

Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone, Jiazitang Community, Fenghuang Street, Guangming District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC Rules and Regulations Part PART 15.249

Report Reference No:	GRCTR220802001-01 2A6TG-H200				
Compiled by (position+printed name+signature):	Testing Engineer Jimmy Wang	Jon May			
Supervised by (position+printed name+signature):	Project Engineer Kelley Zhang	(Lelley than)			
Approved by (position+printed name+signature):	Manager Sam Wang	Son. Wag			
Date of issue:	Aug. 18, 2022				
Testing Laboratory Name	Shenzhen GUOREN Certification	n Technology Service Co., Ltd.			
Address::	101#, Building K & Building T, The Jiazitang Community, Fenghuang Shenzhen, China				
Applicant's name	Noorio Innovations Limited				
Address:	LEVEL 54, HOPEWELL CENTRE HongKong	, 183 QUEEN'S ROAD EAST,			
Test specification:					
Standard:	FCC Rules and Regulations Par	t PART 15.249			
	Shenzhen GUOREN Certification Technology Service Co., Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the				

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen GUOREN Certification Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen GUOREN Certification Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description:	Contact Sensor
Trade Mark:	1
Manufacturer	Noorio Innovations Limited
Model/Type reference:	H200
Listed Models:	1
Ratings:	DC 3.0V From Battery
Modulation:	ASK
Frequency	915MHz
Result:	PASS

TEST REPORT

Equipment under Test : Contact Sensor

Model /Type : H200

Listed Models : /

Applicant : Noorio Innovations Limited

Address : LEVEL 54, HOPEWELL CENTRE, 183 QUEEN'S ROAD EAST,

HongKong

Manufacturer : Noorio Innovations Limited

Address : LEVEL 54, HOPEWELL CENTRE, 183 QUEEN'S ROAD EAST,

HongKong

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1 TEST STANDARDS	4
2 SUMMARY	5
2.1 General Remarks	5
2.2 Product Description	5
2.3 Equipment Under Test	5
2.4 Short description of the Equipment under Test (EUT)	
2.5 Block Diagram of Test Setup	
2.6 EUT operation mode	
2.7 Special Accessories	
2.8 Modifications	6
3 TEST ENVIRONMENT	7
3.1 Address of the test laboratory	7
3.2 Test Facility	
3.3 Environmental conditions	
3.4 Summary of measurement results	
3.5 Statement of the measurement uncertainty	
3.6 Equipments Used during the Test	9
4 TEST CONDITIONS AND RESULTS	10
4.1 AC Power Conducted Emission	10
4.2 Radiated Emission	
4.3 Occupied Bandwidth Measurement	
4.4 Antenna Requirement	
5 TEST SETUP PHOTOS OF THE EUT	19
	1 3
6 PHOTOS OF THE EUT	2.0
U FIIVIUJ UI IIIL EUI	Z U

Report No.: GRCTR220802001-01 Page 4 of 22

1 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.249:</u> Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz.

<u>ANSI C63.10:2013</u>: American National Standard for Testing Unlicensed Wireless Devices

<u>ANSI C63.4: 2014</u> American National Standard for Methods of Measurement of Radio-Noise Emissions from

Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

Report No.: GRCTR220802001-01 Page 5 of 22

2 **SUMMARY**

2.1 General Remarks

Date of receipt of test sample	:	Aug. 03, 2022
Testing commenced on	:	Aug. 03, 2022
Testing concluded on	:	Aug. 18, 2022

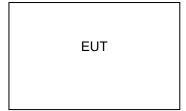
2.2 Product Description

Product Name:	Contact Sensor
Model/Type reference:	H200
Testing sample ID:	GRCTR220802001-1# (Engineer sample), GRCTR220802001-2#(Normal sample)
Power supply:	DC 3.0V From Battery
Operation frequency:	915MHz
Modulation:	ASK
Antenna Type:	Spring antenna
Antenna gain:	1.0 dBi

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)


DC 3.0V From Battery

2.4 Short description of the Equipment under Test (EUT)

This is a Contact Sensor.

For more details, refer to the user's manual of the EUT.

2.5 Block Diagram of Test Setup

2.6 EUT operation mode

The Applicant provides test software to control the EUT for staying in continuous transmitting and receiving mode for testing .There is 1 channels provided to the EUT. Channel 00 was selected to test.

Channel	Frequency(MHz)
00	915

Report No.: GRCTR220802001-01 Page 6 of 22

2.7 Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
1	1	/	/	1	1
1	/	/	/	1	/

2.8 Modifications

No modifications were implemented to meet testing criteria.

