

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202205-0019-21

Page: 1 of 41

Radio Test Report

FCC ID: 2A6YC-M8

Report No. : TBR-C-202205-0019-21

Applicant: Shenzhen meterle photoelectric Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name : Projector

Model No. : M8-F

Series Model No. : M8-A, M8-B, M8-C, M8-D, M8-E, M8-G, M8-TPH, M7, M7-02,

M6, M9, M10, M20, M30, Z1, Z3, Z5, P18, H1, H6

Brand Name : ----

Sample ID : RW-C-202205-0019-1-1# & RW-C-202205-0019-1-2#

Receipt Date : 2022-05-11

Test Date : 2022-05-11 to 2022-05-28

Issue Date : 2022-05-31

Standards : FCC Part 15 Subpart C 15.247

Test Method : ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor : The SV

Wade Lv Ivan Su Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

COL	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT	11
5.	CONDUCTED EMISSION TEST	12
	5.1 Test Standard and Limit	12
	5.2 Test Setup	12
	5.3 Test Procedure	12
	5.4 Deviation From Test Standard	13
	5.5 EUT Operating Mode	13
	5.6 Test Data	13
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	15
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	
	6.5 EUT Operating Mode	
	6.6 Test Data	
7.	RESTRICTED BANDS REQUIREMENT	18
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Mode	
	7.6 Test Data	
8.	BANDWIDTH TEST	21
	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	22

Report No.: TBR-C-202205-0019-21 Page: 3 of 41

	8.6 Test Data	
9.	PEAK OUTPUT POWER	23
	9.1 Test Standard and Limit	23
	9.2 Test Setup	
	9.3 Test Procedure	23
	9.4 Deviation From Test Standard	23
	9.5 EUT Operating Mode	23
	9.6 Test Data	23
10.	POWER SPECTRAL DENSITY	24
	10.1 Test Standard and Limit	24
	10.2 Test Setup	
	10.3 Test Procedure	24
	10.4 Deviation From Test Standard	24
	10.5 Antenna Connected Construction	24
	10.6 Test Data	24
11.	ANTENNA REQUIREMENT	25
	11.1 Test Standard and Limit	25
	11.2 Deviation From Test Standard	
	11.3 Antenna Connected Construction	25
	11.4 Test Data	25
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	26
	ACHMENT BUNWANTED EMISSIONS DATA	

Report No.: TBR-C-202205-0019-21 Page: 4 of 41

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202205-0019-21	Rev.01	Initial issue of report	2022-05-31
The same of the sa	1003		THE STATE OF
	3	TOWN THE	
mn33	MODE		MBI
	No.		
COD'S	10.37		TODAY.
1000		mnB3	
TOWN THE		3	1000
	3	CONTRACTOR OF THE PARTY OF THE	OH CHIES
	OTO DE	1000	
	anni J	TO TO THE REAL PROPERTY.	
		Distriction of the second	

Page: 5 of 41

1. General Information about EUT

1.1 Client Information

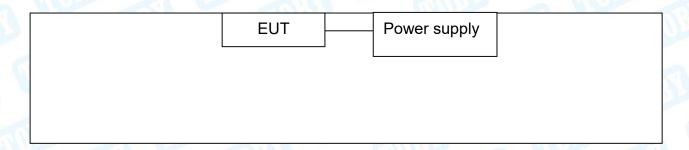
Applicant :		Shenzhen meterle photoelectric Technology Co., Ltd.
Address : 7th floor, no.10-5, Minsheng 1st Road, Baoyuan con Shiyan street, Bao'an District, Shenzhen, China		7th floor, no.10-5, Minsheng 1st Road, Baoyuan community, Shiyan street, Bao'an District, Shenzhen, China
Manufacturer		Shenzhen Feng Ruixiang Intelligent Technology Co., Ltd.
Address		302, Building 6, no.4 Zhongxing road, Zhangge community, Fucheng street, Longhua district, Shenzhen, Guangdong, P.R.China

