

Report No.: EED32O80604204 Page 1 of 71

Product T1 Wireless

Trade mark **Typhur** Model/Type reference T1000 N/A **Serial Number**

EED32O80604204 **Report Number**

2A6RN-T1000 FCC ID Date of Issue Jun. 16, 2022

47 CFR Part 15 Subpart E **Test Standards**

PASS Test result

Prepared for:

Shenzhen Typhur Technology Co., Ltd 22 Floor, Prince Plaza, 51 Taizi Road Shuiwan Community, Zhaoshang Street, Nanshan N/A Shenzhen N/A China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

Mark Chen

Reviewed by:

Tom Chen

Date:

Jun. 16, 2022

Aaron Ma

Lavon Ma

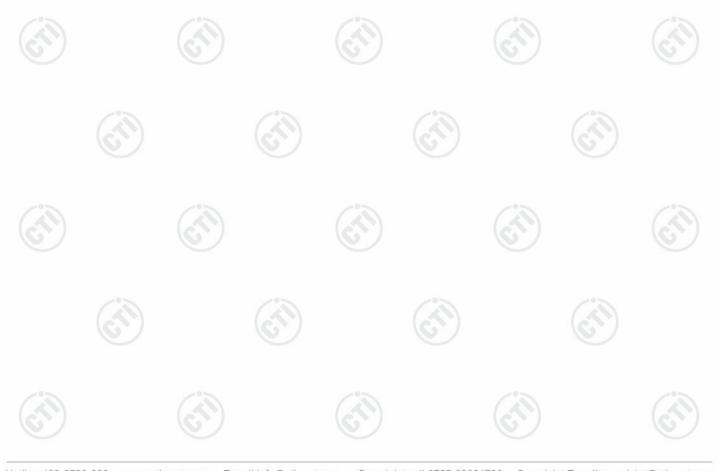
Check No.: 1154290422

Content

1 CONTENT		 2
2 VERSION		
3 TEST SUMMARY		 4
4 GENERAL INFORMATION		 5
4.1 CLIENT INFORMATION		
5 EQUIPMENT LIST		 9
6 RADIO TECHNICAL REQUIREMENTS SPECIFICAT	ΓΙΟΝ	 11
6.1 ANTENNA REQUIREMENT	3andwidth	
7 APPENDIX A		
PHOTOGRAPHS OF TEST SETUP		69
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETA	ILS	 7 1

2 Version

Version No.	Date	Description	
00	Jun. 16, 2022	Original	_00


Report No. : EED32O80604204 Page 4 of 71

3 Test Summary

o root ourinitary		1.0.1
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	N/A
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
99% Occupied bandwidth	(6,)	PASS
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
7 2 3 3		/ / 3/1

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

4 General Information

4.1 Client Information

Applicant:	Shenzhen Typhur Technology Co., Ltd			
Address of Applicant:	22 Floor, Prince Plaza, 51 Taizi Road Shuiwan Community, Zhaoshang Street, Nanshan N/A Shenzhen N/A China			
Manufacturer:	Shenzhen Typhur Technology Co., Ltd			
Address of Manufacturer:	Prince Plaza 2201、2202、2203、2204、2205、2206, 51 Taizi Road, Shuiwan Community, Zhaoshang Street, Nanshan District, Shenzhen, Guangdong, China			
Factory:	Shenzhen Typhur Technology Co., Ltd			
Address of Factory:	Prince Plaza 2201、2202、2203、2204、2205、2206, 51 Taizi Road, Shuiwan Community, Zhaoshang Street, Nanshan District, Shenzhen, Guangdong, China			

4.2 General Description of EUT

Product Name:	T1 Wireless		
Model No.(EUT):	T1000	(67)	(6,2)
Trade mark:	Typhur		
Product Type:	Fix Location		
Type of Modulation:	IEEE 802.11a: OFDM (BPSK, 0 IEEE 802.11n(HT20/HT40): OF IEEE 802.11ac(VHT20/VHT40/ 64QAM, 256QAM)	FDM (BPSK, QPSK, 16Q	AM, 64QAM)
Operating Frequency	U-NII-1 & U-NII-2A: 5180-5320I U-NII-2C:5500-5700MHz(excep U-NII-3:5745-5825MHz		
Antenna Type:	PIFA Antenna		
Antenna Gain:	3.96dBi		
Function	⊠ SISO □ 2x2 MIMO □ 3x3 M	∕IIMO □ 4x4MIMO	
Power Supply:	DC 3.3V		
Test voltage:	DC 3.3V		7
Sample Received Date:	Apr. 29, 2022		
Sample tested Date:	Apr. 29, 2022 to May 11, 2022		

Operation Frequency each of channel

802.11a/802.11n/802.11ac(20MHz) Frequency/Channel Operations:

	U-NII-1	U-NII-2A		U-NII-2C		U-NII-3	
Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)
36	5180	52	5260	100	5500	149	5745
40	5200	56	5280	104	5520	153	5765
44	5220	60	5300	108	5540	157	5785
48	5240	64	5320	112	5560	161	5805

_		_	
Page	6	οf	71

			4	705		-05	I
- (3	- (1)	- (3)	- (4	116	5580	165	5825
- 10		<u>-</u> 6	/ -	132	5660	6	-
-	-	-	-	136	5680	-	-
-	- /*>	-		140	5700	_	/·-

802.11n/802.11ac(40MHz) Frequency/Channel Operations:

	U-NII-1		J-NII-2A	ı	J-NII-2C		U-NII-3
Channel	Frequency(MHz)	-04	Frequency(MHz)	-05	Frequency(MHz)	Channel	Frequency(MHz)
38	5190	54	5270	102	5510	151	5755
46	5230	62	5310	110	5550	159	5795
-	- /-	-		134	5670	-	
) -	- (~1)	_	(-(1))	142	5710	-	(41)

802.11ac(80MHz) Frequency/Channel Operations:

	U-NII-1		J-NII-2A	(30)	J-NII-2C	(3)	U-NII-3
Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)
42	5210	58	5290	106	5530	155	5775
-	-	-	-	138	5690	-	-

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No. : EED32O80604204 Page 7 of 71

4.3 Test Configuration

EUT Test Software Settings:				
Software:	Scrcpy.exe			
EUT Power Grade:	Default			
Use test software to set the lo	vest frequency, the middle frequen	ncv and the highest frequency	keep	

Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

Test Mode:

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	MCS0
802.11n(HT40)	MCS0
802.11ac(VHT20)	MCS0
802.11ac(VHT40)	MCS0
802.11ac(VHT80)	MCS0

4.4 Test Environment

Operating Environment:			
Radiated Spurious Emission	s:		
Temperature:	22~25.0 °C		
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar	(0,)	(0,
RF Conducted:			
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar		
(c,7)	NT (Normal Temperature)	22.0~25.0 °C)
Temperature:	LT (Low Temperature)	0 °C	
	HT (High Temperature)	35 °C	
	NV (Normal Voltage)	DC 3.3V	-05
Working Voltage of the EUT:	LV (Low Voltage)	DC 3.0 V	(24)
	HV (High Voltage)	DC 3.6V	

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

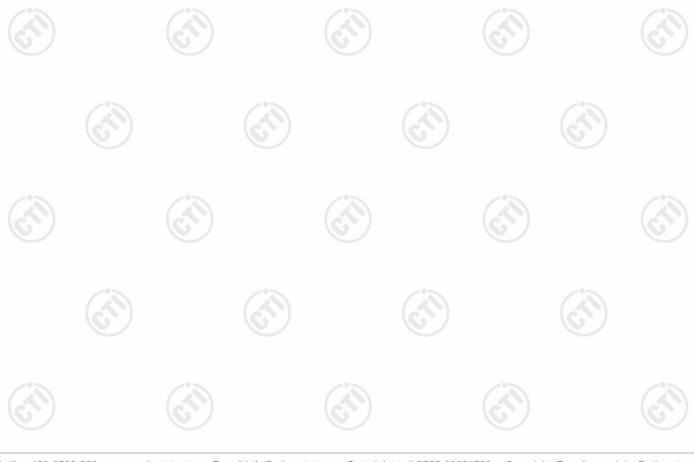
Description	Manufacture	model	Supplie d by	Certification
Notebook	DELL	Latitude 3490	CTI	FCC&CE

4.6 Test Location

All tests were performed at:

Report No.: EED32O80604204 Page 8 of 71

Centre Testing International Group Co., Ltd


Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
	Radio Frequency	7.9 x 10 ⁻⁸
	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Padiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

5 Equipment List

		RF test	evetom		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-23-2021	06-22-2022
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518		
	(4	(1)	(41)	(4	

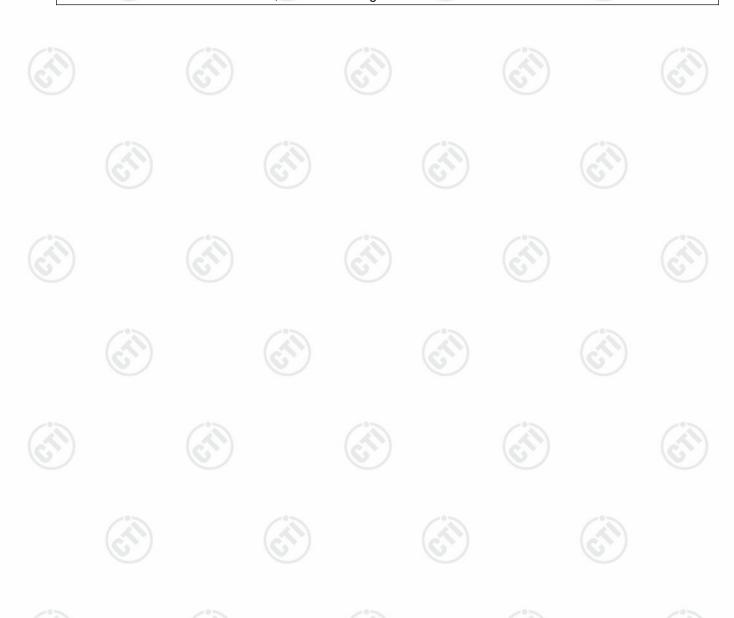
	3M Semi/full-anechoic Chamber					
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3	7(3)	05-24-2019	05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022	
Receiver	R&S	ESCI7	100938-003	10-15-2021	10-14-2022	
Multi device Controller	maturo	NCD/070/10711112		((1))		
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04-15-2021	04-14-2024	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024	
Microwave Preamplifier	Agilent	8449B	3008A02425	06-23-2021	06-22-2022	

Report No.: EED32O80604204 Page 10 of 71

1 16 1		(18)	1 601	/ /	V21
		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	<u></u>	/-
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		(3
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	<u> </u>	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	(<u>- (1)</u>
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		<u> </u>
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		(3
Cable line	Times	HF160-KMKM-3.00M	393493-0001		

Report No.: EED32O80604204 Page 11 of 71

6 Radio Technical Requirements Specification


6.1 Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

The antenna is PIFA antenna, The best case gain of the antenna is 3.96dBi.

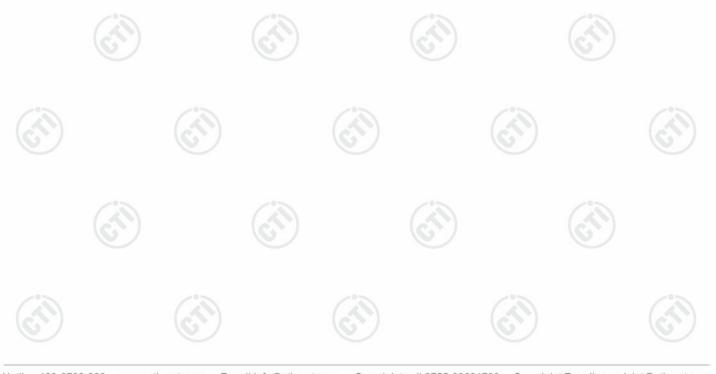
Page 12 of 71 Report No.: EED32O80604204

6.2 Maximum Conducted Output Power

	100				
Test Requirement:	47 CFR Part 15C S	Section 15.407 (a))		
Test Method:	KDB789033 D02 0	General UNII Tes	t Procedures New	Rules v02r01	Section
Test Setup:	6	411	(41)	1	(1)
	Control Computer Power Supply TEMPERATURE CAE	Attenuator	RF test - System Instrument		
	The testing follow		(0,1)		(0,)
Test Procedure:	General UNII Test 2. The RF output o attenuator. The pa measurement. 3. Set to the maxin continuously. 4. Measure the cor report.	Procedures New f EUT was conne th loss was comp	Rules v02r01 Sect cted to the power i ensated to the resi g and enable the E	tion E, 3, a meter by RF ca ults for each EUT transmit	able and
Limit:		(B)			
	Frequency band (MHz)	Limit			6
	5150-5250	≤1W(30dBm) fo	or master device		
	(*)	≤250mW(24dB	m) for client device	\cdot\(\dagger)	
	5250-5350	≤250mW(24dB	m) for client device	ce or 11dBm+10logB*	
	5470-5725	≤250mW(24dB	m) for client device	or 11dBm+10	logB*
	5725-5850	≤1W(30dBm)			
	Remark:	The maximum measured over	e 26dB emission b conducted output p any interval of con ntation calibrated in age.	oower must be ntinuous transn	nission
Test Mode:	Transmitting mode	with modulation			
Test Results:	Refer to Appendix	Α	\	(3)	
7 V 9. V 1		1 -5	1	1	

