


# Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

| Report Reference No                                                           | FCC PART 15.247                                                                                                                                                                                                                         |                              |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| •                                                                             | C FCC FART 13.247                                                                                                                                                                                                                       | G                            |
| FCC ID:                                                                       |                                                                                                                                                                                                                                         |                              |
| Compiled by ( position+printed name+signature) .:                             | File administrators Kevin Liu                                                                                                                                                                                                           | .Lin Go                      |
| Supervised by<br>( position+printed name+signature) .:                        | Project Engineer Kevin Liu                                                                                                                                                                                                              | A. Lave                      |
| Approved by<br>( position+printed name+signature) .:                          | RF Manager Eric Wang                                                                                                                                                                                                                    | vedeng                       |
| Date of issue:                                                                | Jul. 20, 2022                                                                                                                                                                                                                           | TING                         |
| Testing Laboratory Name:                                                      | Shenzhen CTA Testing Technology Co., Ltd.                                                                                                                                                                                               | TATES                        |
| Address                                                                       | Room 106, Building 1, Yibaolai Industrial Park, Qiao<br>Fuhai Street, Bao'an District, Shenzhen, China                                                                                                                                  | tou Community,               |
| Applicant's name:                                                             | Shenzhen Lipuwei Technology Co., Ltd.                                                                                                                                                                                                   |                              |
| Address                                                                       | 308, No.28, Third Industrial Zone, Houting Commun<br>Street, Bao 'an District, Shenzhen, China                                                                                                                                          | ty, Shajing                  |
| Test specification:                                                           | TESTING                                                                                                                                                                                                                                 |                              |
| Standard:                                                                     | FCC Part 15.247                                                                                                                                                                                                                         | G                            |
| TRF Originator:                                                               | Shenzhen CTA Testing Technology Co., Ltd.                                                                                                                                                                                               |                              |
| CTA Testing Technology Co., Ltd. is a<br>CTA Testing Technology Co., Ltd. tak | n whole or in part for non-commercial purposes as long<br>acknowledged as copyright owner and source of the makes<br>no responsibility for and will not assume liability for<br>ion of the reproduced material due to its placement and | aterial. Shenzhen<br>damages |
| Test item description:                                                        | projector                                                                                                                                                                                                                               |                              |
| Trade Mark                                                                    | N/A                                                                                                                                                                                                                                     |                              |
| Manufacturer:                                                                 |                                                                                                                                                                                                                                         |                              |
| Model/Type reference:                                                         | N5<br>N/A                                                                                                                                                                                                                               |                              |
| Listed Models:                                                                | N/A CTA                                                                                                                                                                                                                                 | STING                        |
| Modulation Type:                                                              | CCK/DSSS/ OFDM                                                                                                                                                                                                                          | TATES                        |
|                                                                               | From 2412 - 2462MHz                                                                                                                                                                                                                     | CTATESTING                   |
| Operation Frequency:                                                          |                                                                                                                                                                                                                                         |                              |
| Operation Frequency:<br>Rating                                                | DC 12V From external circuit                                                                                                                                                                                                            |                              |



The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test . th laboratory.

|            | TATESTING                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|            | TESI                                                         | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|            |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 1          | TEST STANDARDS                                               | 65 · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4          |
| Constants  | C.TA '                                                       | TING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 2          | SUMMARY                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5          |
| <u> </u>   |                                                              | 1/2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> J</u>  |
|            |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |
| 2.1        | General Remarks                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5          |
| 2.2<br>2.3 | Product Description                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>5     |
| 2.3<br>2.4 | Equipment Under Test<br>Short description of the Equipment u | ndor Tost (EUT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5          |
| 2.4        | EUT operation mode                                           | nder Test (EUT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6          |
| 2.6        | Block Diagram of Test Setup                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6          |
| 2.7        | Related Submittal(s) / Grant (s)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6          |
| 2.8        | Modifications                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6          |
|            | CTP .                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          |
|            | (etc)                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |
| <u>3</u>   | TEST ENVIRONMENT                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> 7</u>  |
|            |                                                              | CAN CTATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 3.1        | Address of the test laboratory                               | C'ATATL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7          |
| 3.2        | Test Facility                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7          |
| 3.3        | Environmental conditions                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 3.4        | Test Description                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8          |
| 3.5        | Statement of the measurement uncert                          | tainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8          |
| 3.6        | Equipments Used during the Test                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9          |
|            | ATES!                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| <u>4</u> C | TEST CONDITIONS AND RE                                       | SULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10         |
|            |                                                              | ower CTATESTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 4.1        | AC Power Conducted Emission                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10         |
| 4.2        | Radiated Emission                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13         |
| 4.3        | Maximum Peak Conducted Output Po                             | ower cite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20         |
| 4.4        | Power Spectral Density                                       | Grin U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21         |
| 4.5        | 6dB Bandwidth                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24         |
| 4.6        | Out-of-band Emissions                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27         |
| 4.7        | Antenna Requirement                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34         |
|            |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| <u>5</u>   | TEST SETUP PHOTOS OF T                                       | HE EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35         |
| <u> </u>   | - GTIN                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| •          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| <u>6</u>   | PHOTOS OF THE EUT                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> 36</u> |
|            |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|            |                                                              | CTATESTING CTATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|            |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5          |
|            |                                                              | S and the second |            |
|            |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|            |                                                              | GA CTATES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|            |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|            |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |



The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. (DTS) ,Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under §15.247 of The FCC rules. CTATES

#### 2 SUMMARY

# 2.1 General Remarks

| 2.1 General Remarks            |   |               |
|--------------------------------|---|---------------|
| Date of receipt of test sample |   | Jul. 10, 2022 |
| Testing commenced on           |   | Jul. 10, 2022 |
| Testing concluded on           | : | Jul. 20, 2022 |

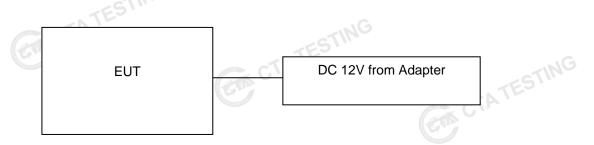
| Product Name:          | projector                                                              |
|------------------------|------------------------------------------------------------------------|
| Model/Type reference:  | N5-5                                                                   |
| Power supply:          | DC 12V From external circuit                                           |
| Adapter 1 information: | Model: R481-2002400C1<br>Input:AC 100-240V 50/60Hz<br>Output:DC 12V 4A |
| Adapter 2 information: | Model: FY0471204000<br>Input:AC 100-240V 50/60Hz<br>Output:DC 12V 4A   |
| testing sample ID:     | CTA220713001-1# (Engineer sample),<br>CTA220713001-2# (Normal sample)  |
| Hardware version:      | V1.0                                                                   |
| Software version:      | V1.0                                                                   |
| WIFI :                 |                                                                        |
| Supported type:        | 802.11b/802.11g/802.11n(H20)                                           |
| Modulation:            | 802.11b: DSSS<br>802.11g/802.11n(H20): OFDM                            |
| Operation frequency:   | 802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz                          |
| Channel number:        | 802.11b/802.11g/802.11n(H20): 11                                       |
| Channel separation:    | 5MHz                                                                   |
| Antenna type:          | PIFA antenna                                                           |
| Antenna gain:          | 0.00 dBi                                                               |