1.2 General Description of EUT (Equipment Under Test)

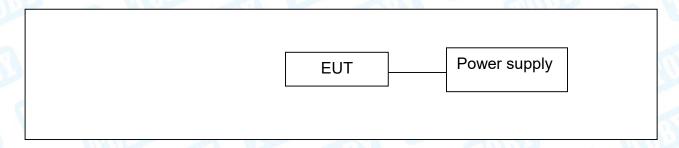
EUT Name)	Projector			
Models No.	1	M8-F, M8-A, M8-B, M8-C, M8-D, M8-E, M8-G, M8-TPH, M7, M7-02, M6, M9, M10, M20, M30, Z1, Z3, Z5, P18, H1, H6			
Model Different	T.	All these models are identical in the same PCB, layout and electrical circuit, the only difference is appearance color.			
		Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz		
		Number of Channel:	802.11b/g/n(HT20):11 channels 802.11n(HT40): 7 channels		
Product		Antenna Gain:	2.0dBi Internal Antenna		
Description		Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n:OFDM(BPSK,QPSK,16QAM,64 QAM)		
TOPE		Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6 Mbps 802.11n:up to 150Mbps		
Power Rating		Input: 100-240V~50/60)Hz		
Software Version	i				
Hardware Version					

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.

Page: 6 of 41


(4) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		


Note: CH 01~CH 11 for 802.11b/g/n(HT20) CH 03~CH 09 for 802.11n(HT40)

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

Page: 7 of 41

1.4 Description of Support Units

Equipment Information								
Name Model FCC ID/SDOC Manufacturer Used								
Power supply	United and	110	21 m	√ √				
Cable Information								
Number	Shielded Type	Ferrite Core	Length	Note				
Cable 1	Yes	NO	1.0M	Accessory				

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Emission Test					
Final Test Mode Description					
Mode 1	TX b Mode Channel 01				
For F	Radiated and RF Conducted Test				
Final Test Mode Description					
Mode 2	TX Mode b Mode Channel 01/06/11				
Mode 3	TX Mode g Mode Channel 01/06/11				
Mode 4	TX Mode n(HT20) Mode Channel 01/06/11				
Mode 5 TX Mode n(HT40) Mode Channel 03/06/09					

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK 802.11g Mode: OFDM

802.11n (HT20) Mode: MCS 0 802.11n (HT40) Mode: MCS 0

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 41

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software: SecureCRT.exe							
N. W.	Test Mode: Continuously transmitting						
Mode	Data Rate	Channel	Parameters				
TUL	CCK/ 1Mbps	01	6				
802.11b	CCK/ 1Mbps	06	6				
	CCK/ 1Mbps	11	6				
100	OFDM/ 6Mbps	01	0				
802.11g	OFDM/ 6Mbps	06	0				
	OFDM/ 6Mbps	11	0				
	MCS 0	01	0				
802.11n(HT20)	MCS 0	06	0				
	MCS 0	11	0				
	MCS 0	03	0				
802.11n(HT40)	MCS 0	06	0				
	MCS 0	09	0				

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U_{\tau}$ where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	$\pm 4.50~\mathrm{dB}$
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 9 of 41

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202205-0019-21 Page: 10 of 41

