
Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

	T 15 SUBPART C TEST REPORT	
	FCC PART 15.247	
Report Reference No	CTA22071300101 2A768-N5	
Compiled by (position+printed name+signature):	File administrators Kevin Liu	C)
Supervised by (position+printed name+signature):	Project Engineer Kevin Liu	
Approved by (position+printed name+signature):	RF Manager Eric Wang	
Date of issue:	Jul. 20, 2022	NG
Testing Laboratory Name	Shenzhen CTA Testing Technology Co., Ltd.	
Address:	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Commun Fuhai Street, Baoʻan District, Shenzhen, China	ity,
Applicant's name:	Shenzhen Lipuwei Technology Co., Ltd.	
Address:	308, No.28, Third Industrial Zone, Houting Community, Shajing Street, Bao 'an District, Shenzhen, China	
	Street, Bao an District, Shenzhen, China	
Test specification:		
Test specification Standard	TATESTING	
	FCC Part 15.247	
Standard Shenzhen CTA Testing Technology This publication may be reproduced ir Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech	FCC Part 15.247	CT
Standard Shenzhen CTA Testing Technology This publication may be reproduced ir Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech liability for damages resulting from the	FCC Part 15.247 y Co., Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the hnology Co., Ltd. takes no responsibility for and will not assume the reader's interpretation of the reproduced material due to its	CT
Standard Shenzhen CTA Testing Technology This publication may be reproduced ir Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech liability for damages resulting from the placement and context.	FCC Part 15.247 y Co., Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the hnology Co., Ltd. takes no responsibility for and will not assume the reader's interpretation of the reproduced material due to its	CT
Standard Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech liability for damages resulting from the placement and context. Test item description	FCC Part 15.247 y Co., Ltd. All rights reserved. n whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the hnology Co., Ltd. takes no responsibility for and will not assume the reader's interpretation of the reproduced material due to its projector N/A Guangzhou Jizhi Electronic Technology Co., LTD	CT
Standard Shenzhen CTA Testing Technology This publication may be reproduced ir Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech liability for damages resulting from the placement and context. Test item description Trade Mark	FCC Part 15.247 y Co., Ltd. All rights reserved. n whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the hnology Co., Ltd. takes no responsibility for and will not assume the reader's interpretation of the reproduced material due to its projector N/A Guangzhou Jizhi Electronic Technology Co., LTD	CT
Standard Shenzhen CTA Testing Technology This publication may be reproduced ir Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech liability for damages resulting from the placement and context. Test item description Trade Mark Manufacturer	FCC Part 15.247 y Co., Ltd. All rights reserved. n whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the hnology Co., Ltd. takes no responsibility for and will not assume the reader's interpretation of the reproduced material due to its projector N/A Guangzhou Jizhi Electronic Technology Co., LTD	NG
Standard	FCC Part 15.247 y Co., Ltd. All rights reserved. n whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the hnology Co., Ltd. takes no responsibility for and will not assume the reader's interpretation of the reproduced material due to its projector N/A Guangzhou Jizhi Electronic Technology Co., LTD	NG
Standard	FCC Part 15.247 y Co., Ltd. All rights reserved. n whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the hnology Co., Ltd. takes no responsibility for and will not assume e reader's interpretation of the reproduced material due to its projector N/A Guangzhou Jizhi Electronic Technology Co., LTD N5 N/A GFSK, Π/4DQPSK,8DPSK	NG
Standard	FCC Part 15.247 y Co., Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the hnology Co., Ltd. takes no responsibility for and will not assume the reader's interpretation of the reproduced material due to its projector N/A Guangzhou Jizhi Electronic Technology Co., LTD N5 N/A GFSK, Π/4DQPSK,8DPSK From 2402MHz to 2480MHz	CT NG

Report No.: CTA22071300101

Contents

1	TEST STANDARDS	
GAK C	STIN	
2	SUMMARY	- G 5
		~5711
		CTATEST. 5 5 5
2.1	General Remarks	CTA 5
2.2	Product Description	5
2.3 2.4	Equipment Under Test	5
2.4	Short description of the Equipment under Test (EUT EUT operation mode	-) 5 6
2.5		
2.6	Block Diagram of Test Setup Related Submittal(s) / Grant (s)	6 6
2.7	Modifications	6
2.0	Modifications	8
	TATES	
<u>3</u>	TEST ENVIRONMENT	·····.7
3.1	Address of the test laboratory Test Facility	TTO
3.2	Test Facility	TESTANO
3.3	Environmental conditions	CTATEST7 8 8
3.4	Summary of measurement results	8
3.5	Statement of the measurement uncertainty	8
3.6	Equipments Used during the Test	9
<u>4</u>	TEST CONDITIONS AND RESULTS	
<u>.</u>	rA THE SIG	· · · · · · · · · · · · · · · · · · ·
C C	AC Device Conducted Emission STING	40
4.1 4.2	AC Power Conducted Emission	10
4.2	Radiated Emission	10 13 19 20 24 26 28
	Maximum Peak Output Power	19
4.4	20dB Bandwidth	20
4.5	Frequency Separation	24
4.6	Number of hopping frequency	26
4.7	Time of Occupancy (Dwell Time) Out-of-band Emissions	
4.8		32
4.9 4.10	Pseudorandom Frequency Hopping Sequence Antenna Requirement	41 42
4.10		42
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	
	CTA V	
<u>6</u>	PHOTOS OF THE EUT	<u>44</u>
	CTA CTA	GA CTATESTING
	CTA CTA	TESI
	TA TESTING	
C C		
		TESI
		CTA '
		GTA TESTING

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

2 <u>SUMMARY</u>

2.1 General Remarks

2.1 General Remarks		
Date of receipt of test sample		Jul. 15, 2022
	514	
Testing commenced on	COLUMN ST	Jul. 15, 2022
Testing concluded on	:	Jul. 20, 2022