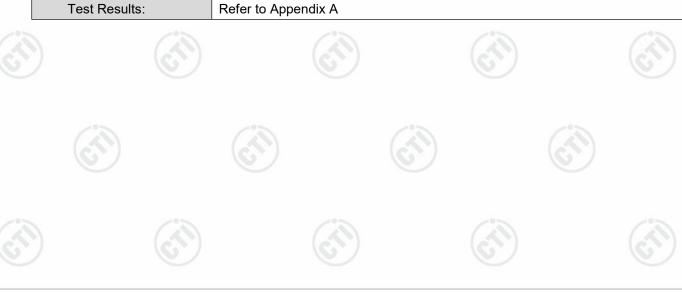
6.3 6dB Emission Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Test Setup:	Control Control Control Control Control Power System Power Supply Soot Attenuator Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Limit:	≥ 500 kHz
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix A



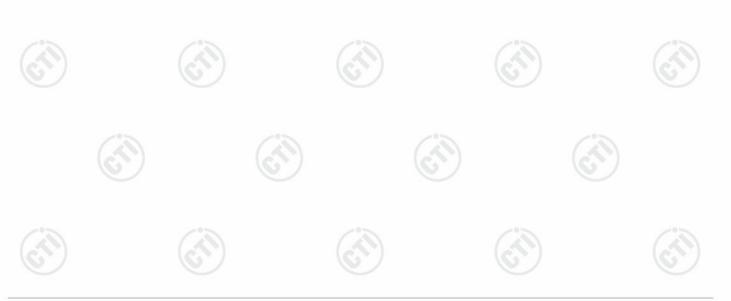
6.4 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (a)		
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D		
Test Setup:			
	Control Control Control Control Power Power Power Power Table RF test System Instrument Table		
	Remark: Offset=Cable loss+ attenuation factor.		
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report.		
Limit:	No restriction limits		
Test Mode:	Transmitting mode with modulation		
Test Results:	Refer to Appendix A		



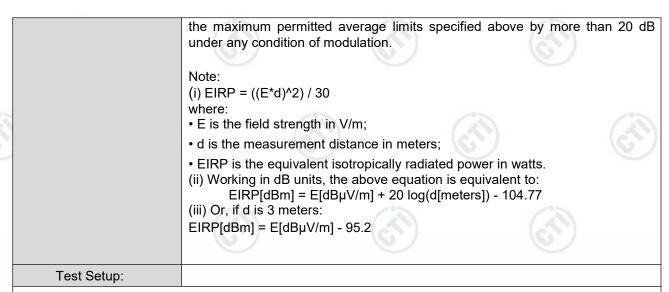
6.5 Maximum Power Spectral Density

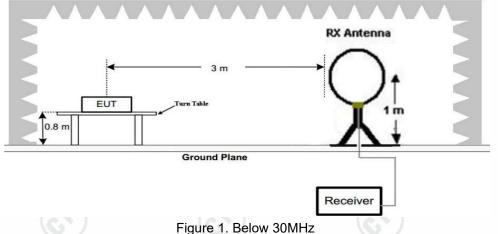
Test Requirement:	47 CFR Part 15C S	47 CFR Part 15C Section 15.407 (a)		
Test Method:	KDB789033 D02 G	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section		
Test Setup:	-		/ *>	
	Control Computer Power Supply TEMPERATURE CAB Table	Attenuator	RF test System Instrument	
	Remark: Offset=Ca	able loss+ attenua	ation factor.	
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire embandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude length 			RBW, Sweep time =
Limit:	(2/1)			
	Frequency band (MHz)	Limit		
	5150-5250	≤17dBm in 1MHz for master device		
		≤11dBm in 1MHz for client device		
	5250-5350	≤11dBm in 1MF	Hz for client device	
	5470-5725	≤11dBm in 1MHz for client device		
	5725-5850	≤30dBm in 500kHz		
	Remark:	a conducted em	nission by direct co	nsity is measured as connection of a equipment under test.
Test Mode:	Transmitting mode	with modulation		
Test Results:	Refer to Appendix A			

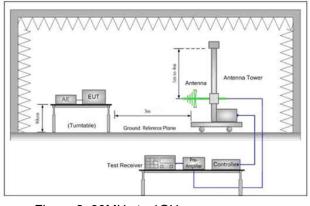


6.6 Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407 (g)			
Test Method:	ANSI C63.10: 2013			
Test Setup:				
	Control Control Control Power Power Power Power Power Fisher Table EUT RF test System System Attenuator Instrument			
	Remark: Offset=Cable loss+ attenuation factor.			
Test Procedure:	 1.The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. 2. Turn the EUT on and couple its output to a spectrum analyzer. 3. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. 5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record. 			
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.			
Test Mode:	Transmitting mode with modulation			
Test Results:	Refer to Appendix A			


Report No. : EED32O80604204 Page 17 of 71


6.7 Radiated Emission


ANSI C63.10 2013 Measurement Distance Frequency	e: 3m				
	e: 3m				
Frequency		า (Semi-Ane	choic Char	nber)	/15
1,70,7	2)	Detector	RBV	V VBW	Remark
0.009MHz-0.090MH	Peak	10kF	lz 30kHz	Peak	
0.009MHz-0.090MH	Average	10kH	łz 30kHz	Average	
0.090MHz-0.110MH	Ηz	Quasi-pea	ık 10kH	lz 30kHz	Quasi-peak
0.110MHz-0.490MH	Ηz	Peak	10kH	lz 30kHz	Peak
0.110MHz-0.490MH	Ηz	Average	10kH	lz 30kHz	Average
0.490MHz -30MHz	Z	Quasi-pea	ık 10kH	lz 30kHz	Quasi-peak
30MHz-1GHz		Quasi-pea	ık 100 k	Hz 300kHz	Quasi-peak
Above 10Uz		Peak	1MH	lz 3MHz	Peak
Above IGHZ	7	Peak	1MH	lz 10kHz	Average
Frequency		-	Limit	Remark	Measurement distance (m)
0.000MHz 0.400MHz		100	(dbdv/iii)	(2)	300
16.47		16.5	-	- (6)	300
		. ,	_	_	30
			40.0	Ouasi-neak	3
			/ 0		3
(6))		100		3
					3
				•	3
outside of the 5.15-8 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz because of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall because or below the because of the band edge, and for because of the band edge, and for because of the because of the band edge, and for because of the band edge.	erational serational s	GHz band ng in the 5.2 shall not excepting in the 5.7 nited to a level of 18 5 MHz about MHz at the simits shown a CISPR	shall not 5-5.35 GH beed an e.i 5.47-5.72 I shall no 25-5.85 GI rom 25 MI beed demanded band edger in the quasi-pear	exceed and a band: All extending the sand: All exceed and a band: All exceed and a band: All exceed and a band at a band at a band at a band above table ak detector	e.i.r.p. of -27 missions outside Bm/MHz. d: All emissions a e.i.r.p. of -27 75 MHz or more /MHz at 25 MHz below the band above or below edge increasing are based on except for the
	0.110MHz-0.490MH 0.490MHz -0.490MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz *(1) For transmitters outside of the 5.15-5.35 GHz is coutside of the 5.47-5 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz is coutside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall above or below the backed of the band edge, and folioearly to a level of 27 Remark: The emission measurements emplof frequency bands 9-9 emission limits in these	0.110MHz-0.490MHz 0.110MHz-0.490MHz 0.490MHz -30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490MHz 24 0.490MHz-1.705MHz 30MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz *(1) For transmitters operoutside of the 5.15-5.35 dBm/MHz. (2) For transmitters operation of the 5.15-5.35 GHz band (3) For transmitters operation of the 5.47-5.725 dBm/MHz. (4) For transmitters operation of the 5.47-5.725 dBm/MHz. (4) For transmitters operation of the 5.47-5.725 dBm/MHz. (5) All emissions shall be limple above or below the band edge increasing linearly to the band edge, and from linearly to a level of 27 dBm Remark: The emission limeasurements employing frequency bands 9-90kHz emission limits in these the	0.110MHz-0.490MHz Peak 0.110MHz-0.490MHz Average 0.490MHz -30MHz Quasi-peat 30MHz-1GHz Quasi-peat Above 1GHz Peak Peak Frequency Field strength (microvolt/meter) 0.009MHz-0.490MHz 2400/F(kHz) 0.490MHz-1.705MHz 24000/F(kHz) 1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 *(1) For transmitters operating in the outside of the 5.15-5.35 GHz band dBm/MHz. (2) For transmitters operating in the outside of the 5.47-5.725 GHz band dBm/MHz. (3) For transmitters operating in the outside of the 5.47-5.725 GHz band dBm/MHz. (4) For transmitters operating in the outside of the 5.47-5.725 GHz band dBm/MHz. (4) For transmitters operating in the outside of the 5.47-5.725 GHz band dBm/MHz. (4) For transmitters operating in the 5.7 (i) All emissions shall be limited to a level of the band edge, and fredge increas above or below the band edge, and fedge increas above or below the band edge, and fedge increas above or below the band edge, and fedge increas above or below the band edge, and fedge increasing linearly to a level of 15 the band edge, and from 5 MHz abor linearly to a level of 27 dBm/MHz at the Remark: The emission limits shown measurements employing a CISPR frequency bands 9-90kHz, 110-490k emission limits in these three bands a	0.110MHz-0.490MHz	0.110MHz-0.490MHz Peak 10kHz 30kHz 0.110MHz-0.490MHz Average 10kHz 30kHz 0.490MHz -30MHz Quasi-peak 10kHz 30kHz 30MHz-1GHz Quasi-peak 100 kHz 300kHz Above 1GHz Peak 1MHz 3MHz Peak 1MHz 10kHz Peak 1MHz 10kHz 0.009MHz-0.490MHz 2400/F(kHz) - 0.490MHz-1.705MHz 24000/F(kHz) - 1.705MHz-30MHz 30 - 30MHz-88MHz 100 40.0 Quasi-peak 88MHz-216MHz 150 43.5 Quasi-peak 216MHz-960MHz 200 46.0 Quasi-peak 960MHz-1GHz 500 54.0 Average *(1) For transmitters operating in the 5.15-5.25 GHz band outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 d (3) For transmitters operating in the 5.47-5.725 GHz band outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 d (3) For transmitters operating in the 5.47-5.725 GHz band outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 d

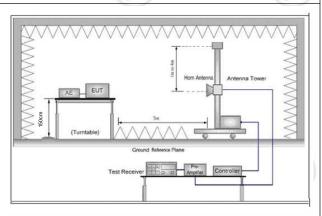


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

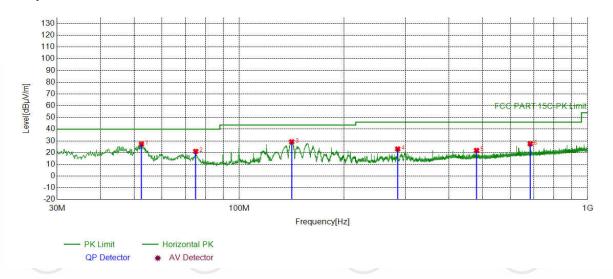
a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

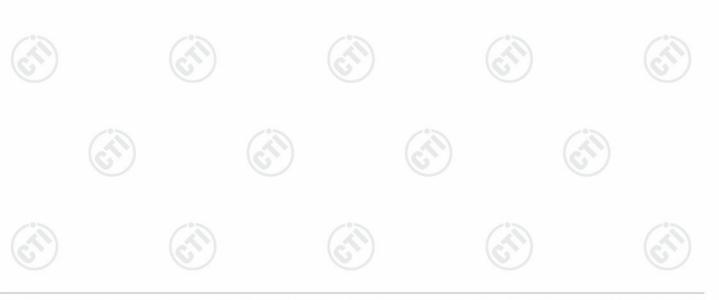
2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Report No. : EED32O80604204 Page 19 of 71

	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization
	oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel, the middle channel and the highest channel
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass



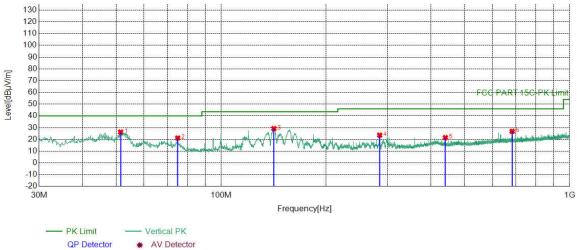

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case middle channel of 6Mbps for 802.11a was recorded in the report.

