

FCC Test Report

Product Name	Wireless image transmission module
Model No	P301-D
FCC ID.	2A735-SIRASF1E

Applicant	Coretronic Intelligent Robotics Corporation
Address	No.11, Lixing Rd., East Dist., Hsinchu City 30078, Taiwan

Date of Receipt	May 27, 2022
Issued Date	Aug. 05, 2022
Report No.	2250839R-RFUSWL5V01-A
Report Version	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test Report

Issued Date: Aug. 05, 2022

Report No.: 2250839R-RFUSWL5V01-A

Product Name	Wireless image transmission module
Applicant	Coretronic Intelligent Robotics Corporation
Address	No.11, Lixing Rd., East Dist., Hsinchu City 30078, Taiwan
Manufacturer	Coretronic Intelligent Robotics Corporation
Model No.	P301-D
FCC ID.	2A735-SIRASF1E
EUT Rated Voltage	DC 5V by Test Fixture
EUT Test Voltage	DC 5V by Test Fixture
Trade Name	FLIR
Applicable Standard	FCC CFR Title 47 Part 15 Subpart E
	ANSI C63.4: 2014, ANSI C63.10: 2013
	KDB Publication 789033
Test Result	Complied

Documented By	:	Joanne Lin
		(Senior Project Specialist / Joanne Lin)
Tested By	:	Ivan Chuang
		(Senior Engineer / Ivan Chuang)
Approved By	:	Jack Usu
		(Senior Engineer / Jack Hsu)

TABLE OF CONTENTS

	Desc	ription	Page
1.	GEN	NERAL INFORMATION	6
	1.1.	EUT Description	6
	1.2.	Tested System Datails	7
	1.3.	Configuration of tested System	7
	1.4.	EUT Exercise Software	7
	1.5.	Test Facility	8
	1.6.	List of Test Equipment	8
	1.7.	Uncertainty	11
2.	Con	ducted Emission	12
	2.1.	Test Setup	12
	2.2.	Limits	12
	2.3.	Test Procedure	12
	2.4.	Test Result of Conducted Emission	13
3.	Max	ximun conducted output power	14
	3.1.	Test Setup	14
	3.2.	Limits	
	3.3.	Test Procedure	16
	3.4.	Test Result of Maximum conducted output power	17
4.	Max	ximun Power Spectral Density	19
	4.1.	Test Setup	19
	4.2.	Limits	
	4.3.	Test Procedure	20
	4.4.	Test Result of Maximun Power Spectral Density	21
5.	Rad	iated Emission	25
	5.1.	Test Setup	25
	5.2.	Limits	26
	5.3.	Test Procedure	
	5.4.	Test Result of Radiated Emission	29
6.	Ban	d Edge	36
	6.1.	Test Setup	
	6.2.	Limits	37
	6.3.	Test Procedure	
	6.4.	Test Result of Band Edge	39
7.	Occ	upied Bandwidth	43
	7.1.	Test Setup	43

7.2	. Limits	43
7.3	. Test Procedure	43
7.4	. Test Result of Occupied Bandwidth	44
8. Du	ty Cycle	40
8.1	. Test Setup	46
8.2	. Test Procedure	46
8.3	. Test Result of Duty Cycle	47
Appendix 1:	EUT Test Photographs	
Appendix 2:	Product Photos-Please refer to the file: 2250839R-Product Photos	

Revision History

Report No.	Version	Description	Issued Date
2250839R-RFUSWL5V01-A	V1.0	Initial issue of report.	Aug. 05, 2022

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Wireless image transmission module
Trade Name	FLIR
Model No.	P301-D
FCC ID.	2A735-SIRASF1E
Frequency Range	5MBW & 10MBW: 5180-5240MHz, 5740-5820MHz
Number of Channels	8CH
Type of Modulation	OFDM, BPSK, QPSK, 16QAM, 64QAM
Antenna type	Dipole Antenna
Channel Control	Auto
Antenna Gain	Refer to the table "Antenna List"

Antenna List

1	Vo.	Manufacturer	Part No.	Antenna Type	Peak Gain
1		CIROCOMM	43N15C6V0W0010T	Dipole Antenna	5.0dBi for 5GHz

Note: The antenna of EUT is conform to FCC 15.203.

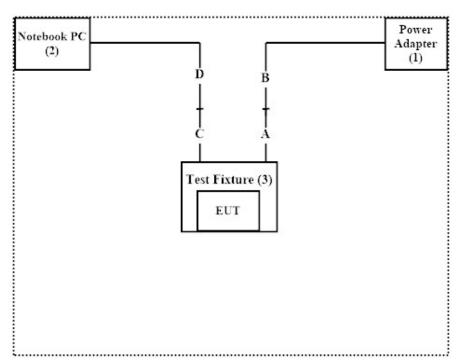
Center Working Frequency of Each Channel: (5MBW & 10MBW)

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 36:	5180 MHz	Channel 40:	5200 MHz	Channel 44:	5220 MHz	Channel 48:	5240 MHz
Channel 148:	5740 MHz	Channel 156:	5780 MHz	Channel 160:	5800 MHz	Channel 164:	5820 MHz

Note:

- 1. This device is a Wireless image transmission module with built-in 2.4G and 5G transceiver, this report for 5G transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. The spectrum plot against conducted item only shows the worst case.
- 4. These tests were conducted on a sample for the purpose of demonstrating compliance of 802.11a/n/ac/ax transmitter with Part 15 Subpart E for Unlicensed National Information Infrastructure devices.

Test Mode	Mada	Mode 1: Transmit (5M-BW)
Test		Mode 2: Transmit (10M-BW)


1.2. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product		Manufacturer	Model No.	Serial No.	Power Cord
1	Power Adapter	SPARK LIGHTING TECHNOLOGY CO., LTD	FJ-SW1203000T	N/A	N/A
2	Notebook PC	Lenovo	TP00067C	PF-0EW26J	N/A
3	Test Fixture	N/A	N/A	N/A	N/A

Sig	gnal Cable Type	Signal cable Description		
A	Power Cable	Non-shielded, 1.8m		
В	Power Cable	Non-shielded, 1.5m, with one ferrite core bonded.		
C	LAN Cable	Non-shielded, 0.3m		
D	LAN Cable	Non-shielded, 2m		

1.3. Configuration of tested System

1.4. EUT Exercise Software

- 1. Setup the EUT as shown in Section 1.3.
- 2. Execute software "ARSiriusPCTool v2.0.0-20200512" on the notebook PC.
- 3. Configure the test mode, the test channel, and the data rate.
- 4. Press "OK" to start the continuous Transmit.
- 5. Verify that the EUT works properly.

1.5. Test Facility

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual
Contrate 1 Engineering	Temperature (°C)	10~40 °C	27.0 °C
Conducted Emission	Humidity (%RH)	10~90 %	48.7 %
D 11 / 1E 11	Temperature (°C)	10~40 °C	21.5 °C
Radiated Emission	Humidity (%RH)	10~90 %	54.1 %
	Temperature (°C)	10~40 °C	22.0 °C
Conductive	Humidity (%RH)	10~90 %	55.0 %

USA : FCC Registration Number: TW0033

Canada: CAB Identifier Number: TW3023 / Company Number: 26930

Site Description : Accredited by TAF

Accredited Number: 3023

Test Laboratory : DEKRA Testing and Certification Co., Ltd

Address : No. 5-22, Ruishukeng Linkou District, New Taipei City, 24451, Taiwan Performed Location : No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan,

R.O.C.

