

FCC Test Report

Report No.: 2405U83388EC

Applicant: Nexite LTD

Address: 126 Yigal Alon St, Tel-Aviv, Israel

Product Name: READER 2.0

Product Model: NX-RDR-2000-HB

Multiple Models: N/A

Trade Mark: N/A

FCC ID: 2A6MX13EA2BCXC

Standards: FCC CFR Title 47 Part 15C (§15.247)

Test Date: 2024-07-16 to 2024-08-03

Test Result: Complied

Report Date: 2024-08-08

Reviewed by:

Frank Tin

Approved by:

Jacob Gong

Frank Yin Project Engineer Jacob Kong Manager

Prepared by:

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk " \star "

Announcement

1. This test report shall not be reproduced except in full, without the written approval of World Alliance Testing & Certification (Shenzhen) Co., Ltd

2. The results in this report apply only to the sample tested.

3. This sample tested is in compliance with the limits of the above regulation.

4. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

5. The information marked "#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

Revision History

Version No.	Issued Date	Description
00	2024-08-08	Original

Contents

1	Gene	ral Info	rmation	. 4
	1.1	Client	Information	. 4
	1.2	Produ	ct Description of EUT	. 4
	1.3	Anten	na information	. 4
	1.4	Relate	ed Submittal(s)/Grant(s)	. 4
	1.5	Measu	urement Uncertainty	. 5
	1.6	Labora	atory Location	. 5
	1.7	Test M	1ethodology	. 5
2	Desc	ription o	of Measurement	. 6
	2.1	Test C	Configuration	. 6
	2.2	Test A	uxiliary Equipment	. 6
	2.3	Interco	onnecting Cables	. 7
	2.4	Block	Diagram of Connection between EUT and AE	. 7
	2.5	Test S	etup	. 8
	2.6	Test P	rocedure	. 9
	2.7	Measu	urement Method	11
	2.8	Measu	urement Equipment	12
3	Test	Results		13
	3.1	Test S	ummary	13
	3.2	Limit		14
	3.3	AC Lir	ne Conducted Emissions Test Data	15
	3.4	Radiat	ted emission Test Data	17
	3.5	RF Co	onducted Test Data	27
		3.5.1	20 dB Emission Bandwidth and 99% Occupied Bandwidth	27
		3.5.2	Maximum Conducted Peak Output Power	27
	;	3.5.3	Channel separation	27
	:	3.5.4	Number of hopping Frequency	28
	:	3.5.5	Time of occupancy (dwell time)	28
	:	3.5.6	100 kHz Bandwidth of Frequency Band Edge	28
4	Test	Setup P	hoto	35
5	E.U.T	Photo		36

1 General Information

1.1 Client Information

Applicant:	Nexite LTD
Address:	126 Yigal Alon St, Tel-Aviv, Israel
Manufacturer:	Nexite LTD
Address:	126 Yigal Alon St, Tel-Aviv, Israel

1.2 Product Description of EUT

The EUT is READER 2.0 that contains UHF transmitter, this report covers the full testing of the UHF transmitter.

Sample Serial Number	2NVW-1(assigned by WATC)
Sample Received Date	2024-07-05
Sample Status	Good Condition
Frequency Range	902.5MHz – 927.5MHz
Maximum Conducted Peak Output Power	23.08dBm
Modulation Technology	CW
Spatial Streams	SI (1TX)
Antenna Gain [#]	3.02 dBi
Power Supply	DC 54V from POE
Adapter Information	N/A
Modification	Sample No Modification by the test lab

1.3 Antenna information

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Device	Antenna	information:
001100	/	mormation

The Lora antenna is an internal antenna which cannot replace by end-user, please see product internal photos for details.