Test Graph



	Suspec	ted List								
100	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
225	1	52.4092	-17.50	44.80	27.30	40.00	12.70	PASS	Horizontal	PK
	2	75.0125	-21.68	42.76	21.08	40.00	18.92	PASS	Horizontal	PK
	3	141.4641	-21.97	51.23	29.26	43.50	14.24	PASS	Horizontal	PK
	4	285.0385	-15.83	38.94	23.11	46.00	22.89	PASS	Horizontal	PK
	5	480.0280	-11.20	33.10	21.90	46.00	24.10	PASS	Horizontal	PK
	6	684.2334	-7.84	35.36	27.52	46.00	18.48	PASS	Horizontal	PK



Suspec	ted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	51.4391	-17.37	43.63	26.26	40.00	13.74	PASS	Vertical	PK
2	75.0125	-21.68	42.90	21.22	40.00	18.78	PASS	Vertical	PK
3	141.6582	-21.97	51.18	29.21	43.50	14.29	PASS	Vertical	PK
4	285.0385	-15.83	39.47	23.64	46.00	22.36	PASS	Vertical	PK
5	439.9630	-12.01	33.55	21.54	46.00	24.46	PASS	Vertical	PK
6	684.2334	-7.84	34.71	26.87	46.00	19.13	PASS	Vertical	PK

Report No.: EED32O80604204 Page 22 of 71

Transmitter Emission above 1GHz:

Remark: During the test, the Radiates Emission from 1GHz to 40GHz was performed in all modes,, for 20MHz Occupied Bandwidth, 802.11 a mode was the worst case;

for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case;

for 80MHz Occupied Bandwidth, 802.11 ac(VHT80) mode was the worst case;

only the worst case was in the report.

Mode	:	80	02.11 a Tran	smitting		Channe	el:	5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1422.4422	1.47	41.06	42.53	68.20	25.67	PASS	Horizontal	PK
2	2090.7591	5.01	39.69	44.70	68.20	23.50	PASS	Horizontal	PK
3	3078.6579	6.76	42.26	49.02	68.20	19.18	PASS	Horizontal	PK
4	8288.3394	-11.00	56.23	45.23	68.20	22.97	PASS	Horizontal	PK
5	11909.8705	-5.38	52.94	47.56	68.20	20.64	PASS	Horizontal	PK
6	16611.3056	1.38	51.33	52.71	68.20	15.49	PASS	Horizontal	PK
7	1287.6788	1.11	41.40	42.51	68.20	25.69	PASS	Vertical	PK
8	2044.0044	4.81	40.77	45.58	68.20	22.62	PASS	Vertical	PK
9	3485.1485	7.61	38.35	45.96	68.20	22.24	PASS	Vertical	PK
10	8287.7644	-11.00	54.97	43.97	68.20	24.23	PASS	Vertical	PK
11	10365.3433	-6.26	54.16	47.90	68.20	20.30	PASS	Vertical	PK
12	15533.7017	0.45	51.44	51.89	68.20	16.31	PASS	Vertical	PK

Mode	:	80)2.11 a Tran	smitting		Channe	el:	5200MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1254.1254	1.00	41.64	42.64	68.20	25.56	PASS	Horizontal	PK
2	1838.2838	3.70	41.34	45.04	68.20	23.16	PASS	Horizontal	PK
3	3079.2079	6.76	42.39	49.15	68.20	19.05	PASS	Horizontal	PK
4	8319.9660	-10.95	57.25	46.30	68.20	21.90	PASS	Horizontal	PK
5	10764.4132	-6.18	52.82	46.64	68.20	21.56	PASS	Horizontal	PK
6	15487.1244	0.30	49.70	50.00	68.20	18.20	PASS	Horizontal	PK
7	1421.3421	1.47	40.42	41.89	68.20	26.31	PASS	Vertical	PK
8	2125.4125	4.77	39.95	44.72	68.20	23.48	PASS	Vertical	PK
9	3347.0847	7.47	38.81	46.28	68.20	21.92	PASS	Vertical	PK
10	8319.9660	-10.95	55.70	44.75	68.20	23.45	PASS	Vertical	PK
11	10400.9951	-6.27	54.58	48.31	68.20	19.89	PASS	Vertical	PK
12	15107.6054	0.20	49.73	49.93	68.20	18.27	PASS	Vertical	PK

Page	2	~f	71
Faue	7.7	OI	/ 1

		V A70.1		/ A'W.		0.7		40.1		
	Mode	:	80)2.11 a Tran	smitting		Chann	el:	5240MHz	
	ОИ	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1282.7283	1.09	40.67	41.76	68.20	26.44	PASS	Horizontal	PK
	2	2033.0033	4.76	39.67	44.43	68.20	23.77	PASS	Horizontal	PK
	3	3079.2079	6.76	41.54	48.30	68.20	19.90	PASS	Horizontal	PK
	4	8383.7942	-10.72	56.41	45.69	68.20	22.51	PASS	Horizontal	PK
	5	11906.9954	-5.40	53.31	47.91	68.20	20.29	PASS	Horizontal	PK
	6	15519.3260	0.46	49.80	50.26	68.20	17.94	PASS	Horizontal	PK
	7	1132.0132	0.72	41.83	42.55	68.20	25.65	PASS	Vertical	PK
	8	2219.4719	3.95	40.59	44.54	68.20	23.66	PASS	Vertical	PK
	9	3311.8812	7.41	38.93	46.34	68.20	21.86	PASS	Vertical	PK
	10	8383.7942	-10.72	55.10	44.38	68.20	23.82	PASS	Vertical	PK
	11	10474.0237	-6.44	54.35	47.91	68.20	20.29	PASS	Vertical	PK
9	12	15508.4004	0.46	50.29	50.75	68.20	17.45	PASS	Vertical	PK

Mode	:	8	02.11 a Tran	smitting		Channe	əl:	5260MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1541.2541	1.94	40.48	42.42	68.20	25.78	PASS	Horizontal	PK
2	2440.5941	4.70	40.27	44.97	68.20	23.23	PASS	Horizontal	PK
3	4287.1287	10.83	37.56	48.39	68.20	19.81	PASS	Horizontal	PK
4	8415.9958	-10.65	57.22	46.57	68.20	21.63	PASS	Horizontal	PK
5	10518.3009	-6.49	54.80	48.31	68.20	19.89	PASS	Horizontal	PK
6	15494.0247	0.39	49.94	50.33	68.20	17.87	PASS	Horizontal	PK
7	1430.6931	1.48	40.78	42.26	68.20	25.94	PASS	Vertical	PK
8	2245.8746	3.99	39.94	43.93	68.20	24.27	PASS	Vertical	PK
9	3491.1991	7.62	38.27	45.89	68.20	22.31	PASS	Vertical	PK
10	8415.9958	-10.65	56.21	45.56	68.20	22.64	PASS	Vertical	PK
11	10523.4762	-6.49	58.09	51.60	68.20	16.60	PASS	Vertical	PK
12	14369.8435	0.31	49.86	50.17	68.20	18.03	PASS	Vertical	PK

Page	$^{\prime}$	~f 71	
Faue	74	OIIII	

п		100		1.04		1.2				
	Mode	:	80)2.11 a Tran	Chann	el:	5280MHz			
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1386.1386	1.40	40.71	42.11	68.20	26.09	PASS	Horizontal	PK
9	2	2111.6612	4.92	40.55	45.47	68.20	22.73	PASS	Horizontal	PK
4	3	3079.7580	6.76	40.17	46.93	68.20	21.27	PASS	Horizontal	PK
	4	8448.1974	-10.63	55.73	45.10	68.20	23.10	PASS	Horizontal	PK
	5	10559.1280	-6.46	57.23	50.77	68.20	17.43	PASS	Horizontal	PK
	6	14316.3658	-0.26	51.17	50.91	68.20	17.29	PASS	Horizontal	PK
	7	1315.1815	1.19	41.24	42.43	68.20	25.77	PASS	Vertical	PK
Ī	8	2096.8097	5.04	40.09	45.13	68.20	23.07	PASS	Vertical	PK
	9	3078.6579	6.76	41.14	47.90	68.20	20.30	PASS	Vertical	PK
	10	8448.1974	-10.63	55.71	45.08	68.20	23.12	PASS	Vertical	PK
Á	11	10558.5529	-6.46	58.67	52.21	68.20	15.99	PASS	Vertical	PK
9	12	13831.6166	-1.92	50.96	49.04	68.20	19.16	PASS	Vertical	PK

Mode	:	8	302.11 a Tran	smitting		Channe	əl:	5320MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1425.7426	1.48	40.41	41.89	68.20	26.31	PASS	Horizontal	PK
2	2446.6447	4.75	40.12	44.87	68.20	23.33	PASS	Horizontal	PK
3	3869.0869	8.79	37.37	46.16	68.20	22.04	PASS	Horizontal	PK
4	8512.0256	-10.58	55.96	45.38	68.20	22.82	PASS	Horizontal	PK
5	10640.7820	-6.33	56.85	50.52	68.20	17.68	PASS	Horizontal	PK
6	14334.7667	-0.06	50.39	50.33	68.20	17.87	PASS	Horizontal	PK
7	1278.8779	1.08	41.43	42.51	68.20	25.69	PASS	Vertical	PK
8	2191.4191	4.03	40.36	44.39	68.20	23.81	PASS	Vertical	PK
9	3201.8702	6.98	39.35	46.33	68.20	21.87	PASS	Vertical	PK
10	8512.0256	-10.58	56.12	45.54	68.20	22.66	PASS	Vertical	PK
11	10637.9069	-6.34	58.66	52.32	68.20	15.88	PASS	Vertical	PK
12	15966.6983	-0.11	53.52	53.41	68.20	14.79	PASS	Vertical	PK

Page 25 of 71

п		100		1.00		/ 2				
	Mode	:	80	02.11 a Tran	smitting		Chann	el:	5500MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
9	1	1431.7932	1.86	40.75	42.61	68.20	25.59	PASS	Horizontal	PK
3	2	2443.8944	5.13	40.27	45.40	68.20	22.80	PASS	Horizontal	PK
4	3	3801.9802	9.38	36.73	46.11	68.20	22.09	PASS	Horizontal	PK
	4	9116.0411	-8.51	53.36	44.85	68.20	23.35	PASS	Horizontal	PK
	5	11006.0004	-5.86	56.66	50.80	68.20	17.40	PASS	Horizontal	PK
	6	14397.9599	0.62	50.43	51.05	68.20	17.15	PASS	Horizontal	PK
	7	1459.2959	1.89	40.23	42.12	68.20	26.08	PASS	Vertical	PK
Ī	8	2358.6359	4.78	39.90	44.68	68.20	23.52	PASS	Vertical	PK
Ī	9	3226.0726	8.00	39.90	47.90	68.20	20.30	PASS	Vertical	PK
	10	9114.5076	-8.52	53.26	44.74	68.20	23.46	PASS	Vertical	PK
4	11	10997.5665	-5.83	58.46	52.63	68.20	15.57	PASS	Vertical	PK
٥	12	15909.9273	0.09	51.94	52.03	68.20	16.17	PASS	Vertical	PK

Mode	:	80)2.11 a Tran	smitting		Channe	el:	5580MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1366.8867	1.76	40.57	42.33	68.20	25.87	PASS	Horizontal	PK
2	2394.9395	4.87	41.31	46.18	68.20	22.02	PASS	Horizontal	PK
3	3921.8922	9.88	37.43	47.31	68.20	20.89	PASS	Horizontal	PK
4	8928.1952	-9.03	53.27	44.24	68.20	23.96	PASS	Horizontal	PK
5	11156.2771	-6.03	49.23	43.20	54.00	10.80	PASS	Horizontal	AV
6	11165.4777	-5.96	62.20	56.24	68.20	11.96	PASS	Horizontal	PK
7	16294.8197	0.88	51.16	52.04	68.20	16.16	PASS	Horizontal	PK
8	1366.8867	1.76	40.28	42.04	68.20	26.16	PASS	Vertical	PK
9	2039.0539	5.30	39.86	45.16	68.20	23.04	PASS	Vertical	PK
10	3536.8537	8.14	38.86	47.00	68.20	21.20	PASS	Vertical	PK
11	8373.0915	-10.76	53.72	42.96	68.20	25.24	PASS	Vertical	PK
12	11157.8105	-6.02	64.65	58.63	68.20	9.57	PASS	Vertical	PK
13	11158.5772	-6.01	52.24	46.23	54.00	7.77	PASS	Vertical	AV
14	15508.9339	0.46	50.15	50.61	68.20	17.59	PASS	Vertical	PK

		_	
Page	വല	Ωf	71
raue	<i>–</i> ()	()I	/ 1

				Z 247			() ()			
	Mode	:	8	02.11 a Tran	smitting		Chann	el:	5700MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1331.1331	1.70	41.48	43.18	68.20	25.02	PASS	Horizontal	PK
	2	2096.2596	5.61	39.60	45.21	68.20	22.99	PASS	Horizontal	PK
	3	3313.5314	8.30	38.82	47.12	68.20	21.08	PASS	Horizontal	PK
	4	9188.1125	-7.83	52.75	44.92	68.20	23.28	PASS	Horizontal	PK
	5	11396.2598	-6.24	62.26	56.02	68.20	12.18	PASS	Horizontal	PK
	6	11400.8601	-6.23	49.34	43.11	54.00	10.89	PASS	Horizontal	AV
	7	15896.8931	0.08	51.19	51.27	68.20	16.93	PASS	Horizontal	PK
	8	1275.5776	1.52	40.89	42.41	68.20	25.79	PASS	Vertical	PK
	9	2064.9065	5.44	39.59	45.03	68.20	23.17	PASS	Vertical	PK
	10	3169.4169	7.82	39.34	47.16	68.20	21.04	PASS	Vertical	PK
	11	9119.8747	-8.47	54.22	45.75	68.20	22.45	PASS	Vertical	PK
9	12	11395.4930	-6.25	63.80	57.55	68.20	10.65	PASS	Vertical	PK
	13	11399.3266	-6.23	51.90	45.67	54.00	8.33	PASS	Vertical	AV
	14	16448.1632	0.06	52.30	52.36	68.20	15.84	PASS	Vertical	PK