Phone number : +886-3-275-7255

Fax number : +866-3-327-8031

Email address : info.tw@dekra.com

Website : http://www.dekra.com.tw

1.6. List of Test Equipment

For Conduction measurements / HY-SR01

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
X	EMI Test Receiver	R&S	ESR7	101601	2022.06.23	2023.06.22
X	Two-Line V-Network	R&S	ENV216	101306	2022.05.23	2023.05.22
X	Two-Line V-Network	R&S	ENV216	101307	2022.07.04	2023.07.03
X	Coaxial Cable	SUHNER	RG400_BNC	RF001	2022.05.24	2023.05.23

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version: E3 210616 dekra V9.

For Conducted measurements / HY-SR02

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
Σ	Spectrum Analyzer	R&S	FSV30	103466	2021.12.27	2022.12.26
Σ	Peak Power Analyzer	KEYSIGHT	8900B	MY51000539	2022.05.27	2023.05.26
Σ	Power Sensor	KEYSIGHT	N1923A	MY59240002	2022.05.19	2023.05.18
Σ	Power Sensor	KEYSIGHT	N1923A	MY59240003	2022.05.19	2023.05.18

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version: RF Conducted Test Tools R3 V3.0.1.19

For Radiated measurements / HY-CB01

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date	
	Loop Antenna	AMETEK	HLA6121	56736	2022.05.14	2023.05.13	
X	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-675	2021.08.10	2022.08.09	
	Horn Antenna	ETS-Lindgren	3117	00203761	2021.11.25	2022.11.24	
	Horn Antenna	Com-Power	AH-840	101087	2021.06.18	2022.06.17	
	Pre-Amplifier	SGH	0301	20211007-7	2021.01.20	2022.01.19	
	Pre-Amplifier	EMCI	EMC051835SE	980312	2022.02.22	2023.02.21	
	Pre-Amplifier	EMCI	EMC05820SE	980362	2021.08.24	2022.08.23	
	Pre-Amplifier	EMCI	EMC184045SE	980369			
	Coaxial Cable	EMCI	EMC102-KM-KM-600	1160314	2022.05.12	2023.05.11	
	Coaxial Cable	EMCI	EMC102-KM-KM-7000	170242			
	Filter	MICRO TRONICS	BRM50702	G251	2021.09.16	2022.09.15	
	Filter	MICRO TRONICS	BRM50716	G188	2021.09.16	2022.09.15	
X	EMI Test Receiver	R&S	ESR	102792	2021.12.15	2022.12.14	
	Spectrum Analyzer	R&S	FSV3044	101113	2022.01.25	2023.02.24	
	Coaxial Cable	SUHNER	SUCOFLEX 106	25450/6			
X	Coaxial Cable	SGH	HA800	GD20110222-8 2021003-8	2022 02 22	2023.03.21	
Λ	Coaxial Cable	SGH	SGH18	2021003-8	2022.03.22	2023.03.21	
	Coaxial Cable	EMCI	EMC106	151113			

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version: E3 210616 dekra V9.

For Radiated measurements / HY-CB03

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date	
	Loop Antenna	AMETEK	HLA6121	56736	2022.05.14	2023.05.13	
	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-678	2021.09.23	2022.09.22	
X	Horn Antenna	ETS-Lindgren	3117	00227700	2021.11.09	2022.11.08	
X	Horn Antenna	Com-Power	AH-840	101100	2021.10.04	2022.10.03	
	Pre-Amplifier	EMCI	EMC001330	980302	2021.07.26	2022.07.25	
	Pre-Amplifier	EMCI	EMC051835SE	980313	2021.11.24	2022.11.23	
	Pre-Amplifier	EMCI	EMC05820SE	980310	2021.07.07	2022.07.06	
	Pre-Amplifier	EMCI	EMC184045SE	980369			
	Coaxial Cable	EMCI	EMC102-KM-KM-600	1160314	2022.05.12	2023.05.11	
	Coaxial Cable	EMCI	EMC102-KM-KM-7000	170242			
X	Filter	MICRO TRONICS	BRM50702	G251	2021.09.16	2022.09.15	
	Filter	MICRO TRONICS	BRM50716	G188	2021.09.16	2022.09.15	
	EMI Test Receiver	R&S	ESR	102793	2021.12.15	2022.12.14	
X	Spectrum Analyzer	R&S	FSV3044	101113	2022.01.25	2023.02.24	
	Coaxial Cable	SGH	SGH18	2021005-1		_	
X	Coaxial Cable	SGH	SGH18	202108-4	2022.03.18	2022 02 17	
Λ	Coaxial Cable	SGH	SGH18	GD20110223-1	2022.03.18	2023.03.17	
	Coaxial Cable	SGH	HA800	GD20110222-3			

Note:

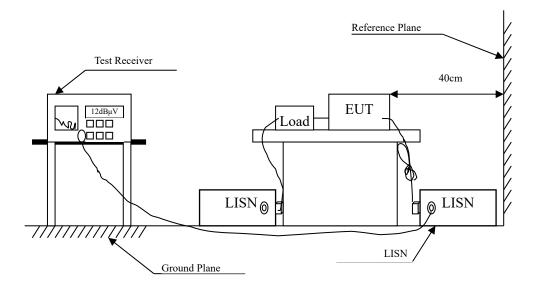
- All equipments are calibrated every one year.

 The test instruments marked with "X" are used to measure the final test results. 2.
- Test Software version: E3 210616 dekra V9. 3.

1.7. Uncertainty

Uncertainties have been calculated according to the DEKRA internal document.

The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.


Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test item	Uncertainty		
Conducted Emission	±3.4	42 dB	
W. T. J.	Power Meter	Spectrum Analyzer	
Maximun conducted output power	±0.89 dB	±2.06 dB	
Peak Power Spectral Density	±2.0	06 dB	
- 4- 4- 1	Under 1GHz	Above 1GHz	
Radiated Emission	±4.05 dB	±3.73 dB	
D 151	Under 1GHz	Above 1GHz	
Band Edge	±4.05 dB	±3.73 dB	
Occupied Bandwidth	±1544.74 Hz		
Duty Cycle	±2.31msec		

2. Conducted Emission

2.1. Test Setup

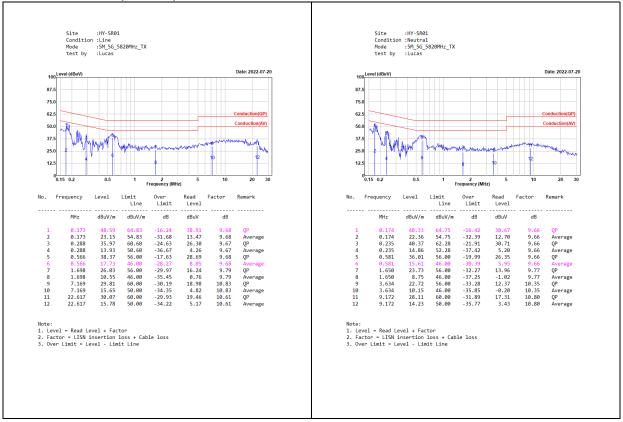
2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBμV) Limit						
Frequency	Limits					
MHz	QP	AV				
0.15 - 0.50	66-56	56-46				
0.50-5.0	56	46				
5.0 - 30	60	50				