2. Test Summary

Standard Section	Test Item	Test Sample(s)	Judgment	Remark
FCC		,		
FCC 15.207(a)	Conducted Emission	RW-C-202205-0019-1-1#	PASS	N/A
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	RW-C-202205-0019-1-1#	PASS	N/A
FCC 15.203	Antenna Requirement	RW-C-202205-0019-1-2#	PASS	N/A
FCC 15.247(a)(2)	6dB Bandwidth	RW-C-202205-0019-1-2#	PASS	N/A
T I	99% Occupied bandwidth	RW-C-202205-0019-1-2#	PASS	N/A
FCC 15.247(b)(3)	Peak Output Power and E.I.R.P	RW-C-202205-0019-1-2#	PASS	N/A
FCC 15.247(e)	Power Spectral Density	RW-C-202205-0019-1-2#	PASS	N/A
FCC 15.247(d)	Band Edge Measurements	RW-C-202205-0019-1-2#	PASS	N/A
FCC 15.207	Conducted Unwanted Emissions	RW-C-202205-0019-1-2#	PASS	N/A
FCC 15.247(d)	Emissions in Restricted Bands	RW-C-202205-0019-1-2#	PASS	N/A
	On Time and Duty Cycle	RW-C-202205-0019-1-2#		N/A

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

Report No.: TBR-C-202205-0019-21 Page: 11 of 41

4. Test Equipment

Conducted Emission	on Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 02, 2021	Jul. 01, 2022
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 02, 2021	Jul. 01, 2022
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 02, 2021	Jul. 01, 2022
LISN	Rohde & Schwarz	ENV216	101131	Jul. 02, 2021	Jul. 01, 2022
Radiation Emission	n Test (A Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2022	Feb. 26, 2024
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 26, 2022	Feb. 25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb. 25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
Pre-amplifier	SONOMA	310N	185903	Feb. 26, 2022	Feb. 25, 2023
Pre-amplifier	HP (8449B	3008A00849	Feb. 26, 2022	Feb. 25, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022
Radiation Emission	n Test (B Site)			1	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 03, 2021	Sep. 02, 2022
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472	Feb. 26, 2022	Feb. 25, 2023
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	May 20, 2021	May 19, 2023
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb. 25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022
Antenna Conducte	d Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 03, 2021	Sep. 02, 2022
Spectrum Analyzer	KEYSIGT	N9020B	MY60110172	Sep. 03, 2021	Sep. 02, 2022
TIME	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 03, 2021	Sep. 02, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 03, 2021	Sep. 02, 2022
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 03, 2021	Sep. 02, 2022

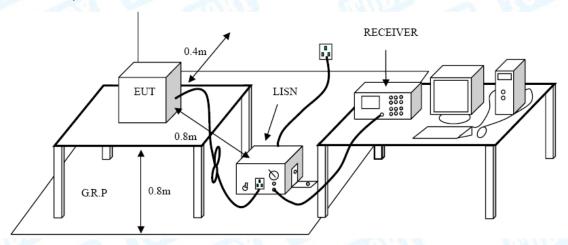
Page: 12 of 41

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Fragueney	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- ●Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- •LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Page: 13 of 41

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 14 of 41

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

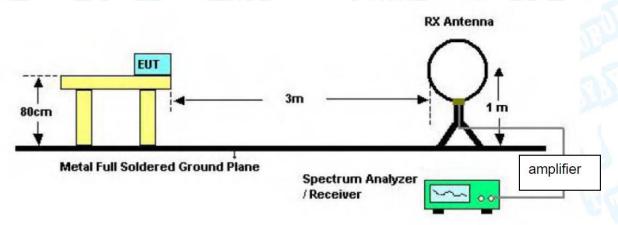
General field strength limits at frequencies Below 30MHz						
Frequency (MHz)	Measurement Distance					
0.009~0.490	(microvolt/meter)** 2400/F(KHz)	(meters) 300				
0.490~1.705	24000/F(KHz)	30				
1.705~30.0	30	30				

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

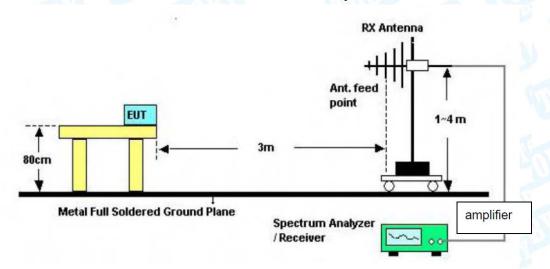
General field strength limits at frequencies above 30 MHz							
Frequency (MHz)	Field strength (μV/m at 3 m)	Measurement Distance (meters)					
30~88	100	3					
88~216	150	3					
216~960	200	3					
Above 960	500	3					