1.4 Related Submittal(s)/Grant(s)

No related submittal(s)/Grant(s)

Parameter		Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
AC Power Lines Condu	cted Emissions	±3.14dB
	Below 30MHz	±2.78dB
Emissions, Radiated	Below 1GHz	±4.84dB
	Above 1GHz	±5.44dB
Emissions, Conducted	1	1.75dB
Conducted Power		0.74dB
Frequency Error		150Hz
Bandwidth		0.34%
Power Spectral Density		0.74dB

1.5 Measurement Uncertainty

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

1.6 Laboratory Location

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Tel: +86-755-29691511, Email: <u>qa@watc.com.cn</u>

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 463912, the FCC Designation No. : CN5040.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0160.

1.7 Test Methodology

FCC CFR 47 Part 2 FCC CFR 47 Part 15 KDB 558074 D01 DTS Meas Guidance v05r02 ANSI C63.10-2013

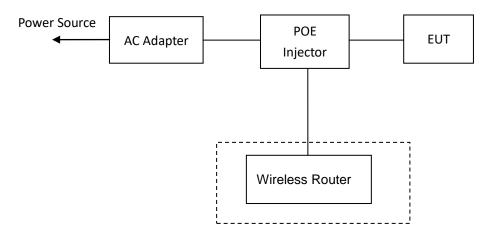
2 Description of Measurement

2.1 Test Configuration

Operating channels:							
Channel No.	Frequency (MHz)	Chann No.	el Frequenc (MHz)	y Channel No.	Frequency (MHz)	Channe No.	Frequency (MHz)
1	902.5	64	908.8	127	915.1	190	921.4
2	902.6	65	908.9	128	915.2	191	921.5
						250	927.4
62	908.6	125	914.9	188	921.2	251	927.5
63	908.7	126	915	189	921.3	/	/
channel, and	According to ANSI C63.10-2013 chapter 5.6.1 Table 11 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:						
Lowe	est channel		Middle channel		H	Highest channel	
Channel No. Frequency (MHz)		-	Channel No.	Frequency (MHz)	Channe	el No.	Frequency (MHz)
1	902.5	5	126	915	251		927.5

Test Mode:						
Transmitting mode:	-	The system was configured for testing in Engineering Mode, which was provided by the manufacturer.				
Exercise software [#] :	configure by web	o browser				
	_	Po	ower Level Setting [#]			
Mode	Data rate	Low Channel	Middle Channel	High Channel		
UHF	/	230	230	230		
The exercise softwa	re and the maximum	power setting that pro	vided by manufacture	er.		
Worst-Case Config	Worst-Case Configuration:					
For radiated emission 9kHz-30MHz was performed with the EUT transmits at the channel with highest output power as worst-case scenario.						

