Radio Test Report

Report No.:CTA231109001W02

Issued for

ABN SYSTEMS INTERNATIONAL S.A.

Str. Marinarilor, nr. 31, Sector 1, Bucuresti, Romania

CTA TESTING **Product Name:** Solar Camera PTZ

Brand Name: Tellur

Model Name: TLL331551

N/A Series Model(s):

> 2A74I-TLL331551 FCC ID:

Test Standards: FCC Part15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from CTA, all test data presented in this report is only applicable to presented test sample.

Page 2 of 78 Report No.: CTA231109001W02

Applicant's Name	
Manufacturer's Name	
Address	
Guanhu street, Longhua district shenzhen city, Guangdong pro China Product Description Product Name	
	vince
Model NameTLL331551	
Series Model(s) N/A	
Test Standards FCC Part 15.247	
Test Procedure: ANSI C63.10-2013	
This device described above has been tested by CTA, the test results show that the equipment utest (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sar identified in the report. This report shall not be reproduced except in full, without the written approval of CTA, this documents only be altered or revised by CTA, personal only, and shall be noted in the revision of the documents.	mple nent
Date of Test	
Date of receipt of test item	
Date (s) of performance of tests	
Date of Issue 17 Nov. 2023	
Date of Issue	
Testing Engineer : Zoey Cow (Zoey Cao)	

Testing Engineer :	Joey Cow
Testing Engineer :	(Zoey Cao)
Technical Manager :	Anny Wen
	(Amy Wen)
Authorized Signatory :	Evic Wang
TESTING	(Eric Wang)
CTATESTING	(Enc wang)

	Table of Contents	Page	
1.	SUMMARY OF TEST RESULTS	6	
	1.1 TEST FACTORY	7	
	1.2 MEASUREMENT UNCERTAINTY GENERAL INFORMATION	7	
2.	GENERAL INFORMATION	8	
	2.4 CENEDAL DESCRIPTION OF THE FLIT	8 8	
	2.1 GENERAL DESCRIPTION OF THE EUT 2.2 DESCRIPTION OF THE TEST MODES	10	
	2.3 TEST SOFTWARE AND POWER LEVEL	10	
	2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11	
	2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	12	
	2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	13	
3.	EMC EMISSION TEST	15	
	3.1 CONDUCTED EMISSION MEASUREMENT	15	
	3.1 CONDUCTED EMISSION MEASUREMENT 3.2 RADIATED EMISSION MEASUREMENT 4.1 LIMIT	19	
	4.1 LIMIT	30	TEST
	4.2 TEST PROCEDURE	30	
	4.3 DEVIATION FROM STANDARD	30	
	4.4 TEST SETUP	30	
	4.5 EUT OPERATION CONDITIONS	30	
	4.6 TEST RESULTS	30	
5.	4.6 TEST RESULTS POWER SPECTRAL DENSITY TEST	31	
	5.1 LIMIT 5.2 TEST PROCEDURE 5.3 DEVIATION FROM STANDARD	31	
	5.2 TEST PROCEDURE	31	
	5.3 DEVIATION FROM STANDARD	31	
	5.4 TEST SETUP	31	
	5.5 EUT OPERATION CONDITIONS	31	
	5.6 TEST RESULTS	31	
6.	5.6 TEST RESULTS BANDWIDTH TEST 6.1 LIMIT	32	
	6.1 LIMIT 6.2 TEST PROCEDURE 6.3 DEVIATION FROM STANDARD	32	
	6.2 TEST PROCEDURE	32	
	6.3 DEVIATION FROM STANDARD	32	TEST
	6.4 TEST SETUP	32	TATEST
	6.5 EUT OPERATION CONDITIONS	32	
	6.6 TEST RESULTS	32	
	6.6 TEST RESULTS		

Table of Content	s CIA	Page
7. PEAK OUTPUT POWER TEST		33
7.1 LIMIT		33
7.2 TEST PROCEDURE	TATESTING	33
7.3 DEVIATION FROM STANDARD	TATES	33
7.4 TEST SETUP		33
7.5 EUT OPERATION CONDITIONS 7.6 TEST RESULTS		34 34
		01
8. ANTENNA REQUIREMENT		35 35
8.1 STANDARD REQUIREMENT 8.2 EUT ANTENNA		35
APPENDIX 1-TEST DATA		20
CTA	IT POWER CTATESTI	NG 30
1. DUTY CYCLE	TATESI	36
2. MAXIMUM AVERAGE CONDUCTED OUTPU	IT POWER	42 TEST
3. MAXIMUM PEAK CONDUCTED OUTPUT PO	OWER	48
46DB BANDWIDTH		49
5. MAXIMUM POWER SPECTRAL DENSITY LE	EVEL	55
6. BAND EDGE		61
7. CONDUCTED RF SPURIOUS EMISSION	FATESTING	68
APPENDIX 2-PHOTOS OF TEST SETUP	TATE	78 NG

Page 5 of 78 Report No.: CTA231109001W02

Revision History

		Revision Hi	story	
Rev.	Issue Date	Report No.	Effect Page	Contents
00	17 Nov. 2023	CTA231109001W02	ALL	Initial Issue
	-6	ING		

GTATE CTA TESTING

1. SUMMARY OF TEST RESULTS

074 D01 15.247 M	leas Guidance v05r02.		
	FCC Part 15.247,Subpart C		
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.247 (a)(2)	6dB Bandwidth	PASS	ESTING
15.247 (b)(3)	Output Power	PASS	TATE
15.209	Radiated Spurious Emission	PASS	
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS	
15.247 (e)	Power Spectral Density	PASS	
15.205	Restricted Band Edge Emission	PASS	
Part 15.247(d)/ part 15.209(a)	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- .y to i (2) All tests are according to ANSI C63.10-2013.

Page 7 of 78 Report No.: CTA231109001W02

1.1 TEST FACTORY

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Baoʻan District, Shenzhen, China

FCC test Firm Registration Number 2007

District, Shenzhen, China

FCC test Firm Registration Number: 517856

IC test Firm Registration Number: 27890 CTATESTING

A2LA Certificate No.: 6534.01

IC CAB ID: CN0127

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence

of approximately 95 %. CTATES

Test	Range	Measurement Uncertainty
Radiated Emission	30~1000MHz	4.06 dB
Radiated Emission	1~18GHz	5.14 dB
Radiated Emission	18-40GHz	5.38 dB
Conducted Disturbance	0.15~30MHz	2.14 dB
Output Peak power	30MHz~18GHz	0.55 dB
Power spectral density	1	0.57 dB
Spectrum bandwidth	No. of the state o	1.1%
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB
	CTATESTIN	CITA

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

.1 GENERAL DESCRIPTION	OF THE EUT	CTP CTP	
Product Name	Solar Camera PTZ		
Brand Name	Tellur		
Model Name	TLL331551	Glass	
Series Model(s)	N/A	TESTIN	
Model Difference	N/A	CTA	
	The EUT is a Sola	ar Çamera PTZ	
	Operation Frequency:	802.11b/g/n 20: 2412~2462 MHz	
	Modulation Type:	802.11b(DSSS):CCK,DQPSK,DBPSK 802.11g(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM	
Product Description	Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6Mbps 802.11n(20MHz): 65/58.5/52/39/26/19.5/13/6.5Mbps	
	Number of Channel:	802.11b/g/n20: 11CH	
	Antenna Type:	External Antenna	
	Antenna Gain (dE	3i): 5.15dBi	
	(Ilso		
Channel List	Please refer to the Note 3.		
Rating	Input: DC5V 2A		
Battery	Rated Voltage:3.7V Charge Limit Voltage:4.2V Capacity: 19200mAh		
Hardware version number	SHH-66-SQG-3-4	G-WIFI-V02	
Software version number	V25.1.13		
Connecting I/O Port(s)	Please refer to the Note 1.		

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
- 2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the Caccuracy of the test results will be borne by the customer.