# 2.3 Equipment Under Test

# Power supply system utilised

| Power supply voltage                                    | :           | Ο  | 230V / 50 Hz                | 0    | 120V / 60Hz |
|---------------------------------------------------------|-------------|----|-----------------------------|------|-------------|
| TES                                                     |             | Ο  | 5 V DC                      | 0    | 24 V DC     |
| CTP .                                                   |             |    | Other (specified in blank b | elow | )           |
|                                                         | <u>[</u>    | C  | 12V From external circuit   |      |             |
| 2.4 Short description of                                | of the Eq   | ui | pment under Test (El        | JT)  | ESTING      |
| •                                                       |             |    |                             |      |             |
| This is projector.                                      | Contraction |    |                             |      | TATL        |
| This is projector.<br>For more details, refer to the us | ser's manua | al | of the EUT.                 |      | TATL        |

# 2.4 Short description of the Equipment under Test (EUT)


## 2.5 EUT operation mode

The application provider specific test software(AT command) to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement. IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.

| Channel | Frequency(MHz) | Channel | Frequency(MHz) |
|---------|----------------|---------|----------------|
| 1       | 2412           | 8       | G 2447         |
| 2       | 2417           | 9       | 2452           |
| 3       | 2422           | 10      | 2457           |
| 4       | 2427           | 11      | 2462           |
| 5       | 2432           | C. T    |                |
| 6       | 2437           | 2 South |                |
| 7       | 2442           |         |                |

# CTNG / 2442

## 2.6 Block Diagram of Test Setup



# 2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

# 2.8 Modifications

No modifications were implemented to meet testing criteria.

#### 3 TEST ENVIRONMENT

### 3.1 Address of the test laboratory

#### Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

#### 3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

#### A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

## 3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission

| Taulaleu Emission.    |              |
|-----------------------|--------------|
| Temperature:          | 25 ° C       |
|                       | ( and b      |
| Humidity:             | 45 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |

#### Conducted testina:

| Temperature:               | 25 ° C       | ]    |
|----------------------------|--------------|------|
| Humidity:                  | 44 %         | -    |
| -ESTIN                     |              |      |
| Atmospheric pressure:      | 950-1050mbar | -ING |
| C Power Conducted Emission |              |      |
| Temperature:               | 24 ° C       | (r   |

#### AC Power Conducted Emission

| 24 ° C       |
|--------------|
|              |
| 44 %         |
|              |
| 950-1050mbar |
| TATESTING    |
|              |

#### **Test Description** 3.4

|     | FCC PART 15.247                             |                                     |      |  |  |
|-----|---------------------------------------------|-------------------------------------|------|--|--|
|     | FCC Part 15.207 AC Power Conducted Emission |                                     |      |  |  |
|     | FCC Part 15.247(a)(2)                       | 6dB Bandwidth                       | PASS |  |  |
|     | FCC Part 15.247(d)                          | Spurious RF Conducted Emission      | PASS |  |  |
|     | FCC Part 15.247(b)                          | Maximum Peak Conducted Output Power | PASS |  |  |
|     | FCC Part 15.247(e)                          | Power Spectral Density              | PASS |  |  |
|     | FCC Part 15.109/ 15.205/ 15.209             | Radiated Emissions                  | PASS |  |  |
| CIL | FCC Part 15.247(d)                          | Band Edge                           | PASS |  |  |
|     | FCC Part 15.203/15.247 (b)                  | Antenna Requirement                 | PASS |  |  |

#### Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

| Mode            | Data Rate                                                       | Channel                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11b/DSSS        | 1 Mbps                                                          | 1/6/11                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11g/OFDM        | 6 Mbps                                                          | 1/6/11                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11n(20MHz)/OFDM | 6.5Mbps                                                         | 1/6/11                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11b/DSSS        | S1 Mbps                                                         | 1/11                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11g/OFDM        | 6 Mbps                                                          | 1/11                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11n(20MHz)/OFDM | 6.5Mbps                                                         | 1/11                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ertainty        |                                                                 |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | 11b/DSSS<br>11g/OFDM<br>11n(20MHz)/OFDM<br>11b/DSSS<br>11g/OFDM | 11b/DSSS1 Mbps11g/OFDM6 Mbps11n(20MHz)/OFDM6.5Mbps11b/DSSS1 Mbps11g/OFDM6 Mbps11n(20MHz)/OFDM6.5Mbps | 11b/DSSS         1 Mbps         1/6/11           11g/OFDM         6 Mbps         1/6/11           11n(20MHz)/OFDM         6.5Mbps         1/6/11           11b/DSSS         1 Mbps         1/11           11b/DSSS         1 Mbps         1/11           11g/OFDM         6 Mbps         1/11           11g/OFDM         6 Mbps         1/11           11g/OFDM         6 Mbps         1/11           11n(20MHz)/OFDM         6.5Mbps         1/11 |

#### 3.5 Statement of the measurement uncertainty

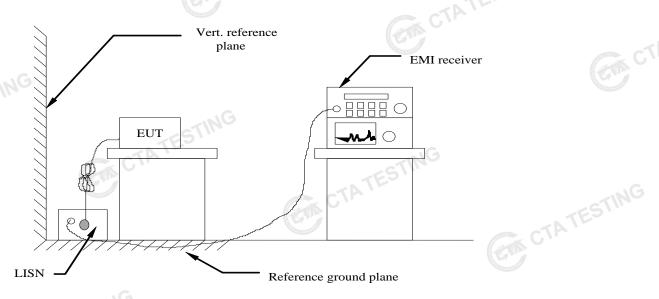
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

| Test                  | Range      | Measurement<br>Uncertainty | Notes |
|-----------------------|------------|----------------------------|-------|
| Radiated Emission     | 30~1000MHz | 4.06 dB                    | (1)   |
| Radiated Emission     | 1~18GHz    | 5.14 dB                    | (1)   |
| Radiated Emission     | 18-40GHz   | 5.38 dB                    | (1)   |
| Conducted Disturbance | 0.15~30MHz | 2.14 dB                    | (1)   |