2.2 Product Description

2.2 Product Descrip	i Jul. 20, 2022
Product Name:	projector
Model/Type reference:	N5 5
Power supply:	DC 12V From external circuit
Adapter 1 information:	Model: R481-2002400C1 Input:AC 100-240V 50/60Hz Output:DC 12V 4A
Adapter 2 information:	Model: FY0471204000 Input:AC 100-240V 50/60Hz Output:DC 12V 4A
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA220713001-1# (Engineer sample) CTA220713001-2# (Normal sample)
Bluetooth :	
Supported Type:	Bluetooth BR/EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	PCB antenna
Antenna gain:	0.00 dBi

2.3 Equipment Under Test

Power supply system utilised

G		TATE		-10
2.3 Equipment Under Test		GA C'		TESTING
Power supply system utilised	k	Comment of the second	1000 C	CTA I
Power supply voltage	:	O 230V / 50 Hz	O 120V / 60H	Z
		0 12 V DC	O 24 V DC	The second s
- C-		Other (specified in blast	nk below)	

DC 12V From external circuit

2.4 Short description of the Equipment under Test (EUT) CTA TESTING

This is a projector.

For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:		
Channel	Frequency (MHz)	
00	2402	5
01	2403	
STING	:	5
38	2440	
39	2441	
40	2442	
G C	STINE	
77	2479	JC)
78	2480	
2.6 Block Diagram of Test Setup	CTA IL	

2.6 Block Diagram of Test Setup

EUT

DC 12V from Adapter

2.7 Related Submittal(s) / Grant (s)

CTATE This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

TEST ENVIRONMENT 3

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao 'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement

ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

GA CTATESTING During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C]
TEST		
Humidity:	46 %	TING
		TESI
Atmospheric pressure:	950-1050mbar	ALL
Conducted testing:		
Temperature:	25 ° C]

Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
CTATES I.	CTATESTING

3.4 Summary of measurement results

	Test ecification clause	Test case	Test Mode	Test Channel		orded eport	Test result
729 un ut 1	5.247(a)(1)	Carrier Frequency separation	GFSK N/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	Middle	Compliant
§15	5.247(a)(1)	Number of Hopping channels	GFSK Π/4DQPSK 8DPSK	🛛 Full	GFSK	🛛 Full	Compliant
GTIN	5.247(a)(1)	Time of Occupancy (dwell time)	GFSK Π/4DQPSK 8DPSK	 ☑ Lowest ☑ Middle ☑ Highest 	GFSK Π/4DQPSK 8DPSK	🛛 Middle	Compliant
§15	5.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§15	5.247(b)(1)	Maximum output peak power	GFSK Π/4DQPSK 8DPSK	 ☑ Lowest ☑ Middle ☑ Highest 	GFSK T/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§	15.247(d)	Band edgecompliance conducted	GFSK II/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	Compliant
Ę	§15.205	Band edgecompliance radiated	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	Compliant
§2	15.247(d)	TX spuriousemissions conducted	GFSK Π/4DQPSK 8DPSK	 ☑ Lowest ☑ Middle ☑ Highest 	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
Ş	15.247(d)	TX spuriousemissions radiated	GFSK II/4DQPSK 8DPSK	Lowest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§1	15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK N/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	X Middle	Compliant
	15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	Middle Middle	Compliant

Remark:

We tested all test mode and recorded worst case in report 2.

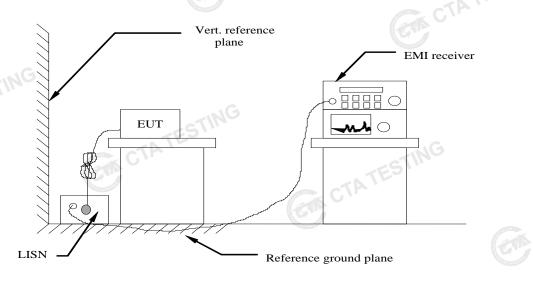
3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

<p< th=""><th>Test</th><th>Range</th><th>Measurement Uncertainty</th><th>Notes</th></p<>	Test	Range	Measurement Uncertainty	Notes
	Radiated Emission	30~1000MHz	4.06 dB	(1)
	Radiated Emission	1~18GHz	5.14 dB	(1)
	Radiated Emission	18-40GHz	5.38 dB	(1)
	Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.


3.6 Equipments Used during the Test

	-6511					
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
		R&S	ENV216	CTA-308	2021/08/06	2022/08/05
	LISN	R&S	ENV216	CTA-314	2021/08/06	2022/08/05
	EMI Test Receiver	R&S	ESPI	CTA-307	2021/08/06	2022/08/05
	EMI Test Receiver	R&S	ESCI	CTA-306	2021/08/06	2022/08/05
TE	Spectrum Analyzer	Agilent	N9020A	CTA-301	2021/08/06	2022/08/05
CTA	Spectrum Analyzer	R&S	FSP	CTA-337	2021/08/06	2022/08/05
	Vector Signal generator	Agilent	N5182A	CTA-305	2021/08/06	2022/08/05
	Analog Signal Generator	R&S	SML03	CTA-304	2021/08/06	2022/08/05
	Universal Radio Communication	CMW500	R&S	CTA-302	2021/08/06	2022/08/05
G	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2021/08/06	2022/08/05
	Ultra-Broadband Antenna	G Schwarzbeck	VULB9163	CTA-310	2021/08/07	2022/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2022/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2022/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2021/08/06	2022/08/05
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2021/08/06	2022/08/05
	Directional coupler	NARDA	4226-10	CTA-303	2021/08/06	2022/08/05
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2021/08/06	2022/08/05
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2021/08/06	2022/08/05
CTATE	Automated filter bank	Tonscend	JS0806-F	CTA-404	2021/08/06	2022/08/05
	Power Sensor	Agilent	U2021XA	CTA-405	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2021/08/06	2022/08/05
G			CAN CTA		GM CT	2022/08/05