Mode	:	8	02.11 a Tran	smitting		Channe	el:	5745MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1166.1166	1.08	41.52	42.60	68.20	25.60	PASS	Horizontal	PK
2	2097.3597	5.62	39.74	45.36	68.20	22.84	PASS	Horizontal	PK
3	3079.2079	7.54	41.93	49.47	68.20	18.73	PASS	Horizontal	PK
4	9629.7420	-7.40	52.45	45.05	68.20	23.15	PASS	Horizontal	PK
5	11920.6947	-5.31	53.62	48.31	68.20	19.89	PASS	Horizontal	PK
6	15900.7267	0.13	51.19	51.32	68.20	16.88	PASS	Horizontal	PK
7	1319.0319	1.67	41.52	43.19	68.20	25.01	PASS	Vertical	PK
8	2558.3058	5.59	40.08	45.67	68.20	22.53	PASS	Vertical	PK
9	4387.2387	12.26	36.40	48.66	68.20	19.54	PASS	Vertical	PK
10	9191.9461	-7.80	54.34	46.54	68.20	21.66	PASS	Vertical	PK
11	14335.0890	-0.06	49.13	49.07	68.20	19.13	PASS	Vertical	PK
12	16988.6992	2.97	51.12	54.09	68.20	14.11	PASS	Vertical	PK

		_	
Page	27	$\sim f 7^{\circ}$	1
raue		\mathbf{O}	

				/ ANN / AN			10.1			
	Mode	:	80)2.11 a Tran	smitting		Chann	el:	5785MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1328.3828	1.69	41.69	43.38	68.20	24.82	PASS	Horizontal	PK
	2	1924.6425	4.81	39.55	44.36	68.20	23.84	PASS	Horizontal	PK
	3	3079.2079	7.54	42.46	50.00	68.20	18.20	PASS	Horizontal	PK
	4	8835.4224	-9.16	52.87	43.71	68.20	24.49	PASS	Horizontal	PK
	5	11911.4941	-5.37	54.02	48.65	68.20	19.55	PASS	Horizontal	PK
	6	14495.3330	-0.75	50.25	49.50	68.20	18.70	PASS	Horizontal	PK
	7	1378.9879	1.78	41.11	42.89	68.20	25.31	PASS	Vertical	PK
	8	1888.3388	4.61	41.53	46.14	68.20	22.06	PASS	Vertical	PK
	9	3079.2079	7.54	41.44	48.98	68.20	19.22	PASS	Vertical	PK
	10	8957.3305	-8.78	52.24	43.46	68.20	24.74	PASS	Vertical	PK
	11	11568.7713	-6.27	57.57	51.30	68.20	16.90	PASS	Vertical	PK
9	12	16436.6624	-0.02	52.39	52.37	68.20	15.83	PASS	Vertical	PK

Mode	:	8	302.11 a Tran	smitting		Channe	el:	5825MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1287.1287	1.57	40.90	42.47	68.20	25.73	PASS	Horizontal	PK
2	2129.8130	5.25	40.12	45.37	68.20	22.83	PASS	Horizontal	PK
3	3963.6964	10.13	38.15	48.28	68.20	19.92	PASS	Horizontal	PK
4	7609.4406	-10.59	53.46	42.87	68.20	25.33	PASS	Horizontal	PK
5	11653.1102	-6.11	54.40	48.29	68.20	19.91	PASS	Horizontal	PK
6	16961.8641	2.86	50.44	53.30	68.20	14.90	PASS	Horizontal	PK
7	1430.1430	1.85	40.60	42.45	68.20	25.75	PASS	Vertical	PK
8	2108.3608	5.52	40.42	45.94	68.20	22.26	PASS	Vertical	PK
9	3078.6579	7.54	40.00	47.54	68.20	20.66	PASS	Vertical	PK
10	8891.3928	-9.26	52.67	43.41	68.20	24.79	PASS	Vertical	PK
11	11646.9765	-6.15	56.37	50.22	68.20	17.98	PASS	Vertical	PK
12	16537.8692	0.76	52.25	53.01	68.20	15.19	PASS	Vertical	PK

Report No. : EED32O80604204 Page 28 of 71

	Mode		80	2.11 n(HT4	0) Transmitti	ng	Channe	el:	5190MHz	
0	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	1265.1265	1.03	41.24	42.27	68.20	25.93	PASS	Horizontal	PK
	2	2045.6546	4.82	40.19	45.01	68.20	23.19	PASS	Horizontal	PK
	3	3078.6579	6.76	42.58	49.34	68.20	18.86	PASS	Horizontal	PK
	4	8303.8652	-11.01	55.65	44.64	68.20	23.56	PASS	Horizontal	PK
	5	11966.2233	-5.04	52.56	47.52	68.20	20.68	PASS	Horizontal	PK
	6	16618.2059	1.40	51.18	52.58	68.20	15.62	PASS	Horizontal	PK
	7	1148.5149	0.74	41.54	42.28	68.20	25.92	PASS	Vertical	PK
	8	2094.6095	5.03	39.78	44.81	68.20	23.39	PASS	Vertical	PK
0	9	3194.7195	6.96	39.96	46.92	68.20	21.28	PASS	Vertical	PK
4	10	9186.5343	-7.85	53.38	45.53	68.20	22.67	PASS	Vertical	PK
3	11	11967.3734	-5.03	52.40	47.37	68.20	20.83	PASS	Vertical	PK
	12	15946.5723	-0.04	50.83	50.79	68.20	17.41	PASS	Vertical	PK

Mode	:		302.11 n(HT4	0) Transmitti	ng	Channe	el:	5230MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1436.1936	1.49	40.96	42.45	68.20	25.75	PASS	Horizontal	PK
2	2068.7569	4.92	40.38	45.30	68.20	22.90	PASS	Horizontal	PK
3	3079.2079	6.76	41.87	48.63	68.20	19.57	PASS	Horizontal	PK
4	8368.2684	-10.77	57.28	46.51	68.20	21.69	PASS	Horizontal	PK
5	11914.4707	-5.35	53.31	47.96	68.20	20.24	PASS	Horizontal	PK
6	15511.2756	0.46	49.99	50.45	68.20	17.75	PASS	Horizontal	PK
7	1437.8438	1.49	40.58	42.07	68.20	26.13	PASS	Vertical	PK
8	2146.3146	4.53	40.00	44.53	68.20	23.67	PASS	Vertical	PK
9	3313.5314	7.41	39.31	46.72	68.20	21.48	PASS	Vertical	PK
10	9129.6065	-8.38	52.89	44.51	68.20	23.69	PASS	Vertical	PK
11	12465.9233	-4.18	52.32	48.14	68.20	20.06	PASS	Vertical	PK
12	16580.2540	1.16	51.35	52.51	68.20	15.69	PASS	Vertical	PK

Page	20	of ¹	71
raue	23	OI.	, ,

	100		(26)			0.7		1	
Mode) :	80	02.11 n(HT4	0) Transmitti	ng	Channe	el:	5270MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1390.5391	1.41	40.63	42.04	68.20	26.16	PASS	Horizontal	PK
2	2341.5842	4.18	40.01	44.19	68.20	24.01	PASS	Horizontal	PK
3	3891.6392	8.87	37.45	46.32	68.20	21.88	PASS	Horizontal	PK
4	8432.0966	-10.64	55.68	45.04	68.20	23.16	PASS	Horizontal	PK
5	11938.0469	-5.21	52.91	47.70	68.20	20.50	PASS	Horizontal	PK
6	15480.7990	0.22	49.59	49.81	68.20	18.39	PASS	Horizontal	PK
7	1394.3894	1.42	40.73	42.15	68.20	26.05	PASS	Vertical	PK
8	1948.2948	4.40	41.48	45.88	68.20	22.32	PASS	Vertical	PK
9	3198.5699	6.97	39.33	46.30	68.20	21.90	PASS	Vertical	PK
10	8432.0966	-10.64	55.60	44.96	68.20	23.24	PASS	Vertical	PK
11	11227.3114	-5.95	54.19	48.24	68.20	19.96	PASS	Vertical	PK
12	14304.2902	-0.39	50.70	50.31	68.20	17.89	PASS	Vertical	PK

Mode	:	80)2.11 n(HT4	0) Transmitti	ng	Channel:		5310MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1320.1320	1.21	41.28	42.49	68.20	25.71	PASS	Horizontal	PK
2	2100.1100	5.05	39.23	44.28	68.20	23.92	PASS	Horizontal	PK
3	3297.0297	7.38	38.58	45.96	68.20	22.24	PASS	Horizontal	PK
4	8496.4998	-10.59	55.61	45.02	68.20	23.18	PASS	Horizontal	PK
5	10619.5060	-6.39	55.86	49.47	68.20	18.73	PASS	Horizontal	PK
6	14397.4449	0.61	49.40	50.01	68.20	18.19	PASS	Horizontal	PK
7	1192.5193	0.81	42.37	43.18	68.20	25.02	PASS	Vertical	PK
8	2096.2596	5.03	39.76	44.79	68.20	23.41	PASS	Vertical	PK
9	3079.7580	6.76	40.32	47.08	68.20	21.12	PASS	Vertical	PK
10	8495.9248	-10.59	55.29	44.70	68.20	23.50	PASS	Vertical	PK
11	10631.5816	-6.35	56.06	49.71	68.20	18.49	PASS	Vertical	PK
12	14395.1448	0.59	49.08	49.67	68.20	18.53	PASS	Vertical	PK

_	~~	٠.	
Page	30	ot /	1

п		/ ///		/ 40.1						
	Mode	:	80)2.11 n(HT4	0) Transmitti	ng	Channe	el:	5510MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
- 0	1	1206.2706	1.14	40.84	41.98	68.20	26.22	PASS	Horizontal	PK
1	2	2122.6623	5.35	39.36	44.71	68.20	23.49	PASS	Horizontal	PK
	3	4056.6557	10.43	36.97	47.40	68.20	20.80	PASS	Horizontal	PK
	4	7380.1920	-11.43	54.21	42.78	68.20	25.42	PASS	Horizontal	PK
	5	10732.2822	-6.17	52.38	46.21	68.20	21.99	PASS	Horizontal	PK
	6	14368.0579	0.30	49.57	49.87	68.20	18.33	PASS	Horizontal	PK
	7	1292.0792	1.61	41.31	42.92	68.20	25.28	PASS	Vertical	PK
	8	1924.6425	4.83	40.87	45.70	68.20	22.50	PASS	Vertical	PK
	9	3304.1804	8.32	39.64	47.96	68.20	20.24	PASS	Vertical	PK
	10	7689.1793	-11.12	53.42	42.30	68.20	25.90	PASS	Vertical	PK
Ä	11	10795.9197	-6.18	52.66	46.48	68.20	21.72	PASS	Vertical	PK
j	12	14366.5244	0.28	49.20	49.48	68.20	18.72	PASS	Vertical	PK

Mode	:	80)2.11 n(HT4	0) Transmitti	ng	Channel:		5550MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1367.9868	1.77	41.04	42.81	68.20	25.39	PASS	Horizontal	PK
2	2091.3091	5.58	39.77	45.35	68.20	22.85	PASS	Horizontal	PK
3	3079.7580	7.57	40.17	47.74	68.20	20.46	PASS	Horizontal	PK
4	7618.6412	-10.65	53.81	43.16	68.20	25.04	PASS	Horizontal	PK
5	11229.1153	-5.97	53.79	47.82	68.20	20.38	PASS	Horizontal	PK
6	14362.6908	0.24	50.20	50.44	68.20	17.76	PASS	Horizontal	PK
7	1310.2310	1.67	40.89	42.56	68.20	25.64	PASS	Vertical	PK
8	2008.2508	5.13	40.15	45.28	68.20	22.92	PASS	Vertical	PK
9	3172.7173	7.83	38.71	46.54	68.20	21.66	PASS	Vertical	PK
10	9210.3474	-7.71	53.73	46.02	68.20	22.18	PASS	Vertical	PK
11	13679.5453	-1.72	50.59	48.87	68.20	19.33	PASS	Vertical	PK
12	17046.2031	2.34	50.89	53.23	68.20	14.97	PASS	Vertical	PK