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

#### 3.6 Equipments Used during the Test


| _           | 10.                               | (3                        |             |                  |                     |                         |
|-------------|-----------------------------------|---------------------------|-------------|------------------|---------------------|-------------------------|
|             | Test Equipment                    | Manufacturer              | Model No.   | Equipment<br>No. | Calibration<br>Date | Calibration<br>Due Date |
|             | LISN                              | R&S                       | ENV216      | CTA-308          | 2021/08/06          | 2022/08/05              |
|             | LISN                              | R&S                       | ENV216      | CTA-314          | 2021/08/06          | 2022/08/05              |
|             | EMI Test Receiver                 | R&S                       | ESPI        | CTA-307          | 2021/08/06          | 2022/08/05              |
|             | EMI Test Receiver                 | R&S                       | ESCI        | CTA-306          | 2021/08/06          | 2022/08/05              |
| -           | Spectrum Analyzer                 | Agilent                   | N9020A      | CTA-301          | 2021/08/06          | 2022/08/05              |
| TE          | Spectrum Analyzer                 | R&S                       | FSP         | CTA-337          | 2021/08/06          | 2022/08/05              |
| CTA         | Vector Signal generator           | Agilent                   | N5182A      | CTA-305          | 2021/08/06          | 2022/08/05              |
|             | Analog Signal<br>Generator        | R&S                       | SML03       | CTA-304          | 2021/08/06          | 2022/08/05              |
|             | Universal Radio                   | CMW500                    | R&S         | CTA-302          | 2021/08/06          | 2022/08/05              |
|             | Temperature and<br>humidity meter | Chigo                     | ZG-7020     | CTA-326          | 2021/08/06          | 2022/08/05              |
| 3           | Ultra-Broadband<br>Antenna        | Schwarzbeck               | VULB9163    | CTA-310          | 2021/08/07          | 2022/08/06              |
|             | Horn Antenna                      | Schwarzbeck               | BBHA 9120D  | CTA-309          | 2021/08/07          | 2022/08/06              |
| -           | Loop Antenna                      | Zhinan                    | ZN30900C    | CTA-311          | 2021/08/07          | 2022/08/06              |
|             | Horn Antenna                      | Beijing Hangwei<br>Dayang | OBH100400   | CTA-336          | 2021/08/06          | 2022/08/05              |
|             | Amplifier                         | Schwarzbeck               | BBV 9745    | CTA-312          | 2021/08/06          | 2022/08/05              |
| -           | Amplifier                         | Taiwan chengyi            | EMC051845B  | CTA-313          | 2021/08/06          | 2022/08/05              |
| -           | Directional coupler               | NARDA                     | 4226-10     | CTA-303          | 2021/08/06          | 2022/08/05              |
| -           | High-Pass Filter                  | XingBo                    | XBLBQ-GTA18 | CTA-402          | 2021/08/06          | 2022/08/05              |
| -           | High-Pass Filter                  | XingBo                    | XBLBQ-GTA27 | CTA-403          | 2021/08/06          | 2022/08/05              |
| TATE        | Automated filter<br>bank          | Tonscend                  | JS0806-F    | CTA-404          | 2021/08/06          | 2022/08/05              |
| <u>j</u> \r | Power Sensor                      | Agilent                   | U2021XA     | CTA-405          | 2021/08/06          | 2022/08/05              |
| F           | Amplifier                         | Schwarzbeck               | BBV9719     | CTA-406          | 2021/08/06          | 2022/08/05              |
| 3           | G                                 |                           | COM CTA     | TESIN            | GM CT               | ATESTING                |

Page 10 of 36

#### TEST CONDITIONS AND RESULTS 4

# 4.1 AC Power Conducted Emission

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

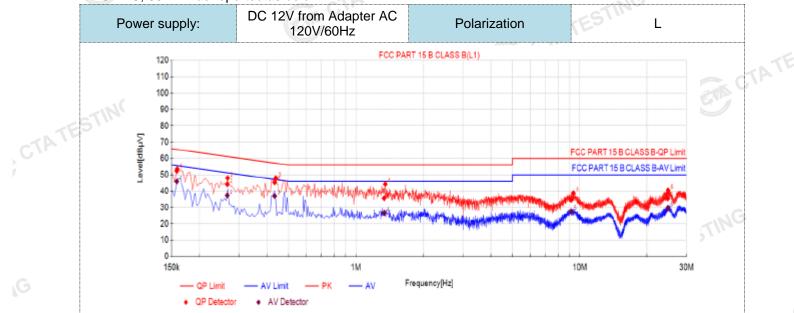
7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes. ATESTING 8 During the above scans, the emissions were maximized by cable manipulation.

#### AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

| Frequency reng             |                     | Limit (dBuV) |           |  |  |  |  |
|----------------------------|---------------------|--------------|-----------|--|--|--|--|
| Frequency range            |                     | Quasi-peak   | Average   |  |  |  |  |
| 0.15-0.5                   |                     | 66 to 56*    | 56 to 46* |  |  |  |  |
| 0.5-5                      |                     | 56           | 46        |  |  |  |  |
| 5-30                       |                     | 60           | 50        |  |  |  |  |
| * Decreases with the logar | ithm of the frequen | cy.          | . 6.      |  |  |  |  |
| TEST RESULTS               | CIN CIT             | - C          | ATESTING  |  |  |  |  |
|                            |                     |              |           |  |  |  |  |

#### TEST RESULTS


Shenzhen CTA Testing Technology Co., Ltd.

CTA TESTING

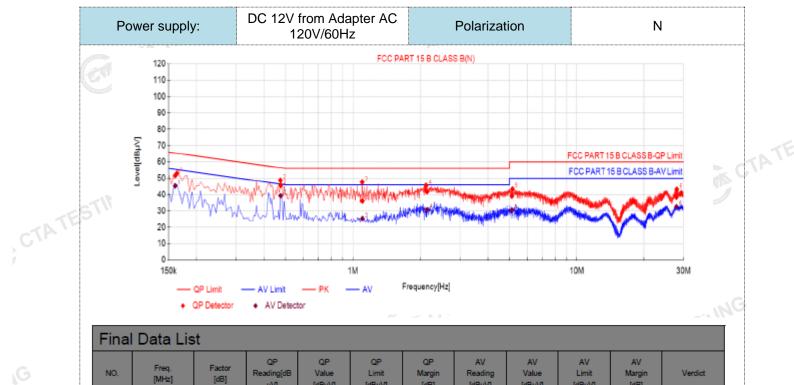
#### Remark:

1. All modes of 802.11b/g/n were tested at Low, Middle, and High channel; only the worst result of 802.11b CH11 was reported as below:

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



# **Final Data List**


| NO. | Freq.<br>[MHz] | Factor<br>[dB] | QP<br>Reading[dB<br>µV] | QP<br>Value<br>[dBµV] | QP<br>Limit<br>[dBµV] | QP<br>Margin<br>[dB] | AV<br>Reading<br>[dBµV] | AV<br>Value<br>[dBµV] | AV<br>Limit<br>[dBµV] | AV<br>Margin<br>[dB] | Verdict |    |  |
|-----|----------------|----------------|-------------------------|-----------------------|-----------------------|----------------------|-------------------------|-----------------------|-----------------------|----------------------|---------|----|--|
| 1   | 0.1584         | 10.50          | 41.88                   | 52.38                 | 65.55                 | 13.17                | 35.40                   | 45.90                 | 55.55                 | 9.65                 | PASS    |    |  |
| 2   | 0.2662         | 10.50          | 33.69                   | 44.19                 | 61.24                 | 17.05                | 26.86                   | 37.36                 | 51.24                 | 13.88                | PASS    |    |  |
| 3   | 0.4330         | 10.50          | 34.82                   | 45.32                 | 57.19                 | 11.87                | 26.47                   | 36.97                 | 47.19                 | 10.22                | PASS    |    |  |
| 4   | 1.3364         | 10.50          | 25.17                   | 35.67                 | 56.00                 | 20.33                | 16.14                   | 26.64                 | 46.00                 | 19.36                | PASS    |    |  |
| 5   | 9.1606         | 10.50          | 24.14                   | 34.64                 | 60.00                 | 25.36                | 17.02                   | 27.52                 | 50.00                 | 22.48                | PASS    |    |  |
| 6   | 24.7356        | 10.50          | 24.99                   | 35.49                 | 60.00                 | 24.51                | 19.05                   | 29.55                 | 50.00                 | 20.45                | PASS    | -1 |  |
| NG  | QP Value       |                | 00.0                    |                       |                       | ( ( ID               | 、<br>、                  |                       |                       |                      | G       |    |  |