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

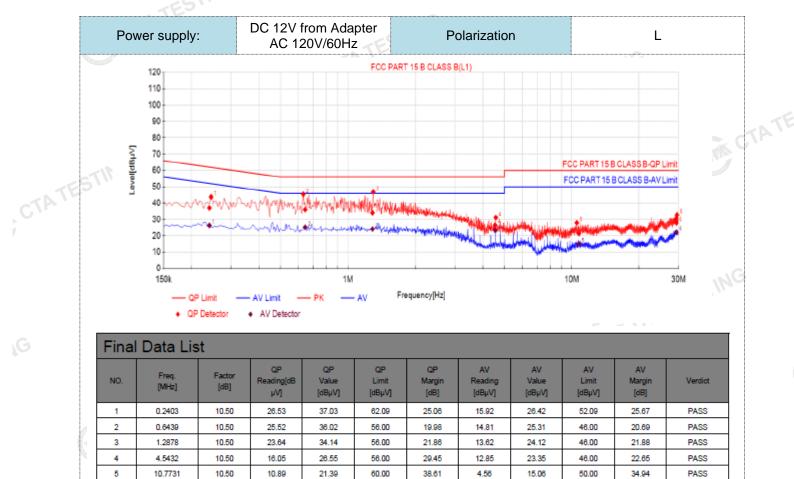
8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Eroquency range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* D		•			

* Decreases with the logarithm of the frequency.


TEST RESULTS

Remark:

1. All modes of GFSK, Π/4 DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel at the Adapter(Model: FY0471204000) was reported as below:

Report No.: CTA22071300101

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

17.36

27.86

60.00

32.14

11.62

22.12

50.00

27.88

PASS

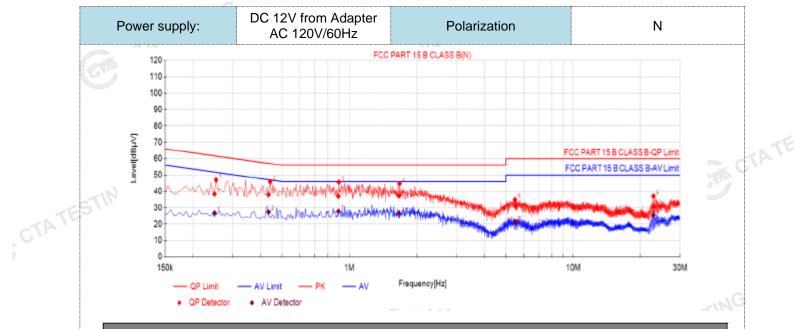
CTATE

2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). $QPMargin(dB) = QP Limit (dB\mu V) - QP Value (dB\mu V)$

4). AVMargin(dB) = AV Limit (dBμV) - AV Value (dBμV)

10.50

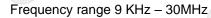

6

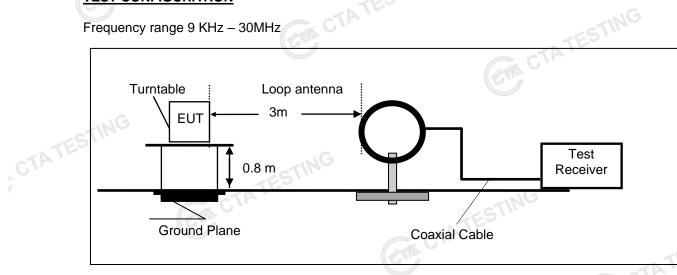
29.3937

Report No.: CTA22071300101

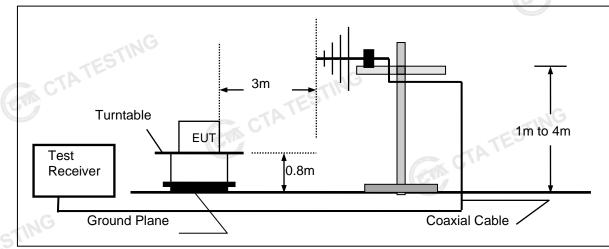
Page 12 of 51

GACTATE

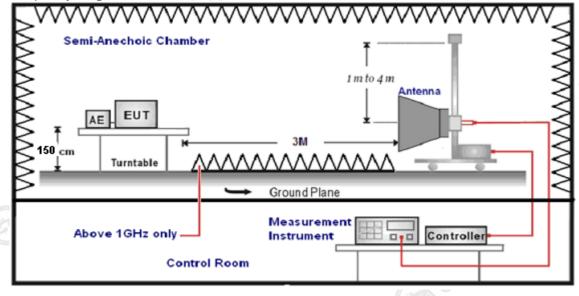



NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.2494	10.50	27.86	38.36	61.78	23.42	16.38	26.88	51.78	24.90	PASS
2	0.4347	10.50	27.51	38.01	57.16	19.15	16.94	27.44	47.16	19.72	PASS
3	0.8933	10.50	26.55	37.05	56.00	18.95	17.29	27.79	46.00	18.21	PASS
4	1.6668	10.50	26.81	37.31	56.00	18.69	16.16	26.66	46.00	19.34	PASS
5	5.5254	10.50	20.40	30.90	60.00	29.10	10.74	21.24	50.00	28.76	PASS
6	22.8274	10.50	20.02	30.52	60.00	29.48	15.05	25.55	50.00	24.45	PASS
). Facto	6 22.8274 10.50 20.02 30.52 60.00 29.48 15.05 25.55 50.00 24.45 ote:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB) . Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) . QPMargin(dB) = QP Limit (dBµV) - QP Value (dBµV) .										

4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V) CTATESTIN


4.2 **Radiated Emission**

TEST CONFIGURATION



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

6.