Page 9 of 78 Report No.: CTA231109001W02

3.				
		b/g/n(20MHz)		
	Channel	Frequency		
5	01	2412		
	02	2417		
	03	2422		
	04	2427		
	05	2432		
	06	2437		
	07	2442		
	08	2447		
	09	2452		
	10	2457		
	11	2462		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, themiddle frequency, and the highest frequency of channel were selected to perform the test, and the selectedchannel see below: Carrier Frequency Channel

2.4GHz Test Frequency:	FETING
For 802.11	Ib/g/n (HT20)
Channel	Freq.(MHz)
01	2412
06	2437
11_(NG	2462
CTATESTING (CTATESTING)	CTATESTING

2.2 DESCRIPTION OF THE TEST MODES

Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate
Mode 1	TX IEEE 802.11b CH1	1 Mbps
Mode 2	TX IEEE 802.11b CH6	1 Mbps
Mode 3	TX IEEE 802.11 b CH11	1 Mbps
Mode 4 TX IEEE 802.11g CH1		6 Mbps
Mode 5 TX IEEE 802.11g CH6		6 Mbps
Mode 6 TX IEEE 802.11g CH11		6 Mbps
Mode 7	TX IEEE 802.11n HT20 CH1	MCS 0
Mode 8	TX IEEE 802.11n HT20 CH6	MCS 0
Mode 9	TX IEEE 802.11n HT20 CH11	MCS 0

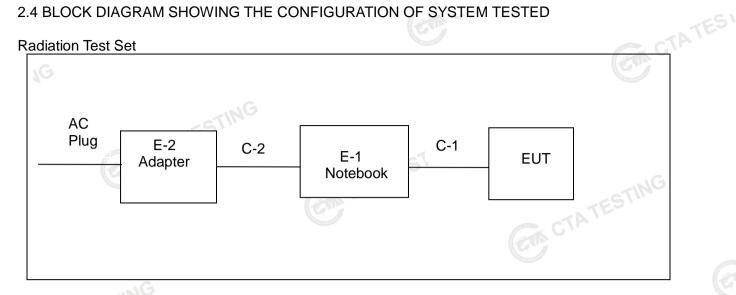
Note:

- (1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.
- (2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V /60Hz is shown in the report.
 - (3) The battery is fully-charged during the radited and RF conducted test.

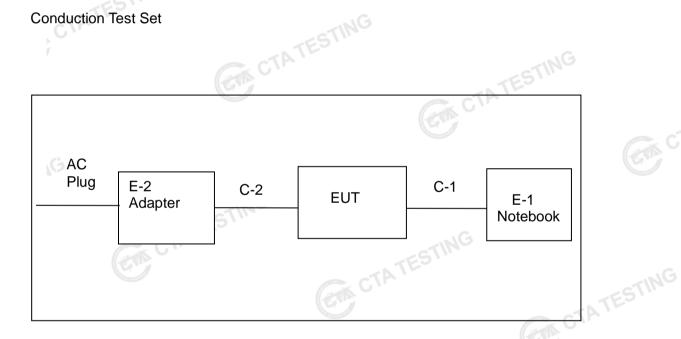
AC Conducted Emission

7.6 Conducted Enfocient		
Car	Test Case	
AC Conducted Emission	Mode10: TX	ESTIN

2.3 TEST SOFTWARE AND POWER LEVEL


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

RF Function	Type	Mode Or Modulation	ANT	Power	Software For	
THE FUNCTION	Турс	type	Gain(dBi)	Class	Testing	
CTATES		802.11b		-60		
WIFI(2.4G)	2.4G WIFI	802.11g 802.11n(HT20)	5	-60 -60	sscom5.13.1	TEST
G	1				GT C	TA



Page 11 of 78 Report No.: CTA231109001W02

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conduction Test Set

Page 12 of 78 Report No.: CTA231109001W02

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
	TATI	5,		J.G	
	CAN CIT		TES	1180	. G
			CAN CALL		TESTING

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note	
E-2	Adapter	SZTY	TPA-46050100VU	N/A	N/A	
E-1	Notebook	LENOVO	Think Pad E470	N/A	N/A	
C-1	USB Cable	N/A	N/A	150cm	NO	
				CIN		
Note	э :					

Note:

- (1) For detachable type I/O cable should be specified the length in cm in Length a column.
- (2) "YES" is means "with core"; "NO" is means "without core". ETATES

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
WIDEBAND RADIO COMMUNICATIO N TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01
(Car)		CTAT!	E2,	- AA	TESTING

Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
				GVA CV	

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

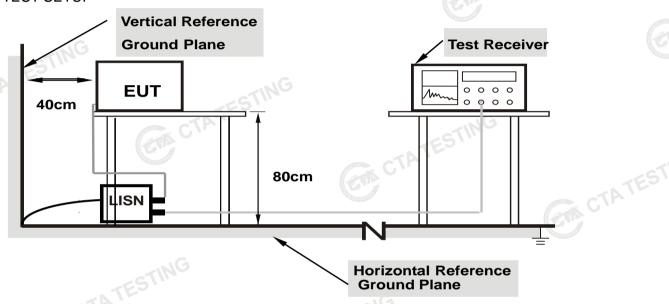
The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

	Conducted Emissionlimit (dBuV)				
FREQUENCY (MHz)	Quasi-peak	Average			
0.15 -0.5	66 - 56 *	56 - 46 *			
0.50 -5.0	56.00	46.00			
5.0 -30.0	60.00	50.00			

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

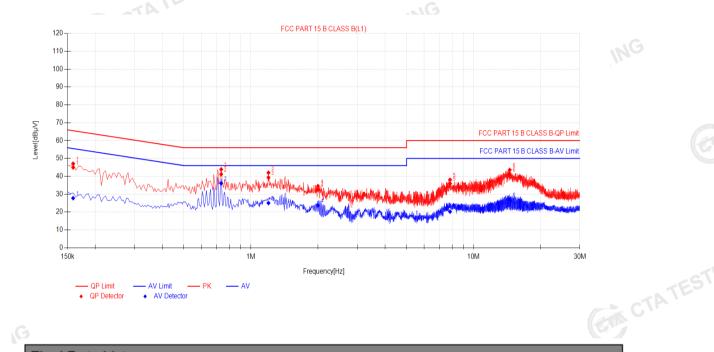

The following table is the setting of the receiver	
Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz
CTATES CTATES	CTATESTING

3.1.2 TEST PROCEDURE

- a The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d LISN is at least 80 cm from the nearest part of EUT chassis.
- CTATESTING e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

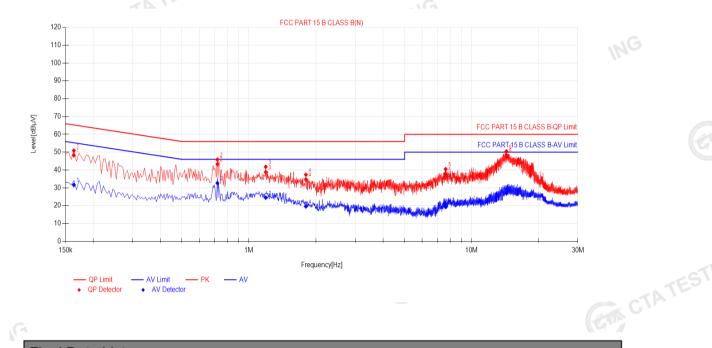

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.1.4EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was CTATES tested and used to collect the included data.

3.1.5 TEST RESULT

3.1.5 TEST RESUL	.T	March V			
Temperature:	26.5(C)	Relative Humidity:	59%RH	C	
Test Voltage:	AC 120V/60Hz	Phase:	L	CAIN	
Test Mode:	Mode 10				



Final	l Data Lis	t									
NO.	Freq. [MHz]	Factor (dB)	QP Reading(dB,	QP Value IdBUVI	QP Limit IdBUVJ	QP Margin [dB]	AV Reading IdBuVJ	AV Value IdBUVQ	AV Limit IdBUVJ	AV Margin [dB]	Verdict
1	0.159	10.50	34.44	44.94	65.52	20.58	17.27	27.77	55.52	27.75	PASS
2	0.735	10.50	30.69	41.19	56.00	14.81	25.59	38.09	46.00	9.91	PASS
3	1.1985	10.50	28.81	39.31	56.00	16.69	14.54	25.04	46.00	20.96	PASS
4	1.9995	10.50	22.00	32.50	56.00	23.50	13.21	23.71	46.00	22.29	PASS
5	7.836	10.50	25.45	35.95	60.00	24.05	9.70	20.20	50.00	29.80	PASS
6	14.5275	10.50	30.54	41.04	60.00	18.96	16.44	26.94	50.00	23.06	PASS

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTATEST

		(en		TES
Temperature:	26.2(C)	Relative Humidity:	54%RH	CIA
Test Voltage:	AC 120V/60Hz	Phase:	N	
Test Mode:	Mode 10	·	•	