Report No.: GRCTR220802001-01 Page 7 of 22

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone, Jiazitang Community, Fenghuang Street, Guangming District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 920798 Designation Number: CN1304

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6202.01

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED#: 27264 CAB identifier: CN0115

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

CNAS-Lab Code: L15631

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories for the Competence of Testing and Calibration Laboratories.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature	15-35 ℃
Relative Humidity	30-60 %
Air Pressure	950-1050mbar

Report No.: GRCTR220802001-01 Page 8 of 22

3.4 Summary of measurement results

FCC Requirements		
FCC Part 15.249(a)	Field Strength of Fundamental	PASS
FCC Part 15.209	Spurious Emission	PASS
FCC Part 15.209	Band edge	PASS
FCC Part 15.215(c)	20dB bandwidth	PASS
FCC Part 15.207	Conducted Emission	N/A
FCC Part 15.203	Antenna Requirement	PASS

Remark: The measurement uncertainty is not included in the test result.

3.5 Statement of the measurement uncertainty

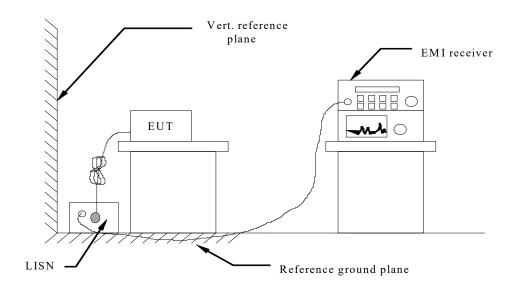
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen GUOREN Certification Technology Service Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GUOREN Certification Technology Service Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test


Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	GRCTEE009	2021/10/30	2022/10/29
LISN	R&S	ENV216	GRCTEE010	2021/10/30	2022/10/29
EMI Test Receiver	R&S	ESPI	GRCTEE017	2021/10/30	2022/10/29
EMI Test Receiver	R&S	ESCI	GRCTEE008	2021/10/30	2022/10/29
Spectrum Analyzer	Agilent	N9020A	GRCTEE002	2021/10/30	2022/10/29
Spectrum Analyzer	R&S	FSP	GRCTEE003	2021/10/20	2022/10/19
Vector Signal generator	Agilent	N5181A	GRCTEE007	2021/10/30	2022/10/29
Analog Signal Generator	R&S	SML03	GRCTEE006	2021/10/30	2022/10/29
Climate Chamber	QIYA	LCD-9530	GRCTES016	2021/10/30	2022/10/29
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	GRCTEE018	2020/10/25	2023/10/24
Horn Antenna	Schwarzbeck	BBHA 9120D	GRCTEE019	2020/10/25	2023/10/24
Loop Antenna	Zhinan	ZN30900C	GRCTEE020	2020/10/25	2023/10/24
Horn Antenna	Beijing Hangwei Dayang	OBH100400	GRCTEE049	2021/1/18	2024/1/17
Amplifier	Schwarzbeck	BBV 9745	GRCTEE021	2021/10/30	2022/10/29
Amplifier	Taiwan chengyi	EMC051845B	GRCTEE022	2021/10/30	2022/10/29
Temperature/Humidit y Meter	Huaguan	HG-308	GRCTES037	2021/10/30	2022/10/29
Directional coupler	NARDA	4226-10	GRCTEE004	2021/10/30	2022/10/29
High-Pass Filter	XingBo	XBLBQ-GTA18	GRCTEE053	2021/10/30	2022/10/29
High-Pass Filter	XingBo	XBLBQ-GTA27	GRCTEE054	2021/10/30	2022/10/29
Automated filter bank	Tonscend	JS0806-F	GRCTEE055	2021/10/30	2022/10/29
Power Sensor	Agilent	U2021XA	GRCTEE070	2021/10/30	2022/10/29
EMI Test Software	ROHDE & SCHWARZ	ESK1-V1.71	GRCTEE060	N/A	N/A
EMI Test Software	Fera	EZ-EMC	GRCTEE061	N/A	N/A

Report No.: GRCTR220802001-01 Page 10 of 22

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

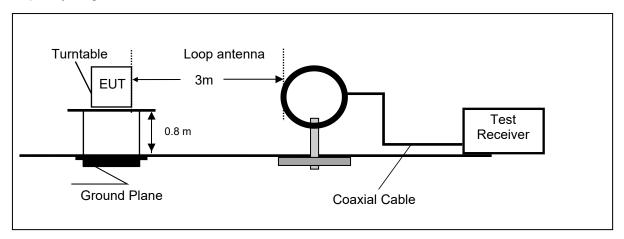
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

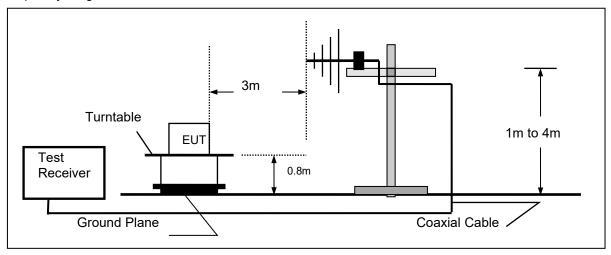
AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguancy range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the freque	ncy.				