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.

The distance between test antenna and EUT as following table states:							
Test Frequency range	Test Antenna Type	Test Distance					
9KHz-30MHz	Active Loop Antenna	3					
30MHz-1GHz	Ultra-Broadband Antenna	3					
1GHz-18GHz	Double Ridged Horn Antenna	3					
18GHz-25GHz	Horn Anternna	1					

Setting test receiver/spectrum as following table states: 7.

Setting test receiver/spectrum as following table states.								
Test Frequency range	Test Receiver/Spectrum Setting	Detector						
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP						
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP						
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP						
	Peak Value: RBW=1MHz/VBW=3MHz,							
1GHz-40GHz	Sweep time=Auto	Deels						
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	Peak						
	Sweep time=Auto							

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows.	STINE					
FS = RA + AF + CL - AG	CTATES					
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)					
RA = Reading Amplitude	AG = Amplifier Gain					
AF = Antenna Factor	57					

Transd=AF +CL-AG

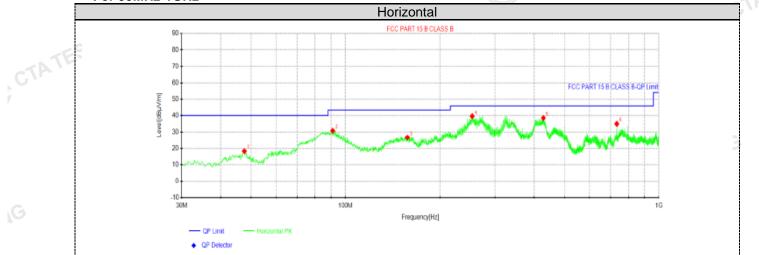
RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

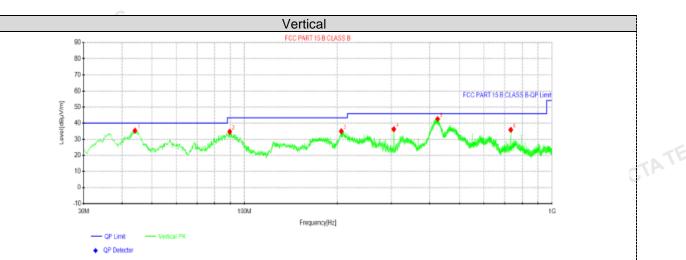
TATE


CTATESTING

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X 1. position.
- We measured Radiated Emission at GFSK, π/4 DQPSK and 8DPSK mode from 9 KHz to 25GHz and 2. recorded worst case at GFSK DH5 mode at the Adapter(Model: FY0471204000).
- For below 1GHz testing recorded worst at GFSK DH5 middle channel. 3.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 4. except system noise floor in 9 KHz to 30MHz and not recorded in this report.



Suspe	Suspected Data List											
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity			
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	rolanty			
1	47.5812	34.69	18.44	-16.25	40.00	21.56	100	326	Horizontal			
2	90.9888	50.65	30.88	-19.77	43.50	12.62	100	351	Horizontal			
3	157.555	48.33	26.68	-21.65	43.50	16.82	100	271	Horizontal			
4	253.706	57.45	39.56	-17.89	46.00	6.44	100	83	Horizontal			
5	427.7	53.74	38.49	-15.25	46.00	7.51	100	262	Horizontal			
6	733.735	46.05	34.99	-11.06	46.00	11.01	100	0	Horizontal			

Note:1).Level $(dB\mu V/m)$ = Reading $(dB\mu V)$ + Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m) CTA TESTING

Suspected Data List

Jush	Suspected Data List											
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity			
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polanty			
1	44.065	51.93	35.35	-16.58	40.00	4.65	100	359	Vertical			
2	89.5338	54.72	34.72	-20.00	43.50	8.78	100	243	Vertical			
3	206.418	54.14	34.97	-19.17	43.50	8.53	100	122	Vertical			
4	305.722	53.52	36.25	-17.27	46.00	9.75	100	292	Vertical			
5	424.305	57.98	42.69	-15.29	46.00	3.31	100	360	Vertical			
6	733.735	46.93	35.87	-11.06	46.00	10.13	100	50	Vertical			

CTATESTIN

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTATE

For 1GHz to 25GHz

Note: GFSK , π/4 DQPSK and 8DPSK all have been tested, only worse case GFSK at the Adapter(Model: FY0471204000) is reported.

The	GFSK (above 1GHz)												
Frequency(MHz):			2402		Pola	Polarity:		HORIZONTAL					
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)				
4804.00	62.20	PK	74	11.80	66.47	32.33	5.12	41.72	-4.27				
4804.00	47.23	AV	54	6.77	51.50	32.33	5.12	41.72	-4.27				
7206.00	56.23	PK	74	17.77	56.75	36.6	6.49	43.61	-0.52				
7206.00	45.16	AV	54	8.84	45.68	36.6	6.49	43.61	-0.52				
TINC			-						A STATISTICS				

Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	59.87	PK	74	14.13	64.14	32.33	5.12	41.72	-4.27
4804.00	44.90	AV	54	9.10	49.17	32.33	5.12	41.72	-4.27
7206.00	53.90	PK	74	20.10	54.42	36.6	6.49	43.61	-0.52
7206.00	42.83	AV	54	11.17	43.35	36.6	6.49	43.61	-0.52

Freque	ncy(MHz)	•	2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	62.70	PK	74	11.30	66.58	32.6	5.34	41.82	-3.88
4882.00	48.11	AV	54	5.89	51.99	32.6	5.34	41.82	-3.88
7323.00	55.73	PK	74	18.27	55.84	36.8	6.81	43.72	-0.11
7323.00	45.48	AV	54	8.52	45.59	36.8	6.81	43.72	-0.11
			6				TE		