Final	Final Data List										
NO.	Freq. [MHz]	Factor (dB)	QP Reading(dB,	QP Value IdBuVJ	QP Limit IdBUVQ	QP Margin [dB]	AV Reading IdBuVQ	AV Value IdBaVQ	AV Limit IdBUSQ	AV Margin [dB]	Verdict
1	0.1635	10.50	37.78	48.28	65.28	17.00	21.16	31.66	55.28	23.62	PASS
2	0.7215	10.50	32.74	43.24	56.00	12.76	22.18	32.68	46.00	13.32	PASS
3	1.1895	10.50	28.33	38.83	56.00	17.17	14.00	24.50	46.00	21.50	PASS
4	1.8015	10.50	24.21	34.71	56.00	21.29	9.09	19.59	46.00	28.41	PASS
5	7.647	10.50	27.15	37.65	60.00	22.35	8.84	19.34	50.00	30.66	PASS
6	14.334	10.50	37.58	48.08	60.00	11.92	16.37	26.87	50.00	23.13	PASS

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV)

3.2 RADIATED EMISSION MEASUREMENT

3.2.1RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1000MHz-25GHz)

	(dBuV/	m) (at 3M)	-61
FREQUENCY (MHz)	PEAK	AVERAGE	- CTATES
Above 1000	74	54	W.
Notes			The state of the s

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	5/,,		
CTA CTA		TATESTING	
	TATESTING		

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz(Peak/QP/AV)
Stop Frequency	150KHz/30MHz(Peak/QP/AV)
CAN CIL	200Hz (From 9kHz to 0.15MHz)/
3 / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);
band)	200Hz (From 9kHz to 0.15MHz)/
	9KHz (From 0.15MHz to 30MHz)

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/QP	
Start Frequency	30 MHz(Peak/QP)	
Stop Frequency	1000 MHz (Peak/QP)	
RB / VB (emission in restricted	130 KHz / 300 KHz	
band)	120 KHz / 300 KHz	

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/AV
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier hamonic(Peak/AV)
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)
band)	1 MHz/1/T MHz(AVG)

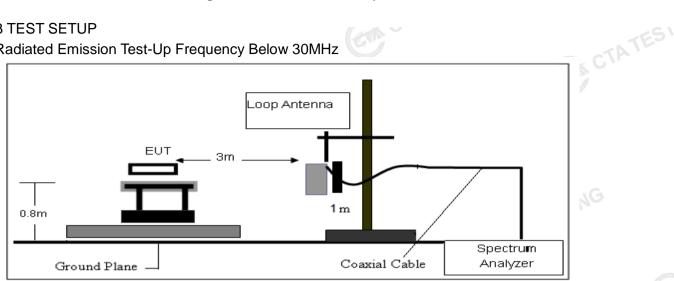
For Restricted band

restricted barra	
Spectrum Parameter	Setting
Detector	Peak/AV
Chart/Char Francisco	Lower Band Edge: 2310 to 2430 MHz
Start/Stop Frequency	Upper Band Edge: 2445 to 2500 MHz
DD /VD	1 MHz / 3 MHz(Peak)
RB / VB	1 MHz/1/T MHz(AVG)
	CTP CTP
	GIN C'

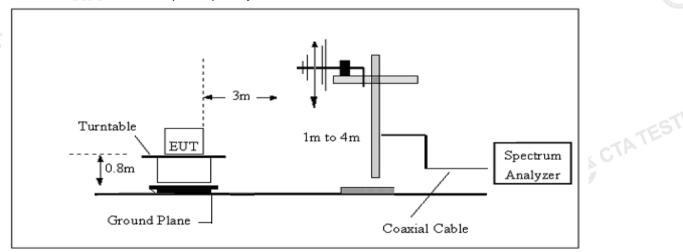
Page 21 of 78 Report No.: CTA231109001W02

	Receiver Parameter	Setting	
	Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV	
(G	Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP	
	Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV	
Start ~ Stop Frequency 490kHz~30MHz / RB 9kHz for QP			
Start ~ Stop Frequency 30MHz~1000MHz / RB 120kHz for QP			

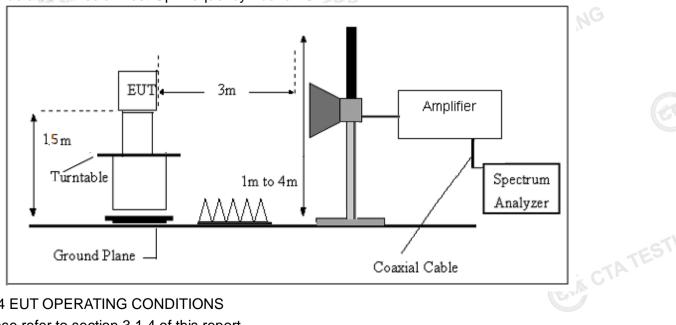
3.2.2 TEST PROCEDURE


- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



3.2.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.4 EUT OPERATING CONDITIONS

of the Please refer to section 3.1.4 of this report.

Page 23 of 78 Report No.: CTA231109001W02

3.2.5 FIELD STRENGTH CALCULATION

the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AC

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

AG = Amplifier Gain AF = Antenna Factor For example			CTATE			ATESTING
Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1
Factor=AF+CL-AG	Con Co	ATESTIN	G	CTA	TESTING	

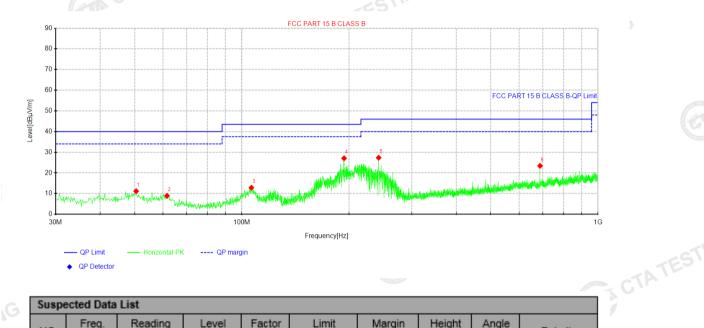
3.2.6 TEST RESULT

9KHz-30MHz

3.2.6 TEST RESUL	л	(en		
9KHz-30MHz				
Temperature:	(C)	Relative Humidtity:	%RH	
Test Voltage:	N/A	Polarization:		
Test Mode:	TX Mode	TING	•	

CTA C	CIA TESTIN				
Freq.	Reading	Limit	Margin	State	Test
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Result
				23.00	PASS
NG					PASS

Note:


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

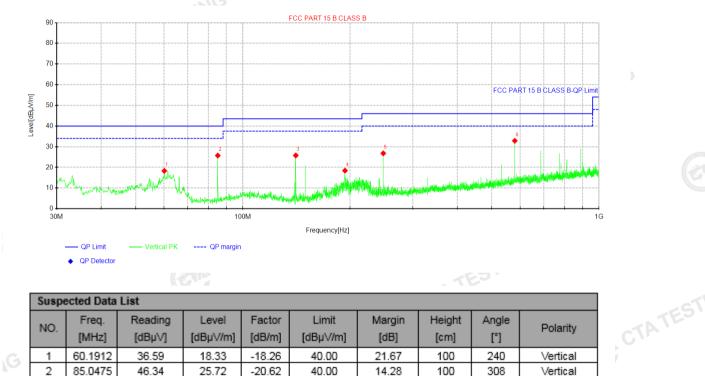
Distance extrapolation factor =40 log (specific distance/test distance)(dB);
Limit line = specific limits(dBuv) + distance extrapolation factor.