TEST RESULTS

The EUT is powered by the Battery, so this test item is not applicable for the EUT.


4.2 Radiated Emission

TEST CONFIGURATION

Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: GRCTR220802001-01 Page 12 of 22

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 26MHz and maximum operation frequency was 1910MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range Test Receiver/Spectrum Setting		Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,	reak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

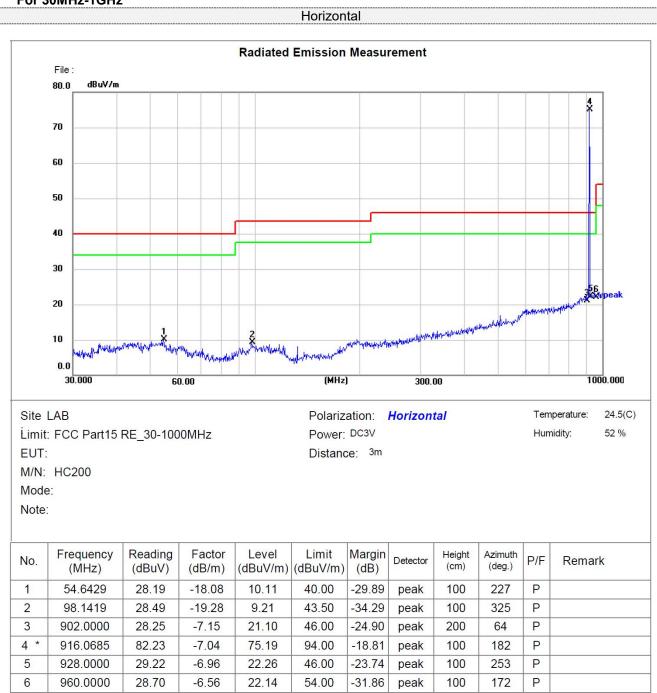
RADIATION LIMIT

According 15.249, the field strength of emissions from intentional radiators operated within 902MHz-928 MHz shall not exceed 94dBµV/m (50mV/m):

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

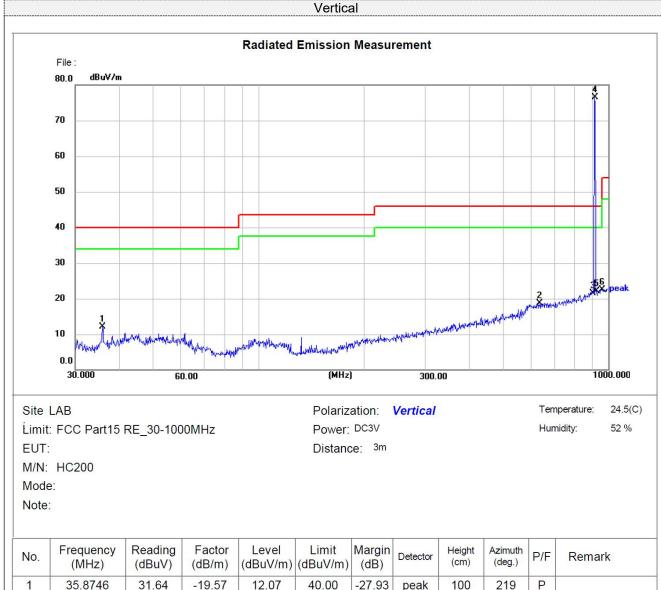
In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Radiated emission limits


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Report No.: GRCTR220802001-01 Page 13 of 22

TEST RESULTS


Remark: Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

	(1011 12)	(ubuv)	(db/III)	(dbdv/iii)	(ubuv/III)	(GD)		()	()		
1	35.8746	31.64	-19.57	12.07	40.00	-27.93	peak	100	219	Р	
2	633.9073	29.34	-10.55	18.79	46.00	-27.21	peak	200	351	Р	
3	902.0000	28.66	-7.15	21.51	46.00	-24.49	peak	100	84	Р	
4 *	916.0685	83.61	-7.04	76.57	94.00	-17.43	peak	200	175	Р	
5	928.0000	29.13	-6.56	22.57	46.00	-23.43	peak	100	262	Р	
6	960.0000	29.09	-6.96	22.13	54.00	-31.87	peak	100	185	Р	