Frequency(MHz):			2441		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	59.37	PK	74	14.63	63.25	32.6	5.34	41.82	-3.88
4882.00	45.78	AV	54	8.22	49.66	32.6	5.34	41.82	-3.88
7323.00	53.40	PK	74	20.60	53.51	36.8	6.81	43.72	-0.11
7323.00	43.15	AV	54	10.85	43.26	36.8	6.81	43.72	-0.11
AL AL						ING			

Frequency(MHz):		2480		Polarity:		HORIZONTAL			
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	62.58	PK	74	11.42	65.66	32.73	5.66	41.47	-3.08
4960.00	47.63	AV	54	6.37	50.71	32.73	5.66	41.47	-3.08
7440.00	57.44	PK	74	16.56	56.99	37.04	7.25	43.84	0.45
7440.00	46.23	PK	54	7.77	45.78	37.04	7.25	43.84	0.45
	GIN								

Frequency(MHz):		2480		Polarity:		VERTICAL			
Frequency (MHz)	Emis Le [.] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.25	PK	74	14.75	62.33	32.73	5.66	41.47	-3.08
4960.00	45.30	AV	54	8.70	48.38	32.73	5.66	41.47	-3.08
7440.00	55.11	PK	74	18.89	54.66	37.04	7.25	43.84	0.45
7440.00	43.90	PK	54	10.10	43.45	37.04	7.25	43.84	0.45

 Shenzhen CTA Testing Technology Co., Ltd.

 Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

 Tel:+86-755 2322 5875

 E-mail:cta@cta-test.cn

 TING

Report No.: CTA22071300101

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported. GESK

				GFS	ĸ				-
Freque	ncy(MHz)	:	24	02	Pola	arity:	н	HORIZONTAL	
Frequency (MHz)	Emis Le [.] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	63.53	PK	74	10.47	73.95	27.42	4.31	42.15	-10.42
2390.00	46.07	AV	54	7.93	56.49	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Polarity:			VERTICAL	
Frequency (MHz)	Emis Le ^v (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.20	PK	74	13.80	70.62	27.42	4.31	42.15	-10.42
2390.00	43.74	AV	54	10.26	54.16	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	80	Pola	arity:	HORIZONTAL		\L
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	63.00	PK	74	11.00	73.11	27.7	4.47	42.28	-10.11
2483.50	46.54	AV	54	7.46	56.65	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	80	Polarity:		VERTICAL		
Frequency (MHz)	Emis Le ^r (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.67	Ρ̈́Κ	74	13.33	70.78	27.7	4.47	42.28	-10.11
2483.50	44.21	AV	54	9.79	54.32	27.7	4.47	42.28	-10.11
DEMADKS									

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

3. Margin value = Limit value- Emission level.

CTA TESTING 4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

Maximum Peak Output Power 4.3

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration CTATESTING

Test Results

		6.7		
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	0.88		TES
GFSK	39	39 0.49 20		Pass
	78	0.11		
lan	G 00	0.05		
π/4DQPSK	39	0.32	20.97	Pass
	78	0.70		
	00	0.07	ING	
8DPSK	39	0.35	20.97	Pass
	78	0.69	CTA	
Note: 1.The test res	ults including the	cable lose.		and the second sec

20dB Bandwidth 4.4

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

Test Results			CTATESTIN
Modulation	Channel	20dB bandwidth (MHz)	Result
-ING	CH00	0.987	
GFSK	CH39	1.008	
CTA	CH78	1.008	
Gu	CH00	1.296	NG
π/4DQPSK	CH39	1.284	Pass
	CH78	1.278	
	CH00	1.275	
8DPSK	CH39	1.275	
ING	CH78	1.290	G

Test plot as follows:

Frequency Separation 4.5

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

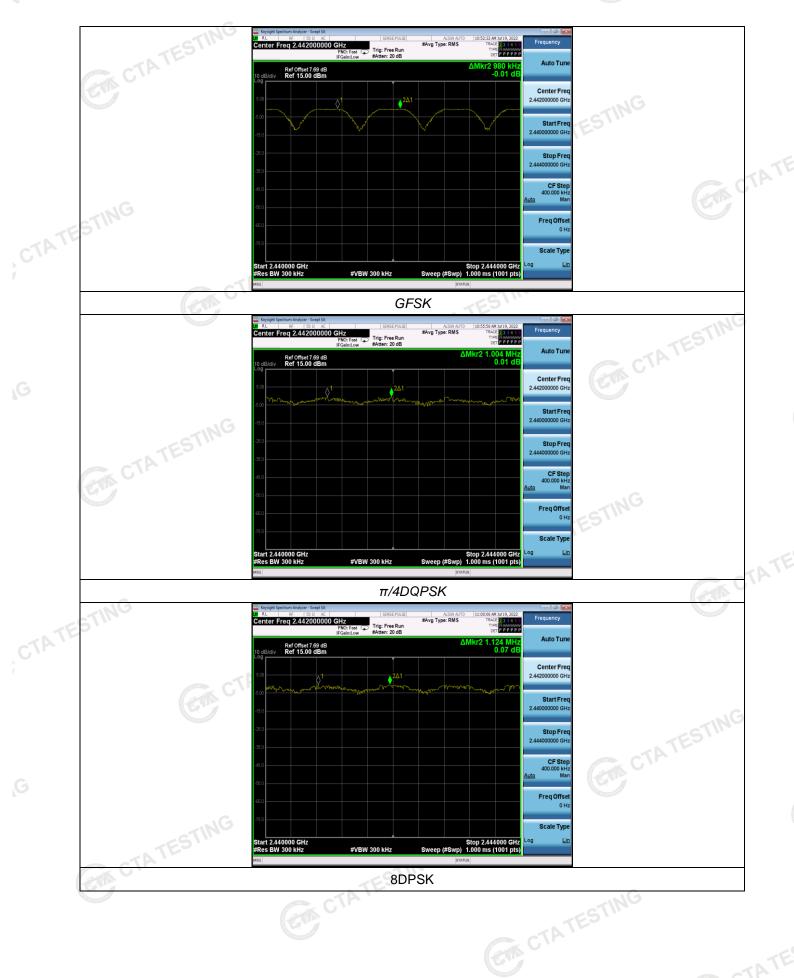
TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