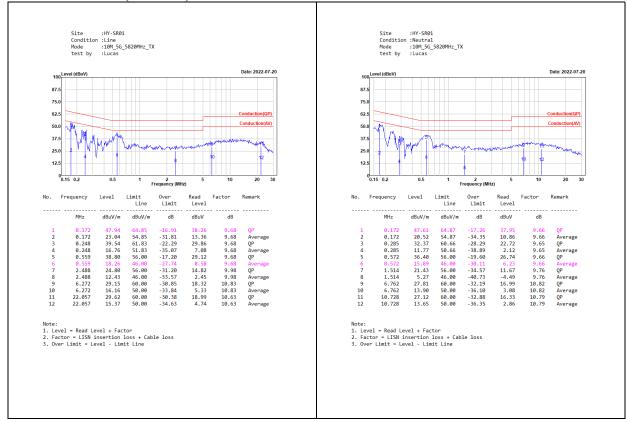
Remarks: In the above table, the tighter limit applies at the band edges.

2.3. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)


Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement.

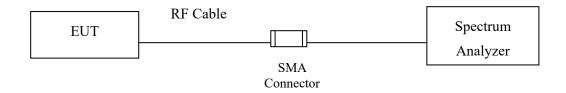
Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.



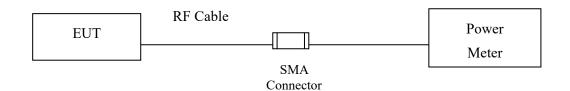
2.4. Test Result of Conducted Emission

Mode 1: Transmit (5M-BW)

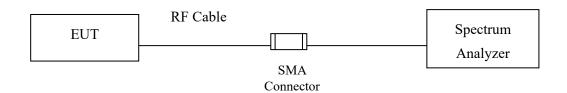
Mode 2: Transmit (10M-BW)



3. Maximun conducted output power


3.1. Test Setup

26dB Occupied Bandwidth



Conduction Power Measurement

Conduction Power Measurement (for 802.11an)

Conduction Power Measurement (for 802.11ac/ax)

3.2. Limits

For the band 5.15-5.25 GHz,

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-topoint U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 99% emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point UNII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

The maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3. Test Procedure

As an alternative to FCC KDB-789033, the EUT maximum conducted output power was measured with an average power meter employing a video bandwidth greater the 6dB BW of the emission under test. Maximum conducted output power was read directly from the meter across all data rates, and across three channels within each sub-band. Special care was used to make sure that the EUT was transmitting in continuous mode. This method exceeds the limitations of FCC KDB-789033, and provides more accurate measurements.

802.11an (BW ≤ 40MHz) Maximum conducted output power using KDB 789033 section E)3)b) Method PM-G (Measurement using a gated RF average power meter)

Note: the power meter have a video bandwidth that is greater than or equal to the measurement bandwidth, (Anritsu/ MA2411B video bandwidth: 65MHz)

802.11ac (BW=80MHz) Maximum conducted output power using KDB 789033 section E)2)b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep).

When transmitted signals consist of two or more non-contiguous spectrum segments (e.g., 80+80 MHz mode) or when a single spectrum segment of a transmission crosses the boundary between two adjacent U-NII bands, KDB 644545 D03 section D) procedure is used for measurements.

3.4. Test Result of Maximum conducted output power

Product : Wireless image transmission module
Test Item : Maximum conducted output power

Test Mode : Mode 1: Transmit (5M-BW)

Test Date : 2022/07/26

Maximum conducted output power Measurement:

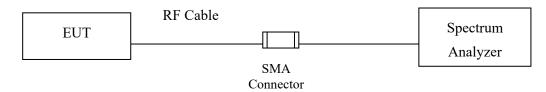
Channel No.	Frequency	Chain A Power	Chain B Power	Output Power	Output Power Limit
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
36	5180	15.70	15.09	18.42	24
44	5220	15.61	14.86	18.26	24
48	5240	15.26	14.75	18.02	24
148	5740	26.00	26.02	29.02	30
156	5780	25.75	26.19	28.99	30
160	5800	25.53	26.20	28.89	30
164	5820	25.38	26.04	28.73	30

Note: Output Power Value (dBm) = 10*LOG (Chain A(mW)+ Chain B(mW))

Product : Wireless image transmission module
Test Item : Maximum conducted output power
Test Mode : Mode 2: Transmit (10M-BW)

Test Date : 2022/07/26

Maximum conducted output power Measurement:


Channel No.	Frequency	Chain A Power	Chain B Power	Output Power	Output Power Limit
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
36	5180	16.84	16.91	19.89	24
44	5220	16.79	16.63	19.72	24
48	5240	16.89	16.67	19.79	24
148	5740	26.24	27.00	29.65	30
156	5780	25.85	26.54	29.22	30
160	5800	25.76	26.58	29.20	30
164	5820	25.94	26.70	29.35	30

Note: Output Power Value (dBm) = 10*LOG (Chain A(mW)+Chain B(mW))

4. Maximun Power Spectral Density

4.1. Test Setup

4.2. Limits

For the band 5.15-5.25 GHz,

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-topoint U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point UNII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

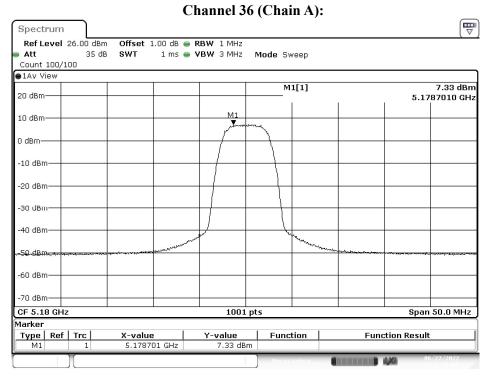
The maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3. Test Procedure

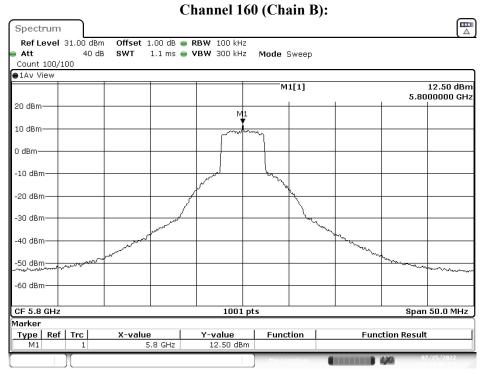
The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

The Peak Power Spectral Density using KDB 789033 section F) procedure, Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer.

SA-1 method is selected to run the test.