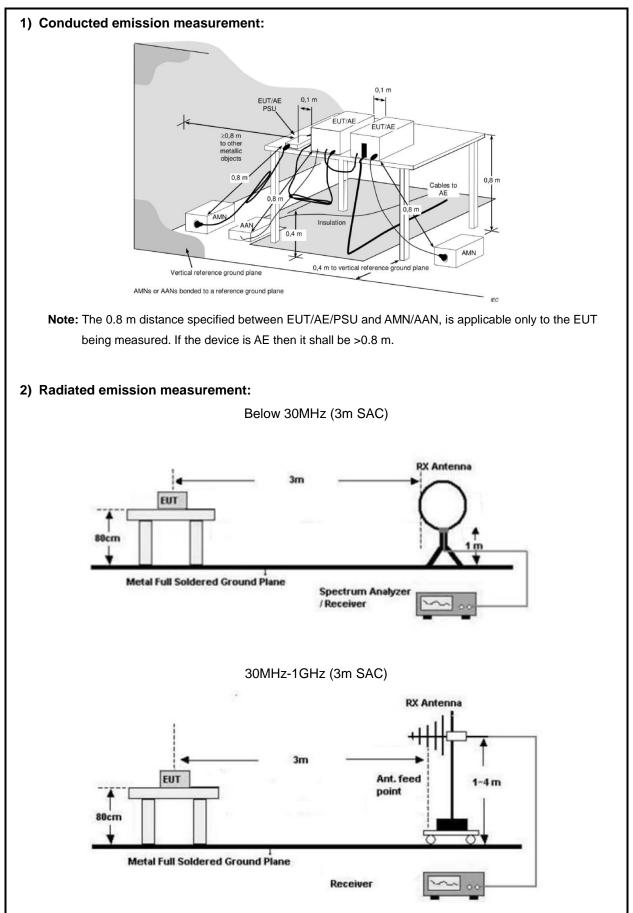
2.2 Test Auxiliary Equipment

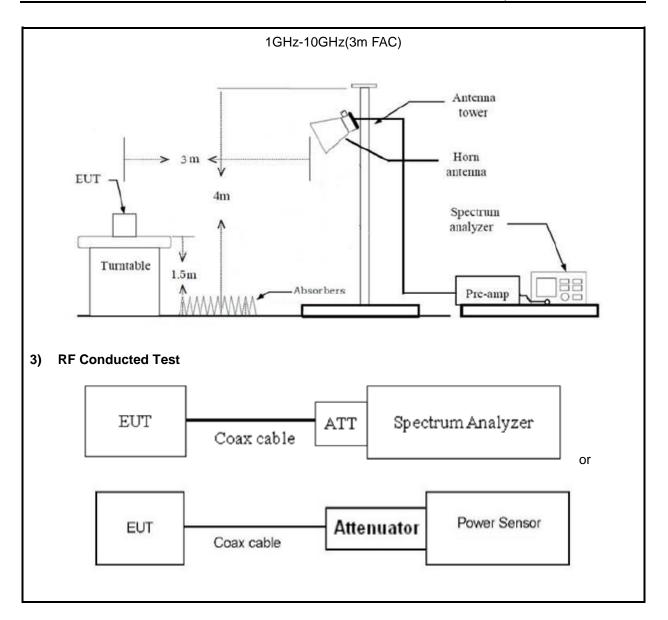

Manufacturer	Description	Model	Serial Number
Shenzhen Gospell Digital Technology Co.,Ltd.	AC adapter	G0753-540-060	1899-3540
D-Link Corporation	POE Injector	DPE-301GI	A1
Xiaomi Communications Co.,Ltd.	Wireless Router	R4AC	25090/C9TT74105

Note: above Auxiliary Equipment was provided by applicant.

2.3 Interconnecting Cables

Manufacturer	Description	Length(m)	From	То
Unknown	DC Power Cable	1.5	AC Adapter	POE Injector
Unknown	RJ45 Cable	0.3	POE Injector	EUT
Unknown	RJ45 Cable	10	POE Injector	Wireless Router


2.4 Block Diagram of Connection between EUT and AE



Note: for reference only, the actual connection setup used for testing please refer to the test photos.

2.5 Test Setup

2.6 Test Procedure

Conducted emission:

- 1. The E.U.T is placed on a non-conducting table 40cm from the vertical ground plane and 80cm above the horizontal ground plane (Please refer to the block diagram of the test setup and photographs).
- 2. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
- 3. Line conducted data is recorded for both Line and Neutral

Radiated Emission Procedure:

a) For below 30MHz

All measurements were made at a test distance of 3 m. The measured data was extrapolated from the test distance (3m) to the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz- 30 MHz) to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the

intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (test distance / specification distance).

2. Loop antenna use, investigation was done on the three antenna orientations (parallel, perpendicular, gound-parallel)

b) For 30MHz-1GHz:

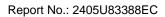
- 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
- 2. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.

c) For above 1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
- 2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
- 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
- 4. Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

RF Conducted Test:

- 1. The antenna port of EUT was connected to the RF port of the test equipment (Power Meter or Spectrum analyzer) through Attenuator and RF cable.
- 2. The cable assembly insertion loss of 7.0dB (including 6dB Attenuator and 1.0dB cable) was entered as an offset in the power meter. Note: Actual cable loss was unavailable at the time of testing, therefore a loss of 1.0dB was assumed as worst case. This was later verified to be true by laboratory. (if the RF cable provided by client, the cable loss declared by client)
- 3. The EUT is keeping in continuous transmission mode and tested in all modulation modes.