Page	21	~f 71	
Faue	J I	OI / I	

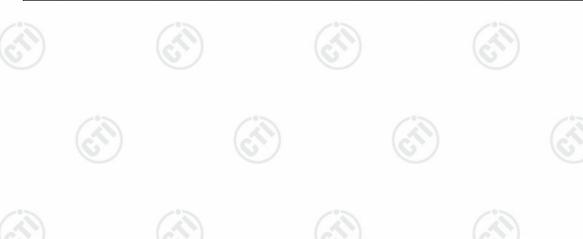
Mode	: :	80)2.11 n(HT4	0) Transmitti	ng	Channe	el:	5670MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1307.4807	1.66	41.12	42.78	68.20	25.42	PASS	Horizontal	PK
2	2535.2035	5.55	39.46	45.01	68.20	23.19	PASS	Horizontal	PK
3	3954.8955	10.10	37.66	47.76	68.20	20.44	PASS	Horizontal	PK
4	7548.8699	-10.91	53.63	42.72	68.20	25.48	PASS	Horizontal	PK
5	11337.9892	-6.44	57.55	51.11	68.20	17.09	PASS	Horizontal	PK
6	16445.0963	0.04	53.38	53.42	68.20	14.78	PASS	Horizontal	PK
7	1193.6194	1.11	41.04	42.15	68.20	26.05	PASS	Vertical	PK
8	2039.0539	5.30	41.29	46.59	68.20	21.61	PASS	Vertical	PK
9	3820.6821	9.45	37.83	47.28	68.20	20.92	PASS	Vertical	PK
10	9072.3382	-8.59	55.08	46.49	68.20	21.71	PASS	Vertical	PK
11	11334.1556	-6.45	60.45	54.00	68.20	14.20	PASS	Vertical	PK
12	11342.5895	-6.43	49.45	43.02	54.00	10.98	PASS	Vertical	AV
13	15508.9339	0.46	49.26	49.72	68.20	18.48	PASS	Vertical	PK

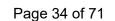
Mode	e:	8	02.11 n(HT4	0) Transmitti	ng	Channel:		5755MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1275.0275	1.50	41.80	43.30	68.20	24.90	PASS	Horizontal	PK
2	2125.9626	5.30	40.19	45.49	68.20	22.71	PASS	Horizontal	PK
3	3079.2079	7.54	42.91	50.45	68.20	17.75	PASS	Horizontal	PK
4	9151.3101	-8.18	52.87	44.69	68.20	23.51	PASS	Horizontal	PK
5	11507.4338	-5.85	55.56	49.71	68.20	18.49	PASS	Horizontal	PK
6	15914.5276	0.08	51.51	51.59	68.20	16.61	PASS	Horizontal	PK
7	1321.7822	1.68	40.72	42.40	68.20	25.80	PASS	Vertical	PK
8	1951.5952	4.91	40.25	45.16	68.20	23.04	PASS	Vertical	PK
9	3536.8537	8.11	39.36	47.47	68.20	20.73	PASS	Vertical	PK
10	8387.6592	-10.70	53.97	43.27	68.20	24.93	PASS	Vertical	PK
11	11512.8009	-5.89	57.50	51.61	68.20	16.59	PASS	Vertical	PK
12	15497.4332	0.44	49.85	50.29	68.20	17.91	PASS	Vertical	PK

Page 32 of 71

Mode	:	8	02.11 n(HT4	0) Transmitti	ng	Channe	el:	5795MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1287.1287	1.57	41.51	43.08	68.20	25.12	PASS	Horizontal	PK
2	2444.9945	5.12	39.74	44.86	68.20	23.34	PASS	Horizontal	PK
3	3804.1804	9.38	38.71	48.09	68.20	20.11	PASS	Horizontal	PK
4	8997.9665	-8.42	52.56	44.14	68.20	24.06	PASS	Horizontal	PK
5	12438.2292	-4.11	52.76	48.65	68.20	19.55	PASS	Horizontal	PK
6	16526.3684	0.65	52.34	52.99	68.20	15.21	PASS	Horizontal	PK
7	1285.4785	1.56	42.24	43.80	68.20	24.40	PASS	Vertical	PK
8	2408.6909	4.91	40.55	45.46	68.20	22.74	PASS	Vertical	PK
9	3495.0495	8.36	38.28	46.64	68.20	21.56	PASS	Vertical	PK
10	9272.4515	-7.62	54.44	46.82	68.20	21.38	PASS	Vertical	PK
11	11586.4058	-6.39	55.43	49.04	68.20	19.16	PASS	Vertical	PK
12	15922.9615	0.05	51.37	51.42	68.20	16.78	PASS	Vertical	PK

	Mode:)2.11 ac(VH	T80) Transm	itting	Channel:		5210MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1405.9406	1.45	40.78	42.23	68.20	25.97	PASS	Horizontal	PK
	2	2125.4125	4.77	39.42	44.19	68.20	24.01	PASS	Horizontal	PK
	3	3079.2079	6.76	40.83	47.59	68.20	20.61	PASS	Horizontal	PK
ė	4	8336.0668	-10.89	56.49	45.60	68.20	22.60	PASS	Horizontal	PK
4	5	12449.2475	-4.14	52.81	48.67	68.20	19.53	PASS	Horizontal	PK
2	6	15917.2459	0.07	51.66	51.73	68.20	16.47	PASS	Horizontal	PK
	7	1279.9780	1.08	41.03	42.11	68.20	26.09	PASS	Vertical	PK
	8	2003.3003	4.63	40.26	44.89	68.20	23.31	PASS	Vertical	PK
	9	3176.0176	6.93	39.04	45.97	68.20	22.23	PASS	Vertical	PK
	10	8336.0668	-10.89	56.40	45.51	68.20	22.69	PASS	Vertical	PK
	11	11435.4718	-6.08	53.61	47.53	68.20	20.67	PASS	Vertical	PK
	12	13906.9453	-0.88	50.57	49.69	68.20	18.51	PASS	Vertical	PK




Page 33 of 71

Mode):	3	302.11 ac(VH	T80) Transm	nitting	Channe	el:	5290MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1407.5908	1.45	40.43	41.88	68.20	26.32	PASS	Horizontal	PK
2	2329.4829	4.14	40.28	44.42	68.20	23.78	PASS	Horizontal	PK
3	3816.2816	8.61	37.30	45.91	68.20	22.29	PASS	Horizontal	PK
4	8464.2982	-10.61	57.32	46.71	68.20	21.49	PASS	Horizontal	PK
5	11864.4432	-5.71	54.75	49.04	68.20	19.16	PASS	Horizontal	PK
6	15893.6697	0.03	51.36	51.39	68.20	16.81	PASS	Horizontal	PK
7	1456.5457	1.52	40.56	42.08	68.20	26.12	PASS	Vertical	PK
8	2153.4653	4.45	39.61	44.06	68.20	24.14	PASS	Vertical	PK
9	3430.1430	7.59	37.84	45.43	68.20	22.77	PASS	Vertical	PK
10	8464.2982	-10.61	56.51	45.90	68.20	22.30	PASS	Vertical	PK
11	10583.8542	-6.45	53.92	47.47	68.20	20.73	PASS	Vertical	PK
12	15902.8701	0.12	50.92	51.04	68.20	17.16	PASS	Vertical	PK

	Mode:			802.11 ac(VH	T80) Transm	nitting	Channel:		5530MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1305.2805	1.66	40.86	42.52	68.20	25.68	PASS	Horizontal	PK
	2	1955.4455	4.94	40.36	45.30	68.20	22.90	PASS	Horizontal	PK
	3	3079.2079	7.57	40.25	47.82	68.20	20.38	PASS	Horizontal	PK
0	4	8462.7975	-10.62	54.74	44.12	68.20	24.08	PASS	Horizontal	PK
4	5	11933.7289	-5.23	53.80	48.57	68.20	19.63	PASS	Horizontal	PK
2	6	14374.1916	0.36	49.73	50.09	68.20	18.11	PASS	Horizontal	PK
	7	1133.6634	1.12	41.42	42.54	68.20	25.66	PASS	Vertical	PK
	8	2125.4125	5.31	40.29	45.60	68.20	22.60	PASS	Vertical	PK
	9	3227.7228	8.00	39.42	47.42	68.20	20.78	PASS	Vertical	PK
	10	8847.6898	-9.18	54.57	45.39	68.20	22.81	PASS	Vertical	PK
Ī	11	11919.1613	-5.32	54.01	48.69	68.20	19.51	PASS	Vertical	PK
	12	14367.2912	0.29	51.31	51.60	68.20	16.60	PASS	Vertical	PK

Мс	de:	8	02.11 ac(VH	T80) Transm	itting	Channe	el:	5775MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1279.4279	1.52	41.11	42.63	68.20	25.57	PASS	Horizontal	PK
2	2027.5028	5.23	40.32	45.55	68.20	22.65	PASS	Horizontal	PK
3	3078.6579	7.54	40.34	47.88	68.20	20.32	PASS	Horizontal	PK
4	9169.7113	-8.00	53.16	45.16	68.20	23.04	PASS	Horizontal	PK
5	12457.3972	-4.16	53.22	49.06	68.20	19.14	PASS	Horizontal	PK
6	15505.8671	0.47	49.91	50.38	68.20	17.82	PASS	Horizontal	PK
7	1287.6788	1.57	40.96	42.53	68.20	25.67	PASS	Vertical	PK
8	2059.9560	5.41	39.46	44.87	68.20	23.33	PASS	Vertical	PK
9	3078.6579	7.54	39.75	47.29	68.20	20.91	PASS	Vertical	PK
10	9239.4826	-7.66	55.01	47.35	68.20	20.85	PASS	Vertical	PK
11	12454.3303	-4.15	53.89	49.74	68.20	18.46	PASS	Vertical	PK
12	16463.4976	0.16	51.81	51.97	68.20	16.23	PASS	Vertical	PK

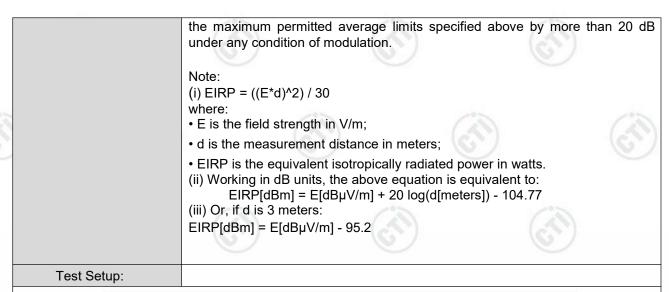
Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

- 2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) During the test, the Radiates Emission from 1GHz to 40GHz was performed in all modes, Through Pre-scan, for adapter 1 and adapter 2, adapter 1 was the worst case; for SISO, ANT1 was the worst case; only the worst case was recorded in the report.


Report No.: EED32O80604204 Page 35 of 71

6.8 Radiated Emission which fall in the restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.407 (b)						
Test Method:	ANSI C63.10 2013						
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver Setup:	Frequency		Detector	RBV	٧	VBW	Remark
	0.009MHz-0.090MHz		Peak	Peak 10kl		30kHz	Peak
	0.009MHz-0.090MHz		Average 10		Hz 30kHz		Average
	0.090MHz-0.110MHz		Quasi-pea	ık 10kH	10kHz		Quasi-peak
	0.110MHz-0.490MHz		Peak	10kH	10kHz		Peak
	0.110MHz-0.490MHz		Average	10kH	10kHz		Average
	0.490MHz -30MHz		Quasi-pea	ık 10kH	Ηz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-pea	ık 100 k	100 kHz		Quasi-peak
	Above 1GHz		Peak	1MHz		3MHz	Peak
			Peak	1MH	lz	10kHz	Average
Limit:	Frequency	l	ld strength	Limit	R	lemark	Measurement
	0.0000411-0.4000411-	,	rovolt/meter)	(ubuv/III)		(°)	distance (m)
	0.009MHz-0.490MHz		00/F(kHz)	-		-(6)	300
	0.490MHz-1.705MHz	24000/F(kHz)		-		-	30
	1.705MHz-30MHz 30MHz-88MHz	30 100		40.0	Ougsi naals		30
				40.0	Quasi-peak		3
	88MHz-216MHz 216MHz-960MHz	~)	150 200	43.5 46.0	Quasi-peak		3
	960MHz-1GHz	500		54.0	Quasi-peak Quasi-peak		3
	Above 1GHz		500	54.0	Average		3
	outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing						

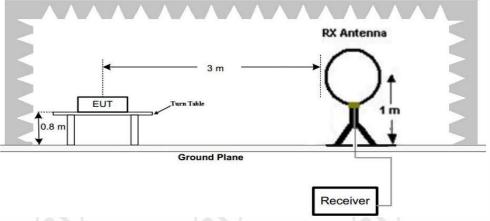
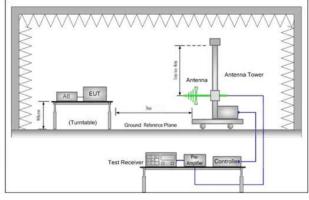



