

FCC RF Test Report

APPLICANT	: Ningbo Lingzhu Technology CO., I	_td.
EQUIPMENT	: Smart Battery Doorbell	
MODEL NAME	: SC060-WCB2,SC060-WCB2A,	
	SC060-WCB2B,SC060-WCB2C,	
	SC060-WCB3,SC060-WCB3A,	
	SC060-WCB3B,SC060-WCB3C,	
	SC060-WCB4,SC060-WCB4A,	
	SC060-WCB4B,SC060-WCB4C	
FCC ID	: 2A789SC060	
STANDARD	: 47 CRF Part 15 Subpart C §15.231	
CLASSIFICATION	: (DSC) Security/Remote Control Tra	ansmitter
TEST DATE(S)	: Jun. 06, 2023 ~ Jul. 28, 2023	

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

This report contains data that were produced under subcontract by Sporton International Inc. (ShenZhen).

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (Kunshan)

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

SU	ММА	RY OF THE TEST RESULT	4
1. 0	GENE	RAL INFORMATION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	5
	1.6	Testing Location	6
	1.7	Test Software	6
	1.8	Applicable Standards	7
2. 1	EST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
:	2.1	Descriptions of Test Mode	8
:	2.2	Connection Diagram of Test System	8
:	2.3	Table for Supporting Units	9
:	2.4	EUT Operation Test Setup	9
3. 1	EST	RESULTS	.10
	3.1	AC Power Line Conducted Emissions Measurement	. 10
;	3.2	Types of Momentarily Operated Devices	. 12
;	3.3	20dB Emission Bandwidth and 99% Bandwidth Measurement	. 14
;	3.4	Field Strength of Fundamental and Spurious Emissions	. 15
:	3.5	Antenna Requirements	. 20
4. L	IST (OF MEASURING EQUIPMENT	21
5. N	NEAS	SUREMENT UNCERTAINTY	.22
AP	PEN	DIX A. TEST RESULTS OF CONDUCTED EMISSION TEST	
AP	PEN	DIX B. TEST RESULTS OF CONDUCTED TEST ITEMS	

B1. Test Result of 20dB and 99% Occupied Bandwidth

APPENDIX C. TEST RESULTS OF RADIATED TEST ITEMS

APPEDNIX D. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR342506B	Rev. 01	Initial issue of report	Jul. 31, 2023

SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart C					
FCC Rule Description of Test		Result	Remark		
3.1	15.207	AC Power Line Conducted Emissions	Pass	Under limit 16.04 dB at 0.150MHz	
3.2	15.231(a)	Types of Momentary Signals	Pass	-	
3.3	15.231(c)	20dB and 99% Occupied Bandwidth	Pass	-	
	15.231(b)			Under limit	
3.4	15.205	Field Strength of Fundamental and	Pass	8.65 dB at	
	15.209	Spunous Emissions		3905.00 MHz	
3.5	15.203	Antenna Requirement	Pass	-	

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1. General Information

1.1 Applicant

Ningbo Lingzhu Technology CO., Ltd.

No.578, Building 7, No.535 Kangqiao South Road, Jiangbei District, Ningbo, Zhejiang, PRC

1.2 Manufacturer

Ningbo Lingzhu Technology CO., Ltd.

No.578, Building 7, No.535 Kangqiao South Road, Jiangbei District, Ningbo, Zhejiang, PRC

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment Smart Battery Doorbell			
	SC060-WCB2, SC060-WCB2A,		
	SC060-WCB2B, SC060-WCB2C,		
Medel Neme	SC060-WCB3, SC060-WCB3A,		
	SC060-WCB3B, SC060-WCB3C,		
	SC060-WCB4, SC060-WCB4A,		
	SC060-WCB4B, SC060-WCB4C		
FCC ID 2A789SC060			
EUT Stage Identical Prototype			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range 433MHz			
Channel Number	1		
20dBW	7.380 KHz		
99%OBW	57.959 KHz		
Antenna Type	Spring Antenna		
Type of Modulation	ASK		

Remark: Regarding the 433MHz function, the doorbell only supports Tx mode, and the Dingdong machine only supports Rx mode.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)				
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China				
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.		
	TH01-KS CO01-KS	CN1257	314309		

Sporton International Inc. (Shenzhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (Shenzhen)				
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City Guangdong Province China 518103 TEL: +86-755-33202398				
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.		
	03CH04-SZ	CN1256	421272		

Note: Test data subcontracted: Test case of RE in section 3.4 of this report.