General field strength limits at frequencies Above 1000MHz						
Frequency Distance of 3m (dBuV/m)						
(MHz)	Peak	Average				
Above 1000	74	54				

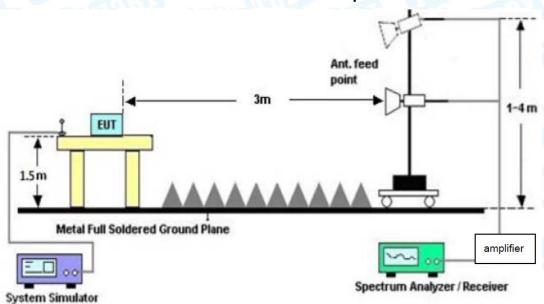
Note:


- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.



6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

Page: 16 of 41

Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 17 of 41

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.

Conducted measurement please refer to the external appendix report of 2.4G Wi-Fi.

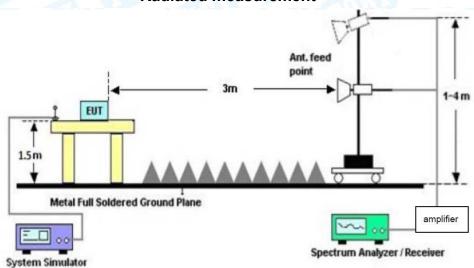
Page: 18 of 41

7. Restricted Bands Requirement

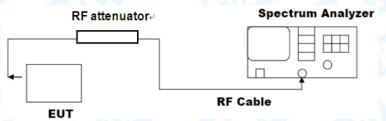
7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)


7.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)					
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)				
2310 ~2390	74	54				
2483.5 ~2500	74	54				
	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e)				
2310 ~2390	-21.20	-41.20				
2483.5 ~2500	-21.20	-41.20				


Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

Radiated measurement

Conducted measurement

Page: 19 of 41

7.3 Test Procedure

---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

--- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to

determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies
- \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for

frequencies > 1000 MHz).

- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

Page: 20 of 41

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

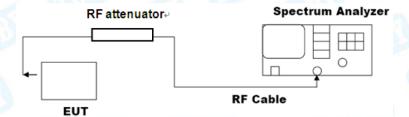
7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Page: 21 of 41

8. Bandwidth Test

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)

8.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)	
-6dB bandwidth (DTS bandwidth)	>=500 KHz	2400~2483.5	
99% occupied bandwidth	1	2400~2483.5	

8.2 Test Setup

8.3 Test Procedure

---DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

Page: 22 of 41

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

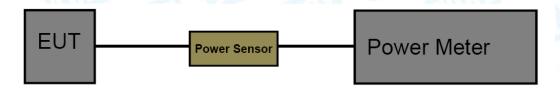
8.5 EUT Operating Mode

Please refer to the description of test mode.

8.6 Test Data

Page: 23 of 41

9. Peak Output Power


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247(b)(3)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)	
Peak Output Power	not exceed 1 W or 30dBm	2400~2483.5	

9.2 Test Setup

9.3 Test Procedure

● The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

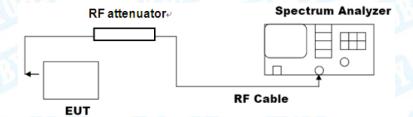
Please refer to the description of test mode.

9.6 Test Data

Page: 24 of 41

10. Power Spectral Density

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247(e)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)	
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5	

10.2 Test Setup

10.3 Test Procedure

- The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW ≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Page: 25 of 41

11. Antenna Requirement

11.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

No deviation

11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 2.0dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.4 Test Data

The EUT antenna is a Internal Antenna. It complies with the standard requirement.

