

FCC 47 CFR § 2.1093
IEC/IEEE Std 62209-1528

**SAR EVALUATION REPORT (NFC)
FOR**

Wireless Charger + NFC

MODEL NUMBER: WCSTE40A

FCC ID: 2A6WXWCSTE40A

REPORT NUMBER: 4791130549-S2V2

ISSUE DATE: 6/13/2024

Prepared for

BH EVS Co.,Ltd

**5, Magokjungang 8-ro 5-gil, Gangseo-gu,
Seoul, 07794 Republic of Korea**

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

**Suwon Test Site: UL Korea, Ltd. Suwon Laboratory
218 Maeyeong-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16675, Korea
TEL: (031) 337-9902
FAX: (031) 213-5433**

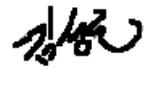
Testing Laboratory

TL-637

Revision History

Rev.	Date	Revisions	Revised By
V1	5/9/2024	Initial Issue	--
V2	6/13/2024	Revised equipment class in Sec.1.	Sunghoon Kim

Table of Contents


1. Attestation of Test Results	4
2. Test Specification, Methods and Procedures.....	5
3. Facilities and Accreditation	5
4. SAR Measurement System & Test Equipment	6
4.1. <i>SAR Measurement System.....</i>	6
4.2. <i>SAR Scan Procedures.....</i>	7
4.3. <i>Test Equipment.....</i>	9
5. Measurement Uncertainty.....	10
5.1. <i>DECISION RULE.....</i>	10
6. Device Under Test (DUT) Information	11
6.1. <i>DUT Description</i>	11
6.2. <i>Wireless Technologies.....</i>	11
7. RF Exposure Conditions (Test Configurations)	11
8. Dielectric Property Measurements & System Check	12
8.1. <i>Dielectric Property Measurements</i>	12
8.2. <i>System Check.....</i>	13
9. Measured SAR Results	14
9.1. <i>NFC.....</i>	14
10. Simultaneous Transmission SAR Analysis.....	14
Appendices	15
4791130549-S2 FCC SAR Report _App A_ Test setup photos	15
4791130549-S2 FCC SAR Report _App B_Highest SAR Test Plots	15
4791130549-S2 FCC SAR Report _App C_System Check Plots	15
4791130549-S2 FCC SAR Report _App D_SAR Tissue Ingredients	15
4791130549-S2 FCC SAR Report _App E_Probe Cal. Certificates	15
4791130549-S2 FCC SAR Report _App F_Dipole Cal. Certificates.....	15

1. Attestation of Test Results

Applicant Name	BH EVS Co.,Ltd
FCC ID	2A6WCSTE40A
Model Number	WCSTE40A
Applicable Standards	FCC 47 CFR § 2.1093 IEC/IEEE 62209-1528 Published RF exposure KDB procedures
Exposure Category	SAR Limits (W/Kg) Peak spatial-average (1g of tissue)
General population / Uncontrolled exposure	1.6
RF Exposure Conditions	Equipment Class - The Highest SAR (W/kg) DXX
Standalone at 0mm	0.066
Simultaneous TX	N/A
Date Tested	5/9/2024
Test Results	Pass

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released By:	Prepared By:
Justin Park Operations Leader UL Korea, Ltd. Suwon Laboratory	Sunghoon Kim Senior Laboratory Engineer UL Korea, Ltd. Suwon Laboratory

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with IEEE Std 62209-1528.

In addition to the above, the following information was used:

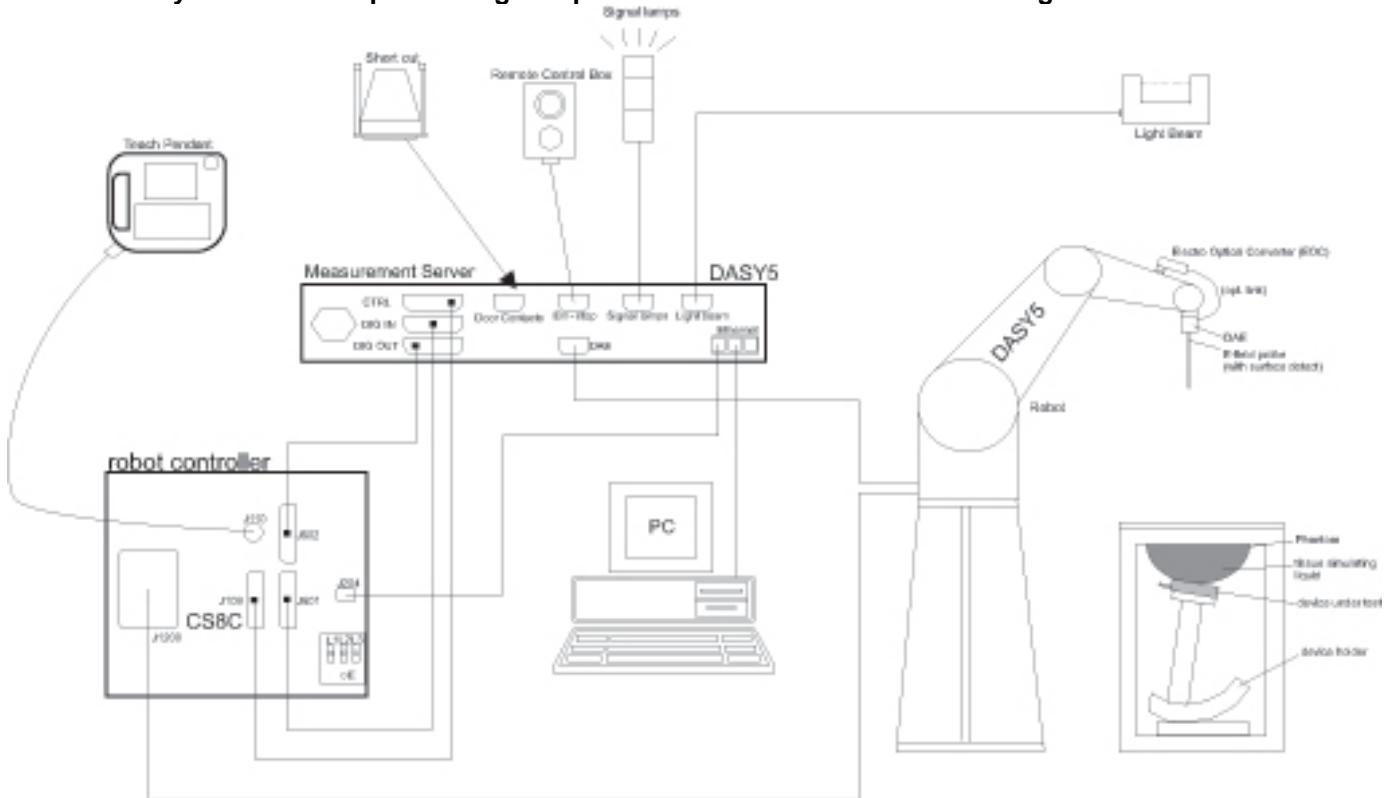
- 447498 D04 Interim General RF Exposure Guidance v01

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

Suwon
SAR 7 Room

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637.


The full scope of accreditation can be viewed at

<https://www.iasonline.org/wp-content/uploads/2017/05/TL-637-cert-New.pdf>.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEC/IEEE Standard 62209-1528, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from IEC/IEEE Standard 62209-1528.

Parameter	DUT transmit frequency being tested	
	$f \leq 3 \text{ GHz}$	$3 \text{ GHz} < f \leq 10 \text{ GHz}$
Maximum distance between the measured points (geometric centre of the sensors) and the inner phantom surface (z_{M1} in Figure 20 in mm)	5 ± 1	$\delta \ln(2)/2 \pm 0,5$ ^a
Maximum spacing between adjacent measured points in mm (see O.8.3.1) ^b	20, or half of the corresponding zoom scan length, whichever is smaller	$60/f$, or half of the corresponding zoom scan length, whichever is smaller
Maximum angle between the probe axis and the phantom surface normal (α in Figure 20) ^c	5° (flat phantom only) 30° (other phantoms)	5° (flat phantom only) 20° (other phantoms)
Tolerance in the probe angle	1°	1°

^a δ is the penetration depth for a plane-wave incident normally on a planar half-space.

^b See Clause O.8 on how Δx and Δy may be selected for individual area scan requirements.

^c The probe angle relative to the phantom surface normal is restricted due to the degradation in the measurement accuracy in fields with steep spatial gradients. The measurement accuracy decreases with increasing probe angle and increasing frequency. This is the reason for the tighter probe angle restriction at frequencies above 3 GHz.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from IEC/IEEE Standard 62209-1528.

Parameter	DUT transmit frequency being tested	
	$f \leq 3 \text{ GHz}$	$3 \text{ GHz} < f \leq 10 \text{ GHz}$
Maximum distance between the closest measured points and the phantom surface (z_{M1} in Figure 20 and Table 3, in mm)	5	$\delta \ln(2)/2$ ^a
Maximum angle between the probe axis and the phantom surface normal (α in Figure 20)	5° (flat phantom only) 30° (other phantoms)	5° (flat phantom only) 20° (other phantoms)
Maximum spacing between measured points in the x - and y -directions (Δx and Δy , in mm)	8	$24/f$ ^b
For uniform grids: Maximum spacing between measured points in the direction normal to the phantom shell (Δz_1 in Figure 20, in mm)	5	$10/(f - 1)$
For graded grids: Maximum spacing between the two closest measured points in the direction normal to the phantom shell (Δz_1 in Figure 20, in mm)	4	$12/f$
For graded grids: Maximum incremental increase in the spacing between measured points in the direction normal to the phantom shell ($R_z = \Delta z_2/\Delta z_1$ in Figure 20)	1,5	1,5
Minimum edge length of the zoom scan volume in the x - and y -directions (L_z in O.8.3.2, in mm)	30	22
Minimum edge length of the zoom scan volume in the direction normal to the phantom shell (L_h in O.8.3.2 in mm)	30	22
Tolerance in the probe angle	1°	1°

^a δ is the penetration depth for a plane-wave incident normally on a planar half-space.