Page 25 of 78 Report No.: CTA231109001W02

(30MHz - 1000MHz)

(30MHz - 1000M	Hz)	(en	
Temperature:	23.1(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 3.7V	Phase:	Horizontal
Test Mode:	Mode 1/2/3/4/5/6/7/8/9 (M	ode 4 worst mode)	
	CTATES	TING	

Suspected Data List									
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority
NO.	[MHz]	[dBµ∨]	[dBµ√/m]	[dB/m]	[dBµ√/m]	[dB]	[cm]	[°]	Polarity
1	50.4912	27.34	11.18	-16.16	40.00	28.82	100	9	Horizontal
2	61.6462	27.59	8.95	-18.64	40.00	31.05	100	357	Horizontal
3	106.387	31.54	12.87	-18.67	43.50	30.63	100	144	Horizontal
4	193.687	46.77	27.09	-19.68	43.50	16.41	100	187	Horizontal
5	242.187	45.56	27.35	-18.21	46.00	18.65	100	162	Horizontal
6	687.538	35.16	23.42	-11.74	46.00	22.58	100	204	Horizontal
CTA '									
:1).Le	:1).Level (dBμV/m)= Reading (dBμV)+ Factor (dB/m)								


Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m) CTATES

Page 26 of 78

Temperature:	23.1(C)	Relative Humidity:	60%RH	TESI
Test Voltage:	DC 3.7V	Phase:	Vertical	YK.
Test Mode:	Mode 1/2/3/4/5/6/7/8/9 (Mode	4 worst mode)		

Report No.: CTA231109001W02

Suspe	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµ∨]	[dBµ√/m]	[dB/m]	[dBµ∖//m]	[dB]	[cm]	[°]	Polatity
1	60.1912	36.59	18.33	-18.26	40.00	21.67	100	240	Vertical
2	85.0475	46.34	25.72	-20.62	40.00	14.28	100	308	Vertical
3	140.822	47.57	25.78	-21.79	43.50	17.72	100	308	Vertical
4	193.566	38.14	18.45	-19.69	43.50	25.05	100	180	Vertical
5	247.886	44.84	26.80	-18.04	46.00	19.20	100	308	Vertical
6	580.232	45.65	32.87	-12.78	46.00	13.13	100	308	Vertical
						(E51.			
	SAIL SAIL								

Note:1).Level (dB μ V/m)= Reading (dB μ V)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
 3). Margin(dB) = Limit (dBμV/m) Level (dBμV/m)

Report No.: CTA231109001W02

					802.11	g				
Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
			:21	Low Cha	annel (802.11g	/2412 MHz)				
3264.85	62.27	44.70	6.70	28.20	-9.80	52.47	74.00	-21.53	PK	Vertical
3264.85	50.74	44.70	6.70	28.20	-9.80	40.94	54.00	-13.06	AV	Vertical
3264.69	62.03	44.70	6.70	28.20	-9.80	52.23	74.00	-21.77	PK	Horizontal
3264.69	50.47	44.70	6.70	28.20	-9.80	40.67	54.00	-13.33	AV	Horizontal
4824.42	58.90	44.20	9.04	31.60	-3.56	55.34	74.00	-18.66	PK	Vertical
4824.42	49.28	44.20	9.04	31.60	-3.56	45.72	54.00	-8.28	AV	Vertical
4824.52	58.70	44.20	9.04	31.60	-3.56	55.14	74.00	-18.86	PK	Horizontal
4824.52	50.14	44.20	9.04	31.60	-3.56	46.58	54.00	-7.42	AV	Horizontal
5359.74	48.21	44.20	9.86	32.00	-2.34	45.87	74.00	-28.13	PK	Vertical
5359.74	39.96	44.20	9.86	32.00	-2.34	37.62	54.00	-16.38	AV	Vertical
5359.83	48.37	44.20	9.86	32.00	-2.34	46.03	74.00	-27.97	PK	Horizontal
5359.83	39.08	44.20	9.86	32.00	-2.34	36.74	54.00	-17.26	AV	Horizontal
7235.92	54.31	43.50	11.40	35.50	3.40	57.71	74.00	-16.29	PK	Vertical
7235.92	44.55	43.50	11.40	35.50	3.40	47.95	54.00	-6.05	AV	Vertical
7235.74	53.95	43.50	11.40	35.50	3.40	57.35	74.00	-16.65	PK	Horizontal
7235.74	43.56	43.50	11.40	35.50	3.40	46.96	54.00	-7.04	AV	Horizontal
				Middle Ch	nannel (802.11	g/2437 MHz)	75	51		
3264.72	61.27	44.70	6.70	28.20	-9.80	51.47	74.00	-22.53	PK	Vertical
3264.72	50.41	44.70	6.70	28.20	-9.80	40.61	54.00	-13.39	AV	Vertical
3264.63	61.62	44.70	6.70	28.20	-9.80	51.82	74.00	-22.18	PK	Horizontal
3264.63	50.18	44.70	6.70	28.20	-9.80	40.38	54.00	-13.62	AV	Horizontal
4874.39	59.05	44.20	9.04	31.60	-3.56	55.49	74.00	-18.51	PK	Vertical
4874.39	49.40	44.20	9.04	31.60	-3.56	45.84	54.00	-8.16	AV	Vertical
4874.45	58.65	44.20	9.04	31.60	-3.56	55.09	74.00	-18.91	PK	Horizontal
4874.45	49.16	44.20	9.04	31.60	-3.56	45.60	54.00	-8.40	AV	Horizontal
5359.67	48.04	44.20	9.86	32.00	-2.34	45.70	74.00	-28.30	PK	Vertical
5359.67	39.72	44.20	9.86	32.00	-2.34	37.38	54.00	-16.62	AV	Vertical
5359.69	48.07	44.20	9.86	32.00	-2.34	45.72	74.00	-28.28	PK	Horizontal
5359.69	38.05	44.20	9.86	32.00	-2.34	35.70	54.00	-18.30	AV	Horizontal
7310.75	53.87	43.50	11.40	35.50	3.40	57.27	74.00	-16.73	PK	Vertical
7310.75	44.74	43.50	11.40	35.50	3.40	48.14	54.00	-5.86	AV	Vertical
7310.86	53.51	43.50	11.40	35.50	3.40	56.91	74.00	-17.09	PK	Horizontal
7310.86	44.82	43.50	11.40	35.50	3.40	48.22	54.00	-5.78	AV	Horizontal

Page 28 of 78 Report No.: CTA231109001W02

				High Chan	nel (802.11g	/2462 MHz)	× V			
3264.62	61.23	44.70	6.70	28.20	-9.80	51.43	74.00	-22.57	PK	Vertical
3264.62	50.45	44.70	6.70	28.20	-9.80	40.65	54.00	-13.35	AV	Vertical
3264.57	60.86	44.70	6.70	28.20	-9.80	51.06	74.00	-22.94	PK	Horizontal
3264.57	50.55	44.70	6.70	28.20	-9.80	40.75	54.00	-13.25	AV	Horizontal
4924.38	58.49	44.20	9.04	31.60	-3.56	54.93	74.00	-19.07	PK	Vertical
4924.38	50.19	44.20	9.04	31.60	-3.56	46.63	54.00	-7.37	AV	Vertical
4924.32	58.25	44.20	9.04	31.60	-3.56	54.69	74.00	-19.31	PK	Horizontal
4924.32	50.48	44.20	9.04	31.60	-3.56	46.92	54.00	-7.08	AV	Horizontal
5359.66	49.07	44.20	9.86	32.00	-2.34	46.72	74.00	-27.28	PK	Vertical
5359.66	39.84	44.20	9.86	32.00	-2.34	37.49	54.00	-16.51	AV	Vertical
5359.61	47.61	44.20	9.86	32.00	-2.34	45.27	74.00	-28.73	PK	Horizontal
5359.61	38.32	44.20	9.86	32.00	-2.34	35.98	54.00	-18.02	AV	Horizontal
7385.80	54.55	43.50	11.40	35.50	3.40	57.95	74.00	-16.05	PK	Vertical
7385.80	44.76	43.50	11.40	35.50	3.40	48.16	54.00	-5.84	AV	Vertical
7385.94	53.67	43.50	11.40	35.50	3.40	57.07	74.00	-16.93	PK	Horizontal
7385.94	43.74	43.50	11.40	35.50	3.40	47.14	54.00	-6.86	AV	Horizontal

Remark:

- 1. Factor = Antenna Factor + Cable Loss Pre-amplifier.
- Scan with 802.11b, 802.11g, 802.11n (HT-20), the worst case is 802.11 g. Emission Level = Reading + Factor Margin = Emission Level-Limit
- 3. The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

3.2.6 TEST RESULTS(Band edge Requirements)

802.11 g

3.2.6 TEST	ΓRESUI	LTS(Ban	d edge	Requirem	nents)						CTATES
					802.11	g	and the second			Contra	CIA
	Meter			Antenna	Orrected	Emission					
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2390.00	67.21	43.80	4.91	25.90	-12.99	54.22	74.00	-19.78	PK	Vertical]
2390.00	54.24	43.80	4.91	25.90	-12.99	41.25	54.00	-12.75	AV	Vertical	
2390.00	69.35	43.80	4.91	25.90	-12.99	56.36	74.00	-17.64	PK	Horizontal	3
2390.00	52.55	43.80	4.91	25.90	-12.99	39.56	54.00	-14.44	AV	Horizontal	
2483.50	69.06	43.80	5.12	25.90	-12.78	56.28	74.00	-17.72	PK	Vertical	
2483.50	52.06	43.80	5.12	25.90	-12.78	39.28	54.00	-14.72	AV	Vertical	
2483.50	69.37	43.80	5.12	25.90	-12.78	56.59	74.00	-17.41	PK	Horizontal	
2483.50	52.80	43.80	5.12	25.90	-12.78	40.02	54.00	-13.98	AV	Horizontal]

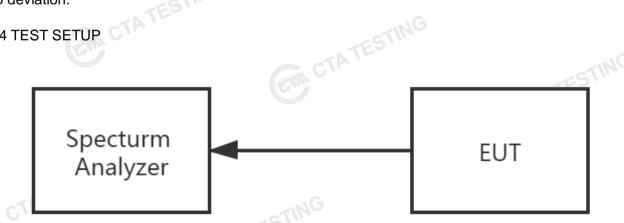
Note: 802.11b, 802.11g, 802.11n (HT-20), mode all have been tested, the worst case is 802.11 g, only CTATE! show the worst case.