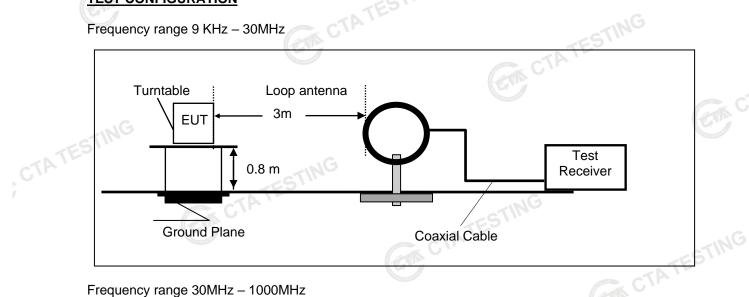
Note:1).QP Value  $(dB\mu V) = QP$  Reading  $(dB\mu V) +$  Factor (dB)

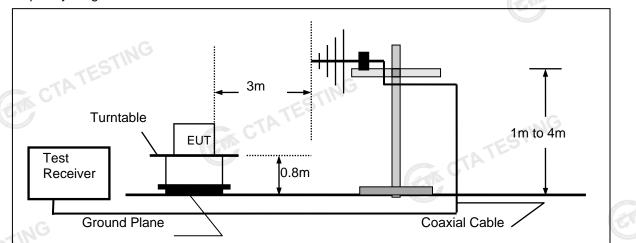
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB $\mu$ V) QP Value (dB $\mu$ V)
- CTATESTING AVMargin(dB) = AV Limit (dBµV) - AV Value (dBµV)

Page 12 of 36

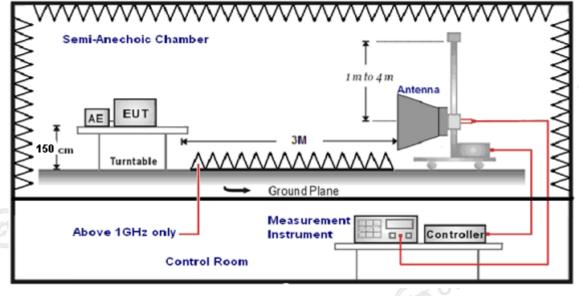
GTATE




|          | NO.   | Freq.<br>[MHz]                         | Factor<br>[dB]        | QP<br>Reading[dB<br>µV] | QP<br>Value<br>[dBµV] | QP<br>Limit<br>[dBµV] | QP<br>Margin<br>[dB] | AV<br>Reading<br>[dBµV] | AV<br>Value<br>[dBµV] | AV<br>Limit<br>[dBµV] | AV<br>Margin<br>[dB] | Verdict |
|----------|-------|----------------------------------------|-----------------------|-------------------------|-----------------------|-----------------------|----------------------|-------------------------|-----------------------|-----------------------|----------------------|---------|
|          | 1     | 0.1605                                 | 10.50                 | 41.12                   | 51.62                 | 65.44                 | 13.82                | 34.81                   | 45.31                 | 55.44                 | 10.13                | PASS    |
|          | 2     | 0.4752                                 | 10.50                 | 35.13                   | 45.63                 | 56.42                 | 10.79                | 28.80                   | 39.30                 | 46.42                 | 7.12                 | PASS    |
|          | 3     | 1.1022                                 | 10.50                 | 25.67                   | 36.17                 | 56.00                 | 19.83                | 14.81                   | 25.31                 | 46.00                 | 20.69                | PASS    |
|          | 4     | 2.1437                                 | 10.50                 | 31.24                   | 41.74                 | 56.00                 | 14.26                | 20.26                   | 30.76                 | 46.00                 | 15.24                | PASS    |
| Ľ        | 5     | 5.1289                                 | 10.50                 | 28.53                   | 39.03                 | 60.00                 | 20.97                | 19.91                   | 30.41                 | 50.00                 | 19.59                | PASS    |
|          | 6     | 27.9003                                | 10.50                 | 27.91                   | 38.41                 | 60.00                 | 21.59                | 22.09                   | 32.59                 | 50.00                 | 17.41                | PASS    |
| 2)<br>3) | . Fac | .QP Value<br>tor (dB)=ir<br>Margin(dB) | sertion I<br>) = QP L | oss of Ll<br>imit (dBµ  | SN (dB)<br>V) - QP    | + Cable<br>Value (d   | loss (dB<br>BµV)     | 3)<br>))                | CTI                   | TES                   | 7                    |         |


4). AVMargin(dB) = AV Limit (dB $\mu$ V) - AV Value (dB $\mu$ V) ,vh CTATESTING

#### 4.2 **Radiated Emission**




Frequency range 9 KHz – 30MHz





Frequency range above 1GHz-25GHz



Shenzhen CTA Testing Technology Co., Ltd.

#### **TEST PROCEDURE**

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

| Test Frequency range          | Test Antenna Type               | Test Distance | (CT)                |
|-------------------------------|---------------------------------|---------------|---------------------|
| 9KHz-30MHz                    | Active Loop Antenna             | 3             | Charles and Charles |
| 30MHz-1GHz                    | Ultra-Broadband Antenna         | 3             |                     |
| 1GHz-18GHz                    | Double Ridged Horn Antenna      | 3             |                     |
| 18GHz-25GHz                   | Horn Anternna                   | 1             |                     |
| Sotting tost receiver/enactry | um an fallowing table states: 🦳 |               |                     |

| . Setting test receiver/spectrum as following table states: |                                                                                                           |          |  |  |  |  |  |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|--|--|
| Test Frequency range                                        | Test Receiver/Spectrum Setting                                                                            | Detector |  |  |  |  |  |  |  |
| 9KHz-150KHz                                                 | RBW=200Hz/VBW=3KHz,Sweep time=Auto                                                                        | QP       |  |  |  |  |  |  |  |
| 150KHz-30MHz                                                | RBW=9KHz/VBW=100KHz,Sweep time=Auto                                                                       | QP       |  |  |  |  |  |  |  |
| 30MHz-1GHz                                                  | RBW=120KHz/VBW=1000KHz,Sweep time=Auto                                                                    | QP       |  |  |  |  |  |  |  |
| 1GHz-40GHz                                                  | Peak Value: RBW=1MHz/VBW=3MHz,<br>Sweep time=Auto<br>Average Value: RBW=1MHz/VBW=10Hz,<br>Sweep time=Auto | Peak     |  |  |  |  |  |  |  |

### **Field Strength Calculation**

7.

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

#### FS = RA + AF + CL - AG

| FS = RA + AF + CL - AG    | CTATESTINC                                 |
|---------------------------|--------------------------------------------|
| Where FS = Field Strength | CL = Cable Attenuation Factor (Cable Loss) |
| RA = Reading Amplitude    | AG = Amplifier Gain                        |
| AF = Antenna Factor       |                                            |

Transd=AF +CL-AG

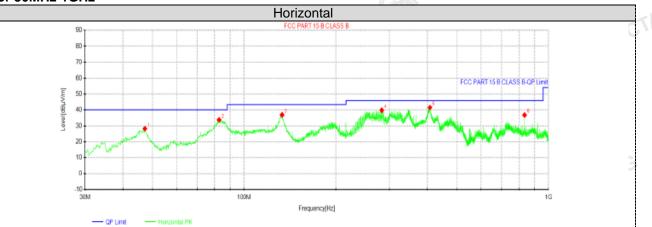
#### **RADIATION LIMIT**

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

| Frequency (MHz) | Distance<br>(Meters) | Radiated (dBµV/m)                | Radiated (µV/m) |
|-----------------|----------------------|----------------------------------|-----------------|
| 0.009-0.49      | 3                    | 20log(2400/F(KHz))+40log(300/3)  | 2400/F(KHz)     |
| 0.49-1.705      | 3                    | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz)    |
| 1.705-30        | 3                    | 20log(30)+ 40log(30/3)           | 30              |
| 30-88           | 3 C V                | 40.0                             | 100             |
| 88-216          | 3                    | 43.5                             | 150             |
| 216-960         | 3                    | 46.0                             | 200             |
| Above 960       | 3                    | 54.0                             | 500             |

#### Shenzhen CTA Testing Technology Co., Ltd.


#### **TEST RESULTS**

Remark:

CTATE

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X 1. position.
- 2. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel at the Adapter(Model: FY0471204000)
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. except system noise floor in 9 KHz to 30MHz and not recorded in this report.