4.4. Test Result of Maximun Power Spectral Density

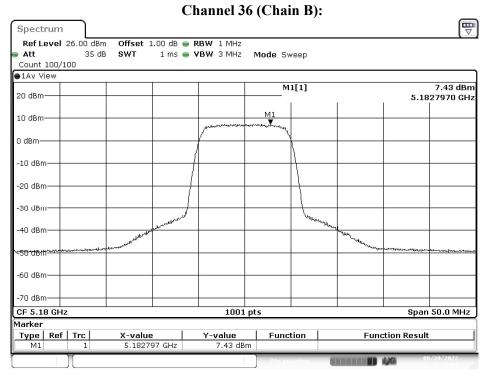
Product : Wireless image transmission module
Test Item : Maximun Power Spectral Density
Test Mode : Mode 1: Transmit (5M-BW)


Channel No.	Frequency	Data Rate	Chain	PPSD/MHz	Duty factor	Total PPSD/MHz	Limit	Result				
	(MHz)	(Mbps)		(dBm)	(dB)	(dBm)	(dBm)					
36	5180	HT8	A	7.33	0.45	10.79	11	Pass				
30	3100	1110	В	6.26	0.45	9.72	11	1 488				
44	5220 HT8	HT8	A	6.93	0.45	10.39	11	Pass				
44	3220	пів	В	6.42	0.45	9.88	11	1 488				
10	48 5240	5240	5240	5240	5240	HT8	A	6.68	0.45	10.14	11	Pass
40			1110	В	6.26	0.45	9.72	1 1	rass			
148	5740	HT8	A	10.38	0.45	20.82	30	Pass				
140	3/40	3/40 П18	В	11.27	0.45	21.71	30	rass				
156	5700	5700	5780	5790	HT8	A	10.67	0.45	21.11	30	Pass	
130	3760	піо	В	12.21	0.45	22.65	30	rass				
160	5000	IITO	A	10.64	0.45	21.08	30	Pass				
160	5800	5800 HT8	В	12.50	0.45	22.94	30	rass				
164	5920	HT8	A	9.92	0.45	20.36	30	Pass				
164	5820	п18	В	11.07	0.45	21.51	30	rass				

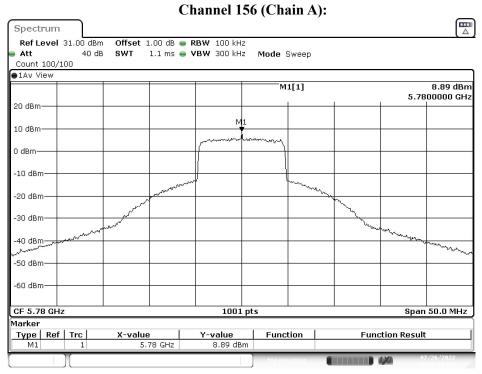
Note: Total PPSD = 10*log(Chain A (mW) + Chain B (mW) + Duty factor.

Date: 27.JUN.2022 16:13:57

Date: 25.JUL.2022 20:30:56

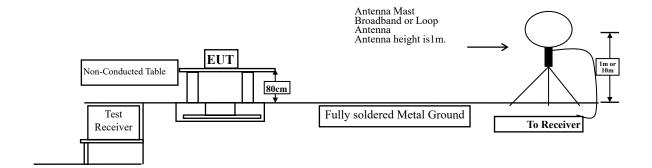


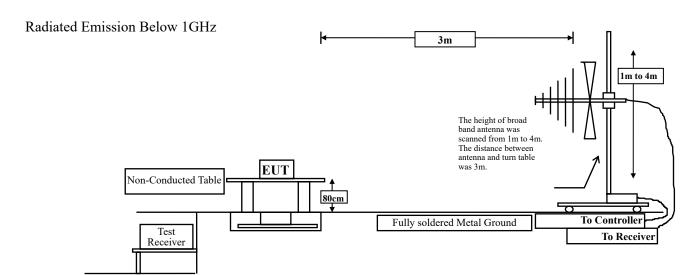
Product : Wireless image transmission module
Test Item : Maximun Power Spectral Density
Test Mode : Mode 2: Transmit (10M-BW)

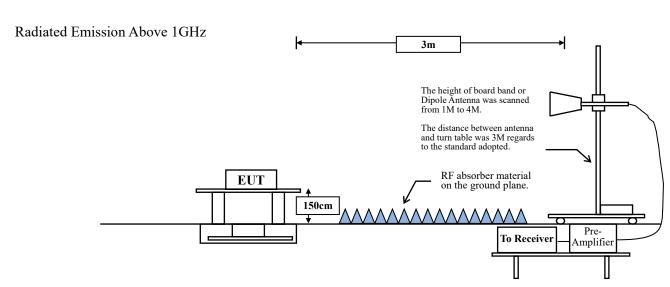

Channel No.	Frequency	Data Rate	Chain	PPSD/MHz	Duty factor	Total PPSD/MHz	Limit	Result
	(MHz)	(Mbps)		(dBm)	(dB)	(dBm)	(dBm)	
36	5180	НТ8	A	6.74	0.45	10.20	11	Pass
			В	7.43	0.45	10.89		
44	5220	НТ8	A	6.62	0.45	10.08	11	Pass
			В	7.33	0.45	10.79		
48	5240	НТ8	A	6.67	0.45	10.13	11	Pass
			В	7.33	0.45	10.79		
148	5740	НТ8	A	8.48	0.45	18.92	30	Pass
			В	7.28	0.45	17.72		
156	5780	НТ8	A	8.89	0.45	19.33	- 30	Pass
			В	8.33	0.45	18.77		
160	5800	НТ8	A	8.32	0.45	18.76	30	Pass
			В	7.94	0.45	18.38		
164	5820	НТ8	A	7.89	0.45	18.33	30	Pass
			В	7.82	0.45	18.26		

Note: Total PPSD = 10*log(Chain A (mW) + Chain B (mW) + Duty factor

Date: 20.JUN.2022 12:42:14


Date: 26.JUL.2022 09:52:13




5. Radiated Emission

5.1. Test Setup

Radiated Emission Under 30MHz

5.2. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits								
Frequency MHz	Field strength	Measurement distance						
IVIIIZ	(microvolts/meter)	(meter)						
0.009-0.490	2400/F(kHz)	300						
0.490-1.705	24000/F(kHz)	30						
1.705-30	30	30						
30-88	100	3						
88-216	150	3						
216-960	200	3						
Above 960	500	3						

Remarks: E field strength $(dB\mu V/m) = 20 \log E$ field strength (uV/m)

5.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to FCC KDB-789033 test procedure for compliance to FCC 47CFR 15. 407 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna.

The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

RBW and **VBW** Parameter setting:

According to KDB 789033 section II.G.5 Procedure for Unwanted Maximum Emissions Measurements above 1000 MHz.

RBW = 1MHz.

 $VBW \ge 3MHz$.

