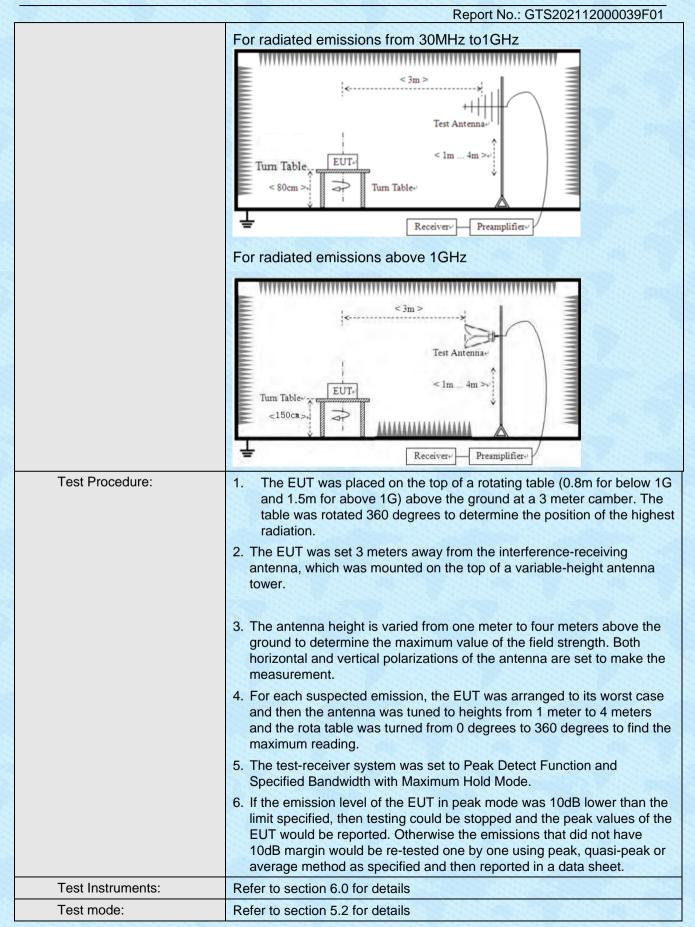
7.4 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02							
Limit:	8dBm/3kHz							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							

7.5 Spurious Emission in Non-restricted & restricted Bands

7.5.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	radiated measurement. Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								



7.5.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	D	etector	RBW VB		VBW	Value	
	9KHz-150KHz	Qu	asi-peak	200Hz		600H:	z Quasi-peak	
	150KHz-30MHz	Qu	asi-peak	9KHz		30KH	z Quasi-peak	
	30MHz-1GHz	Qu	asi-peak	120KHz		300KH	Iz Quasi-peak	
	Above 1GHz		Peak	1MHz 3MHz		3MHz	Peak	
	Above IGHZ		Peak	1Mł	IHz 10Hz		Average	
Limit:	Frequency		Limit (u∖	//m)	V	'alue	Measurement Distance	
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m	
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP	30m	
	1.705MHz-30MH	z	30	30		QP	30m	
	30MHz-88MHz		100 150 200			QP		
	88MHz-216MHz	2			QP			
	216MHz-960MH	z				QP	3m	
	960MHz-1GHz		500		QP			
	Above 1GHz		500		Average			
	710000 10112		5000) Peak		Peak		
Test setup:	For radiated emissions from 9kHz to 30MHz							

Report No.: GTS202112000039F							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test results:	Pass						

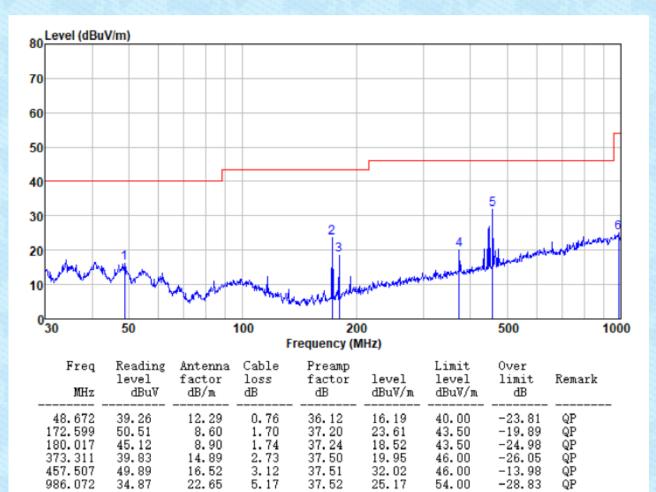
Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