Antenna Type					
	⊠Permanent attached antenna				
3	☐Unique connector antenna				
	☐Professional installation antenna				

Page: 26 of 41

Attachment A-- Conducted Emission Test Data

	110110		- 10 (150)				
Temperature	e: 24.2℃		Re	lative Humic	dity:	13%	WIND:
Test Voltage	: AC 12	0V/60Hz		a 1134			
Terminal:	Line				1/1/	The same	
Test Mode:	Mode	1	630				W. S.
Remark:	Only w	orse case is	reported.	ARCE		24 E	
30 dBuV	0.5		MHz)	V proportion of the second	of made the Hallett	QP: AVG:	peak AVG 30.000
		Reading	Correct	Measure-	,		
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2460	34.94	11.63	46.57	61.89	-15.32	QP
2 *	0.2460	25.14	11.63	36.77	51.89	-15.12	AVG
3	0.3180	29.51	11.55	41.06	59.76	-18.70	QP
4	0.3180	19.01	11.55	30.56	49.76	-19.20	AVG
5	0.6020	26.08	11.45	37.53	56.00	-18.47	QP
6	0.6020	10.71	11.45	22.16	46.00	-23.84	AVG
7	1.2420	26.00	11.04	37.04	56.00	-18.96	QP
8	1.2420	15.92	11.04	26.96	46.00	-19.04	AVG
9	2.2940	25.88	10.46	36.34	56.00	-19.66	QP
10	2.2940	11.30	10.46	21.76	46.00	-24.24	AVG
11	13.5580	26.88	10.38	37.26	60.00	-22.74	QP
12	13.5580	16.23	10.38	26.61	50.00	-23.39	AVG
١							

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page:

Temperatur	e: 24.2	$^{\circ}$ C		Relative Hu	ımidity:	43%	
Test Voltage	e: AC 1	120V/60Hz					(MILLS)
Terminal:	Neut		100			A TO	
Test Mode:	Mode		WIII:		1 11	1	
Remark:	Only	worse case	is reported.	ent'i	9		11
80.0 dBuV				Marken of the contraction	A STATE OF THE STA	QP: AVG:	peak
20 0.150	0.5		(MHz)	(MH,n-14)4/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/	erstering content of the second	terpre strategy and for the strategy and	30.000
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2580	51.91	0.00	51.91	61.49	-9.58	QP
2 *	0.2580	42.81	0.00	42.81	51.49	-8.68	AVG
3	0.3660	47.01	0.00	47.01	58.59	-11.58	QP
4	0.3660	34.32	0.00	34.32	48.59	-14.27	AVG
5	0.7340	44.81	0.00	44.81	56.00	-11.19	QP
6	0.7340	28.85	0.00	28.85	46.00	-17.15	AVG
7	3.0380	40.88	0.00	40.88	56.00	-15.12	QP
8	3.0380	27.92	0.00	27.92	46.00	-18.08	AVG
9	6.8980	37.78	0.00	37.78	60.00	-22.22	QP
10	6.8980	25.64	0.00	25.64	50.00	-24.36	AVG
11	25.9020	39.10	0.00	39.10	60.00	-20.90	QP
12	25.9020	31.29	0.00	31.29	50.00	-18.71	AVG

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 28 of 41

Attachment B--Unwanted Emissions Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