1.7 Test Software

ltem	Site	Manufacturer	Name	Version
1.	CO01-KS	AUDIX	E3	6.2009-8-24
2.	03CH04-SZ	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.231
- ANSI C63.10-2013

2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Investigation has been done on all the possible configurations for searching the worst cases.

The following table is a list of the test modes shown in this test report.

Test Mode			
Transmitting 433MHz			

2.2 Connection Diagram of Test System

AC Conducted Emission:

		Dingdong	
		machine	
	7		
Power		FUT	7
Source		201	
	This example is conn	ection diagram of	EUT test configurations.
. For detai	l, please refer to test mode	e configuration and	d setup photographs for each test item.

Radiated Emission:

2.3 Table for Supporting Units

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
2.	SD Card	Kingston	8GB	N/A	N/A	N/A
3.	Adapter	N/A	N/A	N/A	N/A	N/A

2.4 EUT Operation Test Setup

The EUT was programmed to be in transmitting mode.

3. Test Results

3.1 AC Power Line Conducted Emissions Measurement

3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test setup

3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.2 Types of Momentarily Operated Devices

3.2.1 Limit

\boxtimes	§15.231 (a)(1)
	A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter
	within not more than 5 seconds of being released.
	§15.231 (a)(2)
	A transmitter activated automatically shall cease transmission within 5 seconds after activation.
	§15.231 (a)(3)
	Periodic transmissions at regular predetermined intervals are not permitted. However, polling or
	supervision transmissions, including data, to determine system integrity of transmitters used in
	security or safety applications are allowed if the total duration of transmissions does not exceed more
	than two seconds per hour for each transmitter. There is no limit on the number of individual
	transmissions, provided the total transmission time does not exceed two seconds per hour.
	§15.231 (a)(4)
	Intentional radiators which are employed for radio control purposes during emergencies involving fire,
	security, and safety of life, when activated to signal an alarm, may operate during the pendency of the
	alarm condition.
	§15.231 (a)(5)
	Transmission of set-up information for security systems may exceed the transmission duration limits in
	paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a
	professional installer and do not exceed ten seconds after a manually operated switch is released or a
	transmitter is activated automatically. Such set-up information may include data.

3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 100 kHz and the video bandwidth of 300 kHz were used.
- 3. Set the spectrum analyzer for ZERO SPAN. Sweep time = 20 s
- 4. Measured the spectrum width with power higher than 20dB below carrier.
- 5. Measured the transmission period of EUT under specified condition.

3.2.4 Test Setup

3.2.5 Test Result of transmission time

3.3 20dB Emission Bandwidth and 99% Bandwidth Measurement

3.3.1 Limit

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

The 99% bandwidth of momentarily operated devices shall be less or equal to 0.25% of the centre frequency for devices operating between 70 MHz and 900 MHz. For devices operating above 900 MHz, the 99% bandwidth shall be less or equal to 0.5% of the centre frequency.

3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% BW.