Figure 1. Below 30MHz

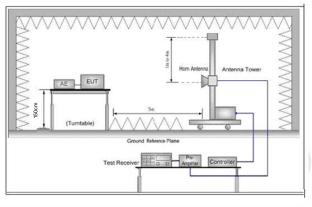


Figure 2. 30MHz to 1GHz

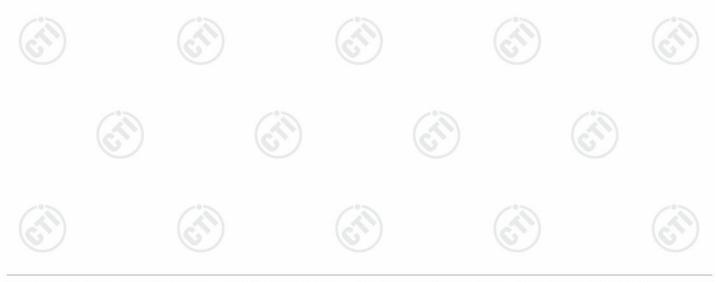
Figure 3. Above 1 GHz

j. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 2 meters comic another. The table

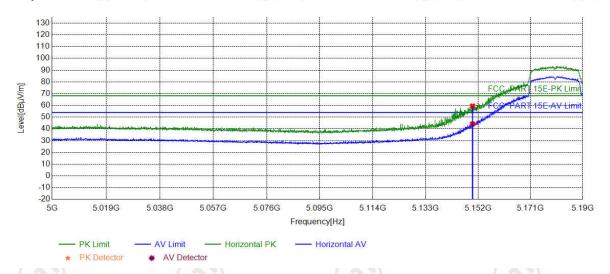
meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:



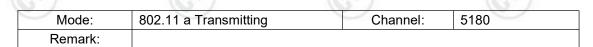
Report No.: EED32O80604204 Page 37 of 71

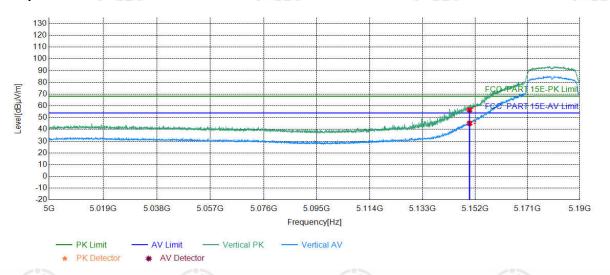
	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. l. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.o. If the emission level of the EUT in peak mode was 10dB lower than the
	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. p. Test the EUT in the lowest channel, the Highest channel
	q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	r. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass



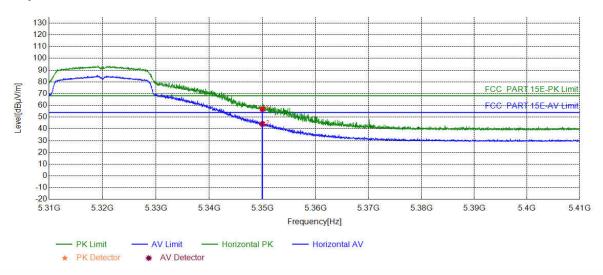
Test Data:

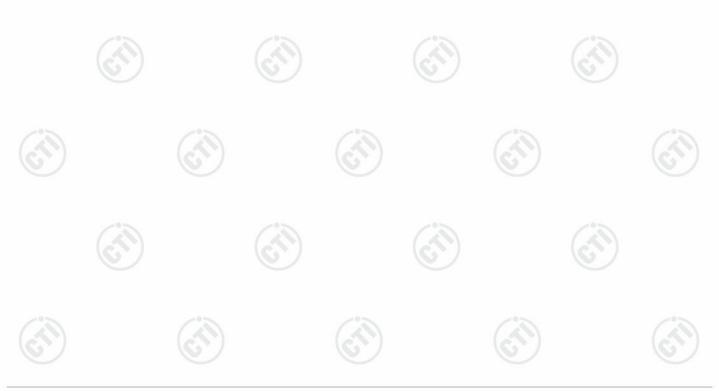
Mode:	802.11 a Transmitting	Channel:	5180
Remark:			




Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150.0000	-15.08	74.46	59.38	68.29	8.91	PASS	Horizontal	PK
2	5150.0000	-15.08	59.20	44.12	54.00	9.88	PASS	Horizontal	AV

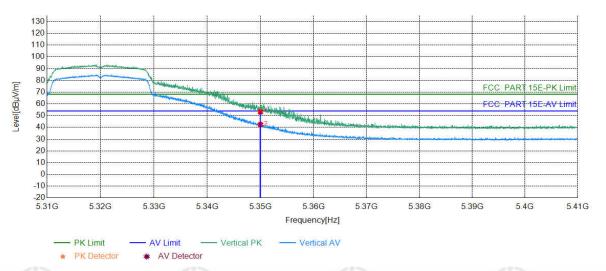
						/ / /					
	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	5150.0000	-15.08	71.66	56.58	68.29	11.71	PASS	Vertical	PK	
3	2	5150.0000	-15.08	60.23	45.15	54.00	8.85	PASS	Vertical	AV	

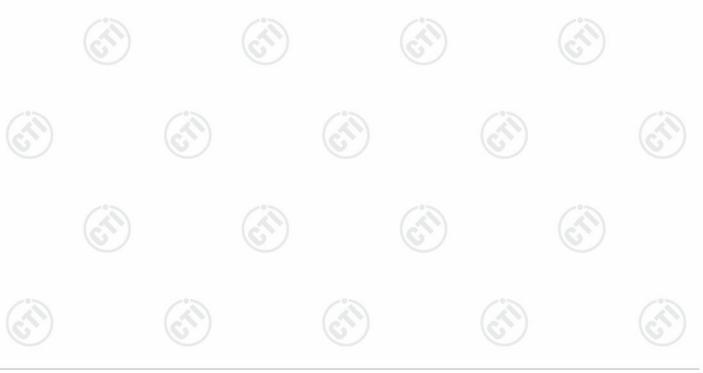

Page 39 of 71

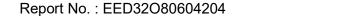


Mode:	802.11 a Transmitting	Channel:	5320
Remark:			

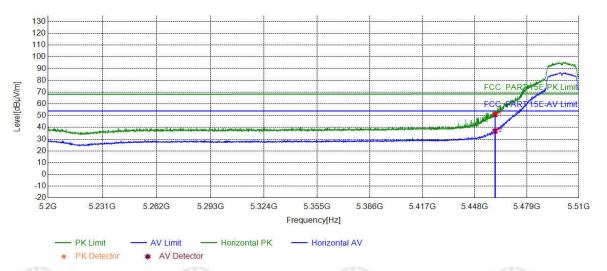
S	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	5350.0000	-14.67	71.53	56.86	68.20	11.34	PASS	Horizontal	PK	
	2	5350.0000	-14.67	58.86	44.19	54.00	9.81	PASS	Horizontal	AV	

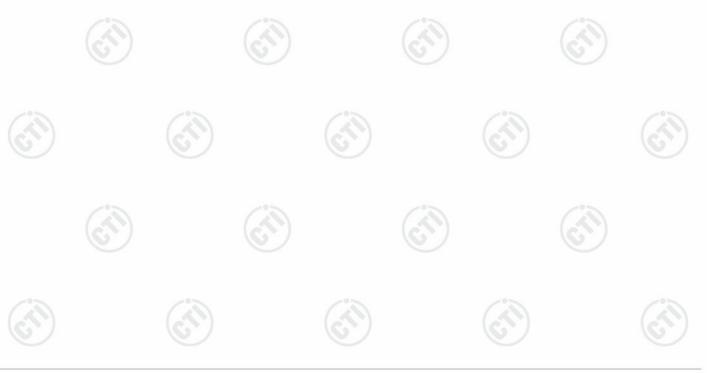


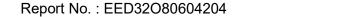



Mode:	802.11 a Transmitting	Channel:	5320
Remark:			

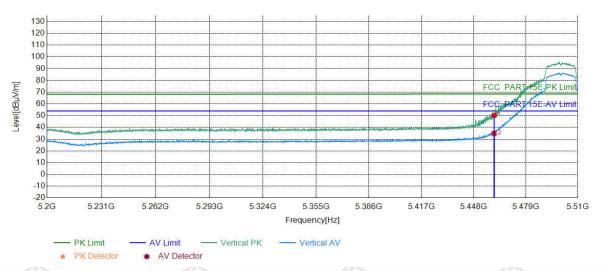
	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5350.0000	-14.67	67.86	53.19	68.20	15.01	PASS	Vertical	PK
8	2	5350.0000	-14.67	57.11	42.44	54.00	11.56	PASS	Vertical	AV

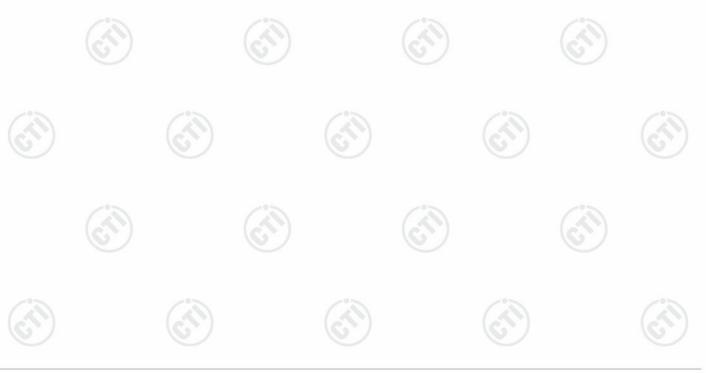





Mode:	802.11 a Transmitting	Channel:	5500
Remark:			

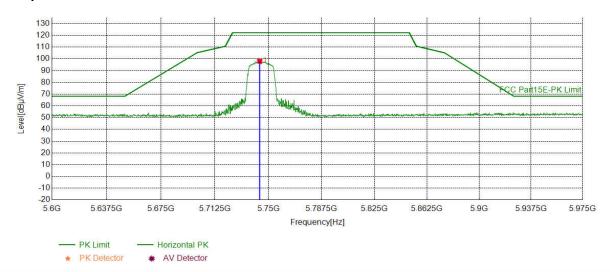
		201		/ 401		7 201					
- 1	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	5460.0000	-14.52	65.42	50.90	68.45	17.55	PASS	Horizontal	PK	
9	2	5460.0000	-14.52	51.43	36.91	54.00	17.09	PASS	Horizontal	AV	

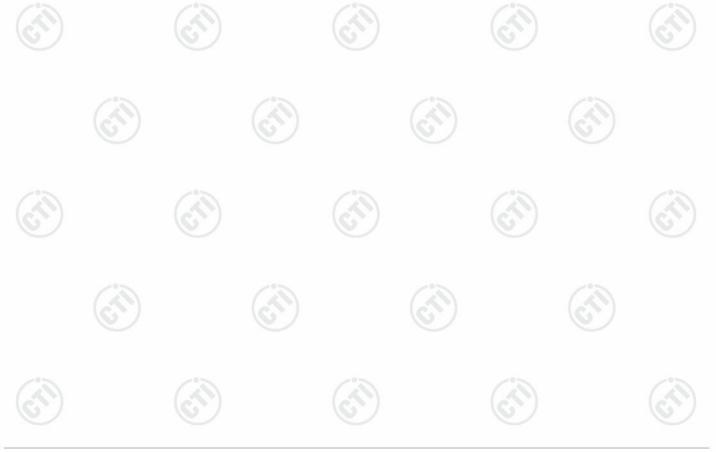


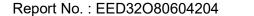


Mode:	802.11 a Transmitting	Channel:	5500
Remark:			

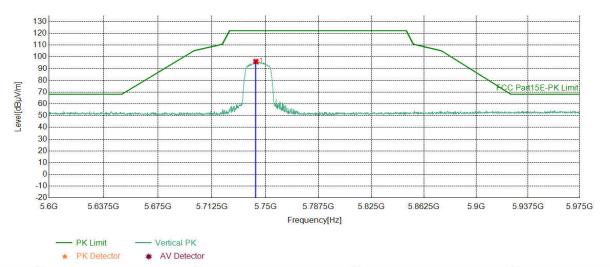
	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5460.0000	-14.52	64.80	50.28	68.45	18.17	PASS	Vertical	PK
3	2	5460.0000	-14.52	49.32	34.80	54.00	19.20	PASS	Vertical	AV






Mode:	802.11 a Transmitting	Channel:	5745
Remark:	(6.50)	(6,7)	(6,2,)

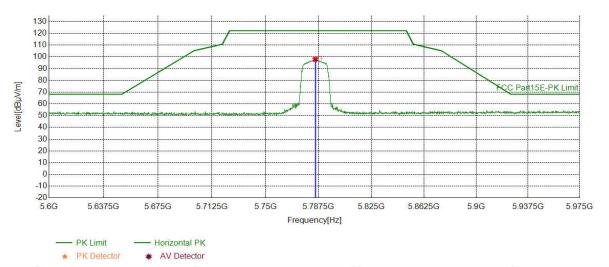
Suspe	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5743.8844	13.84	84.28	98.12	122.20	24.08	PASS	Horizontal	PK		





Mode:	802.11 a Transmitting	Channel:	5745
Remark:			