Temper	ature:	24.3°C		MAC	Relative Hu	ımidity:	45%	
Test Vo	Itage:	AC 12	20V/60Hz		CHILL		Albo	
Ant. Po	l.	Horizo	ontal					1 01
Test Mo	de:	Mode	Mode 2(TX Mode b Mode Channel 01)					
Remark	:	Only	worse case	is reported.	MARKET		A LANGE	
80.0 dB	uV/m							
70								
60						(RF)FCC 150	3M Radiation	,
50					5	Margin -6 dB		
40						,m-M		
30		1 X	2	3 /**	A JAMA	NAME IN THE PARTY OF THE PARTY	warden tunk beretari	peak
20	many my my		X WWW	Andrew America	(Hant. ,	Y () ^	half and finally .	
10		, ,	A MANAGE					
0								
-10 -20								
30.000								
		60.00		(MHz)	300.	00		1000.000
	T _				ı	I		1000.000
No.	Frequ	iency	Reading	Factor	Level	Limit	Margin	1000.000
	(MH	iency Hz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	(dB)	Detector
1	(MH 59.8	iency Hz) 588	(dBuV) 50.45	Factor (dB/m)	Level (dBuV/m) 26.86	Limit (dBuV/m) 40.00	(dB) -13.14	Detector peak
1 2	(MH 59.8 77.0	lency Hz) 588 502	(dBuV) 50.45 50.25	Factor (dB/m) -23.59 -26.02	Level (dBuV/m) 26.86 24.23	Limit (dBuV/m) 40.00 40.00	(dB) -13.14 -15.77	Detector peak peak
1 2 3	(MH 59.8 77.0 125.0	sency Hz) 588 502	(dBuV) 50.45 50.25 51.64	Factor (dB/m) -23.59 -26.02 -22.97	Level (dBuV/m) 26.86 24.23 28.67	Limit (dBuV/m) 40.00 40.00 43.50	(dB) -13.14 -15.77 -14.83	Detector peak peak peak
1 2 3 4	(MH 59.8 77.0	sency Hz) 588 502	(dBuV) 50.45 50.25	Factor (dB/m) -23.59 -26.02 -22.97 -24.05	Level (dBuV/m) 26.86 24.23	Limit (dBuV/m) 40.00 40.00 43.50 43.50	(dB) -13.14 -15.77	Detector peak peak
1 2 3	(MH 59.8 77.0 125.0	sency Hz) 588 502 0065	(dBuV) 50.45 50.25 51.64	Factor (dB/m) -23.59 -26.02 -22.97	Level (dBuV/m) 26.86 24.23 28.67	Limit (dBuV/m) 40.00 40.00 43.50	(dB) -13.14 -15.77 -14.83	Detector peak peak peak

Domark:

*:Maximum data

x:Over limit !:over margin

^{1.} Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

^{2.} QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

^{3.} Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Temperature:	24.3℃	F	Relative Hun	nidity:	45%	
Test Voltage:	AC 120V/60	Hz	600	CEST		MILL
Ant. Pol.	Vertical	W	aV			
Test Mode:	Mode 2(TX N	Mode b Mode Cl	nannel 01)	2 AM	1000	
Remark:	Only worse	case is reported		13		W P
80.0 dBuV/m						
70						
60						
				1 1	iC 3M Radiatio	, L
50				Margin -6 d	В	
40	A A		5	Au A		
30	May 1		/\ <u>\</u> . /\^\		Mary and between	, Mw/w peak
20	V W W	11. Mrsg. C.	"Party and	W	e.udhu.	
10	Thirty	Mrv.				
0						
-10						
-20						
30.000	60.00	(MHz)	300	.00		1000.000
No. Frequ	uency Read	ling Factor				
MO. (M	Hz) (dBu	U	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
(IVI	, ,	IV) (dB/m)				Detector
1! 33.2	Hz) (dBu	(dB/m) (dB/m) -23.15	(dBuV/m)	(dBuV/m)	(dB)	
1! 33.2 2! 38.6	Hz) (dBu 2111 59.2	(dB/m) (dB/m) (26 -23.15 (49 -23.04)	(dBuV/m) 36.11	(dBuV/m) 40.00	(dB) -3.89	QP
1! 33.2 2! 38.6 3 * 58.6	Hz) (dBu 2111 59.2 3160 59.4	(dB/m) 26 -23.15 49 -23.04 01 -23.46	(dBuV/m) 36.11 36.45	(dBuV/m) 40.00 40.00	(dB) -3.89 -3.55	QP QP
1! 33.2 2! 38.6 3 * 58.6 4! 77.3	Hz) (dBu 2111 59.2 3160 59.4 3126 60.0	(dB/m) 26 -23.15 49 -23.04 01 -23.46 47 -26.09	(dBuV/m) 36.11 36.45 36.55	(dBuV/m) 40.00 40.00 40.00	(dB) -3.89 -3.55 -3.45	QP QP QP

*:Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 30 of 41

Above 1GHz

Temperature:	23.5℃	Relative Humidity:	46%	
Test Voltage:	AC 120V/60Hz			100
Ant. Pol.	Horizontal		mill's	
Test Mode:	TX B Mode 2412MHz	W. Commercial Commerci	62	

	No.	Mk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4824.128	31.21	12.43	43.64	54.00	-10.36	AVG
2			4824.214	44.41	12.43	56.84	74.00	-17.16	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2412MHz		

No.	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4824.241	31.18	12.43	43.61	54.00	-10.39	AVG
2		4824.347	43.98	12.43	56.41	74.00	-17.59	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 31 of 41

	Temperature:	23.5℃	Relative Humidity:	46%
1	Test Voltage:	AC 120V/60Hz	an:D	White the same of
	Ant. Pol.	Horizontal	7	
	Test Mode:	TX B Mode 2437MHz		The same of the sa

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4874.217	43.99	12.75	56.74	74.00	-17.26	peak
2	*	4874.342	31.93	12.75	44.68	54.00	-9.32	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		MUL
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2437MHz		

No	o. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4874.148	30.93	12.75	43.68	54.00	-10.32	AVG
2		4874.374	44.53	12.75	57.28	74.00	-16.72	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 32 of 41

	Temperature:	23.5℃	Relative Humidity:	46%
N	Test Voltage:	AC 120V/60Hz		W. W.
	Ant. Pol.	Horizontal		
	Test Mode:	TX B Mode 2462MHz	11000	W.

No	o. Mk	c. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4924.146	30.62	13.06	43.68	54.00	-10.32	AVG
2		4924.387	44.56	13.06	57.62	74.00	-16.38	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		MIN.
Test Mode:	TX B Mode 2462MHz		

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4924.237	30.45	13.06	43.51	54.00	-10.49	AVG
2		4924.356	44.68	13.06	57.74	74.00	-16.26	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 33 of 41

e	Temperature:	23.5℃	Relative Humidity:	46%
1	Test Voltage:	AC 120V/60Hz		W. W.
	Ant. Pol.	Horizontal	A W	
P	Test Mode:	TX G Mode 2412MHz	W 1	NO.

N	Ο.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4824.110	31.96	12.43	44.39	54.00	-9.61	AVG
2			4824.340	45.20	12.43	57.63	74.00	-16.37	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		The same
Test Mode:	TX G Mode 2412MHz	ans.	

-	No.	Mk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4824.217	31.17	12.43	43.60	54.00	-10.40	AVG
2			4824.374	44.78	12.43	57.21	74.00	-16.79	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 34 of 41

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		CHILL:
Ant. Pol.	Horizontal		
Test Mode:	TX G Mode 2437MHz		

No	. Mk	. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4874.157	43.94	12.75	56.69	74.00	-17.31	peak
2	*	4874.237	30.66	12.75	43.41	54.00	-10.59	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	WILLIAM STATE	M. Comment
Test Mode:	TX G Mode 2437MHz		CALL TO

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4874.247	31.30	12.75	44.05	54.00	-9.95	AVG
2		4874.340	44.38	12.75	57.13	74.00	-16.87	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 35 of 41

	Temperature:	23.5℃	Relative Humidity:	46%
1	Test Voltage:	AC 120V/60Hz		Million
	Ant. Pol.	Horizontal	0	TO VICE
	Test Mode:	TX G Mode 2462MHz		U