4. Conducted Spurious & Band Edge Emission

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE


ti conadoted of a radiated incaedioment.	
.2 TEST PROCEDURE	
	-1472
Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting
Detector	Peak
Stort/Stop Fraguesov	Lower Band Edge: 2300 to 2432 MHz
Start/Stop Frequency	Upper Band Edge: 2442 to 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

4.3 DEVIATION FROM STANDARD No deviation.

4.4 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

4.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

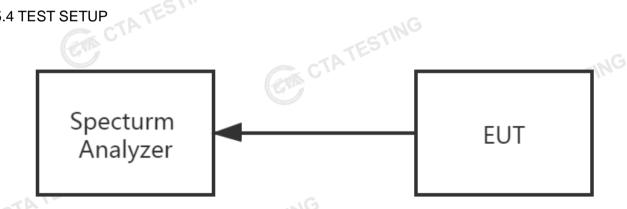
4.6 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

CTA TESTING

5. POWER SPECTRAL DENSITY TEST

5.1 LIMIT


WER SPE LIMIT	CTRAL DENSITY TEST		CIA C				
LIIVIIII		(2)		CT CT			
	FCC Pa	rt15.247 , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(e)	Power Spectral Density	≤8 dBm (RBW ≥3KHz)	2400-2483.5	PASS			
2 TEST PRO	CEDURE	CTA.		TESTING			
Set analyzer	center frequency to DTS ch	nannel center frequen	cy.	× ,			
Set the span	to 1.5 times the DTS chann	nel bandwidth.					

5.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the 100 kHz \geq RBW \geq 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- TATESTING 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3 DEVIATION FROM STANDARD No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

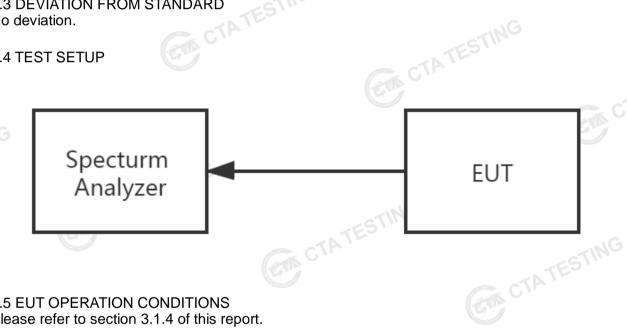
5.6 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

Report No.: CTA231109001W02

BANDWIDTH TEST

6.1 LIMIT


6. BANDWIDTH TE	EST				-591
6.1 LIMIT					TATE
	F	CC Part15.247,Subpar	rt C	I (C.W.C.	
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	≥500KHz (6dB bandwidth)	2400-2483.5	PASS	

6.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW≥3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be≥6 dB.

6.3 DEVIATION FROM STANDARD No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

6.6 TEST RESULTS

Note: The test data please refer to APPENDIX 1. CTATE

7. PEAK OUTPUT POWER TEST

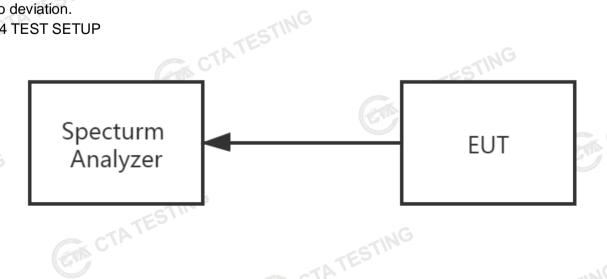
7.1 LIMIT

. PEAK OUTPUT I	POWER TEST				
7.1 LIMIT				C.	
	F	CC Part15.247,Subpa	rt C		
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS	

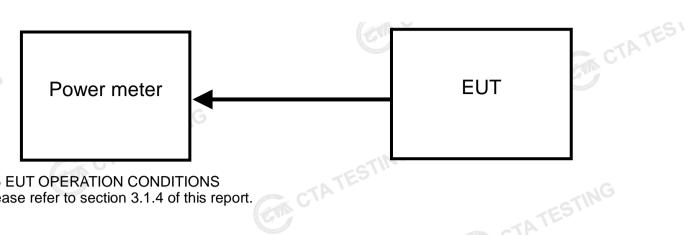
7.2 TEST PROCEDURE

One of the following procedures may be used to determine the averaging conducted output power of a DTS EUT.

Method AVGSA-2 uses trace averaging across ON and OFF times of the EUT transmissions, followed by duty cycle correction. The procedure for this method is as follows:


- a) Measure the duty cycle D of the transmitter output signal as described in 11.6.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
- d) Set VBW ≥ [3 × RBW].
- e) Number of points in sweep ≥ [2 × span / RBW]. (This gives bin-to-bin spacing ≤ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- f) Sweep time = auto.
- g) Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector mode.
- h) Do not use sweep triggering. Allow the sweep to "free run."
- i) Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum. k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB

if the duty cycle is 25%.


PKPM1 Peak power meter method: The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

7.3 DEVIATION FROM STANDARD No deviation.

7.4 TEST SETUP

Page 34 of 78 Report No.: CTA231109001W02

7.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

7.6 TEST RESULTS

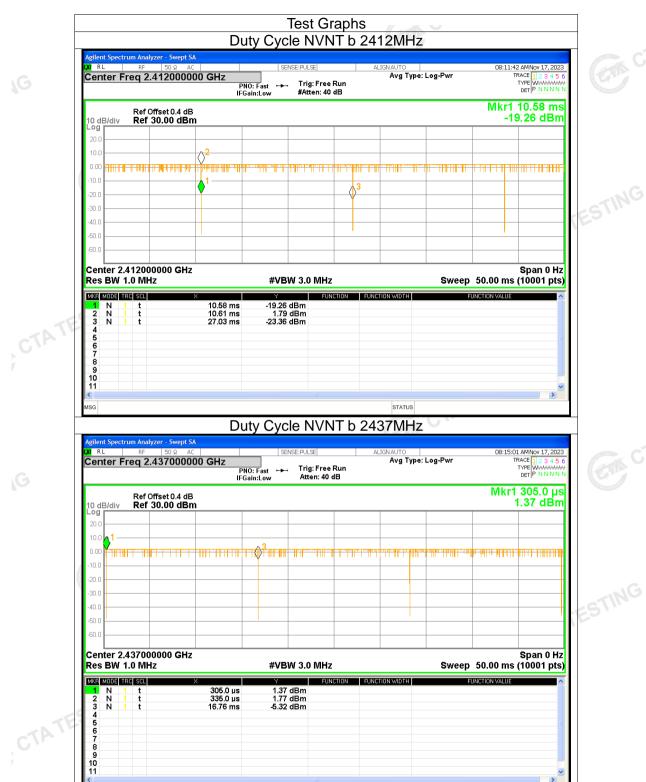
Note: The test data please refer to APPENDIX 1. CTATESTING