3.3.4 Test Setup

3.3.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.4 Field Strength of Fundamental and Spurious Emissions

3.4.1 Limit

Rules and specifications	FCC CFR 47 Part 1	5 section 15.231
Fundamental frequency	Field strength of fundamental	Field strength of spuriou
(MHz)	(µV/m) at 3m	emissions (µV/m) at 3m
40.66-40.70	2250	225
70-130	1250	125
130-174	1250 to 3750*	125 to 375*
174-260	3750	375
260-470	3750 to 12500*	375 to 1250*
Above 470	12500	1250
* Linear interpolation with frequ	ency, f, in MHz.	
15.209 For intentional device, accordin emission from intentional radia	ig to 15.209(a) the general requirem ors at a distance of 3 meters shall n	ent of field strength of radiate ot exceed the following table
15.209 For intentional device, accordin emission from intentional radiat	ig to 15.209(a) the general requirem fors at a distance of 3 meters shall n Field Strength	ent of field strength of radiate ot exceed the following table Measurement Distanc
15.209 For intentional device, accordin emission from intentional radiat Frequency (MHz)	ig to 15.209(a) the general requirem tors at a distance of 3 meters shall n Field Strength (microvolts/meter)	ent of field strength of radiate ot exceed the following table Measurement Distanc (meters)
15.209 For intentional device, accordin emission from intentional radiat Frequency (MHz) 0.009 – 0.490	ig to 15.209(a) the general requirem tors at a distance of 3 meters shall n Field Strength (microvolts/meter) 2400/F(kHz)	ent of field strength of radiate ot exceed the following table Measurement Distanc (meters) 300
15.209 For intentional device, accordin emission from intentional radiat Frequency (MHz) 0.009 – 0.490 0.490 – 1.705	ig to 15.209(a) the general requirem tors at a distance of 3 meters shall n Field Strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz)	ent of field strength of radiate ot exceed the following table Measurement Distanc (meters) 300 30
15.209 For intentional device, accordin emission from intentional radiat Frequency (MHz) 0.009 – 0.490 0.490 – 1.705 1.705 – 30.0	ig to 15.209(a) the general requirem tors at a distance of 3 meters shall n Field Strength (microvolts/meter) 2400/F(kHz) 30	ent of field strength of radiate ot exceed the following table Measurement Distance (meters) 300 30 30
15.209 For intentional device, accordin emission from intentional radiat Frequency (MHz) 0.009 – 0.490 0.490 – 1.705 1.705 – 30.0 30 – 88	ng to 15.209(a) the general requirem tors at a distance of 3 meters shall n Field Strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100	ent of field strength of radiate ot exceed the following table Measurement Distanc (meters) 300 30 30 30 30 30
15.209 For intentional device, accordin emission from intentional radia Frequency (MHz) 0.009 – 0.490 0.490 – 1.705 1.705 – 30.0 30 – 88 88 – 216	ng to 15.209(a) the general requirem tors at a distance of 3 meters shall n Field Strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 150	ent of field strength of radiate ot exceed the following table Measurement Distance (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30
15.209 For intentional device, accordin emission from intentional radia (MHz) 0.009 – 0.490 0.490 – 1.705 1.705 – 30.0 30 – 88 88 – 216 216 - 960	ng to 15.209(a) the general requirem tors at a distance of 3 meters shall n Field Strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 150 200	ent of field strength of radiate ot exceed the following table Measurement Distance (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30

15.231(e)

Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following:

Rules and specifications	FCC CFR 47 Part 15 section 15.231				
Fundamental frequency	Field strength of fundamental	Field strength of spurious			
(MHz)	(µV/m) at 3m	emissions (µV/m) at 3m			
40.66-40.70	1000	100			
70-130	500	50			
130-174	500 to 1500	50 to 150			
174-260	1500	150			
260-470	1500 to 5000	150 to 500			
Above 470	5000	500			

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.

3.4.3 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure Average reading.
- For average measurement: use duty cycle correction factor method per 15.35(c).
 Adjust the center frequency of the spectrum analyzer to the center of the RF signal.
 Set the spectrum analyzer for ZERO SPAN

Adjust the SWEEP TIME to obtain at least a 100 ms period of time on the horizontal display axis of the spectrum analyzer.