^b This is the maximum spacing allowed, which might not work for all circumstances.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	E5071C	MY46522054	7-24-2024
Dielectric Assessment Kit	SPEAG	DAK-12	1158	9-20-2024
Shorting block	SPEAG	DAK-12 Short	SM DAK 220 AD	N/A
Thermometer	LKM	DTM3000	3851	7-25-2024
Thermometer	LKM	DTM3000	3862	7-25-2024

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
MXG Analog Signal Generator	Keysight	N5173B	MY59101083	7-27-2024
Power Sensor	KEYSIGHT	U2000A	MY60180020	7-26-2024
Power Sensor	KEYSIGHT	U2000A	MY61010010	7-25-2024
Power Amplifier	MINI-CIRCUITS	TVA-R5-13A+	2111006	1-3-2025
Directional Coupler	MINI-CIRCUITS	ZMDC-30-1+	SF569102123	7-25-2024
Attenuator	KEYSIGHT	BW-S3W10+	N/A	1-4-2025
E-Field Probe	SPEAG	EX3DV4	7646	3-15-2025
Data Acquisition Electronics	SPEAG	DAE4	912	11-17-2024
System Validation Dipole	SPEAG	CLA -13	1015	8-22-2024
Thermometer	Lutron	MHB-382SD	AJ.42446	7-26-2024
Thermometer	Lutron	MHB-382SD	AK.18789	7-27-2024

Note(s):

1. All equipments were used until Cal.Due date.

5. Measurement Uncertainty

Measurement Uncertainty of 9MHz to 19MHz

a	b	c		d	e f(d,k)	f	g	h = cx ^f /e	i = cx ^g /e	k		
Uncertainty component	Reference	Tol. 1 g ($\pm\%$)	Tol. 10 g ($\pm\%$)	Prob. Dist.	Div.	c _i (1 g)	c _i (10 g)	1 g u _i ($\pm\%$)	10 g u _i ($\pm\%$)	vi		
Measurement System Errors												
Probe Calibration	8.4.1.1	13.3		Normal	2	1	1	6.7	6.7	∞		
Probe Calibration Drift	8.4.1.2	1.7		Rectangular	1.732	1	1	1.0	1.0	∞		
Probe Linearity	8.4.1.3	4.7		Rectangular	1.732	1	1	2.7	2.7	∞		
Broadband Signal	8.4.1.4	0.8		Rectangular	1.732	1	1	0.5	0.5	∞		
Probe Isotropy	8.4.1.5	7.6		Rectangular	1.732	1	1	4.4	4.4	∞		
Data Acquisition	8.4.1.6	0.3		Normal	1	1	1	0.3	0.3	∞		
RF Ambient	8.4.1.7	1.8		Normal	1	1	1	1.8	1.8	∞		
Probe Positioning	8.4.1.8	0.006		Normal	1	0.14	0.14	0.10	0.10	∞		
Data Processing	8.4.1.9	1.2		Normal	1	1	1	1.2	1.2	∞		
Phantom and Device Errors												
Conductivity (meas.)DAK	8.4.2.1	2.5		Normal	1	0.78	0.71	2.0	1.8	∞		
Conductivity (temp.)BB	8.4.2.2	5.4		Rectangular	1.732	0.78	0.71	2.4	2.2	∞		
Phantom Permittivity	8.4.2.3	14.0		Rectangular	1.732	0	0	0.0	0.0	∞		
Distance DUT -TSL	8.4.2.4	2.0		Normal	1	2	2	4.0	4.0	∞		
Device Positioning	8.4.2.5	1.0	2.3	Normal	1	1	1	1.0	2.3	40		
Device Holder	8.4.2.6	3.6		Normal	1	1	1	3.6	3.6	∞		
DUT Modulation	8.4.2.7	2.4		Rectangular	1.732	1	1	1.4	1.4	∞		
Time-average SAR	8.4.2.8	1.7		Rectangular	1.732	1	1	1.0	1.0	∞		
DUT drift	8.4.2.9	5.0		Normal	1	1	1	5.0	5.0	∞		
Correction to the SAR results												
Deviation to Target	8.4.3.1	1.9		Normal	1	1	0.84	1.9	1.6	∞		
Combined Standard Uncertainty Uc(y) =	RSS							12.16	12.23			
Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence =								24.33	24.47			

5.1. DECISION RULE

Measurement Uncertainty is not applied when providing statements of conformity in accordance with IEC Guide 115:2023, 4.3.3.