TEST RESULTS	Ĵ	CTATE		TESTING	
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
GFSK	CH38	0.98	25KHz or 2/3*20dB	Pass	
Gron	CH39	0.96	bandwidth	F 855	
π/4DQPSK	CH38	1.004	25KHz or 2/3*20dB	Deee	
II/4DQPSK	CH39	1.004	bandwidth	Pass	
8DPSK	CH38	1.124	25KHz or 2/3*20dB	Pass	
ODF SK	CH39	1.124	bandwidth	F 855	


Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows: CTA TESTING

Page 25 of 51

Number of hopping frequency 4.6

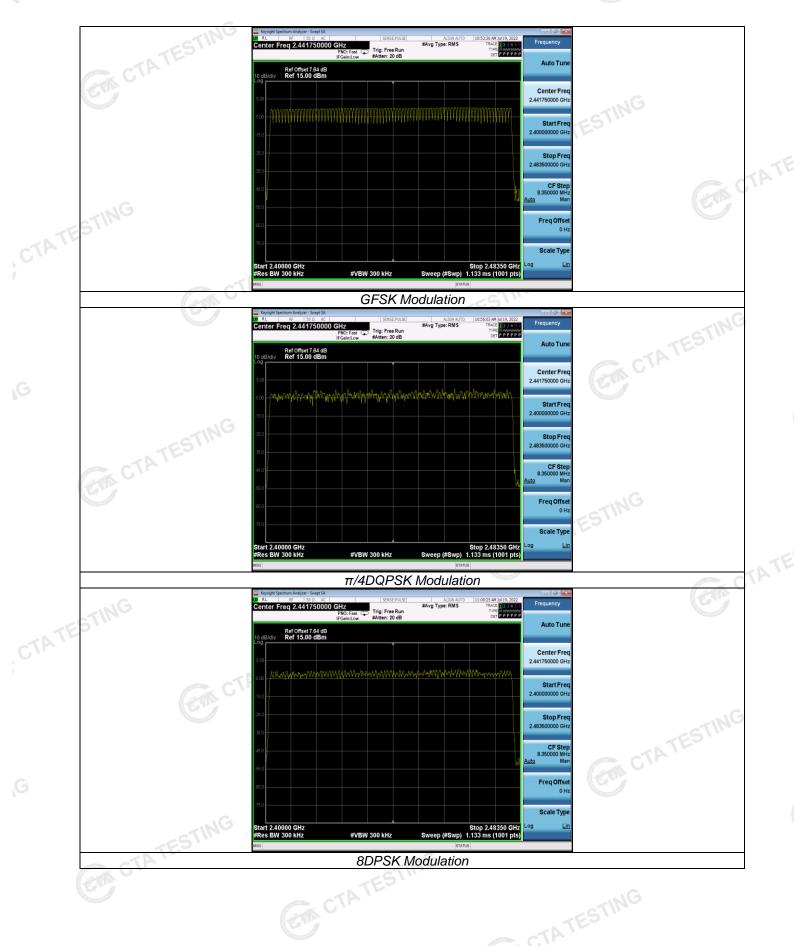
Limit C

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

GTA CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration CTATES


Test Results

Test Results			STING
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	e	
π/4DQPSK	79	≥15	Pass
8DPSK	79		

Test plot as follows:

Page 27 of 51

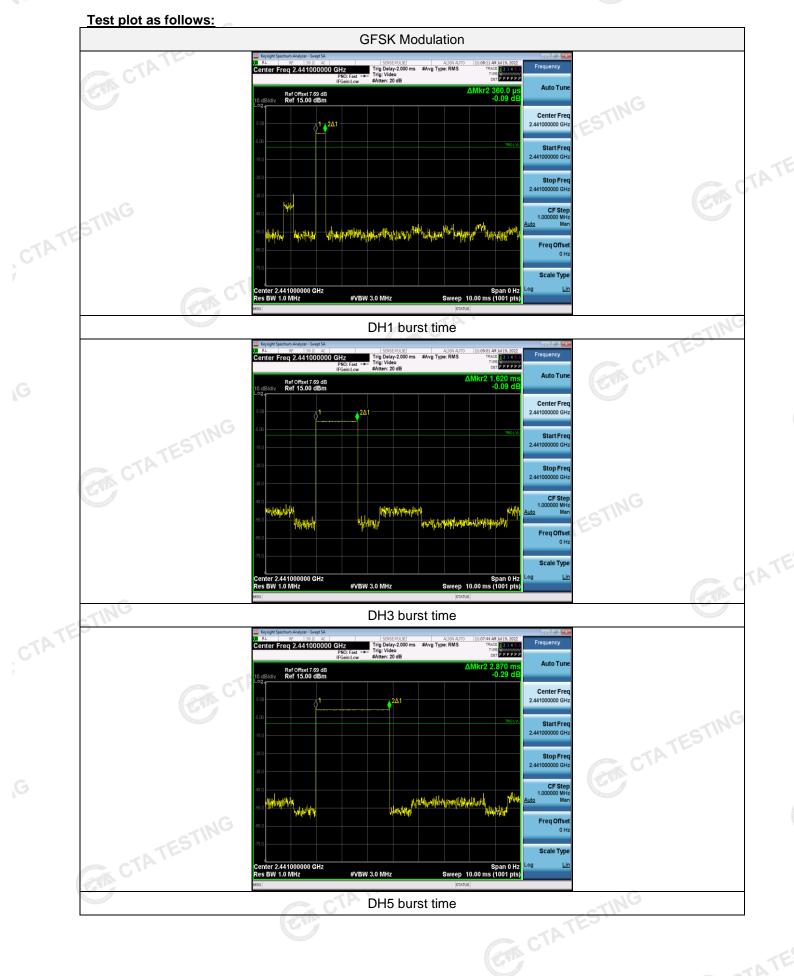
Time of Occupancy (Dwell Time) 4.7

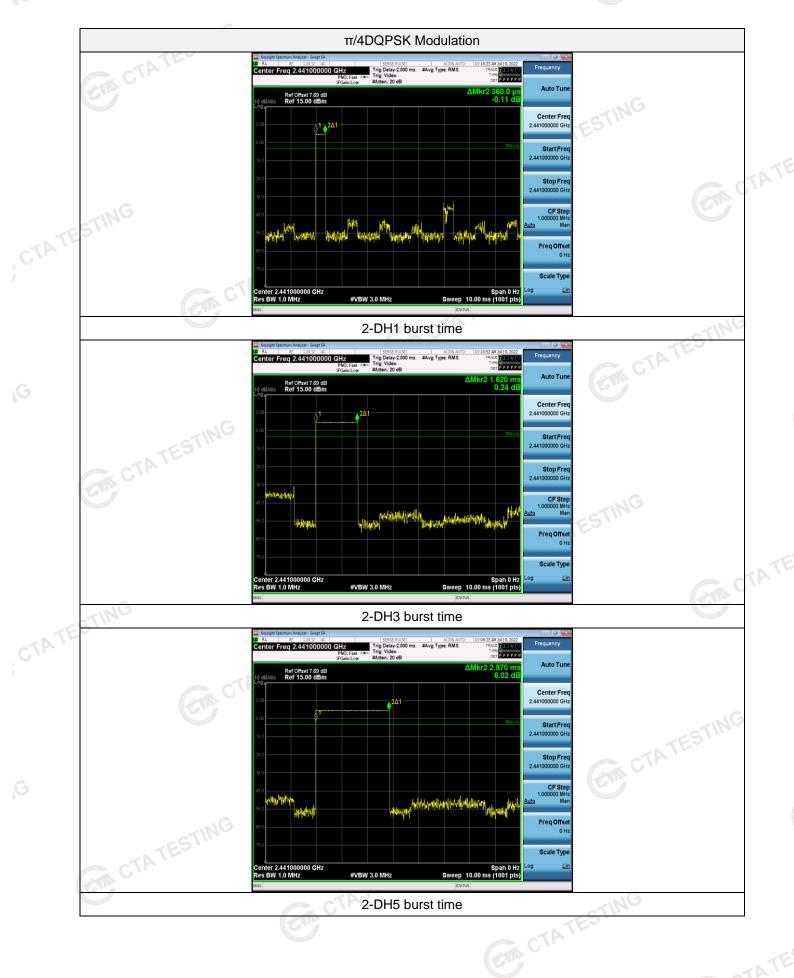
Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

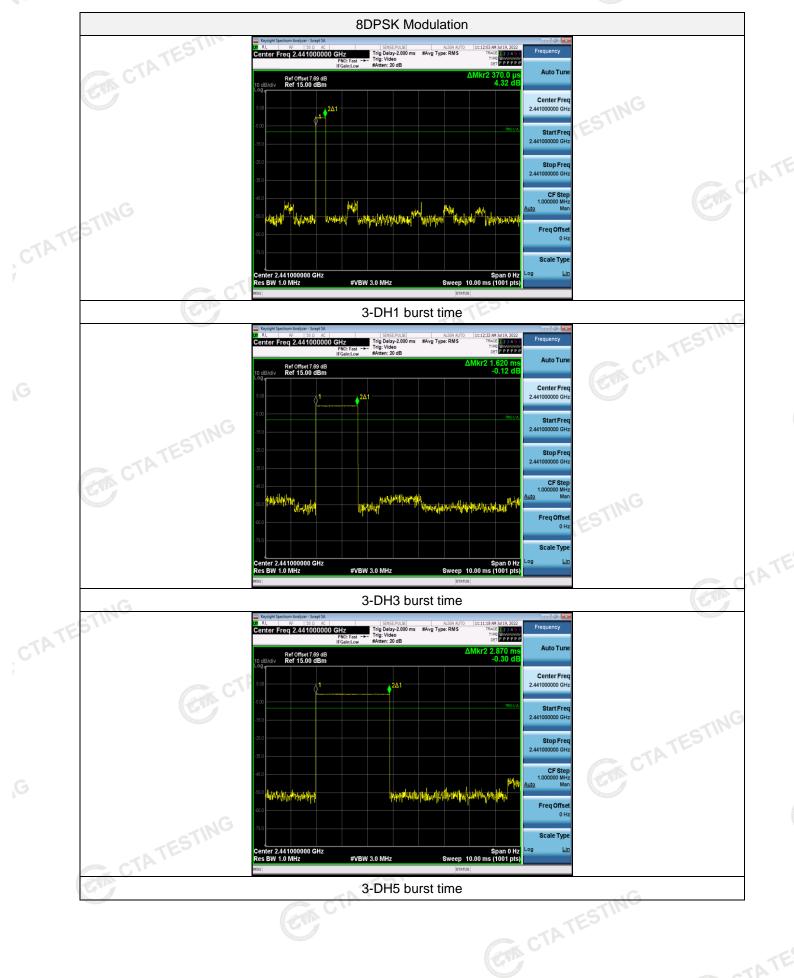
The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.


