

Maximum Permissible Exposure Report

1. Product Information

FCC ID	: 2A6R4-MWT280			
EUT	PARTY SPEAKER			
Test Model	: MW-T280			
Power Supply	Input: AC100-240V~, 50-60Hz, 240W			
Hardware Version	W15A			
Software Version	MW-T280			
Bluetooth				
Frequency Range	: 2402MHz~2480MHz			
Channel Number	79 channels for Bluetooth V5.0(DSS)			
	40 channels for Bluetooth V5.0 (DTS)			
Channel Spacing	1MHz for Bluetooth V5.0 (DSS)			
	2MHz for Bluetooth V5.0 (DTS)			
Modulation Type	: GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V5.0(DSS)			
	GFSK for Bluetooth V5.0 (DTS)			
Bluetooth Version	: V5.0	油		
Antenna Description	PCB Antenna, 0dBi(Max.)	Tes		
Exposure category	General population/uncontrolled environment			
EUT Type	Production Unit			
Device Type	Mobile Devices			

2. Evaluation Method

Systems operating under the provisions of FCC 47 CFR section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as mobile device whereby a distance of 0.2m normally can be maintained between the user and the device, and below RF Permissible Exposure limit shall comply with.

In accordance with KDB447498D01 for Simultaneous transmission MPE test exclusion applies when the sum of the MPE ratios for all simultaneous transmitting antennas incorporated in a host device, based on the calculated/estimated, numerically modelled or measured field strengths or power density, is ≤ 1.0. The MPE ratio of each antenna is determined at the minimum test separation distance required by the operating configurations and exposure conditions of the host device, according to the ratio of field strengths or power density to MPE limit, at the test frequency. Either the maximum peak or spatially averaged results from measurements or numerical simulations may be used to determine the MPE ratios. Spatial averaging does not apply when MPE is estimated using simple calculations based on far-field plane-wave equivalent conditions. The antenna installation and operating requirements for the host device must meet the minimum test separation distances required by all antennas, in both standalone and simultaneous transmission operations, to satisfy compliance.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

3. Limit

3. 1 Refer Evaluation Method

ANSI C95.1–2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz

FCC KDB publication 447498 D01 General 1 RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

<u>FCC CFR 47 part1 1.1310:</u> Radiofrequency radiation exposure limits. <u>FCC CFR 47 part2 2.1091:</u> Radiofrequency radiation exposure evaluation: mobile devices.

3. 2 Limit

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

	and the second s		and the second s		- 2007 3113 17
1	Frequency Electric Field Range(MHz) Strength(V/m)		Magnetic Field	Power Density	Averaging Time
			e(MHz) Strength(V/m) Strength(A/m) (mW/cm²)		(minute)
		Limits for Oc	cupational/Controll	led Exposure	
Ī	0.3 – 3.0 614 3.0 – 30 1842/f 30 – 300 61.4 300 – 1500 /		1.63	(100)_*	6
			4.89/f	(900/f ²)*	6
			0.163	` 1.0 ´	6
			/	f/300	6
	1500 – 100,000	/	/	5	6

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)
sting Lab	Limits for Occ	upational/Uncontro	lled Exposure	1 1
0.3 - 3.0	0.3 – 3.0 614		(100)_*	30
3.0 - 30	824/f	2.19/f	(180/f ²)*	30
30 - 300	30 – 300 27.5		0.2	30
300 – 1500	/	/	f/1500	30
1500 – 100,000	/	/	1.0	30

F=frequency in MHz

4. MPE Calculation Method

Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4πR²

Where: S=power density

P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator

R=distance to the center of radiation of the antenna

5. Antenna Information

PCB Antenna can only use antennas certificated as follows provided by manufacturer;

Internal Identification	Antenna type and antenna number	Operate frequency band	Maximum antenna gain	Note
Antenna	PCB Antenna	2402MHz ~ 2480MHz	0dBi	BT Antenna

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

^{*=}Plane-wave equivalent power density

6. Conducted Power

	人。	[BT]	. 企画股份
Mode	Channel		Peak Conducted Output
Mode	Charmer	Frequency (MHz)	Power (dBm)
	0	2402	0.89
GFSK	39	2441	0.59
	79	2480	1.88
	00	2402	0.4
π/4-DQPSK	39	2441	-0.14
	79	2480	1.13
	00	2402	0.4
8-DPSK	39	2441	-0.29
	79	2480	1.15

[BT LE]

		<u> </u>	
Mode	Channel	Frequency (MHz)	Peak Conducted Output Power (dBm)
	0	2402	-2.54
GFSK	19	2440	-2.13
	39	2480	-2.27

7. Manufacturing Tolerance

<BT>

		712				
GFSK (Peak)						
Channel	Channel 0	Channel 39	Channel 78			
Target (dBm)	0	0	1.0			
Tolerance ± (dB)	1.0	1.0	1.0			
π/4DQPSK (Peak)						
Channel Channel 0		Channel 39	Channel 78			
Target (dBm)	0	0	1.0			
Tolerance ± (dB)	1.0	台灣 1.0	1.0			
	8DPSk	(Peak)				
Channel	Channel 0	Channel 39	Channel 78			
Target (dBm)	0	0	1.0			
Tolerance ± (dB)	1.0	1.0	1.0			

BT LE(Peak)						
Channel	Channel 0	Channel 19	Channel 39			
Target (dBm)	-2.0	-2.0	-2.0			
Tolerance ± (dB)	1.0	1.0	1.0			

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

8. Measurement Results

As declared by the Applicant, the EUT is a wireless device used in a fix application, at least 20 cm from any body part of the user or nearby persons; from the maximum EUT RF output power, the minimum separation distance, r =20cm, as well as the gain of the used antenna refer to antenna information, the RF power density can be obtained.

[BT]

Modulation Type	Out	put power	Antenna Gain	Antenna Gain	MPE	MPE Limits
	dBm	mW	(dBi)	(linear)	(mW/cm2)	(mW/cm2)
GFSK	2.0	1.5849	0	1.0000	0.0003	1.0000
π/4-DQPSK	2.0	1.5849	0	1.0000	0.0003	1.0000
8-DPSK	2.0	1.5849	0	1.0000	0.0003	1.0000

[BT LE]

	Modulation Type	Output	power	Antenna Gain	Antenna Gain	MPE	MPE Limits
	Woddiation Type	dBm	mW	(dBi)	(linear)	(mW/cm2)	(mW/cm2)
	BT LE	-1.0	0.7943	0	1.0000	0.0002	1.0000

Remark:

- 1. Output power including tune-up tolerance;
- 2. Output power was adjust to duty cycle at 100% if measured duty cycle less than 98%;
- 3. MPE evaluate distance is 20cm from user manual provide by manufacturer.

9. Conclusion

The measurement results comply with the FCC Limit per 47 CFR 2.1091 for the uncontrolled RF Exposure of mobile device.

-----THE END OF REPORT-----

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China