Duty cycle = On time/100 milliseconds On time = N1*L1+N2*L2+...+Nn-1*LNn-1+Nn*Ln Where N1 is number of type 1 pulses, L1 is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)

6. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

3.4.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.4.6 Test Result of Fundamental and Spurious Emissions

Please refer to Appendix C.

3.4.7 Duty cycle correction factor for average measurement

Date: 28.JUL.2023 17:53:23

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = (D2*9+(M4-M3)*28)/100ms = (1.449*9+0.435*28)/100ms = 25.22/100ms = 25.22 %
- Worst case Duty cycle correction factor = 20*log(Duty cycle) = 20*log(0.2522) = -11.96 dB

3.5 Antenna Requirements

3.5.1 Standard Applicable

§15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.5.2 Antenna Anti-Replacement Construction

This EUT uses an integral antenna which is permanently attached.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 12, 2022	Jul. 19, 2023~ Jul. 28, 2023	Oct. 11, 2023	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GHz	Jan. 05, 2023	Jul. 19, 2023~ Jul. 28, 2023	Jan. 04, 2024	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 05, 2023	Jul. 19, 2023~ Jul. 28, 2023	Jan. 04, 2024	Conducted (TH01-KS)
EMI Test Receiver	R&S	ESR7	101404	9kHz~7GHz	Oct. 19, 2022	Jul. 07, 2023	Oct. 18, 2023	Radiation (03CH04-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY5515021 3	10Hz~44GHz	Jul. 07, 2023	Jul. 07, 2023	Jul. 06, 2024	Radiation (03CH04-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jun. 28, 2022	Jul. 07, 2023	Jun. 27, 2024	Radiation (03CH04-SZ)
Bilog Antenna	TeseQ	CBL6111D	41909	30MHz~1GHz	May 14, 2023	Jul. 07, 2023	May 13, 2024	Radiation (03CH04-SZ)
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA9120D	9120D-1474	1GHz~18GHz	Jul. 07, 2023	Jul. 07, 2023	Jul. 06, 2024	Radiation (03CH04-SZ)
Horn Antenna	SCHWARZBE CK	BBHA9170	9170#679	15GHz~40GHz	Jul. 06, 2023	Jul. 07, 2023	Jul. 07, 2024	Radiation (03CH04-SZ)
Amplifier	Burgeon	BPA-530	102211	0.01Hz ~3000MHz	Oct. 19, 2022	Jul. 07, 2023	Oct. 18, 2023	Radiation (03CH04-SZ)
HF Amplifier	MITEQ	AMF-7D-001 01800-30-10 P-R	1943528	1GHz~18GHz	Oct. 19, 2022	Jul. 07, 2023	Oct. 18, 2023	Radiation (03CH04-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Jul. 07, 2023	Jul. 07, 2023	Jul. 06, 2024	Radiation (03CH04-SZ)
Amplifier	Agilent Technologies	83017A	MY5728013 6	500MHz~26.5G Hz	Sep. 30, 2022	Jul. 07, 2023	Sep. 29, 2023	Radiation (03CH04-SZ)
AC Power Source	APC	AFV-S-600B	F119050019	N/A	Nov. 10, 2022	Jul. 07, 2023	Nov. 10, 2023	Radiation (03CH04-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Jul. 07, 2023	NCR	Radiation (03CH04-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Jul. 07, 2023	NCR	Radiation (03CH04-SZ)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	May 16, 2023	Jun. 06, 2023	May 15, 2024	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 13, 2022	Jun. 06, 2023	Oct. 12, 2023	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	May 16, 2023	Jun. 06, 2023	May 15, 2024	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP000000 811	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2022	Jun. 06, 2023	Oct. 11, 2023	Conduction (CO01-KS)

5. Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Occupied Channel Bandwidth	±0.1 %

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.94 dB
--	---------

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	E 1 dP
of 95% (U = 2Uc(y))	5.1 06

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	4.8 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	E 1 AD
of 95% (U = 2Uc(y))	5.1 UB