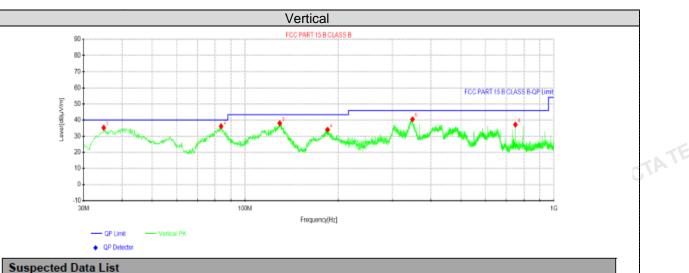
#### For 30MHz-1GHz



| _ | <ul> <li>Generation</li> </ul> | _ | Honzonia |
|---|--------------------------------|---|----------|
| ٠ | QP Delector                    |   |          |

| Suspe | ected Data | List       | _          |           |           |        |        |       |            |
|-------|------------|------------|------------|-----------|-----------|--------|--------|-------|------------|
| NO.   | Freq.      | Reading    | Level      | Factor    | Limit     | Margin | Height | Angle | Delerity   |
| NO.   | [MHz]      | [dBµV]     | [dBµV/m]   | [dB/m]    | [dBµV/m]  | [dB]   | [cm]   | [°]   | Polarity   |
| 1     | 47.2175    | 44.56      | 28.28      | -16.28    | 40.00     | 11.72  | 100    | 357   | Horizontal |
| 2     | 82.7438    | 54.80      | 33.85      | -20.95    | 40.00     | 6.15   | 100    | 59    | Horizontal |
| 3     | 133.305    | 58.38      | 36.90      | -21.48    | 43.50     | 6.60   | 100    | 36    | Horizontal |
| 4     | 283.17     | 57.34      | 39.71      | -17.63    | 46.00     | 6.29   | 100    | 76    | Horizontal |
| 5     | 407.572    | 57.02      | 41.55      | -15.47    | 46.00     | 4.45   | 100    | 84    | Horizontal |
| 6     | 833.645    | 47.01      | 36.78      | -10.23    | 46.00     | 9.22   | 100    | 156   | Horizontal |
|       |            |            |            |           |           |        |        |       |            |
| 1).Le | vel (dBu\  | √/m)= Read | dina (dBuV | /)+ Facto | or (dB/m) |        |        |       |            |

Note:1).Level ( $dB\mu V/m$ )= Reading ( $dB\mu V$ )+ Factor (dB/m)


2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB $\mu$ V/m) - Level (dB $\mu$ V/m) GTA CTATESTING

GTA CTA

CTATE

CTATE



| Freq.   | Reading                                                             | Level                                                                                                                                                                                                              | Factor                                                                                                                                                                                                                                                                                     | Limit                                                                                                                                                                                                                                                                                                                                                                                          | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Angle                                                                                                                                                                                                                                                                | Polarity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|---------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [MHz]   | [dBµV]                                                              | [dBµV/m]                                                                                                                                                                                                           | [dB/m]                                                                                                                                                                                                                                                                                     | [dBµV/m]                                                                                                                                                                                                                                                                                                                                                                                       | [dB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [cm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [°]                                                                                                                                                                                                                                                                  | Folanty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 34.85   | 53.11                                                               | 35.24                                                                                                                                                                                                              | -17.87                                                                                                                                                                                                                                                                                     | 40.00                                                                                                                                                                                                                                                                                                                                                                                          | 4.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 182                                                                                                                                                                                                                                                                  | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 83.5925 | 57.00                                                               | 36.17                                                                                                                                                                                                              | -20.83                                                                                                                                                                                                                                                                                     | 40.00                                                                                                                                                                                                                                                                                                                                                                                          | 3.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 287                                                                                                                                                                                                                                                                  | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 129.425 | 59.26                                                               | 38.00                                                                                                                                                                                                              | -21.26                                                                                                                                                                                                                                                                                     | 43.50                                                                                                                                                                                                                                                                                                                                                                                          | 5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 360                                                                                                                                                                                                                                                                  | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 184.957 | 54.33                                                               | 34.10                                                                                                                                                                                                              | -20.23                                                                                                                                                                                                                                                                                     | 43.50                                                                                                                                                                                                                                                                                                                                                                                          | 9.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 262                                                                                                                                                                                                                                                                  | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 348.281 | 56.52                                                               | 40.43                                                                                                                                                                                                              | -16.09                                                                                                                                                                                                                                                                                     | 46.00                                                                                                                                                                                                                                                                                                                                                                                          | 5.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27                                                                                                                                                                                                                                                                   | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 750.103 | 47.81                                                               | 37.14                                                                                                                                                                                                              | -10.67                                                                                                                                                                                                                                                                                     | 46.00                                                                                                                                                                                                                                                                                                                                                                                          | 8.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 173                                                                                                                                                                                                                                                                  | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|         | Freq.<br>[MHz]<br>34.85<br>83.5925<br>129.425<br>184.957<br>348.281 | Freq.         Reading           [MHz]         [dBμV]           34.85         53.11           83.5925         57.00           129.425         59.26           184.957         54.33           348.281         56.52 | Freq.         Reading<br>[dHz]         Level<br>[dBμV]           34.85         53.11         35.24           83.5925         57.00         36.17           129.425         59.26         38.00           184.957         54.33         34.10           348.281         56.52         40.43 | Freq.         Reading<br>[dHz]         Level<br>[dBμV]         Factor<br>[dBμV]           34.85         53.11         35.24         -17.87           83.5925         57.00         36.17         -20.83           129.425         59.26         38.00         -21.26           184.957         54.33         34.10         -20.23           348.281         56.52         40.43         -16.09 | Freq.         Reading<br>[dHz]         Level<br>[dBμV]         Factor<br>[dBμV/m]         Limit<br>[dBμ]           34.85         53.11         35.24         -17.87         40.00           83.5925         57.00         36.17         -20.83         40.00           129.425         59.26         38.00         -21.26         43.50           184.957         54.33         34.10         -20.23         43.50           348.281         56.52         40.43         -16.09         46.00 | Freq.         Reading<br>[MHz]         Level<br>[dBμV]         Factor<br>[dBμV/m]         Limit<br>[dB/m]         Margin<br>[dBμV/m]           34.85         53.11         35.24         -17.87         40.00         4.76           83.5925         57.00         36.17         -20.83         40.00         3.83           129.425         59.26         38.00         -21.26         43.50         5.50           184.957         54.33         34.10         -20.23         43.50         9.40           348.281         56.52         40.43         -16.09         46.00         5.57 | Freq.ReadingLevelFactorLimitMarginHeight[MHz][dBμV][dBμV/m][dB/m][dB/m][dBμV/m][dB][cm]34.8553.1135.24-17.8740.004.7610083.592557.0036.17-20.8340.003.83100129.42559.2638.00-21.2643.505.50100184.95754.3334.10-20.2343.509.40100348.28156.5240.43-16.0946.005.57100 | Freq.         Reading<br>[dHz]         Level<br>[dBμV]         Factor<br>[dBμV/m]         Limit<br>[dB/m]         Margin<br>[dBμV/m]         Height<br>[dB]         Angle<br>[cm]           34.85         53.11         35.24         -17.87         40.00         4.76         100         182           83.5925         57.00         36.17         -20.83         40.00         3.83         100         287           129.425         59.26         38.00         -21.26         43.50         5.50         100         360           184.957         54.33         34.10         -20.23         43.50         9.40         100         262           348.281         56.52         40.43         -16.09         46.00         5.57         100         27 |  |  |  |