2.7 Measurement Method

Description of Test	Measurement Method	
AC Line Conducted Emissions	ANSI C63.10-2013 Section 6.2	
Maximum Conducted Output Power	ANSI C63.10-2013 Section 7.8.5	
20 dB Emission Bandwidth	ANSI C63.10-2013 Section 6.9.2	
99% Occupied Bandwidth	ANSI C63.10-2013 Section 6.9.3	
Channel separation	ANSI C63.10-2013 Section 7.8.2	
Number of hopping Frequency	ANSI C63.10-2013 Section 7.8.3	
Time of occupancy (dwell time)	ANSI C63.10-2013 Section 7.8.4	
100kHz Bandwidth of Frequency Band Edge	ANSI C63.10-2013 Section 7.8.7.2&6.10	
Radiated emission	ANSI C63.10-2013 Section 7.8.8&6.3&6.4&6.5&6.6	

2.8 Measurement Equipment

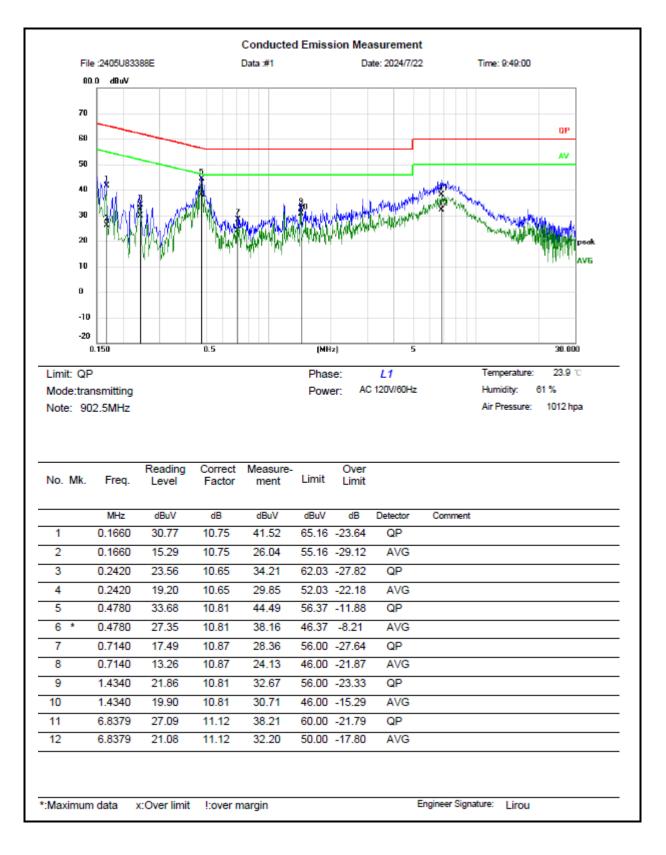
Manufacturer	Description	Model	Management No.	Calibration Date	Calibration Due Date		
Conducted Emission Test							
ROHDE& SCHWARZ	EMI TEST RECEIVER	ESR	101817	2024/6/4	2025/6/3		
R&S	LISN	ENV216	101748	2024/6/4	2025/6/3		
N/A	Coaxial Cable	NO.12	N/A	2024/6/4	2024/6/3		
Farad	Test Software	EZ-EMC	Ver. EMEC-3A1	/	/		
		Radiated Emission	n Test				
R&S	EMI test receiver	ESR3	102758	2024/6/4	2025/6/3		
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSV40-N	101608	2024/6/4	2025/6/3		
SONOMA INSTRUMENT	Low frequency amplifier	310	186014	2024/6/4	2025/6/3		
COM-POWER	preamplifier	PAM-118A	18040152	2024/6/4	2025/6/3		
BACL	Loop Antenna	1313-1A	4010611	2024/2/7	2027/2/6		
SCHWARZBECK	Log - periodic wideband antenna	VULB 9163	9163-872	2023/7/7	2026/7/6		
Astro Antenna Ltd	Horn antenna	AHA-118S	3015	2023/7/6	2026/7/5		
Oulitong	Band Reject Filter	OBSF-902-928-4 0S	OE02104362	2024/6/4	2025/6/3		
N/A	Coaxial Cable	N/A	NO.9	2024/6/4	2025/6/3		
N/A	Coaxial Cable	N/A	NO.14	2024/6/4	2025/6/3		
N/A	Coaxial Cable	N/A	NO.15	2024/6/4	2025/6/3		
N/A	Coaxial Cable	N/A	NO.16	2024/6/4	2025/6/3		
Audix	Test Software	E3	191218 V9	/	/		
		RF Conducted	Test				
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSV40	101419	2024/6/4	2025/6/3		
narda	6dB attenuator	603-06-1	N/A	2024/6/4	2025/6/3		