----- THE END ------

Appendix A. Test Results of Conducted Emission Test

Toot Engineer	Amon Zhang	Temperature :	25.3~26.2°C			
Test Engineer :	Amos Zhang	Relative Humidity :	38~40%			
Test Voltage :	120Vac / 60Hz	Phase :	Line			
Eunstian Tuna .	433MHz Link with dingdong	nachine(Loud Speaker) + USB Cable(Charging From				
Function Type :	Adapter)					
80 Level	(dBuV)		Date: 2023-06-06 Time: 09:23:01			
70.0						
			15C B\$\$247 OD			
60.0			13C N33241-4F			
50.0			15C RSS247-AVG			
40.0	A.					
40.0.7	M M MM AND AND A MAN AND A MARK	Luk war u	A MANNA			
30.0 4 6		man have	My May My My My My			
20.0		<u> </u>				
			- η			
10.0						
0	.2 .5 1	2 5	10 20 30			
Sito		Frequency (MHz)				
Condition	: 15C RSS247-QP LISN-060	105-LINE LINE				
	Over Limit Read	d LISN Cable				
	Freq Level Limit Line Level	l Factor Loss Remark				
1	0.150 46.30 -19.70 66.00 35.80	0 0.07 10.43 QP				
2 *	0.150 38.10 -17.90 56.00 27.60 0.171 43.97 -20.93 64.90 33.49	0 0.07 10.43 Average 0 0.05 10.43 QP				
4 5 6	0.171 27.67 -27.23 54.90 17.18 0.186 42.65 -21.55 64.20 32.20 0.186 25.95 -28.25 54.20 15.50	0.05 10.43 Average 0 0.03 10.42 QP 0 0.03 10.42 Average				
7 8	0.209 39.34 -23.89 63.23 28.91 0.209 22.94 -30.29 53.23 12.51	0.02 10.41 QP 0.02 10.41 Average				
9 10 11	0.413 31.79 -25.80 57.59 21.50 0.413 15.59 -32.00 47.59 5.30 0.634 32 30 -23 70 56 00 22 20) 0.00 10.29 QP) 0.00 10.29 Average) -0.07 10 17 QP				
12	0.634 21.30 -24.70 46.00 11.20	0 -0.07 10.17 Average				

Note:

- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix B. Test Results of Conducted Test Items