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB $\mu$ V/m) - Level (dB $\mu$ V/m)

#### For 1GHz to 25GHz

Note: 802.11b/802.11g/802.11n (H20) Mode all have been tested, only worse case 802.11b mode at the Adapter(Model: FY0471204000) is reported . . 

| (above 1GHz)       |          |                     |                   |                |                        |                             |                         |                           |                                |  |  |  |  |
|--------------------|----------|---------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|--|--|--|--|
| Freque             | ncy(MHz) | :                   | 24                | 12             | Pola                   | arity:                      | HORIZONTAL              |                           |                                |  |  |  |  |
| Frequency<br>(MHz) | -        | sion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |  |  |  |
| 4824.00            | 61.50    | PK                  | 74                | 12.50          | 65.86                  | 32.4                        | 5.11                    | 41.87                     | -4.36                          |  |  |  |  |
| 4824.00            | 47.02    | AV                  | 54                | 6.98           | 51.38                  | 32.4                        | 5.11                    | 41.87                     | -4.36                          |  |  |  |  |
| 7236.00            | 56.21    | PK                  | 74                | 17.79          | 56.84                  | 36.58                       | 6.43                    | 43.64                     | -0.63                          |  |  |  |  |
| 7236.00            | 44.73    | AV                  | 54                | 9.27           | 45.36                  | 36.58                       | 6.43                    | 43.64                     | -0.63                          |  |  |  |  |
|                    |          |                     |                   |                |                        |                             |                         |                           |                                |  |  |  |  |

| Frequency(MHz):    |       | 2412                |                   | Polarity:      |                        | VERTICAL                    |                         |                           |                                |
|--------------------|-------|---------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | -     | sion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4824.00            | 58.85 | PK                  | 74                | 15.15          | 63.21                  | 32.4                        | 5.11                    | 41.87                     | -4.36                          |
| 4824.00            | 44.37 | AV                  | 54                | 9.63           | 48.73                  | 32.4                        | 5.11                    | 41.87                     | -4.36                          |
| 7236.00            | 53.56 | PK                  | 74                | 20.44          | 54.19                  | 36.58                       | 6.43                    | 43.64                     | -0.63                          |
| 7236.00            | 42.08 | AV                  | 54                | 11.92          | 42.71                  | 36.58                       | 6.43                    | 43.64                     | -0.63                          |
|                    |       |                     |                   |                |                        |                             |                         |                           |                                |

| Freque             | Frequency(MHz):      |     | 2437              |                | Polarity:              |                             | HORIZONTAL              |                           |                                |
|--------------------|----------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu) | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4874.00            | 61.89                | PK  | 74                | 12.11          | 65.84                  | 32.56                       | 5.34                    | 41.85                     | -3.95                          |
| 4874.00            | 46.87                | AV  | 54                | 7.13           | 50.82                  | 32.56                       | 5.34                    | 41.85                     | -3.95                          |
| 7311.00            | 55.62                | PK  | 74                | 18.38          | 55.98                  | 36.54                       | 6.81                    | 43.71                     | -0.36                          |
| 7311.00            | 45.15                | AV  | 54 G              | 8.85           | 45.51                  | 36.54                       | 6.81                    | 43.71                     | -0.36                          |

| Freque             | ncy(MHz)             | :   | 24                | 37             | Pola                   | arity:                      |                         | -                         |                                |
|--------------------|----------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu) | /el | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4874.00            | 58.24                | PK  | 74                | 15.76          | 62.19                  | 32.56                       | 5.34                    | 41.85                     | -3.95                          |
| 4874.00            | 44.22                | AV  | 54                | 9.78           | 48.17                  | 32.56                       | 5.34                    | 41.85                     | -3.95                          |
| 7311.00            | 52.97                | PK  | 74                | 21.03          | 53.33                  | 36.54                       | 6.81                    | 43.71                     | -0.36                          |
| 7311.00            | 42.50                | AV  | 54                | 11.50          | 42.86                  | 36.54                       | 6.81                    | 43.71                     | -0.36                          |
| TAT                |                      |     |                   |                |                        | .NG                         |                         |                           |                                |

| Frequency(MHz):    |       | 2462                 |                   | Polarity:      |                        | HORIZONTAL                  |                         |                           |                                |
|--------------------|-------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | _     | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4924.00            | 61.71 | PK                   | 74                | 12.29          | 65.17                  | 32.73                       | 5.64                    | 41.83                     | -3.46                          |
| 4924.00            | 46.89 | AV                   | 54                | 7.11           | 50.35                  | 32.73                       | 5.64                    | 41.83                     | -3.46                          |
| 7386.00            | 55.77 | PK                   | 74                | 18.23          | 55.83                  | 36.5                        | 7.23                    | 43.79                     | -0.06                          |
| 7386.00            | 45.00 | PK                   | 54                | 9.00           | 45.06                  | 36.5                        | 7.23                    | 43.79                     | -0.06                          |
|                    |       |                      |                   |                |                        |                             |                         |                           |                                |

|                    |                 | 1                    |                   |                |                        |                             |                         |                           |                                |
|--------------------|-----------------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Freque             | Frequency(MHz): |                      | 2462              |                | Polarity:              |                             | VERTICAL                |                           |                                |
| Frequency<br>(MHz) | Le              | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4924.00            | 58.06           | PK                   | 74                | 15.94          | 61.52                  | 32.73                       | 5.64                    | 41.83                     | -3.46                          |
| 4924.00            | 44.24           | AV                   | 54                | 9.76           | 47.70                  | 32.73                       | 5.64                    | 41.83                     | -3.46                          |
| 7386.00            | 53.12           | PK                   | 74                | 20.88          | 53.18                  | 36.5                        | 7.23                    | 43.79                     | -0.06                          |
| 7386.00            | 42.35           | PK                   | 54                | 11.65          | 42.41                  | 36.5                        | 7.23                    | 43.79                     | -0.06                          |

TATESI Page 18 of 36

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- The other emission levels were very low against the limit. 4)
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV Lete value.