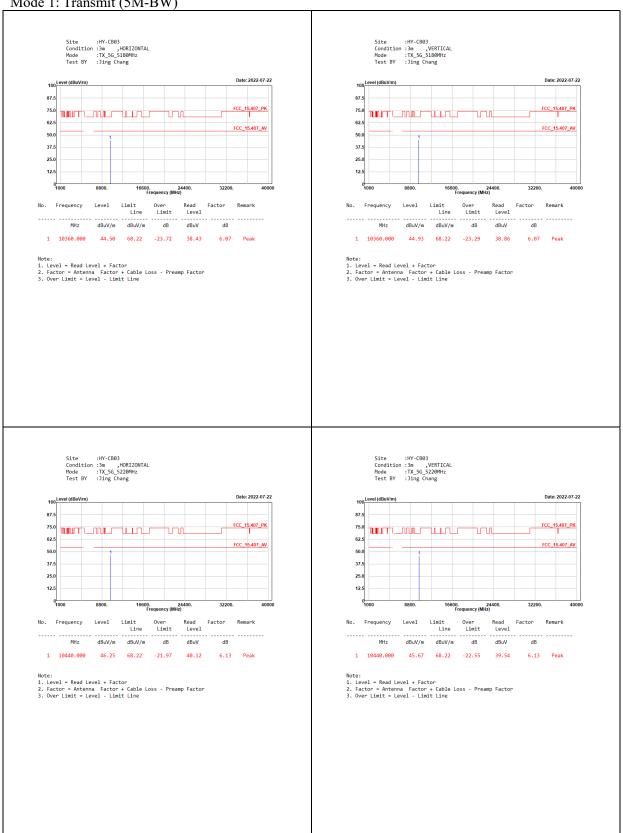
According to KDB 789033 section II.G.6 Procedures for Average Unwanted Emissions Measurements above 1000 MHz.

RBW = 1MHz.

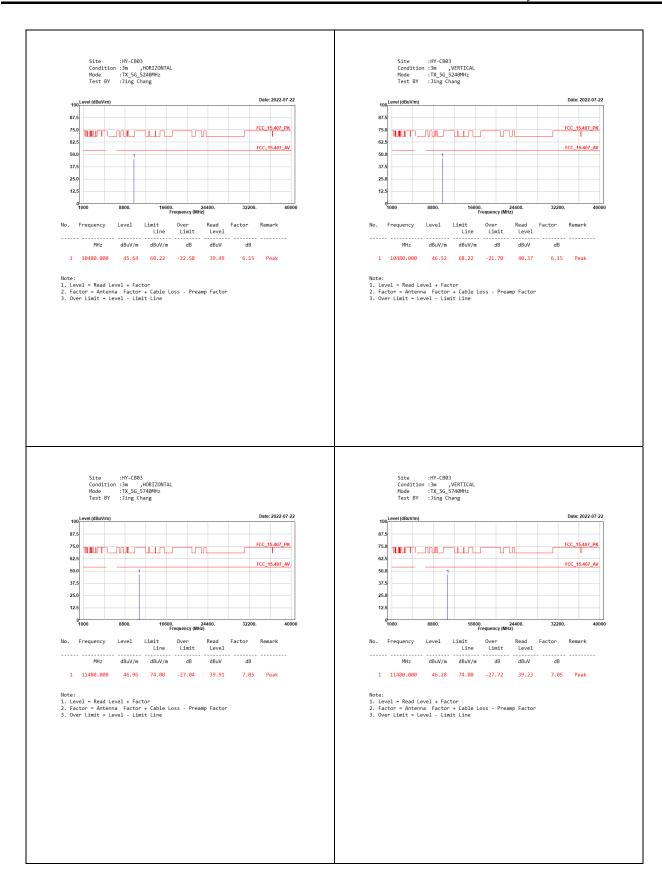
VBW = 10Hz, when duty cycle \geq 98 %

VBW \geq 1/T, when duty cycle \leq 98 %

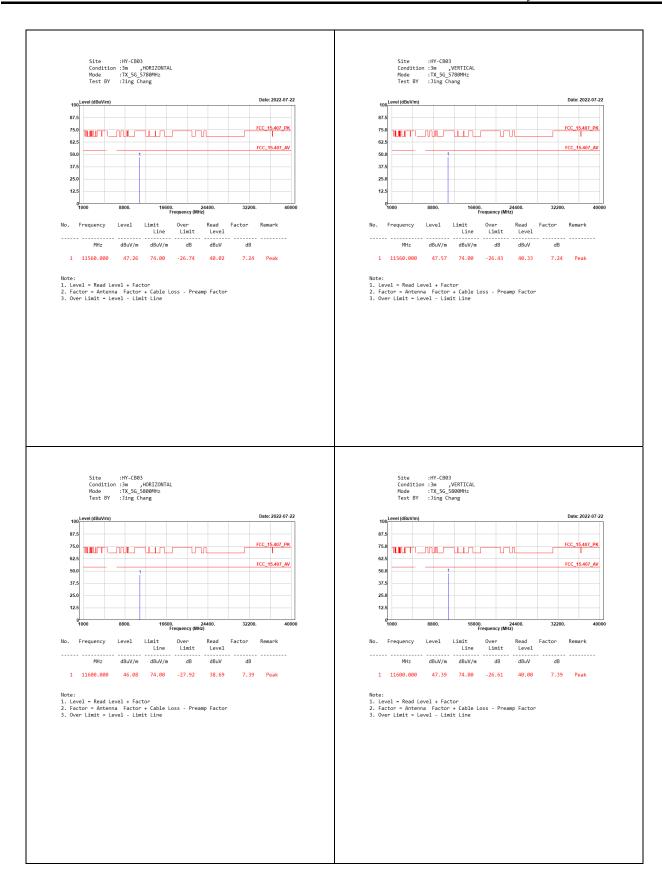
(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

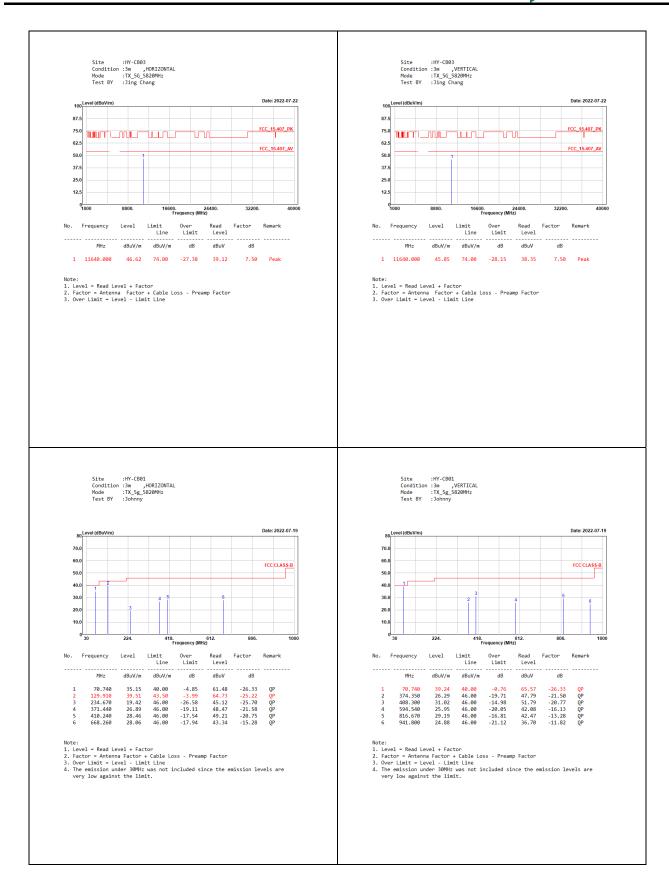

5GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
5M	89.74	5.3261	188	200
10M	90.11	5.3478	187	200

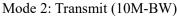
Note: Duty Cycle Refer to Section 8.