B1. Test Result of 20dB Bandwidth and Occupied Bandwidth

Appendix C. Test Results of Radiated Test Items

		-				Temperature :			22~23°C			
Test	Enginee	er:	Easor	า Wu		Rela	tive Humi	dity :	41~42%			
Test	t Distanc	e:	3m			Pola	rization :		Horizo	ontal		
		80	Level (dE	BuV/m)						Date: 2023-07-07		
		70.0		+								
		60.0				4	_					
		50.0									PART 15C	
		50.0										
		40.0										
		30.0							5	(3 7	
		-			3	and the work	where the second water	hyperio and the	Phylipson and the second	18 4 4 14 14 14 14 14 14 14 14 14 14 14 14	A A A A A A A A A A A A A A A A A A A	
		20.0	1	week working hard	A MARTIN LANDON MARTIN							
		10.0	Ŵ				_					
		U	30	224	4.	418. Freq	612 uency <mark>(</mark> MHz)	2.	80)6.	100	0
No.	Fre.	Le	evel	Margin	Limit	Read	Antenna	Cable	e Pro	eamp	Peak	Pol.
					Line	Laval						
					LINE	Level	Factor	Loss	s Fa	actor	Avg.	
-	(MHz)	(dB	µV/m)	(dB)	(dBµV/m)	(dBµV)	Factor (dB/m)	Loss (dB)	i Fa	actor dB)	Avg. (P/A)	(H/V)
1	(MHz) 30	(dB) 24	µ V/m) 1.92	(dB) 15.08	(dBµV/m) 40	(dBµV)	Factor (dB/m) 25.88	Loss (dB) 0.53	5 Fa (1 3	dB) 31.8	Avg. (P/A) P	(H/V) H
1 2	(MHz) 30 134.76	(dB) 24	μ V/m) 1.92 9.4	(dB) 15.08 24.1	(dBμV/m) 40 43.5	(dBµV) 30.31 31.48	Factor (dB/m) 25.88 18.1	Loss (dB) 0.53 1.19	5 Fa (3 3	actor dB) 31.8 1.37	Avg. (P/A) P P	(H/V) H H
1 2 3	(MHz) 30 134.76 320.03	(dB) 24 1 21	μ V/m) 1.92 9.4 1.62	(dB) 15.08 24.1 24.38	(dBµV/m) 40 43.5 46	(dBµV) 30.31 31.48 30.68	Factor (dB/m) 25.88 18.1 20.37	Loss (dB) 0.53 1.19 1.87	5 Fa (1 3 3 3	actor dB) 31.8 1.37 31.3	Avg. (P/A) P P P	(H/V) H H H
1 2 3 4	(MHz) 30 134.76 320.03 433.52	(dB) 2 ² 1 21 61	μ V/m) 1.92 9.4 1.62 1.89	(dB) 15.08 24.1 24.38 38.92	(dBµV/m) 40 43.5 46 100.81	(dBµV) 30.31 31.48 30.68 68.08	Factor (dB/m) 25.88 18.1 20.37 22.94	Loss (dB) 0.53 1.19 1.87 2.17	5 Fa (3 3 3 3 3 3	actor dB) 31.8 1.37 31.3 31.3	Ауд. (Р/А) Р Р Р Р	(H/V) H H H H
1 2 3 4 5	(MHz) 30 134.76 320.03 433.52 720.64	(dB) 2 ² 1 21 61 28	μV/m) 4.92 9.4 1.62 1.89 3.35	(dB) 15.08 24.1 24.38 38.92 17.65	(dBµV/m) 40 43.5 46 100.81 46	Level (dBµV) 30.31 31.48 30.68 68.08 30.95	Factor (dB/m) 25.88 18.1 20.37 22.94 26.08	Loss (dB) 0.53 1.19 1.87 2.17 2.8	Fa () 3 3 3 3 3 3 3 3 3 3 3 3	actor dB) 11.8 11.37 11.3 11.3 11.48	Avg. (P/A) P P P P P	(H/V) H H H H H
1 2 3 4 5 6	(MHz) 30 134.76 320.03 433.52 720.64 889.42	(dB) 22 1 21 61 28 29	μV/m) 4.92 9.4 1.62 1.89 3.35	(dB) 15.08 24.1 24.38 38.92 17.65 16.33	(dBµV/m) 40 43.5 46 100.81 46 46	(dBµV) 30.31 31.48 30.68 68.08 30.95 30.98	Factor (dB/m) 25.88 18.1 20.37 22.94 26.08 27.13	Loss (dB) 0.53 1.19 1.87 2.17 2.8 3.14	Fa Fa ((3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	actor dB) 11.8 11.37 11.3 11.3 11.48 11.58	Avg. (P/A) P P P P P P P	(H/V) H H H H H H H