Note: All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or International standards.

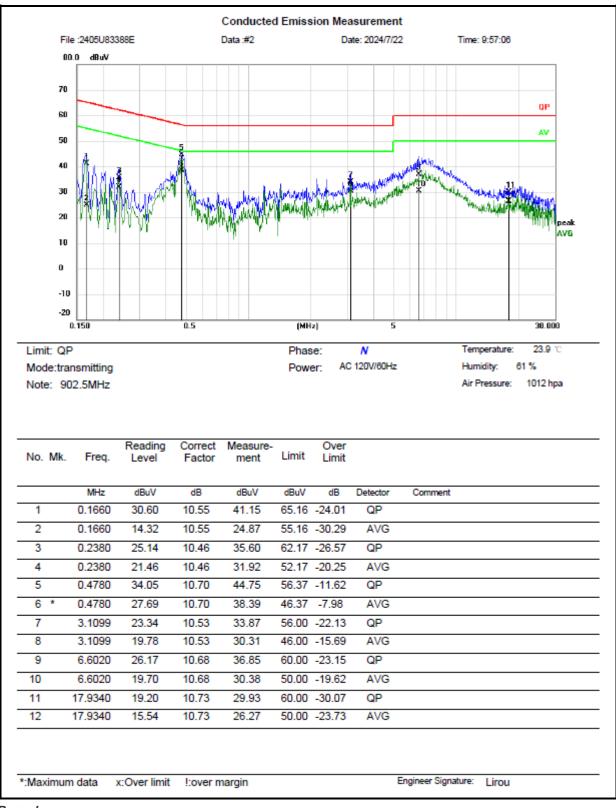
3 Test Results

3.1 Test Summary

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.247 (a)(1)(i)	20dB Emission Bandwidth	Compliance
-	99% Occupied Bandwidth	Report only
§15.247 (a)(1)(i)	Channel separation	Compliance
§15.247 (a)(1)(i)	Number of hopping Frequency	Compliance
§15.247 (a)(1)(i)	Time of occupancy (dwell time)	Compliance
§15.247(b)(2)	Maximum Conducted Output Power	Compliance
§15.247(d)	100kHz Bandwidth of Frequency Band Edge	Compliance
§15.205, §15.209, §15.247(d)	Radiated emission	Compliance


3.2 Limit

Test items	Limit
AC Line Conducted Emissions	See details §15.207 (a)
Conducted Output Power	For frequency hopping systems operating in the 902–928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.
	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.
20dB Emission Bandwidth Channel separation Number of hopping Frequency Time of occupancy (dwell time)	For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.
Spurious Emissions, 100kHz Bandwidth of Frequency Band Edge	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).



3.3 AC Line Conducted Emissions Test Data

Test Date:	2024-07-22	Test By:	Lirou Li
Environment condition:	Temperature: 23.9°C; Relative Humidity:61%; ATM Pressure: 101.2kPa		ssure: 101.2kPa

Remark:

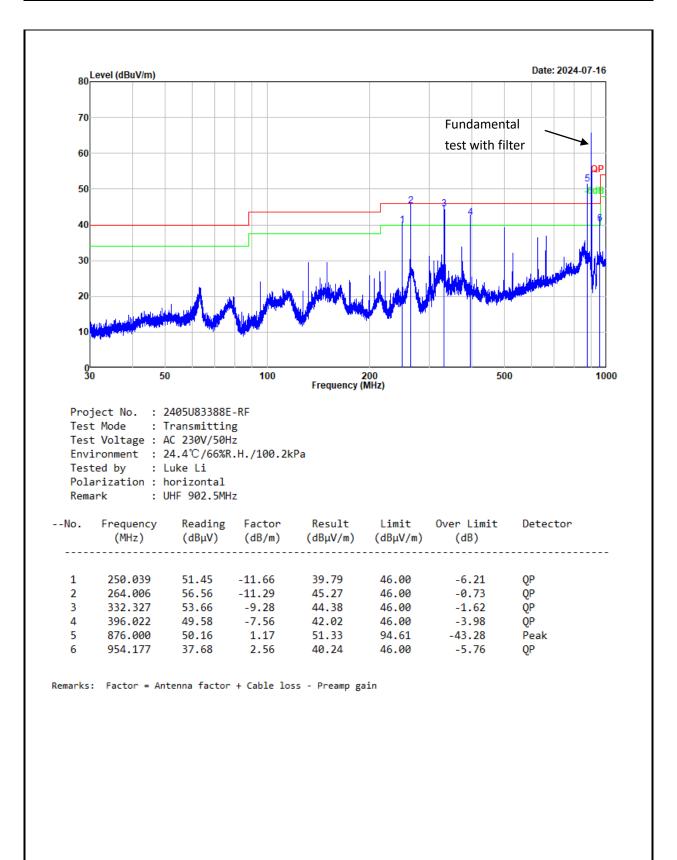
Measurement (dBuV)= Reading Level (dBuV) + Correct Factor(dB)

Correct Factor(dB)= LISN Voltage Division Factor (dB)+ Cable loss(dB)

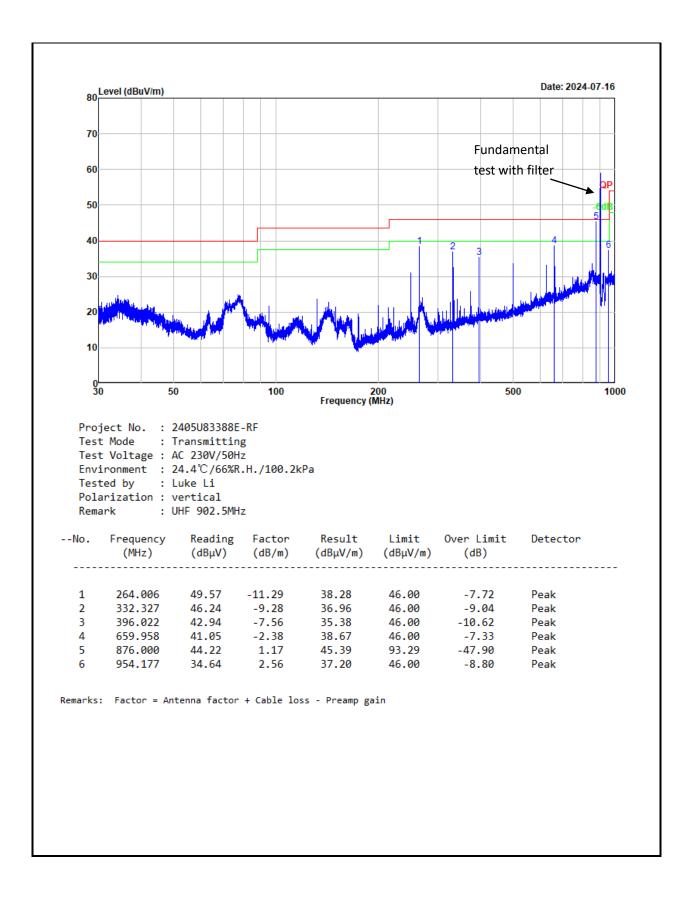
Over Limit = Measurement – Limit

3.4 Radiated emission Test Data

9 kHz-30MHz:


Test Date:	2024-07-16	Test By:	Luke Li
Environment condition:	Temperature: 24.4°C; Relative Humidity:66%; ATM Pressure: 100.2kPa		

For radiated emissions below 30MHz, there were no emissions found within 20dB of limit.