Page 35 of 78 Report No.: CTA231109001W02

8. ANTENNA REQUIREMENT

8.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

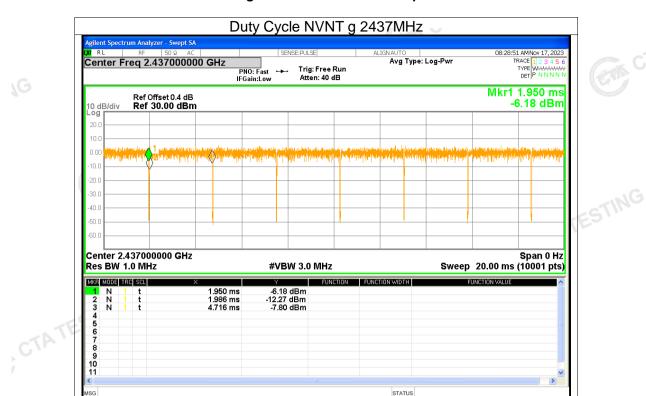

8.2 EUT ANTENNA

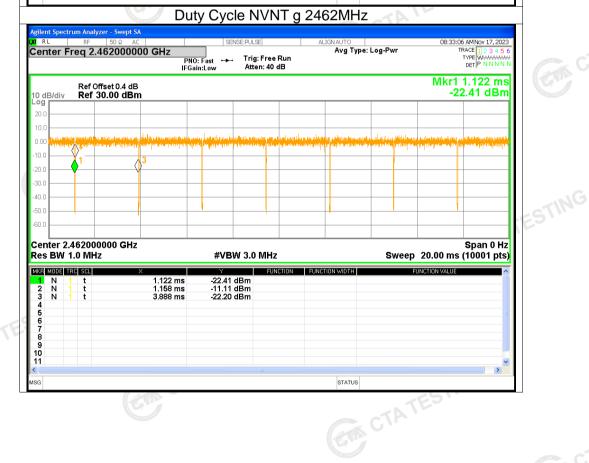
The EUT antenna is External Antenna Antenna. It comply with the standard requirement.

Page 36 of 78 Report No.: CTA231109001W02

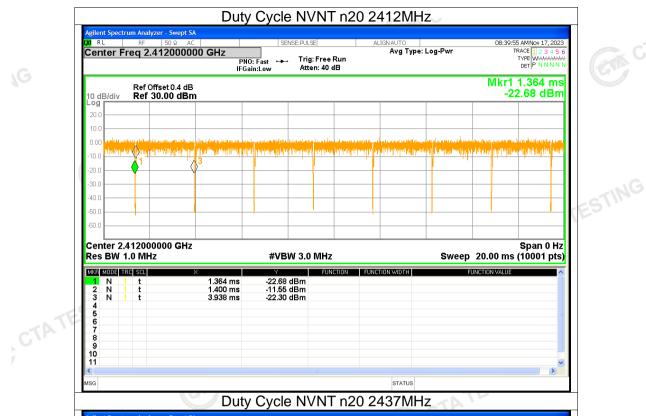
APPENDIX 1-TEST DATA

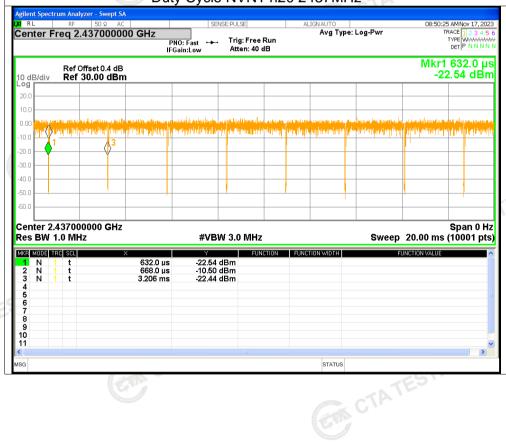
1. Duty Cycle						
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)	
NVNT	b	2412	99.82	0.01	0.06	
NVNT	b	2437	99.82	0.01	0.06	
NVNT	b	2462	99.79	0.01	0.06	
NVNT	g	2412	98.7	0.06	0.37	
NVNT	g	2437	98.7	0.06	0.37	
NVNT	g	2462	98.7	0.06	0.37	
NVNT	n20	2412	98.6	0.06	0.39	
NVNT	n20	2437	98.6	0.06	0.39	
NVNT	n20	2462	98.6	0.06	0.39	

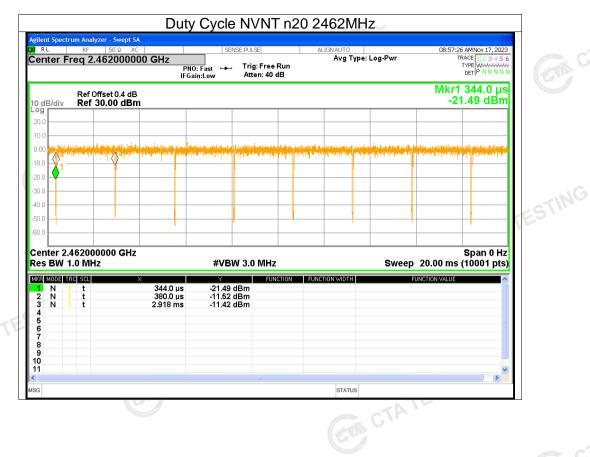




ESTING

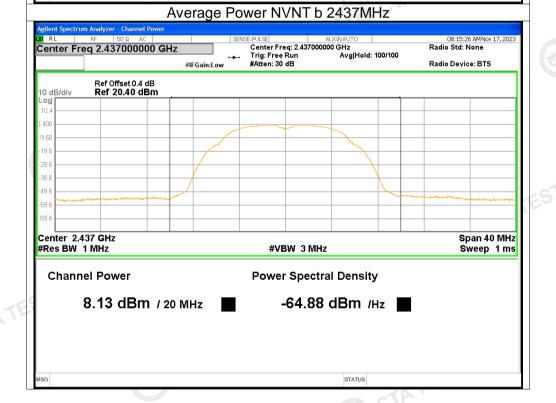

Duty Cycle NVNT g 2412MHz Center Freq 2.412000000 GHz Avg Type: Log-Pwr TYPE WWW.WWW. DET P NNNNI PNO: Fast --- Trig: Free Run IFGain:Low Atten: 40 dB Mkr1 428.0 μs -22.30 dBm Ref Offset 0.4 dB Ref 30.00 dBm 0.00 20.0 3n r -50.0 Center 2.412000000 GHz Span 0 Hz Sweep 20.00 ms (10001 pts) Res BW 1.0 MHz **#VBW 3.0 MHz** FUNCTION FUNCTION WIDTH 428.0 µs 464.0 µs 3.194 ms -22.30 dBm N N N -10.12 dBm -21.02 dBm CTATES STATUS

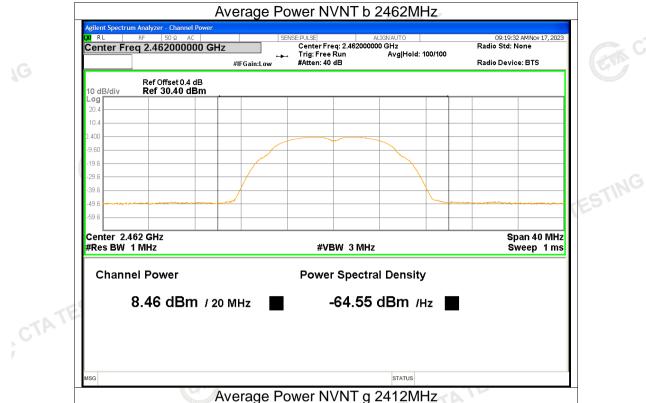

CTATESTING

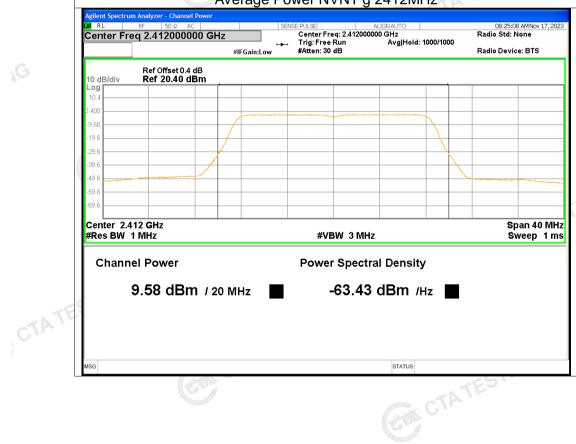

CTA TESTING

CTA TESTING

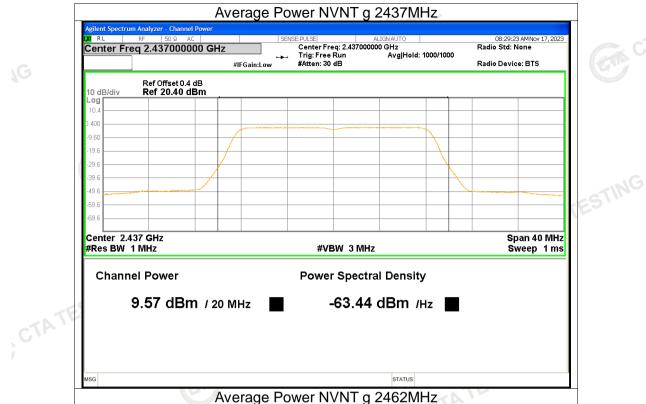
Page 41 of 78 Report No.: CTA231109001W02