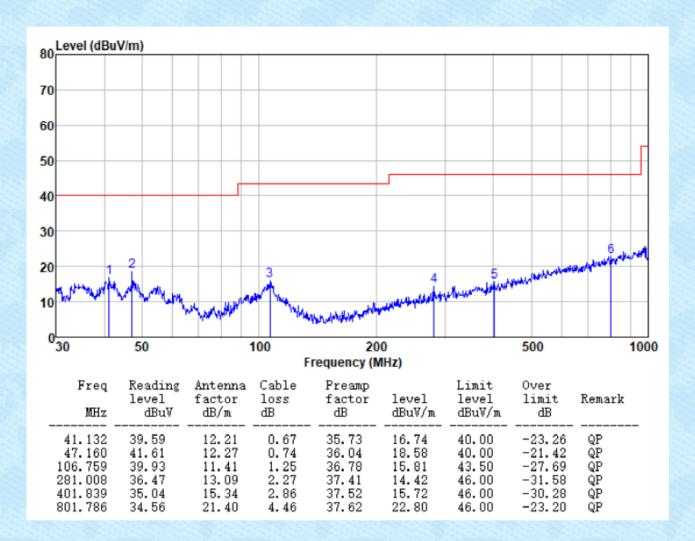
9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.



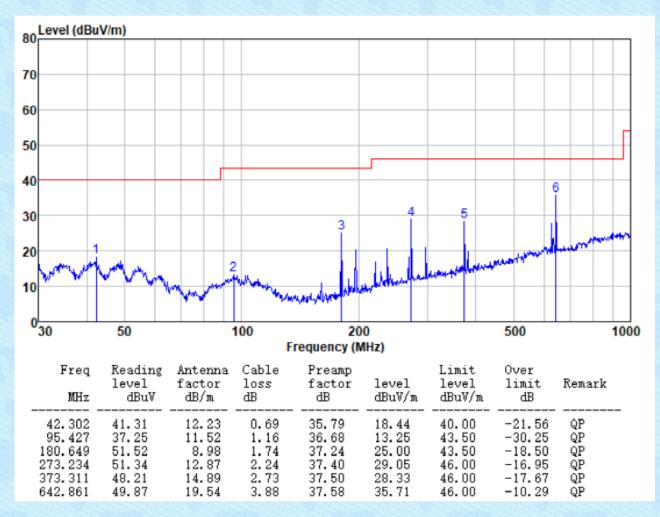
Below 1GHz

Metal body:

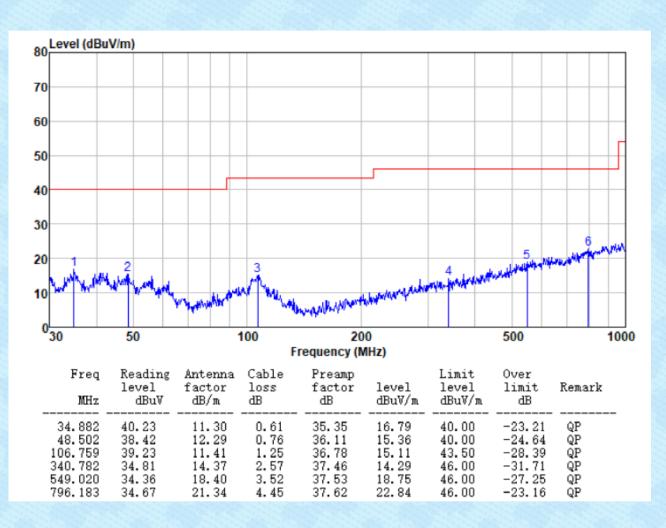

Horizontal:

GTS

Vertical:



Polymer body:

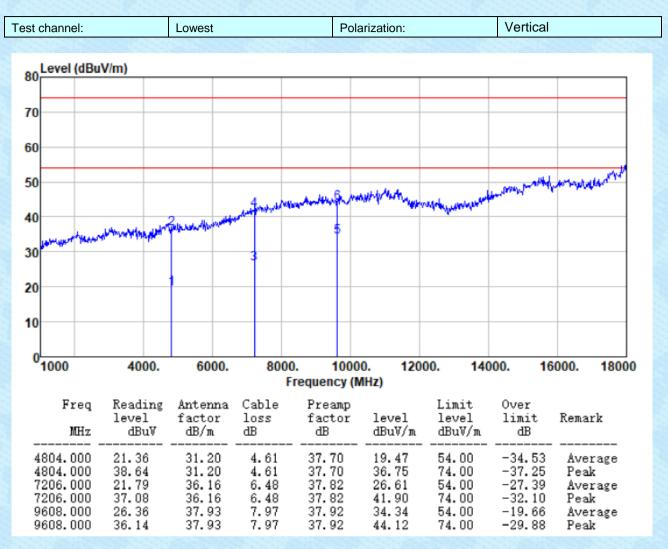

Horizontal:

GTS

Vertical:

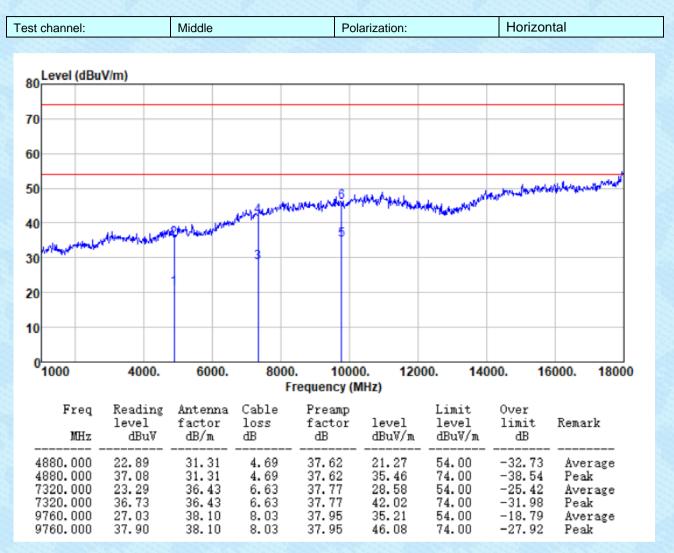
GTS

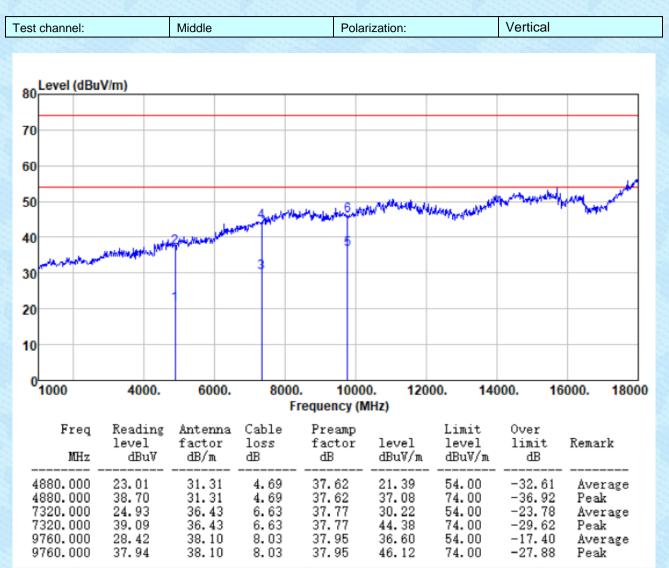
Report No.: GTS202112000039F01

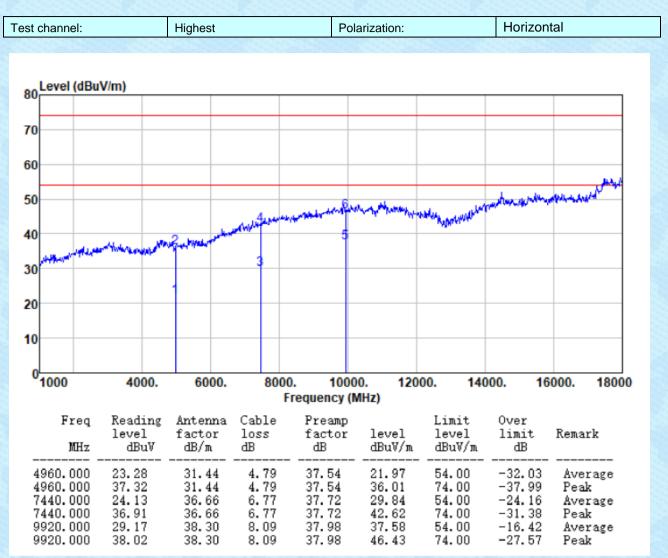

Above 1GHz

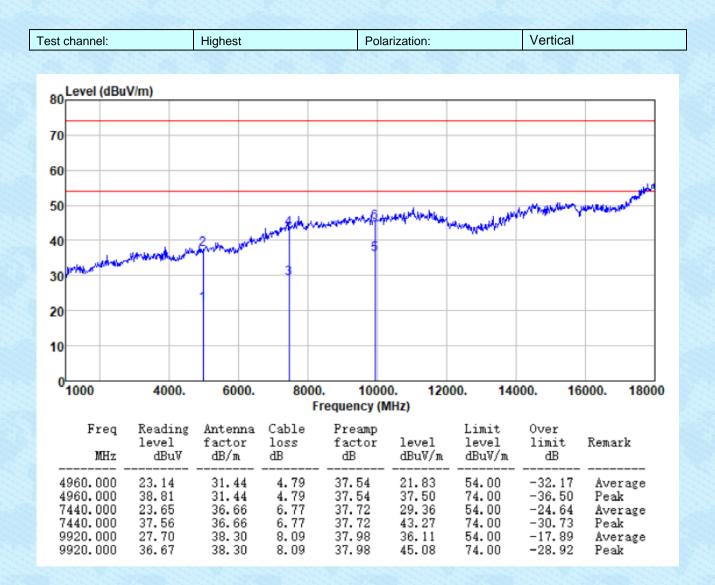
Unwanted Emissions in Restricted Frequency Bands

Metal body: Horizontal Test channel: Polarization: Lowest Level (dBuV/m) 80 70 60 50 on we get a day to get and a solar the marked by a songland 6 4 40 30 20 10 0^L 1000 4000. 6000. 8000. 10000. 12000. 14000. 16000. 18000 Frequency (MHz) Reading Antenna Cable Preamp Over Freq Limit level factor loss factor level level limit Remark dBu∛ dB/m dB dBu∛/m MHz dB dBu∛/m dB 4804.000 31.20 -32.86 23.03 4.61 37.70 21.14 54.00 Average 4804.000 38.20 31.20 37.70 36.31 74.00 -37.69 4.61 Peak 26.59 54.00 7206.000 36.16 6.48 37.82 31.41 -22.59 Average 42.48 38.57 6.48 7.97 37.66 37.82 7206.000 36.16 74.00-31.52Peak 9608.000 30.59 37.93 37.92 54.00 -15.43 Average 9608.000 38.26 37.93 7.97 37.92 46.24 74.00 -27.76Peak