30MHz-1GHz:

Test Date:	2024-07-16	Test By:	Luke Li
Environment condition:	Temperature: 24.4°C; Relative Humidity:66%; ATM Pressure: 100.2		essure: 100.2kPa

Remark:

Result = Reading + Factor

Factor = Antenna factor + Cable loss - Amplifier gain

Over Limit = Result – Limit

Report Template: TR-4-E-038/V1.0

Fundamental:

Frequency (MHz)	Reading level (dBµV)	Polar (H/V)	Corrected Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
			902.5	ИНz			-
902.500	82.09	horizontal	32.52	114.61	/	/	Peak
902.500	80.77	vertical	32.52	113.29	/	/	Peak
			915M	lHz			
915.000	81.30	horizontal	32.66	113.96	/	/	Peak
915.000	79.35	vertical	32.66	112.01	/	/	Peak
927.5MHz							
927.500	81.30	horizontal	32.81	112.96	/	/	Peak
927.500	78.93	vertical	32.81	111.74	/	/	Peak

Note: Corrected factor=Antenna factor + Cable loss - Amplifier Gain

Corrected Amplitude=Reading level + Correct factor

Margin= Corrected Amplitude-Limit

Above 1GHz:

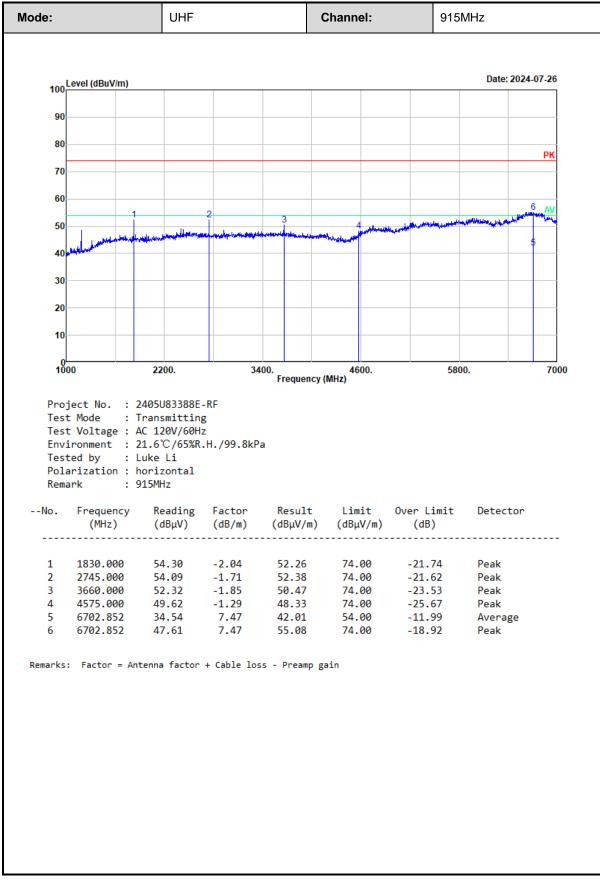
Test Date:	2024-07-26	Test By:	Luke Li
Environment condition:	Temperature: 21.6°C; Relative Humidity:65%; ATM Pressure: 99.8kPa		essure: 99.8kPa