1 2 3 4 5 6 7	(MHz) 30 134.76 320.03 433.52 720.64 889.42 994.18	(dB) 24 1 21 61 28 29 30	μV/m) 4.92 9.4 1.62 1.89 3.35 3.67).06	(dB) 15.08 24.1 24.38 38.92 17.65 16.33 23.94	(dBµV/m) 40 43.5 46 100.81 46 46 46 54	(dBµV) 30.31 31.48 30.68 68.08 30.95 30.98 30.27	Factor (dB/m) 25.88 18.1 20.37 22.94 26.08 27.13 27.9	Loss (dB) 0.53 1.19 1.87 2.17 2.8 3.14 3.3	Fa ((3 3 3 3 3 3 3 3 3 3 3 3 3 3	actor dB) 31.8 1.37 31.3 31.3 1.48 1.58 1.41	Avg. (P/A) P P P P P P P	(H/V) H H H H H H H
1 2 3 4 5 6 7	(MHz) 30 134.76 320.03 433.52 720.64 889.42 994.18	(dB) 22 1 21 61 28 29 30	μV/m) 4.92 9.4 1.62 1.89 3.35 9.67).06	(dB) 15.08 24.1 24.38 38.92 17.65 16.33 23.94	(dBµV/m) 40 43.5 46 100.81 46 46 46 54 Fundam	(dBµV) 30.31 31.48 30.68 68.08 30.95 30.98 30.27	Factor (dB/m) 25.88 18.1 20.37 22.94 26.08 27.13 27.9	Loss (dB) 0.53 1.19 1.87 2.17 2.8 3.14 3.3 ge)	FE ((3 3 3 3 3 3 3 3 3 3 3 3	actor dB) i1.8 1.37 i1.3 i1.3 i1.3 i1.3 i1.48 1.58 1.41	Avg. (P/A) P P P P P P P	(H/V) H H H H H H H
1 2 3 4 5 6 7 Free	(MHz) 30 134.76 320.03 433.52 720.64 889.42 994.18 quency	(dB) 22 1 21 61 28 29 30 29 30	µV/m) 4.92 9.4 1.62 1.89 3.35 9.67 0.06 3.ak	(dB) 15.08 24.1 24.38 38.92 17.65 16.33 23.94 Avera	(dBµV/m) 40 43.5 46 100.81 46 54 Fundam ge Ave	(dBµV) 30.31 31.48 30.68 68.08 30.95 30.95 30.98 30.27 nental Re	Factor (dB/m) 25.88 18.1 20.37 22.94 26.08 27.13 27.9 sult (Average	Loss (dB) 0.53 1.19 1.87 2.17 2.8 3.14 3.3 ge) Mar	FE ((3	Actor dB) 1.8 1.37 1.37 1.3 1.3 1.48 1.58 1.41 Pe	Avg. (P/A) P P P P P P	(H/V) H H H H H H H H
1 2 3 4 5 6 7 Free	(MHz) 30 134.76 320.03 433.52 720.64 889.42 994.18	(dB) 22 1 21 61 28 29 30 96 20 20 20 20 20 20 20 20 20 20 20 20 20	µV/m) 4.92 9.4 1.62 1.89 3.35 9.67 0.06 0.06	(dB) 15.08 24.1 24.38 38.92 17.65 16.33 23.94 Average Cor. Fac	(dBµV/m) 40 43.5 46 100.81 46 54 Fundam ge Ave ctor Le	Level (dBµV) 30.31 31.48 30.68 68.08 30.95 30.98 30.27	Factor (dB/m) 25.88 18.1 20.37 22.94 26.08 27.13 27.9 sult (Average Average Limit	Loss (dB) 0.53 1.19 1.87 2.17 2.8 3.14 3.3 ge) Mar	FE ((3	Actor dB) 1.8 1.37 1.37 1.3 1.3 1.48 1.58 1.41 Pee Av	Avg. (P/A) P P P P P P P P P P	(H/V) H H H H H H H Pol.
1 2 3 4 5 6 7 Free	(MHz) 30 134.76 320.03 433.52 720.64 889.42 994.18 quency VHz)	(dB) 22 1 21 61 22 29 30 30 20 30 20 20 20 20 20 20 20 20 20 20 20 20 20	µV/m) 4.92 9.4 1.62 1.89 3.35 3.35 3.67 0.06 3ak ₩el µV/m)	(dB) 15.08 24.1 24.38 38.92 17.65 16.33 23.94 Average Cor. Factorial (dB)	(dBµV/m) 40 43.5 46 100.81 46 54 Fundam ge Ave ctor Le (dB) (dB)	Level (dBµV) 30.31 31.48 30.68 68.08 30.95 30.98 30.27	Factor (dB/m) 25.88 18.1 20.37 22.94 26.08 27.13 27.9 sult (Avera Average Limit (dBµV/m)	Loss (dB) 0.53 1.19 1.87 2.17 2.8 3.14 3.3 (ge) Mar (d	FE ((3	Actor dB) 1.8 1.37 1.37 1.3 1.3 1.48 1.48 1.48 1.41 Pee Av (P)	Avg. (P/A) P P P P P P P P Avg. /g. /A)	(H/V) H H H H H H H H H