Test Configuration


Test Results

		G			TES
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.36	0.115		
GFSK	CDH3	1.62	0.259	0.40	Pass
TES	DH5	2.87	0.306		
CIL	2-DH1	0.36	0.115		
π/4DQPSK	2-DH3	1.62	0.259	0.40	Pass
	2-DH5	2.87	0.306	TESTIN	
	3-DH1	0.37	0.118	CTA '	
8DPSK	3-DH3	1.62	0.259	0.40	Pass
	3-DH5	2.87	0.306		
TING	•	•	•		Contraction of the second

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel. Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1 Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3 Dwell time=Pulse time (ms) x (1600 ÷ 6 ÷ 79) x31.6 Second for DH5, 2-DH5, 3-DH5



Page 31 of 51

4.8 **Out-of-band Emissions**

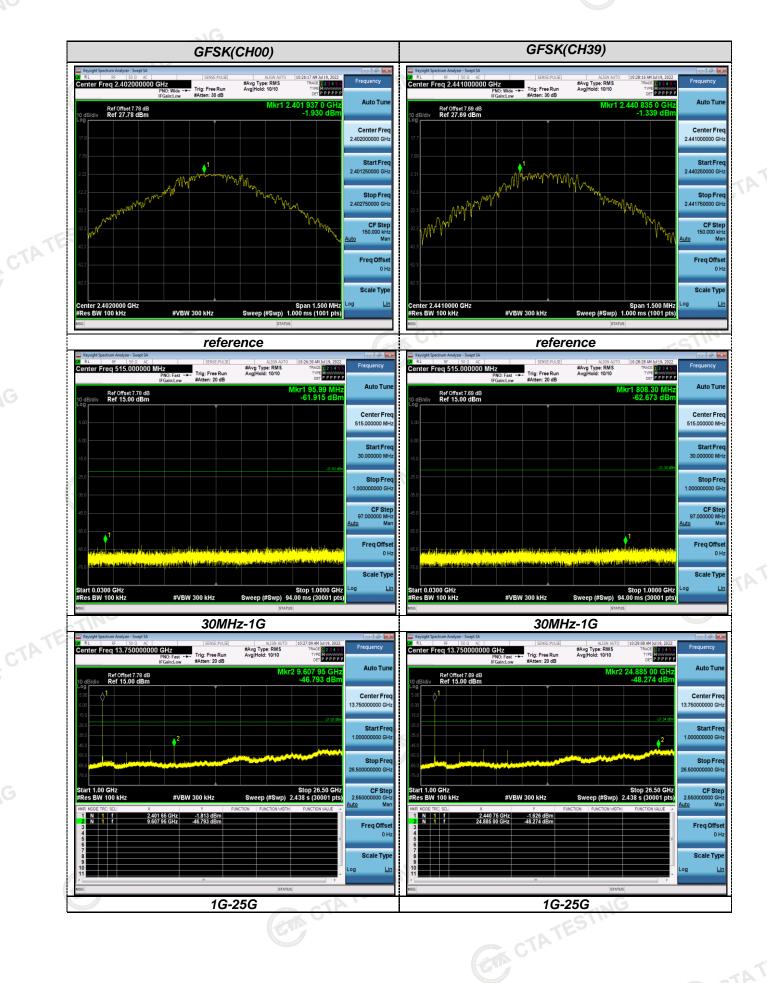
Limit

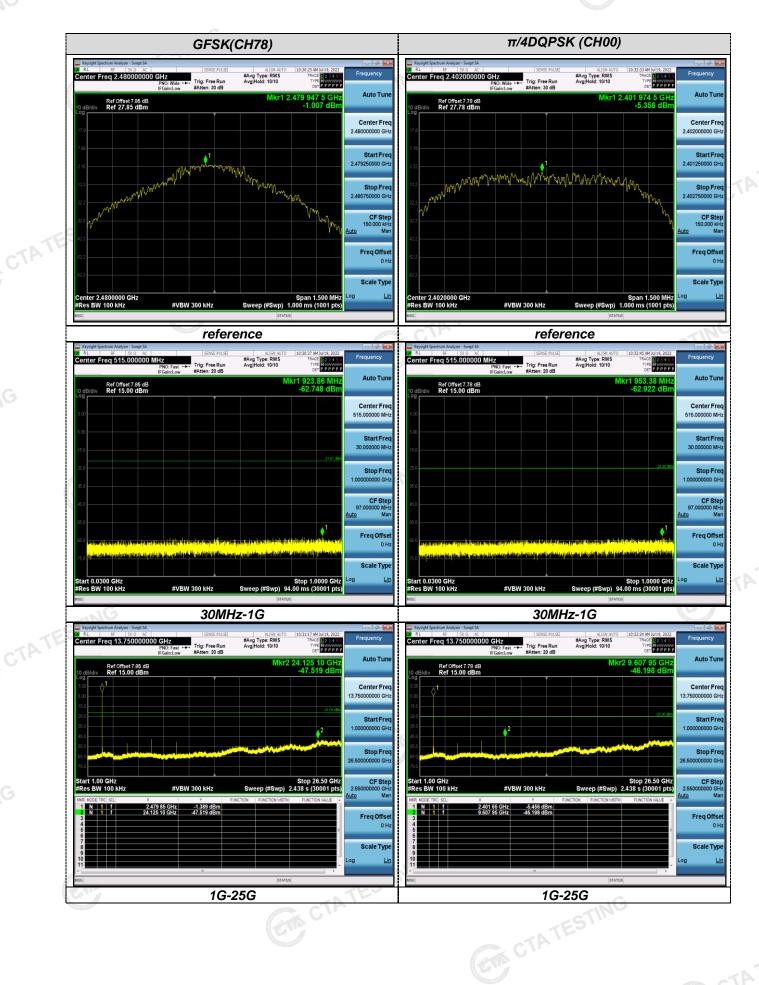
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration




Test Results - STNG

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data. CTATES

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