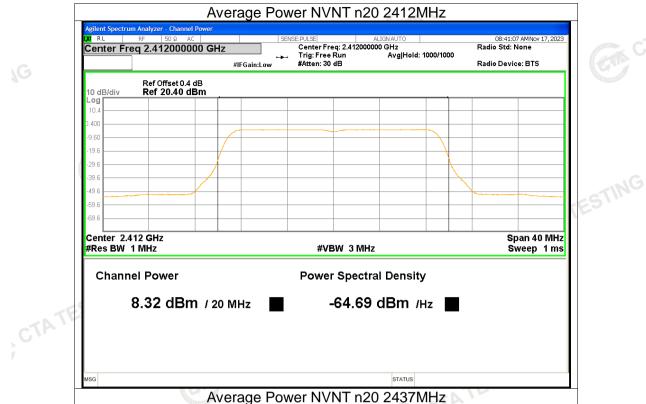


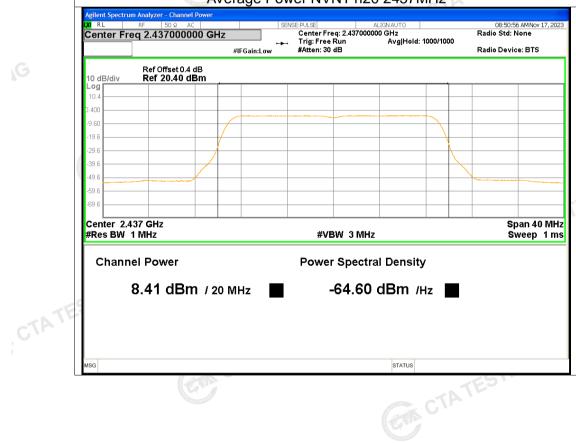

Page 42 of 78 Report No.: CTA231109001W02

2. Maximum Average Conducted Output Power

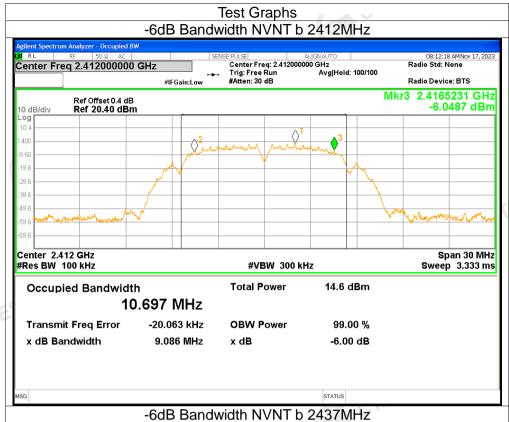

Condition Mode F		Frequency	Conducted Power	Duty Factor	Total Power	Limit	Verdict
		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	
NVNT	b	2412	8.12	0.01	8.13	<=30	Pass
NVNT	b	2437	8.13	0.01	8.14	<=30	Pass
NVNT	b	2462	8.46	0.01	8.47	<=30	Pass
NVNT	g	2412	9.58	0.06	9.64	<=30	Pass
NVNT	g	2437	9.57	0.06	9.63	<=30	Pass
NVNT	g	2462	10.49	0.06	10.55	<=30	Pass
NVNT	n20	2412	8.32	0.06	8.38	<=30	Pass
NVNT	n20	2437	8.41	0.06	8.47	<=30	Pass
NVNT	n20	2462	8.62	0.06	8.68	<=30	Pass

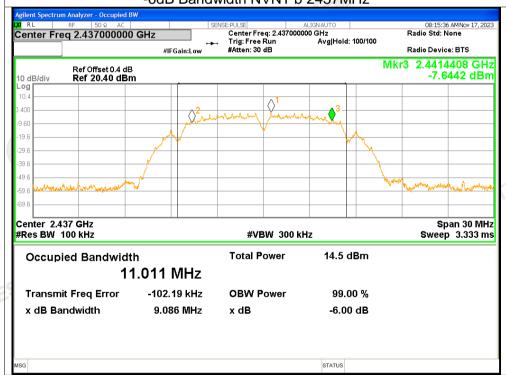




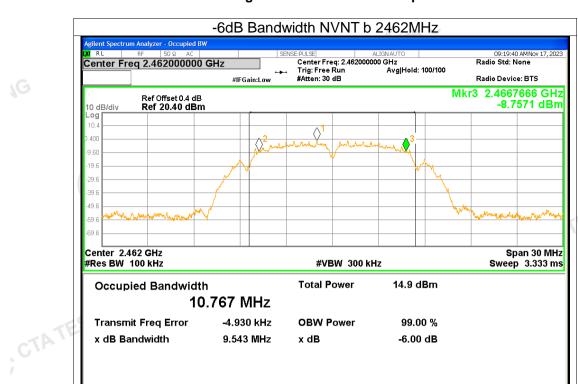


CTATESTING TATESTI

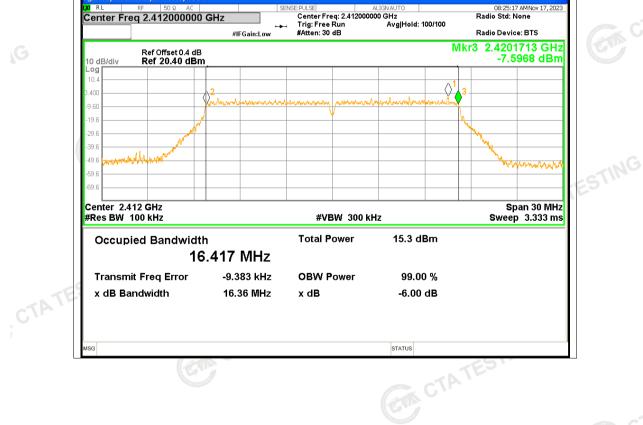

3. Maximum Peak Conducted Output Power

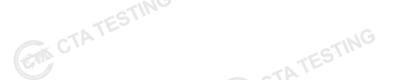

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	11.04	<=30	Pass
NVNT	b	2437	11.01	<=30	Pass
NVNT	b	2462	11.72	<=30	Pass
NVNT	g	2412	17.72	<=30	Pass
NVNT	g	2437	17.64	<=30	Pass
NVNT	g	2462	18.65	<=30	Pass
NVNT	n20	2412	16.46	<=30	Pass
NVNT	n20	2437	17.21	<=30	Pass
NVNT	n20	2462	16.76	<=30	Pass
				CTATES.	

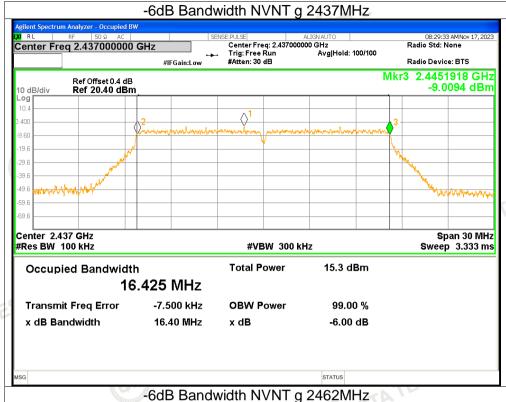
4. -6dB Bandwidth


Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	9.0864	>=0.5	Pass
NVNT	b	2437	9.086	>=0.5	Pass
NVNT	b	2462	9.5431	>=0.5	Pass
NVNT	g	2412	16.3613	>=0.5	Pass
NVNT	g	2437	16.3987	>=0.5	Pass
NVNT	g	2462	16.371	>=0.5	Pass
NVNT	n20	2412	17.6224	>=0.5	Pass
NVNT	n20	2437	17.6063	>=0.5	Pass
NVNT	n20	2462	17.5834	>=0.5	Pass