Radiated Spurious Emissions (30MHz ~ 1GHz)

Tas	. En alman					Temperature : 22			22~23°C				
lest	Enginee	er: Easo	n vvu		Rela	ative Humi	41~42%						
Test Distance : 3m						Polarization : Vertical							
		80 Level (d	BuV/m)					Date: 2023-07-07					
					4								
		70.0	_								_		
		60.0									_		
										PART 150	2		
		50.0									_		
		40.0									_		
					5				6 7				
30.0									u				
		20.0	2	Here was real and an one	Mare a						_		
		100 Hunn											
		10.0											
0 ³⁰ 224. 418. 612. 806. 1000)00				
	Frequency (MHz)												
No.	Fre.	Level	Margin	Limit	Read	Antenna	Cable	Pre	eamp	Peak	Pol.		
				Line	Level	Factor	Loss	Fa	ctor	Avg.			
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(P/A)	(H/V)		
1	30.97	25.97	14.03	40	31.88	25.33	0.54	3′	1.78	Р	V		
2	110.51	19.35	24.15	43.5	31.24	18.43	1.07	3	1.39	Р	V		
3	303.54	21.73	24.27	46	31.27	19.95	1.81	3	1.3	Р	V		
4	433.52	75.73	25.08	100.81	81.92	22.94	2.17	3	1.3	Р	V		
5	674.08	29.18	16.82	46	32.09	25.81	2.7	3.	1.42	Р	V		
6	808.91	29.18	16.82	46	30.82	26.82	2.96	3	1.42	Р	V		
7	912.7	29.71	16.29	46	30.83	27.27	3.18	3	1.57	Р	V		
Fundamental Result (Average)													
Frequency		Peak	Avera	ge Ave	erage	Average	Mar	gin	Peak		Pol.		
		Level	Cor. Fa	ctor L	evel	Limit			A	vg.			
(MHz)									(P/A)				
(MHz)	(dBµV/m)	(dB)) (dB	μV/m)	(dBµV/m)	(dl	3)	(P	/A)	(H/V)		

Radiated S	Spurious	Emissions	(Above 1GH	z)
-------------------	----------	-----------	------------	----

Fre.	Level	Margin	Limit	Read	Antenna	Cable	Prea	amp	Peak	Pol.	
			Line	Level	Factor	Loss	Fac	tor	Avg.		
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(d	B)	(P/A)	(H/V)	
2169	45.81	35.00	80.81	59.65	32.74	5.15	51.	73	Р	Н	
3037	3037 51.75		80.81	63.8	33.74	6.11	51.9		Р	н	
3905	57.31	16.69	74	67.36	34.6	7.17	51.82		Р	н	
2169	49.85	30.96	80.81	63.69	32.74	5.15	51.73		Р	V	
3037	50.31	30.50	80.81	62.36	33.74	6.11	51.9		Р	V	
3905	56.23	17.77	74	66.28	34.6	7.17	51.	82	Р	V	
Harmonic Result (Average)											
Frequenc	y Peal	Peak Av		Average	Average Marg		jin Peak		eak	Pol.	
	Leve	Level Cor.		Level	Limit				vg.		
(MHz)	(dBµV	/m) (dB) (dBµV/m)	(dBµV/m)	dB (dB)	(F	P/A)	(H/V)	
3905	3905 57.31		1.96	45.35	54	8.6	8.65		А	Н	
3905	56.2	3 -1	1.96	44.27	54	9.73	3		A	V	