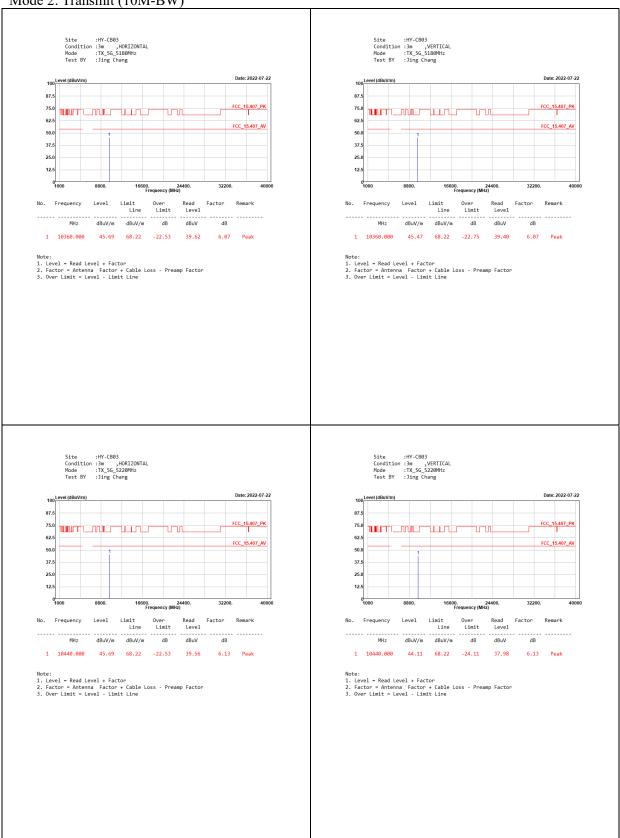


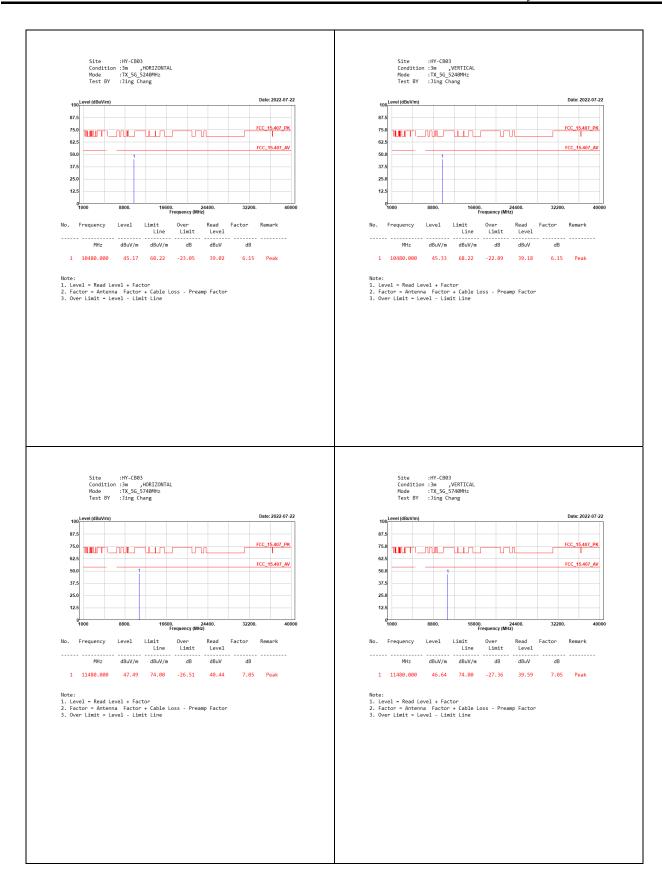
Test Result of Radiated Emission 5.4.

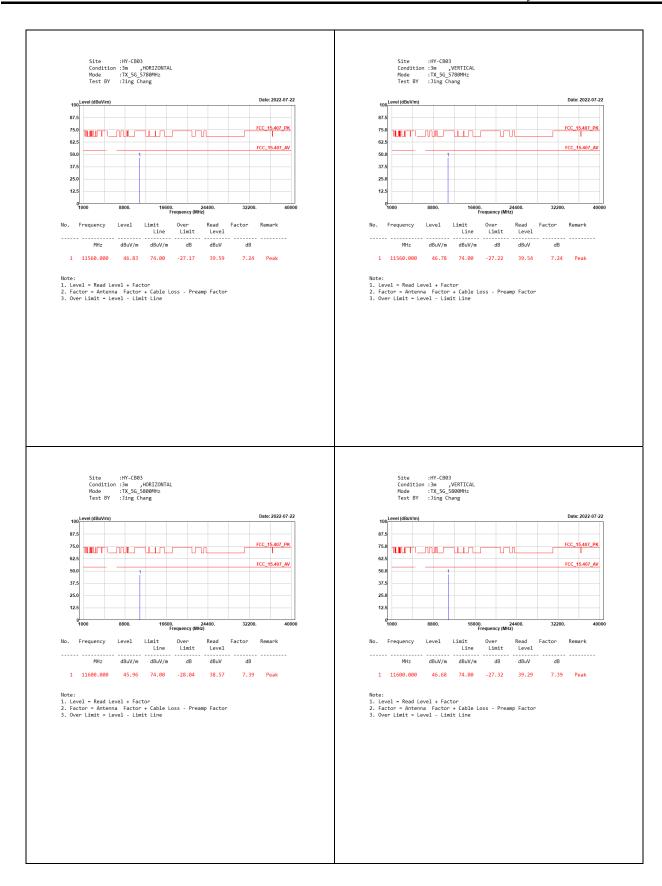

Mode 1: Transmit (5M-BW)

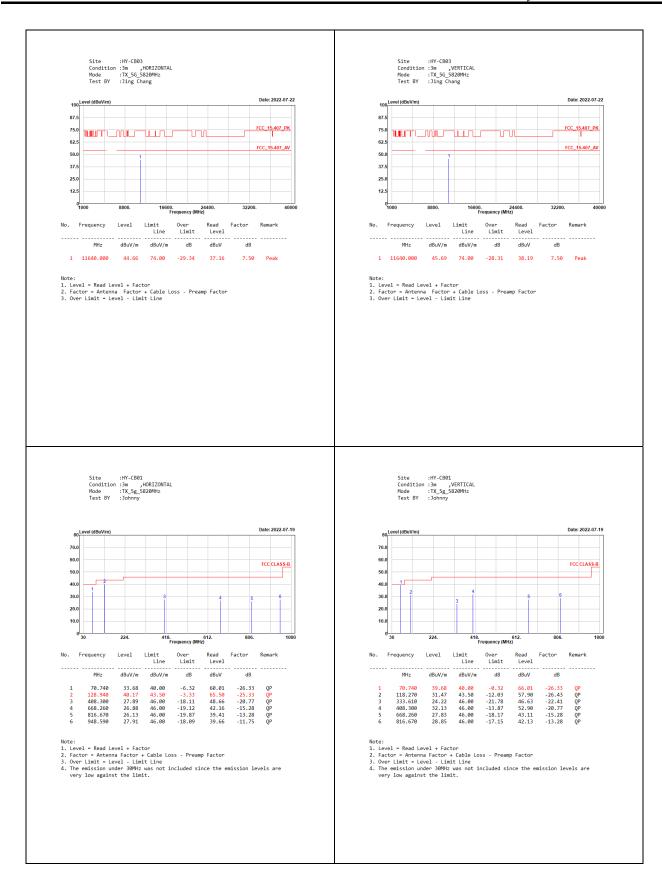


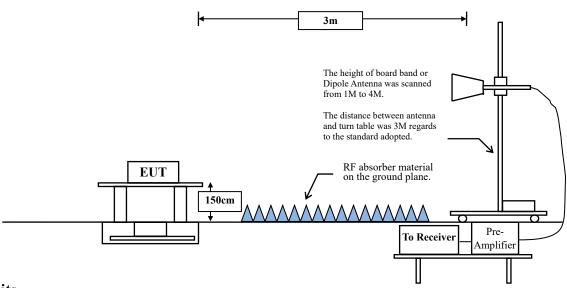












6. Band Edge

6.1. Test Setup

RF Radiated Measurement:

6.2. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209 Limits					
Frequency MHz	uV/m @3m	dBμV/m@3m			
30-88	100	40			
88-216	150	43.5			
216-960	200	46			
Above 960	500	54			

Remarks:

- 1. RF Voltage $(dB\mu V) = 20 \log RF \text{ Voltage } (uV)$
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

6.3. Test Procedure

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10:2013 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

RBW and **VBW** Parameter setting:

According to KDB 789033 section II.G.5 Procedure for Unwanted Maximum Emissions Measurements above 1000 MHz.

RBW = 1MHz.

 $VBW \ge 3MHz$.

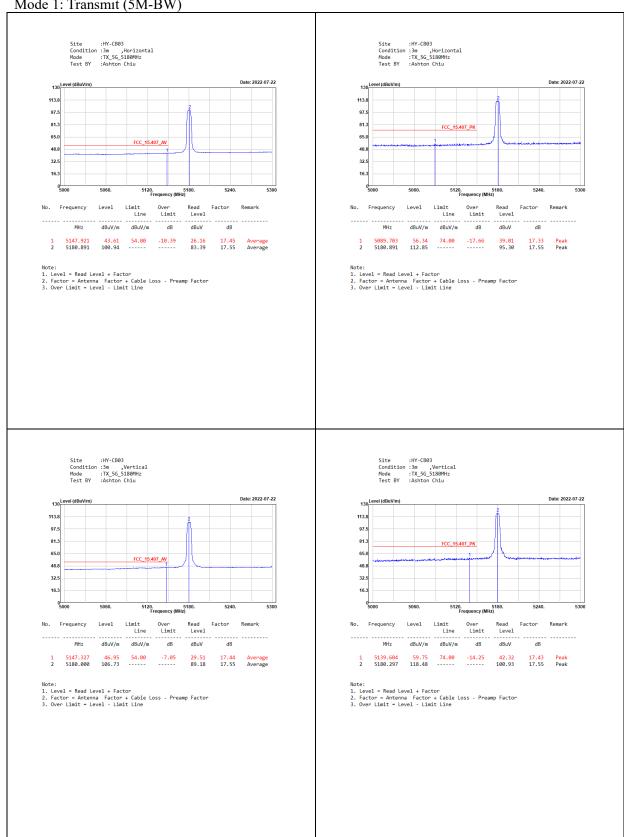
According to KDB 789033 section II.G.6 Procedures for Average Unwanted Emissions Measurements above 1000 MHz.

RBW = 1MHz.

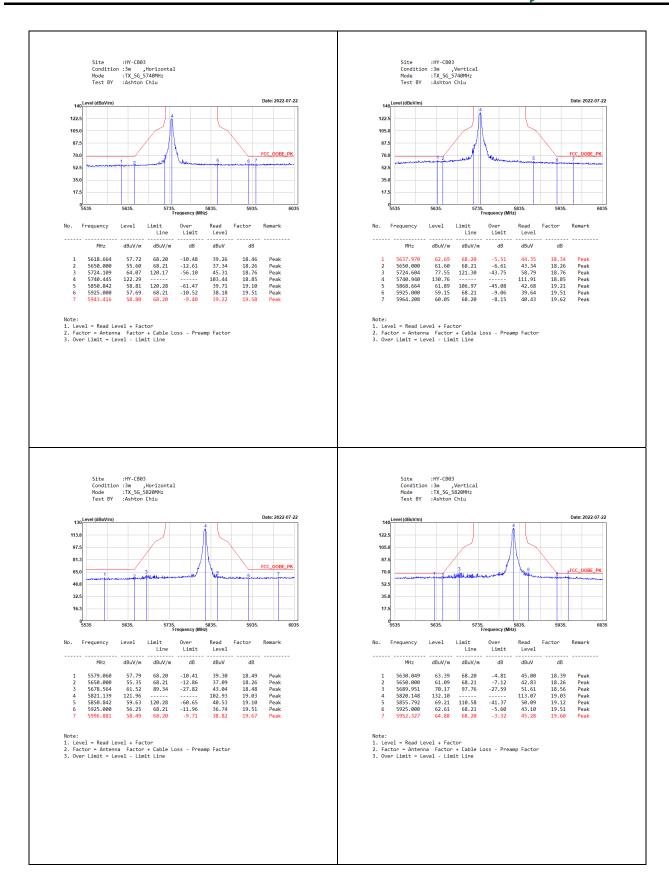
VBW = 10Hz, when duty cycle \geq 98 %

VBW $\geq 1/T$, when duty cycle $\leq 98 \%$

(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

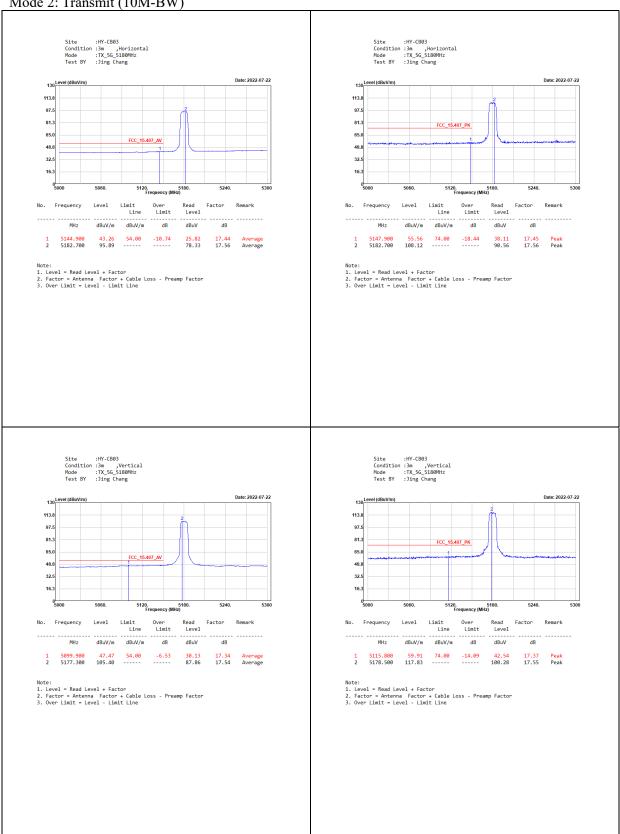

5GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
5M	89.74	5.3261	188	200
10M	90.11	5.3478	187	200