#### Results of Band Edges Test (Radiated)

Note: 802.11b/802.11g/802.11n (H20) MIMO Mode all have been tested, only worse case 802.11b mode at the Adapter(Model: FY0471204000) is reported

| G V                |                    |                      |                   |                |                        |                             |                         |                           |                                |
|--------------------|--------------------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Freque             | ncy(MHz)           | ):                   | 24                | 12             | Pola                   | arity:                      | F                       | IORIZONT                  | ۸L                             |
| Frequency<br>(MHz) | -                  | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2390.00            | 61.63              | PK                   | 74                | 12.37          | 72.05                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |
| 2390.00            | 45.87              | AV                   | 54                | 8.13           | 56.29                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |
| Freque             | ncy(MHz)           | ):                   | 24                | 12             | Pola                   | arity:                      |                         | VERTICAL                  |                                |
| Frequency<br>(MHz) | Le                 | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2390.00            | 58.98              | PK 🖉                 | 74                | 15.02          | 69.40                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |
| 2390.00            | 43.22              | AV                   | 54                | 10.78          | 53.64                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |
| Freque             | ncy(MHz)           | ):                   | 24                | 62             | Polarity:              |                             | F                       | IORIZONT/                 | <b>L</b>                       |
| Frequency<br>(MHz) | Le                 | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2483.50            | 61.18              | PK                   | 74                | 12.82          | 71.29                  | 27.7                        | 4.47                    | 42.28                     | -10.11                         |
| 2483.50            | 43.96              | AV                   | 54                | 10.04          | 54.07                  | 27.7                        | 4.47                    | 42.28                     | -10.11                         |
| Freque             | ncy(MHz)           | ncy(MHz):            |                   | 62             | Pola                   | arity:                      |                         | VERTICAL                  |                                |
| Frequency<br>(MHz) | Emis<br>Le<br>(dBu |                      | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2483.50            | 58.53              | PK                   | 74                | 15.47          | 68.64                  | 27.7                        | 4.47                    | 42.28                     | -10.11                         |
| 2483.50            | 41.31              | AV                   | 54                | 12.69          | 51.42                  | 27.7                        | 4.47                    | 42.28                     | -10.11                         |
| Nata               |                    |                      |                   |                |                        |                             |                         |                           |                                |

Note:

Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor. 1)

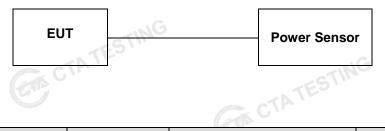
2) Margin value = Limits-Emission level.

3) -- Mean the PK detector measured value is below average limit.

4)

RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value. 5) CTATESTIN

#### 4.3 Maximum Peak Conducted Output Power


# Limit

The Maximum Peak Output Power Measurement is 30dBm.

### **Test Procedure**

CTATE Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

# **Test Configuration** CTATES



**Test Results** 

| Test Results  |         | GTA CTATES               |             |        |
|---------------|---------|--------------------------|-------------|--------|
| Туре          | Channel | Output power PK<br>(dBm) | Limit (dBm) | Result |
|               | 01      | 13.39                    |             |        |
| 802.11b       | 06      | 13.45                    | 30.00       | Pass   |
| TESTING       | 11      | 13.78                    |             |        |
| CTA           | 01      | 11.49                    |             |        |
| 802.11g       | 06      | 11.68                    | 30.00       | Pass   |
|               | 11      | 11.09                    | TESTIN      |        |
|               | 01      | 10.34                    | CTA         |        |
| 802.11n(HT20) | 06      | 10.61                    | 30.00       | Pass   |
|               | 11      | 10.09                    |             | (CTA)  |

Note:

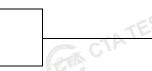
Measured output power at difference data rate for each mode and recorded worst case for each mode. 1)

2) Test results including cable loss.

3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; CTATES

#### **Power Spectral Density** 4.4

## Limit


For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

### **Test Procedure**

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW  $\geq$  3 kHz.
- 3. Set the VBW  $\geq$  3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

### **Test Configuration**



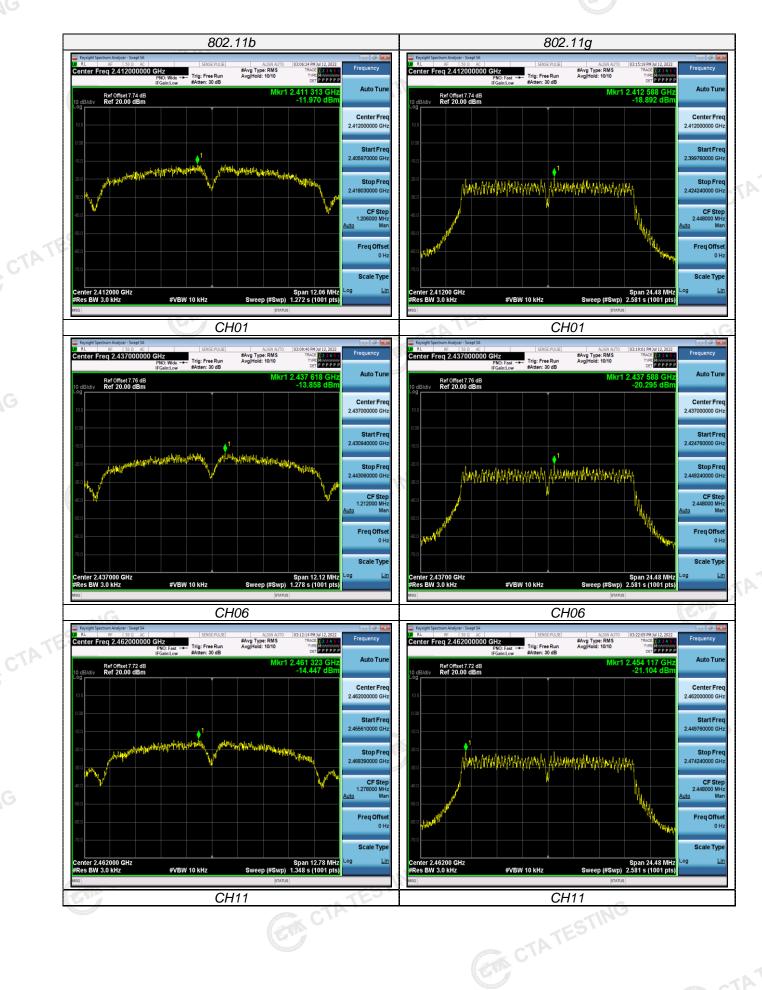


CTA TESTING SPECTRUM ANALYZER

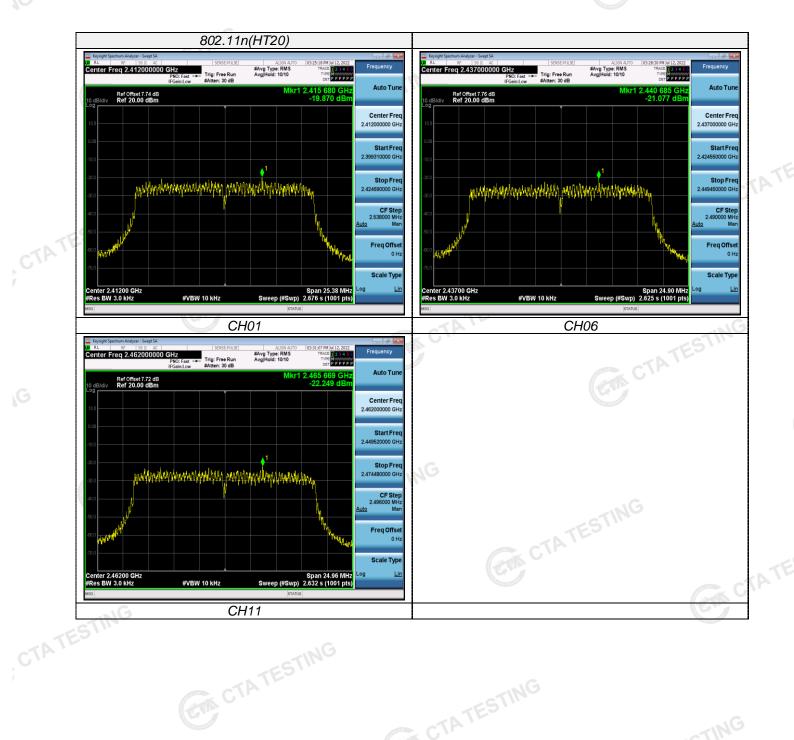
### **Test Results**

| Туре          | Channel | Power Spectral Density<br>(dBm/3KHz) | Limit (dBm/3KHz) | Result |  |
|---------------|---------|--------------------------------------|------------------|--------|--|
| 5             | 01      | -11.97                               |                  |        |  |
| 802.11b       | 06      | -13.86                               | 8.00             | Pass   |  |
|               | 11-5    | -14.45                               |                  |        |  |
|               | 01      | -18.89                               | -NG              |        |  |
| 802.11g       | 06      | -20.30                               | 8.00             | Pass   |  |
|               | 11      | -21.10                               |                  | G      |  |
|               | 01      | -19.87                               |                  | STIN   |  |
| 802.11n(HT20) | 06      | -21.08                               | 8.00             | Pass   |  |
|               | 11      | -22.25                               | and the second   | C VFT  |  |