	No.	Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4924.175	31.02	13.06	44.08	54.00	-9.92	AVG
2			4924.348	44.15	13.06	57.21	74.00	-16.79	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX G Mode 2462MHz		

N	lo.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4924.178	30.88	13.06	43.94	54.00	-10.06	AVG
2			4924.317	44.14	13.06	57.20	74.00	-16.80	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 36 of 41

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		The state of the s
Ant. Pol.	Horizontal		DV C
Test Mode:	TX n(HT20) Mode 2412MF	·lz	

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4824.342	30.65	12.43	43.08	54.00	-10.92	AVG
2		4824.415	43.67	12.43	56.10	74.00	-17.90	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX n(HT20) Mode 2412MI	-lz	CALL TO				

N	lo. Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4824.288	45.19	12.43	57.62	74.00	-16.38	peak
2	*	4824.348	31.25	12.43	43.68	54.00	-10.32	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 37 of 41

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		The state of the s
Ant. Pol.	Horizontal	A W	
Test Mode:	TX n(HT20) Mode 2437N	1Hz	

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4874.337	30.53	12.75	43.28	54.00	-10.72	AVG
2		4874.435	43.83	12.75	56.58	74.00	-17.42	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical	WILLIAM STATE	M. Comment		
Test Mode:	TX n(HT20) Mode 2437MF	l z	CALL TO		

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4874.187	44.21	12.75	56.96	74.00	-17.04	peak
2	*	4874.207	30.45	12.75	43.20	54.00	-10.80	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 38 of 41

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX n(HT20) Mode 2462N	ИНz	THE PARTY OF THE P

No	o. Mi	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4924.207	31.25	13.06	44.31	54.00	-9.69	AVG
2		4924.378	44.01	13.06	57.07	74.00	-16.93	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical		A DO				
Test Mode:	TX n(HT20) Mode 2462MF	-lz	CALL TO				

N	0.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4924.358	30.99	13.06	44.05	54.00	-9.95	AVG
2			4924.428	44.17	13.06	57.23	74.00	-16.77	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 39 of 41

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal					
Test Mode:	TX n(HT40) Mode 2422M	Hz	U.S.			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4844.175	44.37	12.57	56.94	74.00	-17.06	peak
2	*	4844.258	31.82	12.57	44.39	54.00	-9.61	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	C 120V/60Hz					
Ant. Pol.	Vertical		M. Comment				
Test Mode:	TX n(HT40) Mode 2422MI	Hz	CALL TO				

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4844.211	44.69	12.57	57.26	74.00	-16.74	peak
2	*	4844.308	31.11	12.57	43.68	54.00	-10.32	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 40 of 41

_							
Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX n(HT40) Mode 2437	MHz	U				

N	Ο.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	4	*	4874.269	31.35	12.75	44.10	54.00	-9.90	AVG
2			4874.361	44.03	12.75	56.78	74.00	-17.22	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical		MARIE				
Test Mode:	TX n(HT40) Mode 2437Mł	-lz	LIII.				

No. Mk.		c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4874.143	30.92	12.75	43.67	54.00	-10.33	AVG
2		4874.257	43.66	12.75	56.41	74.00	-17.59	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 41 of 41

	Temperature:	23.5℃	Relative Humidity:	46%
/	Test Voltage:	AC 120V/60Hz		
	Ant. Pol.	Horizontal		
W	Test Mode:	TX n(HT40) Mode 2452N	ИНz	THU THE

N	lo.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4904.117	31.45	12.94	44.39	54.00	-9.61	AVG
2			4904.359	43.93	12.94	56.87	74.00	-17.13	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical		ALC: N			
Test Mode:	TX n(HT40) Mode 2452Mi	-lz	CALL .			

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4904.201	43.77	12.94	56.71	74.00	-17.29	peak
2	*	4904.227	30.68	12.94	43.62	54.00	-10.38	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

----END OF REPORT-----