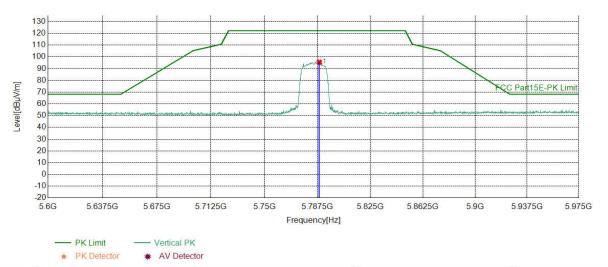
Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5743.3217	13.84	82.29	96.13	122.20	26.07	PASS	Vertical	PK		

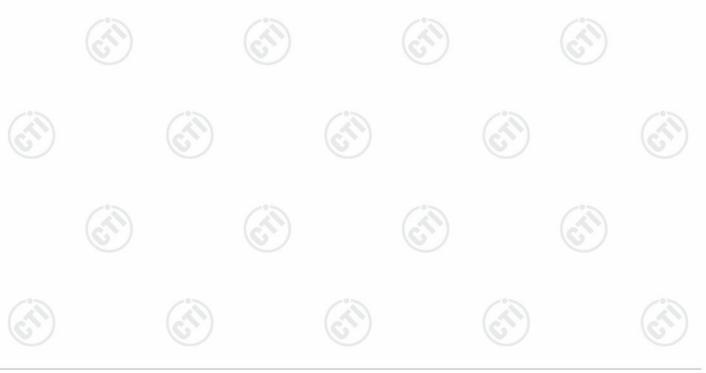


Page 46 of 71

Mode:	802.11 a Transmitting	Channel:	5785
Remark:			

Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5785.1551	13.91	84.02	97.93	122.20	24.27	PASS	Horizontal	PK	

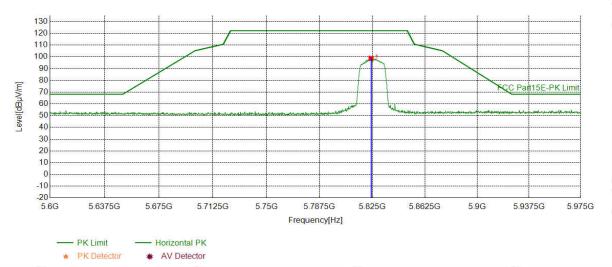




Page 47 of 71

Mode:	802.11 a Transmitting	Channel:	5785
Remark:			

S	Suspected List										
١	10	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	5788.7194	13.92	81.55	95.47	122.20	26.73	PASS	Vertical	PK	

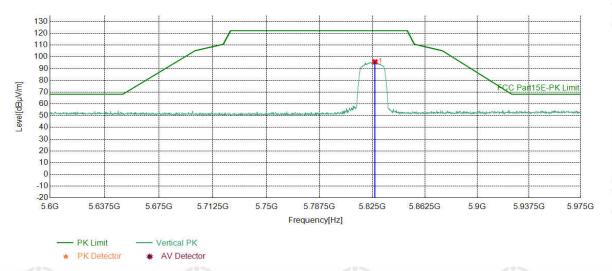




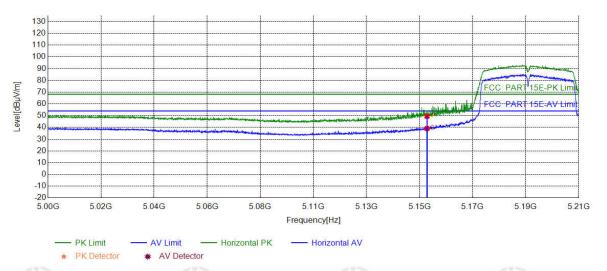
Page 48 of 71

Mode:	802.11 a Transmitting	Channel:	5825
Remark:			

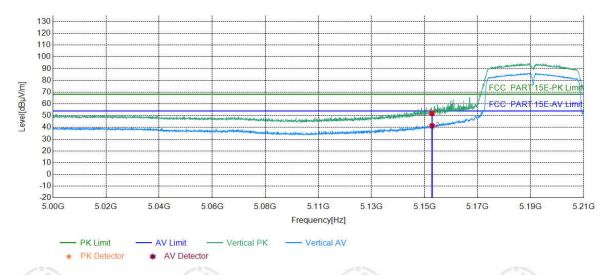
Susp	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5823.9870	14.03	84.76	98.79	122.20	23.41	PASS	Horizontal	PK		



Mode:	802.11 a Transmitting	Channel:	5825
Remark:			

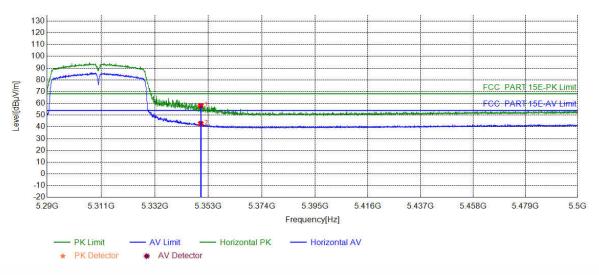

•	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	5826.8009	14.04	81.76	95.80	122.20	26.40	PASS	Vertical	PK	

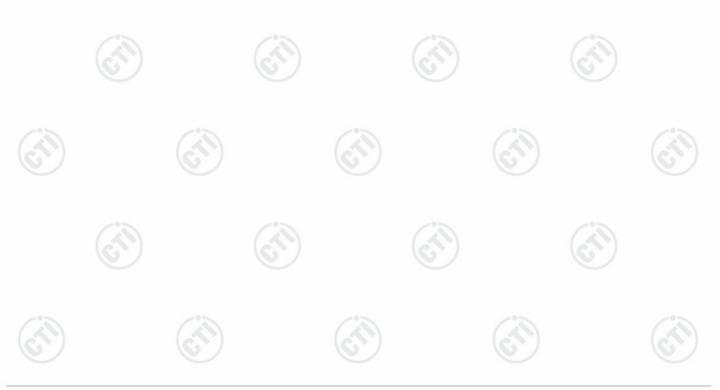
Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:			


п	_			/ / /		/ ///			/ ///		
-1	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	5150.0000	12.36	37.12	49.48	68.20	18.72	PASS	Horizontal	PK	
9	2	5150.0000	12.36	26.71	39.07	54.00	14.93	PASS	Horizontal	AV	

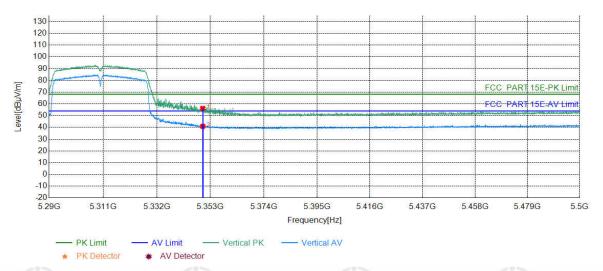
Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:			

	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150.0000	12.36	39.59	51.95	68.20	16.25	PASS	Vertical	PK
3	2	5150.0000	12.36	28.97	41.33	54.00	12.67	PASS	Vertical	AV



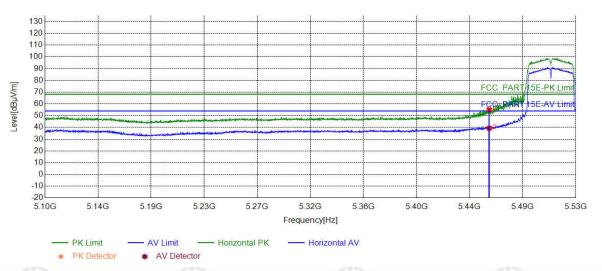


Mode:	802.11 n(HT40) Transmitting	ransmitting Channel:		
Remark:				

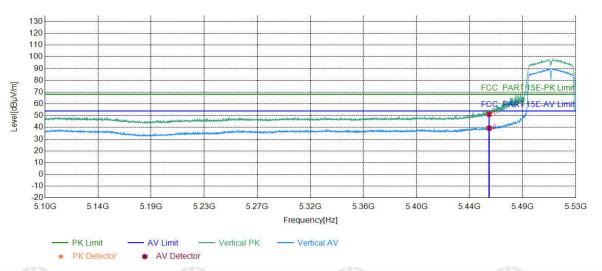

Suspe	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5350.0000	12.73	45.24	57.97	68.20	10.23	PASS	Horizontal	PK	
2	5350.0000	12.73	30.07	42.80	54.00	11.20	PASS	Horizontal	AV	

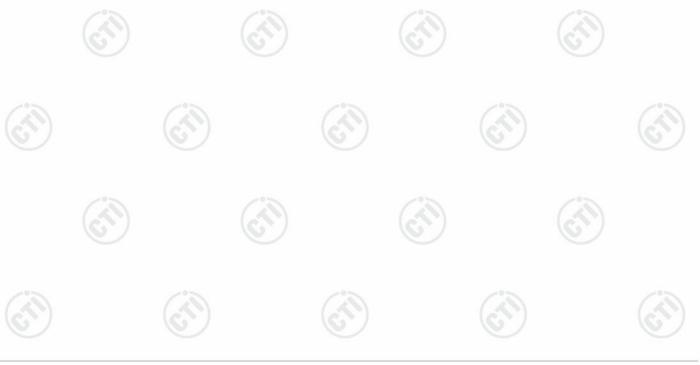


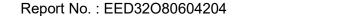
Mode:	802.11 n(HT40) Transmitting	Channel:	5310
Remark:			

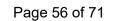

Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5350.0000	12.73	43.49	56.22	68.20	11.98	PASS	Vertical	PK
3	2	5350.0000	12.73	28.18	40.91	54.00	13.09	PASS	Vertical	AV

Mode:	Mode: 802.11 n(HT40) Transmitting		5510	
Remark:				

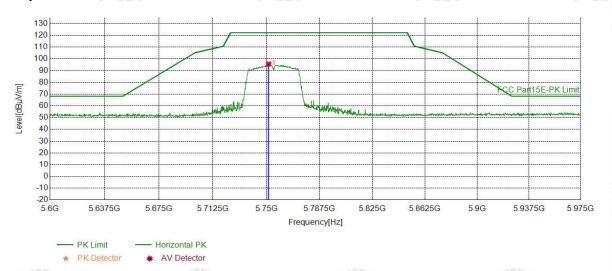

П	Sugna	tod Liet		/ ///		1 2 2 1				
Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5460.0000	13.24	41.82	55.06	68.20	13.14	PASS	Horizontal	PK
3	2	5460.0000	13.24	26.11	39.35	54.00	14.65	PASS	Horizontal	AV

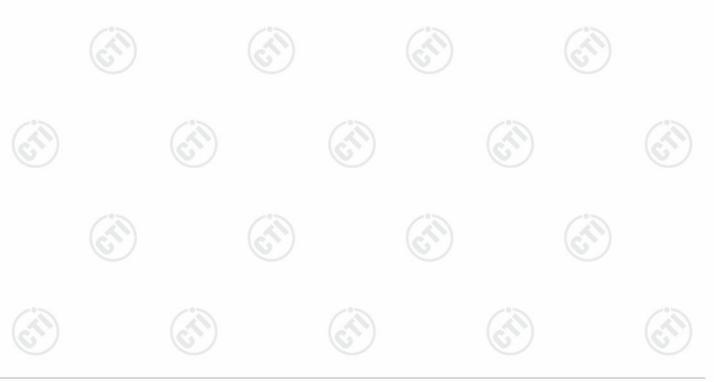


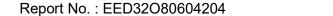

Mode: 802.11 n(HT40) Transmitting		Channel:	5510	
Remark:				



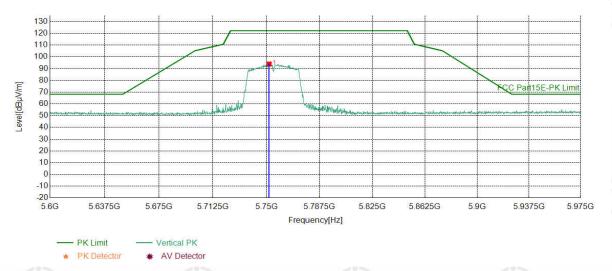
		201				/ / /				
	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5460.0000	13.24	37.91	51.15	68.20	17.05	PASS	Vertical	PK
9	2	5460.0000	13.24	26.17	39.41	54.00	14.59	PASS	Vertical	AV

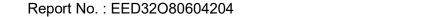


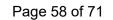



Mode:	802.11 n(HT40) Transmitting	Channel:	5755
Remark:			

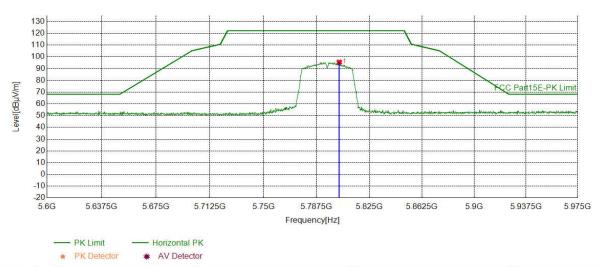
Suspe	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5751.5758	13.86	81.77	95.63	122.20	26.57	PASS	Horizontal	PK		