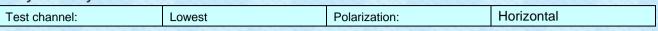


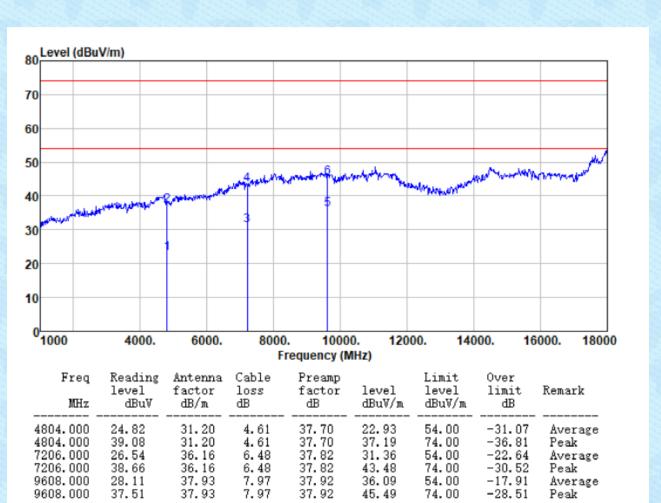


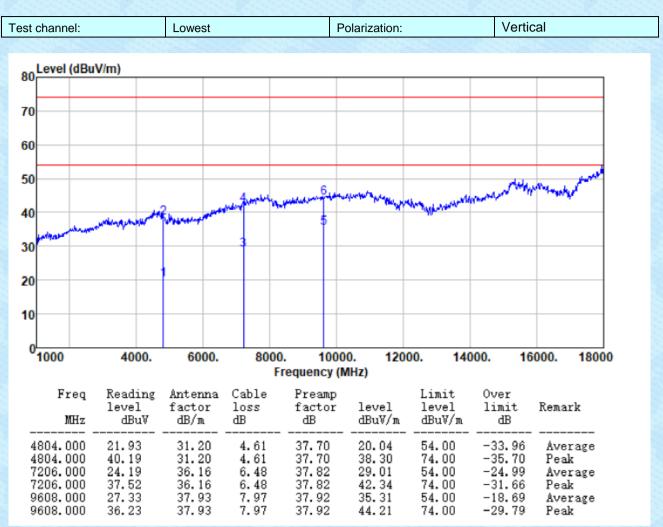


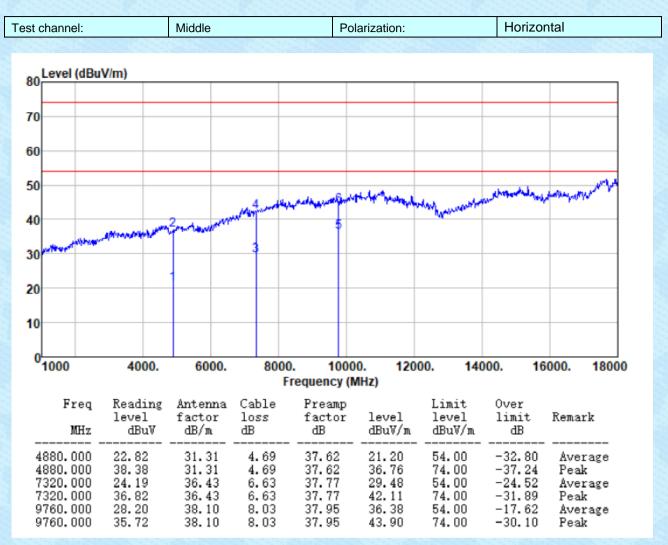


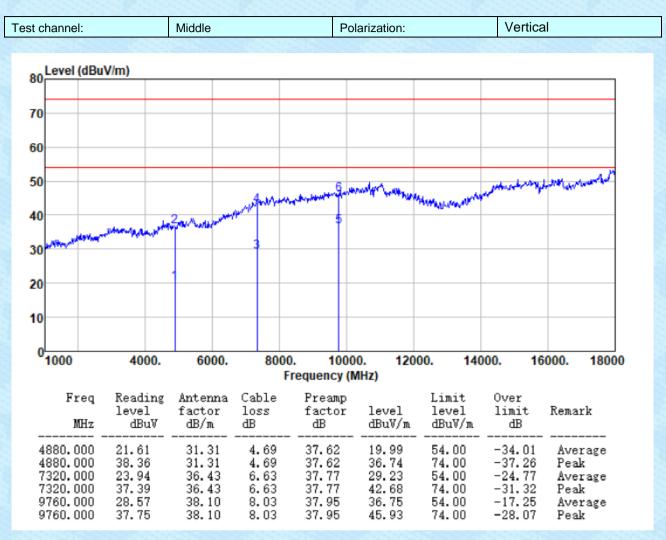
Remarks:

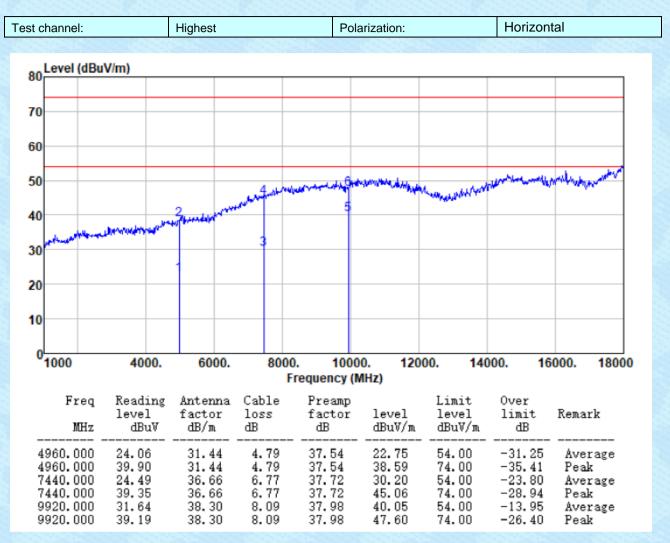

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

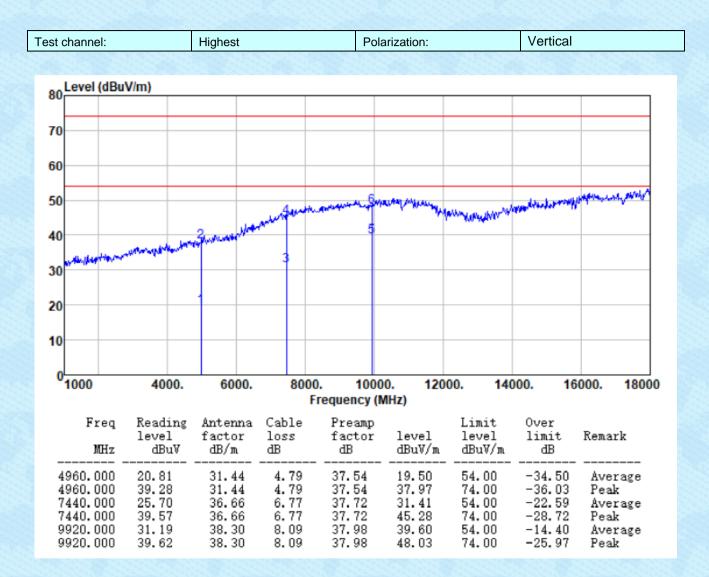

The emission levels of other frequencies are very lower than the limit and not show in test report.


Polymer body:

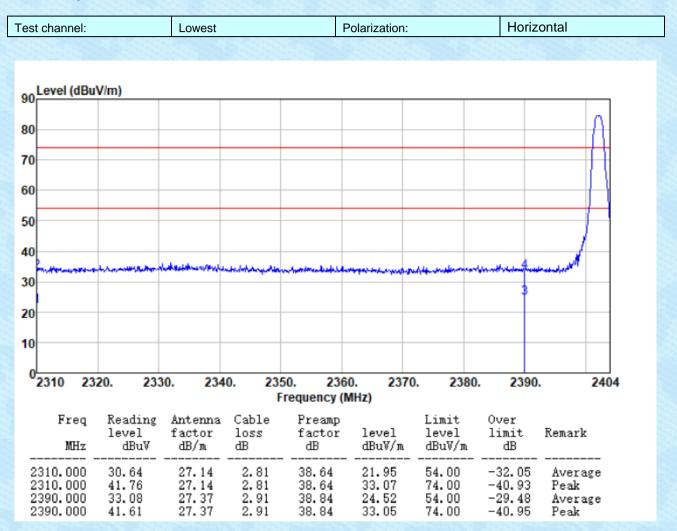


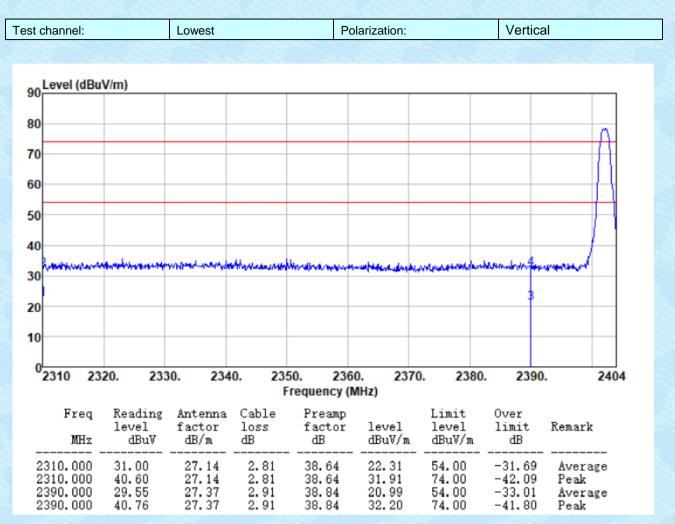




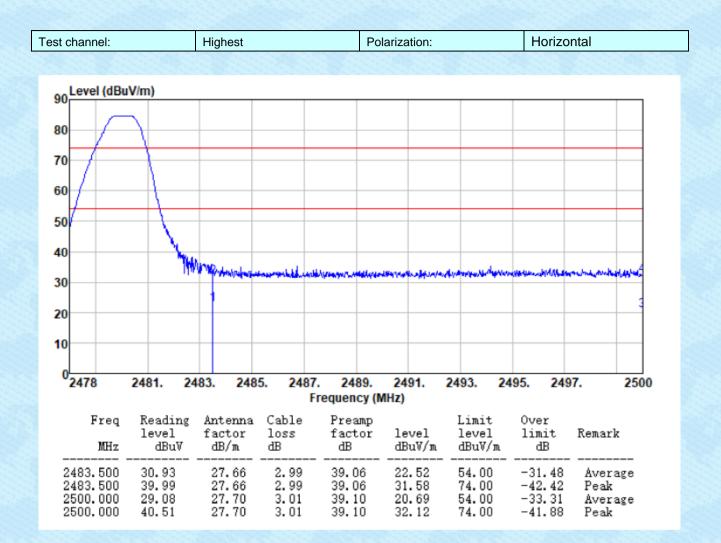


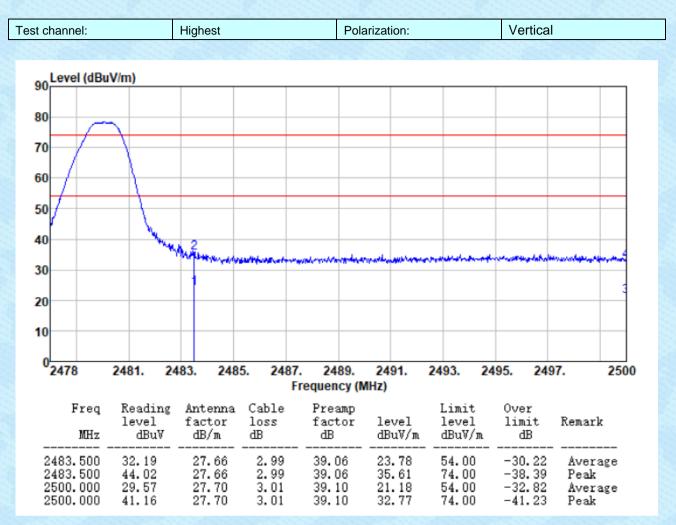
Remarks:


- 2. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

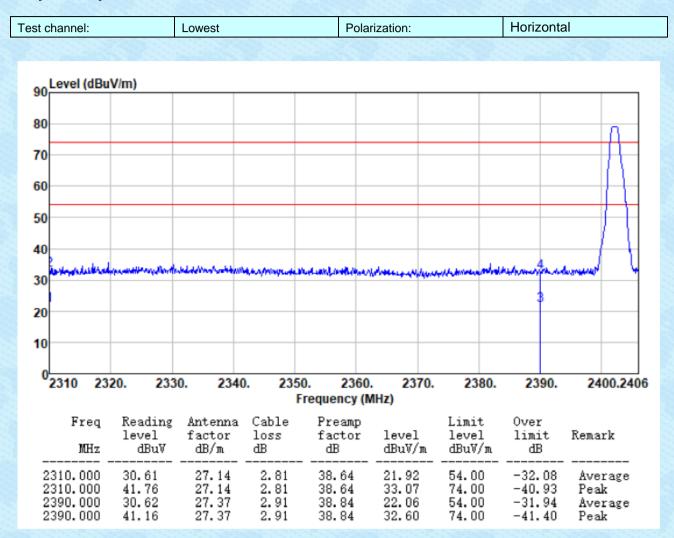

Unwanted Emissions in Non-restricted Frequency Bands

Metal body:

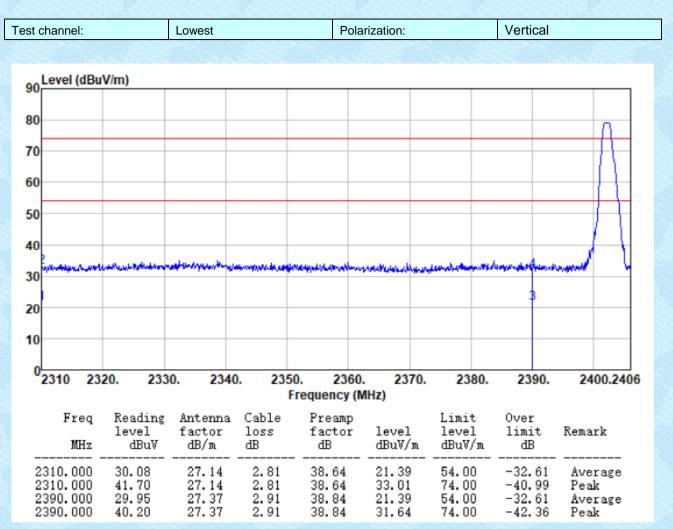




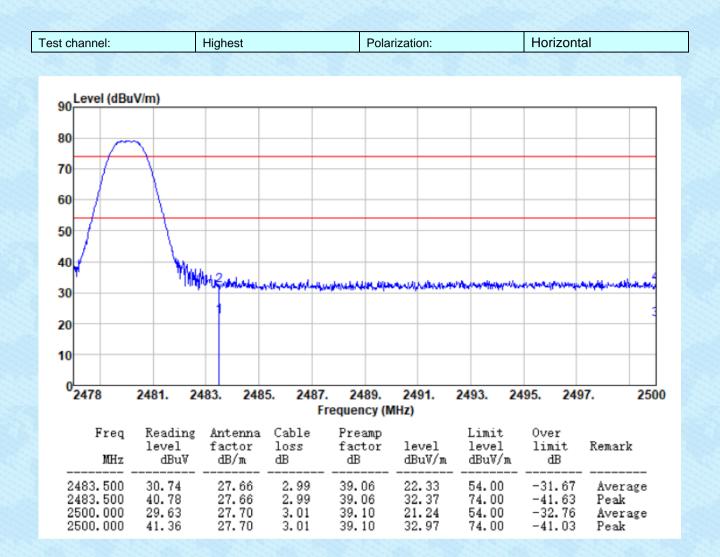
Remarks:

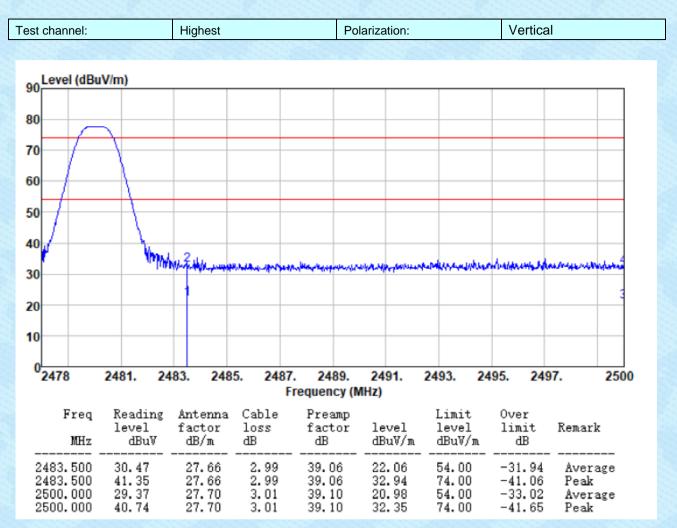

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Polymer body:





Remarks:

3. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

4. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 Test Setup Photo

Reference to the appendix I for details.

Reference to the appendix II for details.

-----End-----