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

For 1GHz to 25GHz

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1240	60.28	-26.75	33.53	74	-40.47	peak
1240	47.34	-26.75	20.59	54	-33.41	AVG
1830	65.27	-25.31	39.96	74	-34.04	peak
1830	50.84	-25.31	25.53	54	-28.47	AVG
2745	62.71	-23.32	39.39	74	-34.61	peak
2745	46.38	-23.32	23.06	54	-30.94	AVG
Remark: Facto	or = Antenna Fac	tor + Cable Los	ss – Pre-amplifier.		1	'

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1240	62.08	-26.75	35.33	74	-38.67	peak
1240	47.89	-26.75	21.14	54	-32.86	AVG
1830	66.23	-25.31	40.92	74	-33.08	peak
1830	51.47	-25.31	26.16	54	-27.84	AVG
2745	64.65	-23.32	41.33	74	-32.67	peak
2745	50.87	-23.32	27.55	54	-26.45	AVG

Report No.: GRCTR220802001-01 Page 16 of 22

4.3 Occupied Bandwidth Measurement

TEST CONFIGURATION

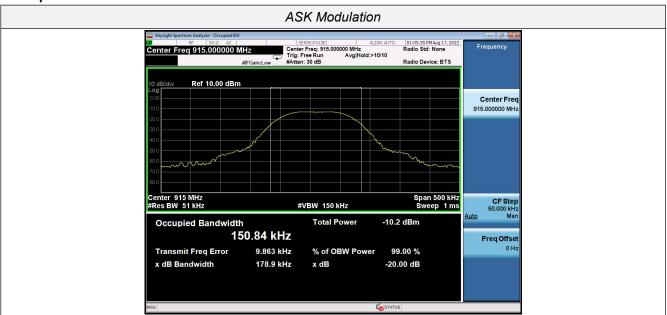
TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 51KHz RBW and 150KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

LIMIT

N/A


TEST RESULTS

Modulation	Channel	20dB bandwidth (kHz)	Result
ASK	CH00	178.9	Pass

Note: 1.The test results including the cable lose.

Report No.: GRCTR220802001-01 Page 17 of 22

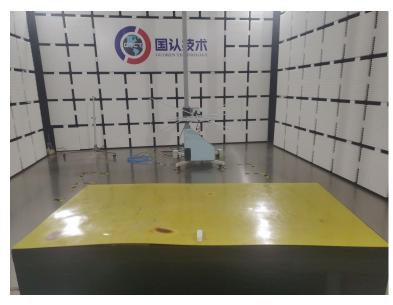
Test plot as follows:

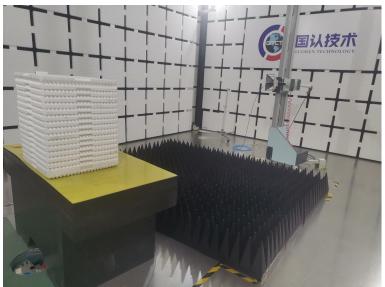
Report No.: GRCTR220802001-01 Page 18 of 22

4.4 Antenna Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Antenna Information

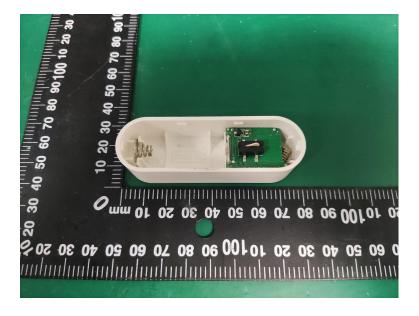

The directional gains of antenna used for transmitting is 1.0 dBi.

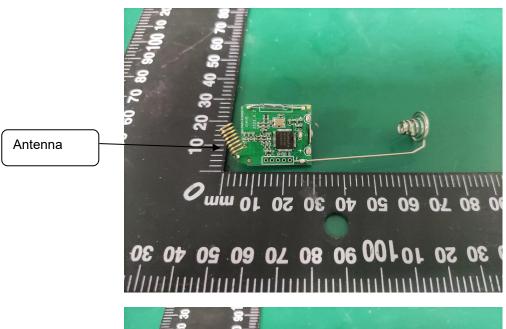
Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen GUOREN Certification Technology Service Co., Ltd. does not assume any responsibility.

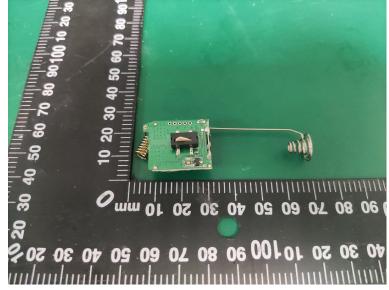
Report No.: GRCTR220802001-01 Page 19 of 22

5 Test Setup Photos of the EUT

6 Photos of the EUT






Report No.: GRCTR220802001-01 Page 21 of 22