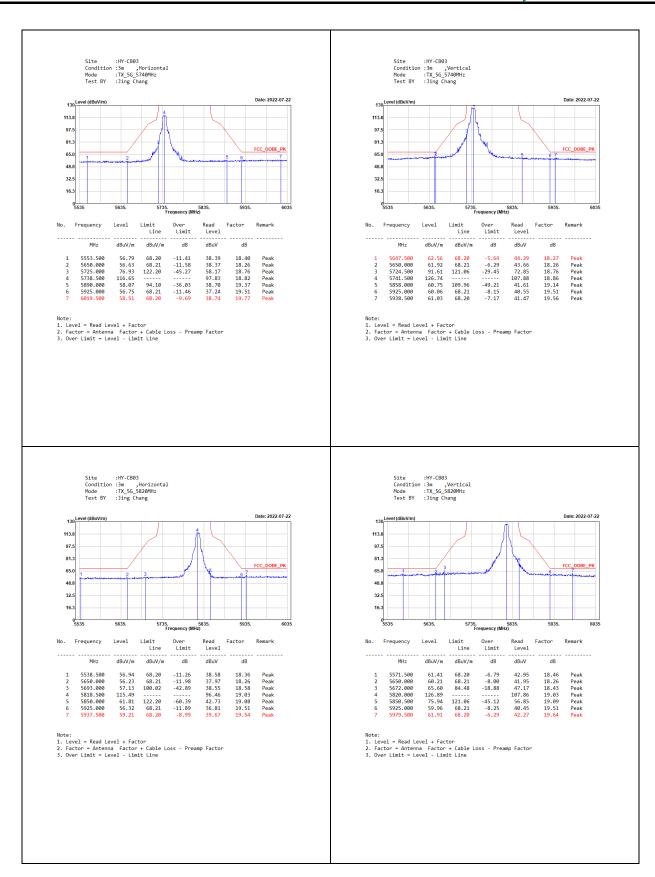
Note: Duty Cycle Refer to Section 8.



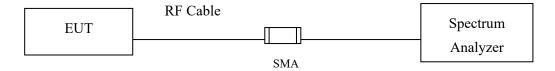
6.4. Test Result of Band Edge

Mode 1: Transmit (5M-BW)





Mode 2: Transmit (10M-BW)



7. Occupied Bandwidth

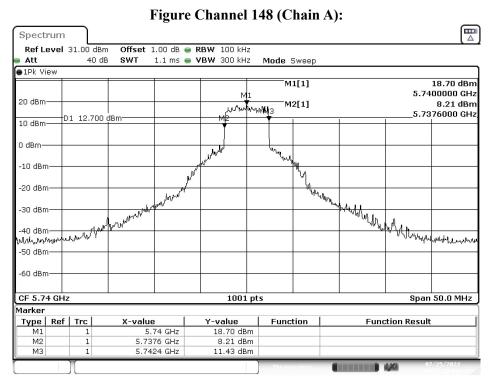
7.1. Test Setup

7.2. Limits

For the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

7.3. Test Procedure

The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.



7.4. Test Result of Occupied Bandwidth

Product : Wireless image transmission module

Test Item : Occupied Bandwidth Data
Test Mode : Mode 1: Transmit (5M-BW)

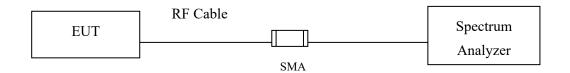
Channel No.	Frequency (MHz)	Chain	Measurement Level (kHz)	Required Limit (kHz)	Result
148	5740	A	4800	>500	Pass
156	5780	A	4700	>500	Pass
160	5820	A	4750	>500	Pass
164	5820	A	4700	>500	Pass
148	5740	В	4550	>500	Pass
156	5780	В	4700	>500	Pass
160	5820	В	4800	>500	Pass
164	5820	В	4800	>500	Pass

Date: 25.JUL.2022 20:17:26

Product : Wireless image transmission module

Test Item : Occupied Bandwidth Data
Test Mode : Mode 2: Transmit (10M-BW)

Channel No.	Frequency (MHz)	Chain	Measurement Level (kHz)	Required Limit (kHz)	Result
148	5740	A	9350	>500	Pass
156	5780	A	9300	>500	Pass
160	5820	A	9250	>500	Pass
164	5820	A	9200	>500	Pass
148	5740	В	9450	>500	Pass
156	5780	В	9350	>500	Pass
160	5820	В	9450	>500	Pass
164	5820	В	9400	>500	Pass


Figure Channel 148 (Chain B): Spectrum Ref Level 31.00 dBm Offset 1.00 dB RBW 100 kHz 40 dB SWT 1.1 ms 🍙 **VBW** 300 kHz Mode Sweep ●1Pk View M1[1] 15.87 dBm 5.7400000 GHz 20 dBm 7.23 dBm 5.7352500 GHz M2[1] D1 9.870 dBm 0 dBm physika managara 14 Andre Marker de White the track of the Morrowski to the Morrowski -10 dBm -20 dBm -40 dBm -50 dBm -60 dBm Span 50.0 MHz 1001 pts CF 5.74 GHz Marker X-value 5.74 GHz 5.73525 GHz 5.7447 GHz **Function Result** Type | Ref | Trc | Y-value Function 15.87 dBm 7.23 dBm M1 M2 8.57 dBm МЗ

Date: 26.JUL.2022 09:59:20

8. Duty Cycle

8.1. Test Setup

8.2. Test Procedure

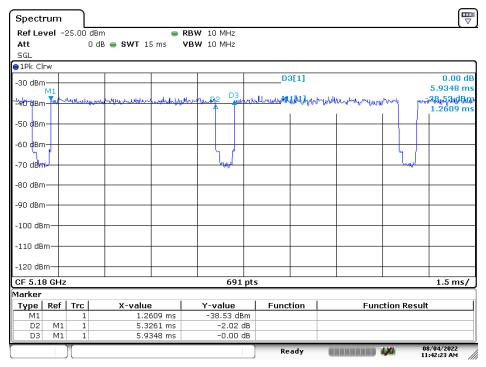
The EUT was setup according to ANSI C63.10 2013; tested according to U-NII test procedure of KDB789033 for compliance to FCC 47CFR 15.407 requirements.

8.3. Test Result of Duty Cycle

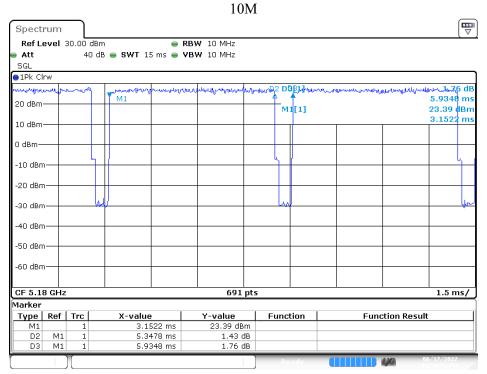
Product : Wireless image transmission module

Test Item : Duty Cycle Test Mode : Transmit

Duty Cycle Formula:


 $Duty \ Cycle = Ton / (Ton + Toff)$

Duty Factor = 10 Log (1/Duty Cycle)


Results:

5GHz band	Ton	Ton + Toff	Duty Cycle	Duty Factor
	(ms)	(ms)	(%)	(dB)
5M	5.3261	5.9348	89.74	0.47
10M	5.3478	5.9348	90.11	0.45

Date: 4.AUG.2022 11:42:23

Date: 17.JUN.2022 16:50:52