CTATES: The same of the sa

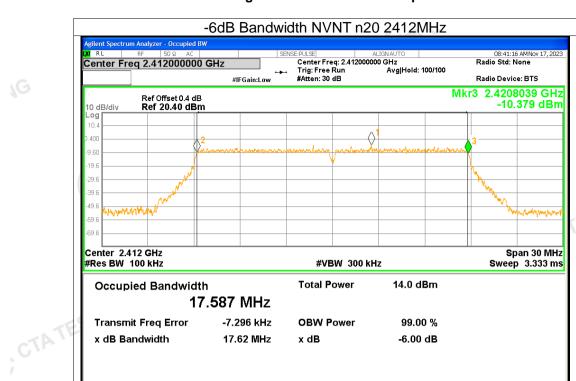


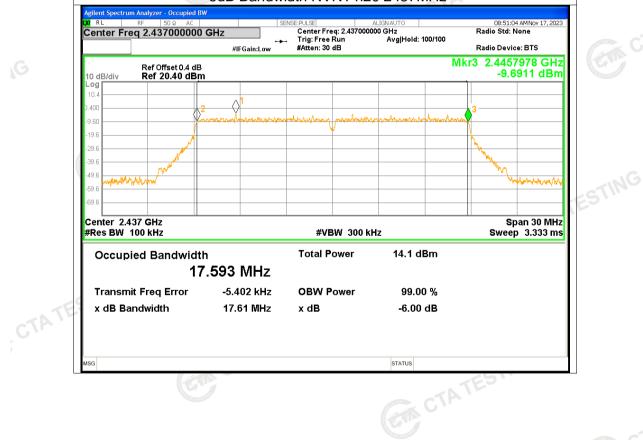


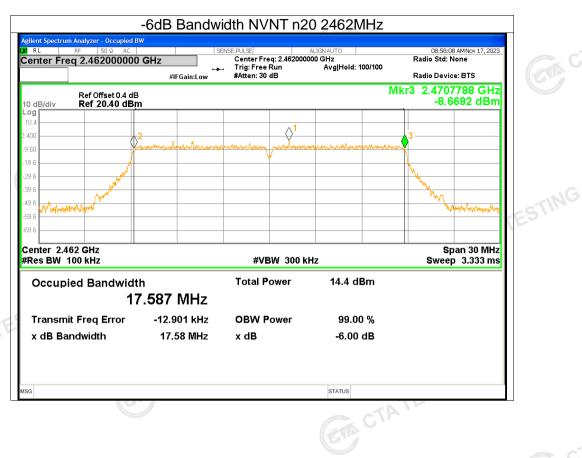


-6dB Bandwidth NVNT g 2412MHz

STATUS

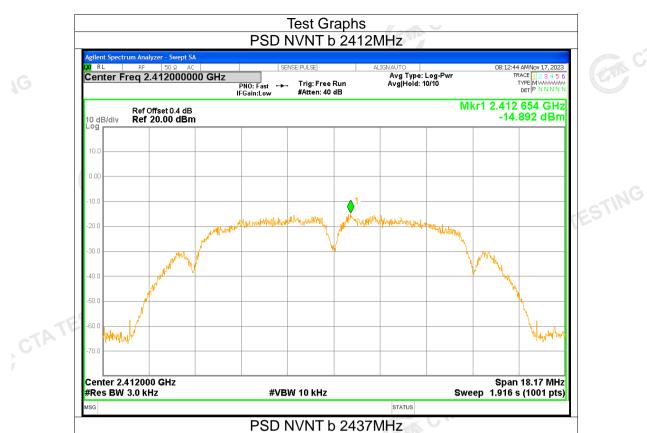



08:33:49 AMNov 17, 2023 Radio Std: None Center Freq: 2.462000000 GHz Trig: Free Run Avg #Atten: 30 dB Center Freq 2.462000000 GHz Avg|Hold: 100/100 Radio Device: BTS #IFGain:Low 2.4701793 GHz Mkr3 Ref Offset 0.4 dB Ref 20.40 dBm -7.4017 dBm 0 dB/div .og Center 2.462 GHz Span 30 MHz #Res BW 100 kHz **#VBW 300 kHz** Sweep 3.333 ms **Total Power** Occupied Bandwidth 16.1 dBm 16.418 MHz -6.225 kHz **OBW Power Transmit Freq Error** 99.00 % x dB Bandwidth 16.37 MHz x dB -6.00 dB STATUS CTA TES

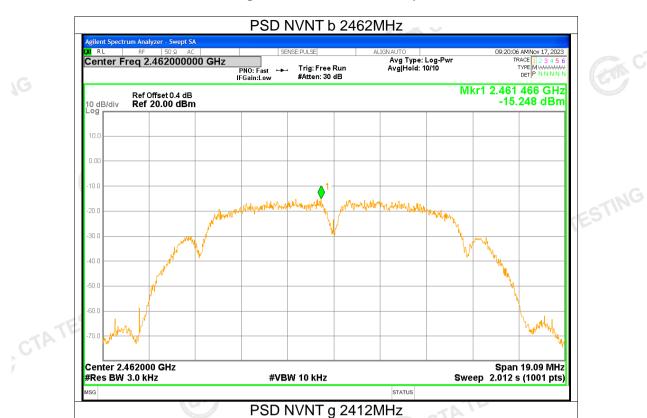


-6dB Bandwidth NVNT n20 2437MHz

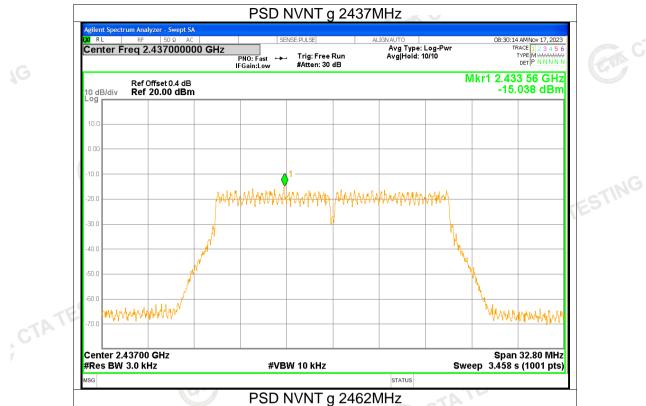
STATUS

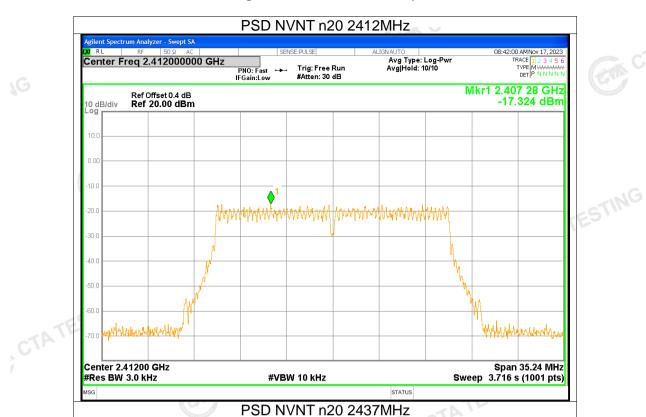


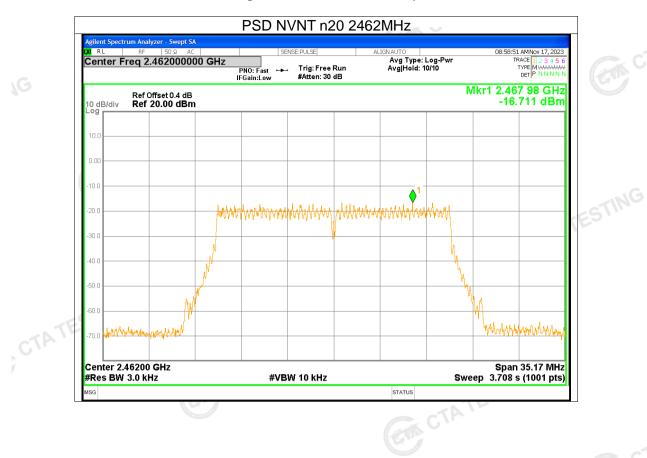
Page 55 of 78 Report No.: CTA231109001W02


5. Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	b	2412	-14.89	<=8	Pass
NVNT	b	2437	-15.24	<=8	Pass
NVNT	b	2462	-15.25	<=8	Pass
NVNT	g	2412	-15.18	<=8	Pass
NVNT	g	2437	-15.04	<=8	Pass
NVNT	g	2462	-14.7	<=8	Pass
NVNT	n20	2412	-17.32	<=8	Pass
NVNT	n20	2437	-16.51	<=8	Pass
NVNT	n20	2462	-16.71	<=8	Pass
				CTATES.	







Page 60 of 78 Report No.: CTA231109001W02