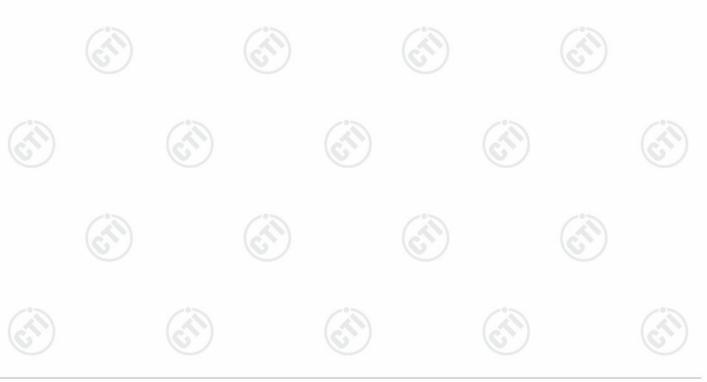



Mode:	802.11 n(HT40) Transmitting	Channel:	5755
Remark:			

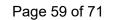


Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5751.9510	13.86	80.11	93.97	122.20	28.23	PASS	Vertical	PK		

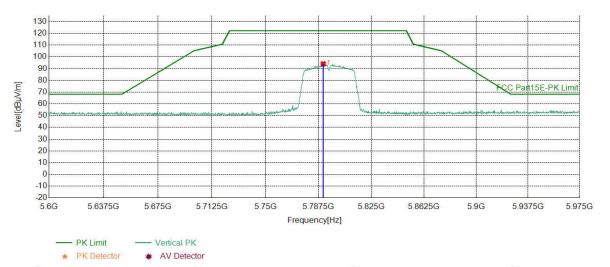




Mode:	Mode: 802.11 n(HT40) Transmitting		5795
Remark:			



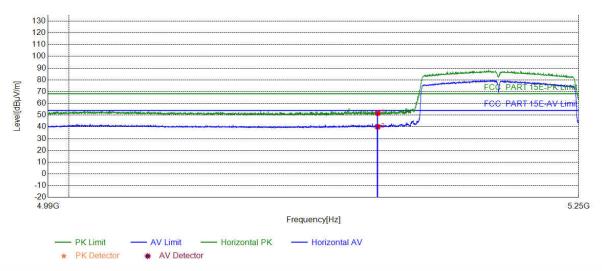
Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5803.5393	13.95	81.51	95.46	122.20	26.74	PASS	Horizontal	PK		

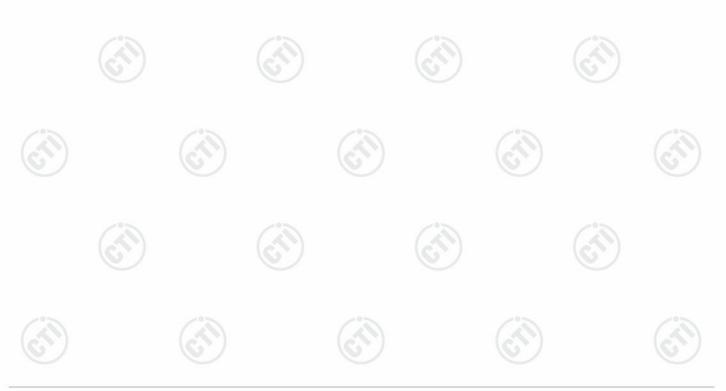




Mode:	Mode: 802.11 n(HT40) Transmitting		5795
Remark:			

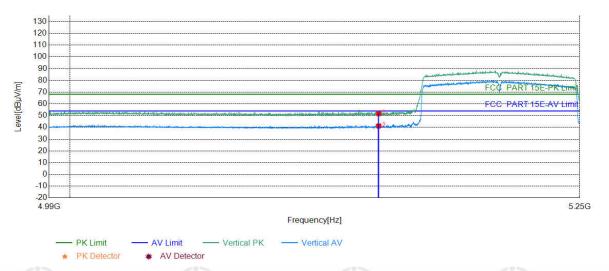
Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5790.7829	13.92	80.19	94.11	122.20	28.09	PASS	Vertical	PK		





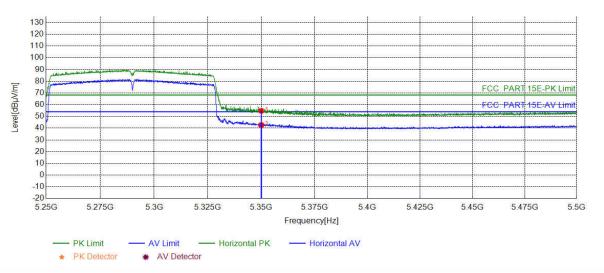
Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210	
Remark:	6			

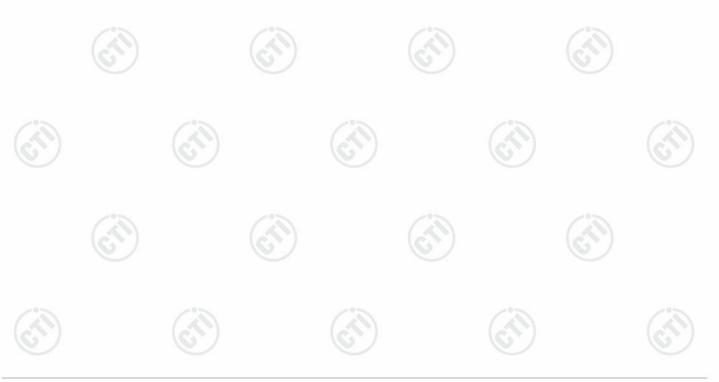
Suspe	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5150.0000	12.36	39.33	51.69	68.20	16.51	PASS	Horizontal	PK		
2	5150.0000	12.36	27.78	40.14	54.00	13.86	PASS	Horizontal	AV		



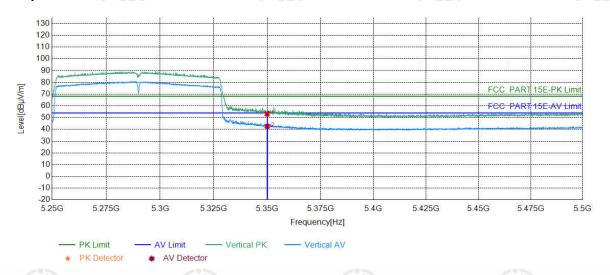
Mode:	Mode: 802.11 ac(VHT80) Transmitting		5210
Remark:			

	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	5150.0000	12.36	39.39	51.75	68.20	16.45	PASS	Vertical	PK	
3	2	5150.0000	12.36	28.85	41.21	54.00	12.79	PASS	Vertical	AV	





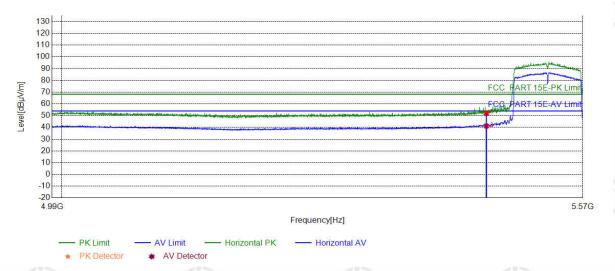
Mode:	802.11 ac(VHT80) Transmitting	Channel:	5290
Remark:			


	Suspec	Suspected List											
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
	1	5350.0000	12.73	42.01	54.74	68.20	13.46	PASS	Horizontal	PK			
3	2	5350.0000	12.73	29.99	42.72	54.00	11.28	PASS	Horizontal	AV			



Mode:	802.11 ac(VHT80) Transmitting	Channel:	5290
Remark:			

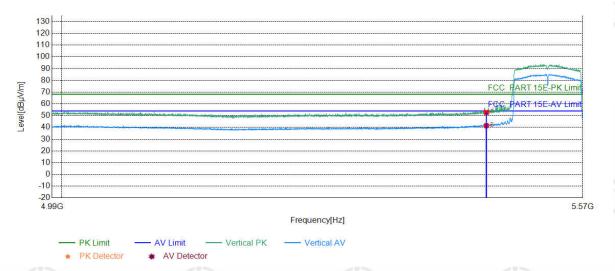
ſ	Suspec	ted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5350.0000	12.73	40.52	53.25	68.20	14.95	PASS	Vertical	PK
8	2	5350.0000	12.73	29.94	42.67	54.00	11.33	PASS	Vertical	AV



Mode:	802.11 ac(VHT80) Transmitting	Channel:	5530
Remark:			

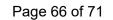
Page 64 of 71

I	Suenoc	ted List		/ ///		/ / / / /				
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5460.0000	13.24	38.71	51.95	68.20	16.25	PASS	Horizontal	PK
8	2	5460.0000	13.24	27.96	41.20	54.00	12.80	PASS	Horizontal	AV

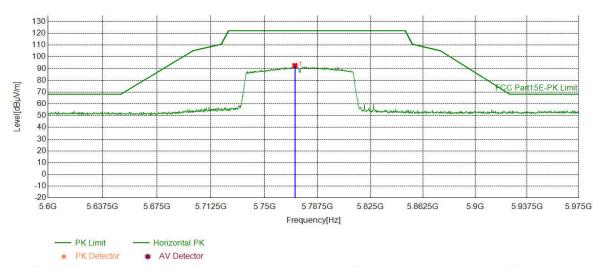




Mode: 802.11 ac(VHT80) Transmitting		Channel:	5530
Remark:			



	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	5460.0000	13.24	39.47	52.71	68.20	15.49	PASS	Vertical	PK	
6	2	5460.0000	13.24	28.20	41.44	54.00	12.56	PASS	Vertical	AV	



Mode: 802.11 ac(VHT80) Transmitting		Channel:	5775
Remark:			

Suspec	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5771.4607	13.89	78.76	92.65	122.20	29.55	PASS	Horizontal	PK			

Mode: 802.11 ac(VHT80) Transmitting		Channel:	5775
Remark:			

	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
2	1	5781.9660	13.91	76.67	90.58	122.20	31.62	PASS	Vertical	PK	

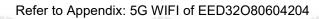
Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

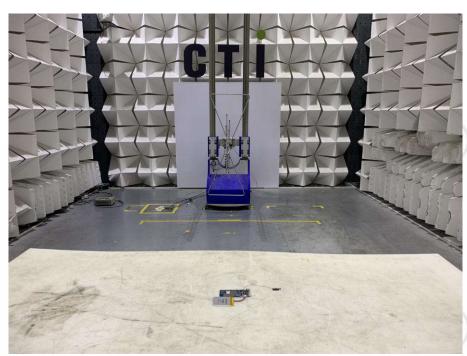
Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

- 2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) Through Pre-scan, for adapter 1 and adapter 2, adapter 1 was the worst case; for SISO, ANT1 was the worst case; only the worst case was recorded in the report.



Report No.: EED32O80604204 Page 68 of 71

7 Appendix A



PHOTOGRAPHS OF TEST SETUP

Test model No.:T1000

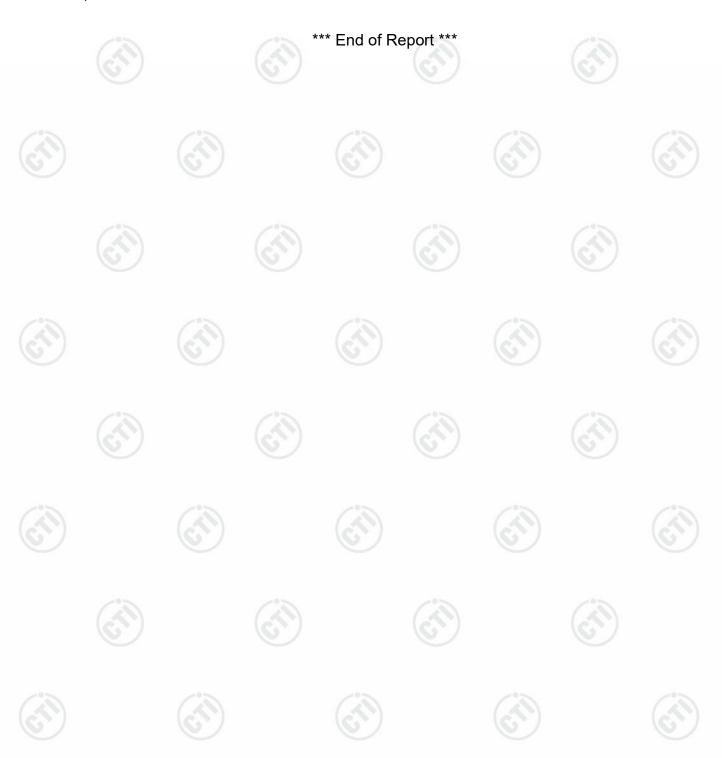
Radiated spurious emission Test Setup-1(Below 1GHz)


Radiated spurious emission Test Setup-2(Above 1GHz)

Page 70 of 71 Report No.: EED32O80604204

Radiated spurious emission Test Setup-3(Above 18GHz)

Radiated spurious emission Test Setup-4 There are absorbing materials under the ground.



Report No.: EED32O80604204 Page 71 of 71

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.: EED32O80604201 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