#### Note:


Measured peak power spectrum density at difference data rate for each mode and recorded worst case 1) for each mode.

- Test results including cable loss; 2)
- Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 3)


Please refer to following plots;

#### Shenzhen CTA Testing Technology Co., Ltd.

Page 22 of 36



TATESI Page 23 of 36



#### 4.5 6dB Bandwidth

### Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz STING

#### **Test Procedure**

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

### **Test Configuration**



#### **Test Results**

| Test Results  |         | GTA TES!            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TATESTING |
|---------------|---------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Туре          | Channel | 6dB Bandwidth (MHz) | Limit (KHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result    |
|               | 01      | 8.040               | Constant of the second s |           |
| 802.11b       | 06      | 8.080               | ≥500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pass      |
| TIN           | 2 11    | 8.520               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| TES           | 01      | 16.320              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 802.11g       | 06      | 16.320              | ≥500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pass      |
| G             | 11      | 16.320              | .6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
|               | 01      | 16.920              | STING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 802.11n(HT20) | 06      | 16.600              | ≥500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pass      |
|               | 11      | 16.640              | GV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |

#### Note:

Measured peak power spectrum density at difference data rate for each mode and recorded worst case 1) for each mode.

2) Test results including cable loss;

Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 3)

Please refer to following plots;

Page 25 of 36



Page 26 of 36



#### 4.6 **Out-of-band Emissions**

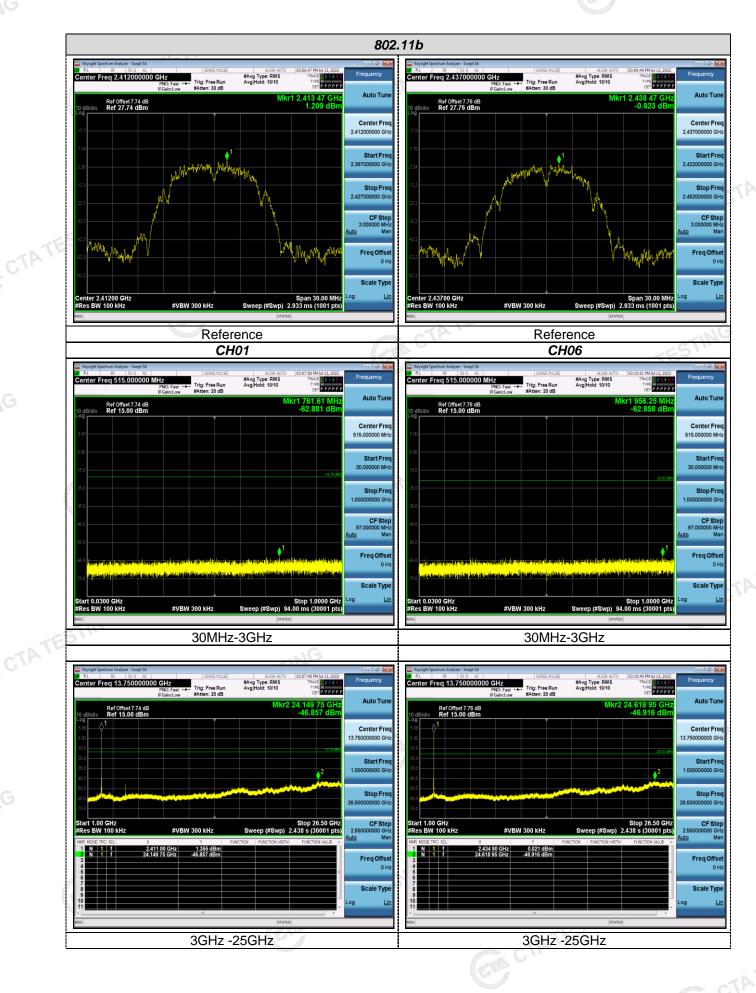
#### Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

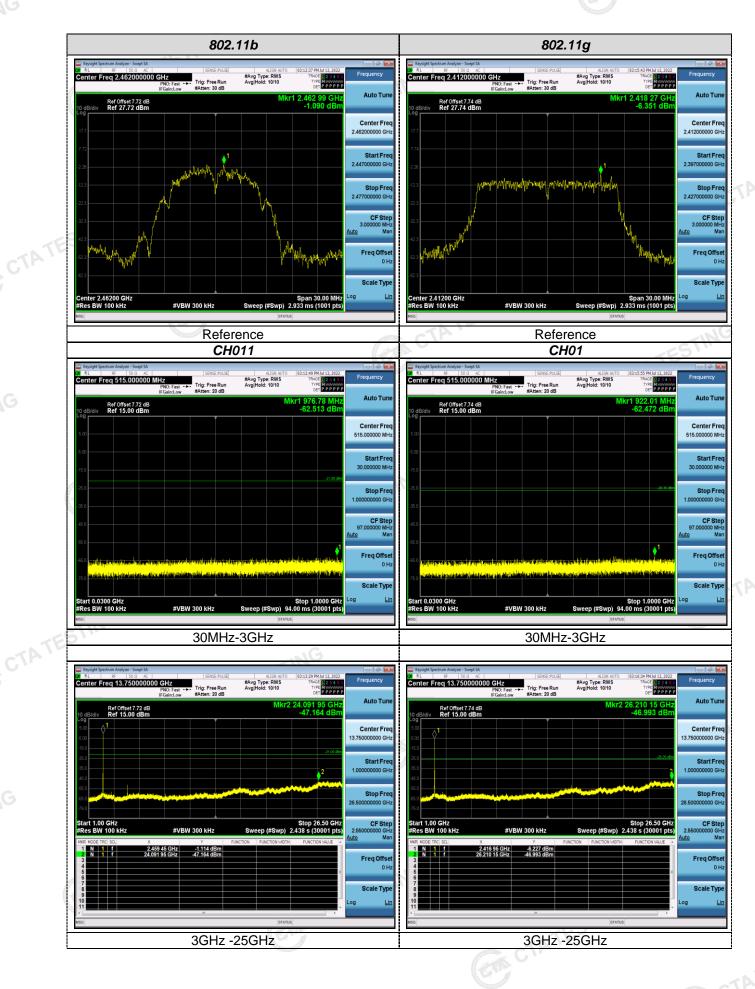
### **Test Procedure**

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are GTA CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

#### **Test Configuration**




### Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data. And record the worst data in the report.

Test plot as follows: CTA TESTING

Page 28 of 36



Page 29 of 36