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	Refer to Appendix A.		
Test Sample Information	No.	S/N	Notes
	1	44	SAR

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode	Duty Cycle used for SAR testing
NFC	13.56 MHz	Factory Test Mode	100.0%

7. RF Exposure Conditions (Test Configurations)

Antenna	Tx Interface	Test distance	Rear	Front	Top	Bottom	Left		Right
							Case.1	Case.2	
NFC	NFC Ant	0 cm	No	Yes	Yes	Yes	Yes	Yes	Yes

Note(s):

1. This device is a WPT (including NFC) installed in a vehicle. The Rear side is generally not in contact with the user. So Rear SAR test excluded.
2. For Left side, Two test configurations (Case.1 and Case.2) are considered due to DUT design.

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within $\pm 2^\circ\text{C}$ of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 – 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

IEC/IEEE 62202-1528 SAR Measurement 4 MHz to 10 GHz

Target Frequency (MHz)	ϵ_r	σ (S/m)
4	55.0	0.75
13	55.0	0.75
30	55.0	0.75
150	52.3	0.76
300	45.3	0.87
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800	40.0	1.40
1900	40.0	1.40
1950	40.0	1.40
2000	40.0	1.40
2100	39.8	1.49
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
3500	37.9	2.91
4000	37.4	3.43
4500	36.8	3.94
5000	36.2	4.45
5200	36.0	4.66
5400	35.8	4.86
5600	35.5	5.07
5800	35.3	5.27
6000	35.1	5.48
6500	34.5	6.07
7000	33.9	6.65
7500	33.3	7.24
8000	32.7	7.84
8500	32.1	8.46
9000	31.6	9.08
9500	31.0	9.71
10000	30.4	10.40

Dielectric Property Measurements Results:

SAR 7 Room

Date	Freq. (MHz)	Liquid Parameters		Measured	Target	Delta (%)	Limit \pm (%)	
5-9-2024	Head 12	ϵ'	53.43	Relative Permittivity (ϵ_r):	53.43	55.00	-2.85	5
		ϵ''	1148.89	Conductivity (σ):	0.77	0.75	2.21	5
	Head 13	ϵ'	53.44	Relative Permittivity (ϵ_r):	53.44	55.00	-2.84	5
		ϵ''	1088.07	Conductivity (σ):	0.79	0.75	4.87	5
	Head 14	ϵ'	53.40	Relative Permittivity (ϵ_r):	53.40	55.00	-2.91	5
		ϵ''	1005.92	Conductivity (σ):	0.78	0.75	4.41	5

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ± 0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 2.5 mm.
For 5 GHz band - Distance between probe sensors and phantom surface was set to 1.4 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles.

System Dipole	Serial No.	Cal. Date	Cal.due.Date	Target SAR Values (W/kg)	
				1g/10g	Head
CLA-13	1015	8-22-2023	8-22-2024	1g	0.53
				10g	0.33

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR 7 Room

Date Tested	System Dipole		T.S. Liquid	Measured Results		Target (Ref. Value)	Delta $\pm 10\%$	Plot No.
	Type	Serial #		Zoom Scan to 100 mW	Normalize to 1 W			
5-9-2024	CLA-13	1015	Head	1g	0.057	0.57	0.53	6.94
				10g	0.035	0.35	0.33	5.11

9. Measured SAR Results

9.1. NFC

Antenna	Frequency Band	RF Exposure Conditions	Dist. (mm)	Test Position	Freq. (MHz)	1-g SAR (W/kg)	Plot No.
						Meas.	
NFC Ant.	13.56MHz	Standalone	0	Top	13.56	0.019	
				Right	13.56	0.008	
				Bottom	13.56	0.003	
				Left(case.1)	13.56	0.000	
				Left(case.2)	13.56	0.003	
				Front	13.56	0.066	1

10. Simultaneous Transmission SAR Analysis

NFC antennas are not work at the same time. So Simultaneous Transmission SAR Analysis are not required.

Appendices

Refer to separated files for the following appendixes.

4791130549-S2 FCC SAR Report _App A_ Test setup photos

4791130549-S2 FCC SAR Report _App B_Highest SAR Test Plots

4791130549-S2 FCC SAR Report _App C_System Check Plots

4791130549-S2 FCC SAR Report _App D_SAR Tissue Ingredients

4791130549-S2 FCC SAR Report _App E_Probe Cal. Certificates

4791130549-S2 FCC SAR Report _App F_Dipole Cal. Certificates

END OF REPORT