Frequency (MHz)	Reading level (dBµV)	Polar (H/V)	Corrected Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
	-		902.5N	ИНz			
1805.000	53.23	horizontal	-2.00	51.23	74.00	-22.77	Peak
2707.500	52.59	horizontal	-1.71	50.88	74.00	-23.12	Peak
3610.000	53.56	horizontal	-1.77	51.79	74.00	-22.21	Peak
4512.500	49.51	horizontal	-2.23	47.28	74.00	-26.72	Peak
1805.000	54.37	vertical	-2.00	52.37	74.00	-21.63	Peak
2707.500	53.78	vertical	-1.71	52.07	54.00	-1.93	Average
2707.500	55.77	vertical	-1.71	54.06	74.00	-19.94	Peak
3610.000	53.97	vertical	-1.77	52.20	74.00	-21.80	Peak
4512.500	52.01	vertical	-2.23	49.78	74.00	-24.22	Peak
			915M	Hz			
1830.000	54.30	horizontal	-2.04	52.26	74.00	-21.74	Peak
2745.000	54.09	horizontal	-1.71	52.38	74.00	-21.62	Peak
3660.000	52.32	horizontal	-1.85	50.47	74.00	-23.53	Peak
4575.000	49.62	horizontal	-1.29	48.33	74.00	-25.67	Peak
1830.000	55.17	vertical	-2.04	53.13	74.00	-20.87	Peak
2745.000	55.17	vertical	-1.71	53.46	54.00	-0.54	Average
2745.000	56.98	vertical	-1.71	55.27	74.00	-18.73	Peak
3660.000	54.70	vertical	-1.85	52.85	74.00	-21.15	Peak
4575.000	52.60	vertical	-1.29	51.31	74.00	-22.69	Peak
	I	1	927.5N	ИНz			
1855.000	55.31	horizontal	-2.10	53.21	74.00	-20.79	Peak
2782.500	55.10	horizontal	-1.72	53.38	74.00	-20.62	Peak
3710.000	52.24	horizontal	-1.89	50.35	74.00	-23.65	Peak
4637.500	50.87	horizontal	-0.33	50.54	74.00	-23.46	Peak
1855.000	55.78	vertical	-2.10	53.68	74.00	-20.32	Peak

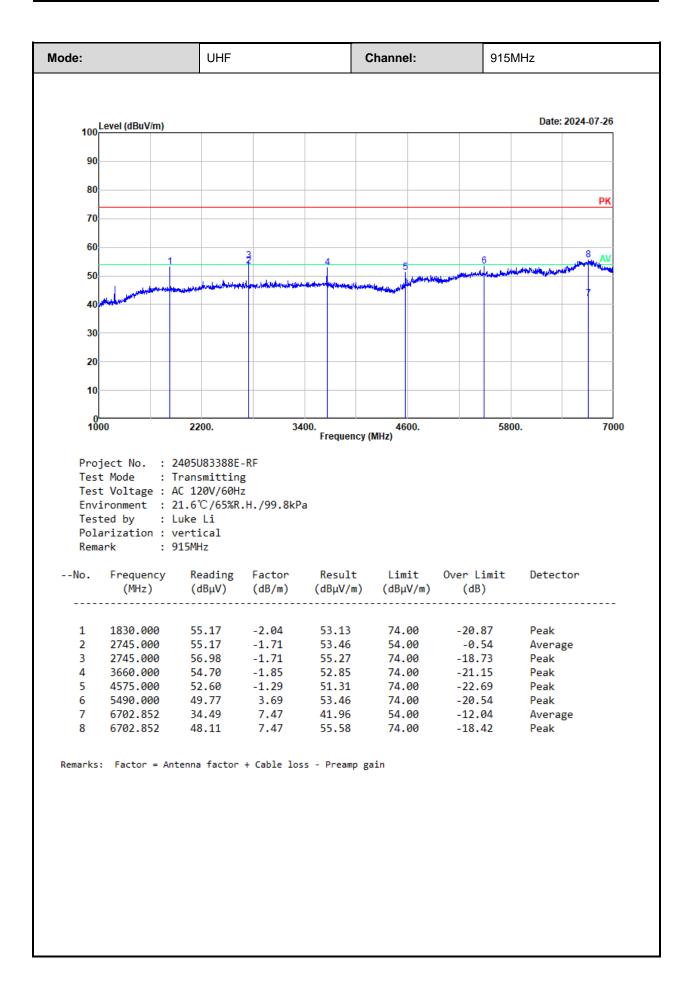
Report Template: TR-4-E-038/V1.0

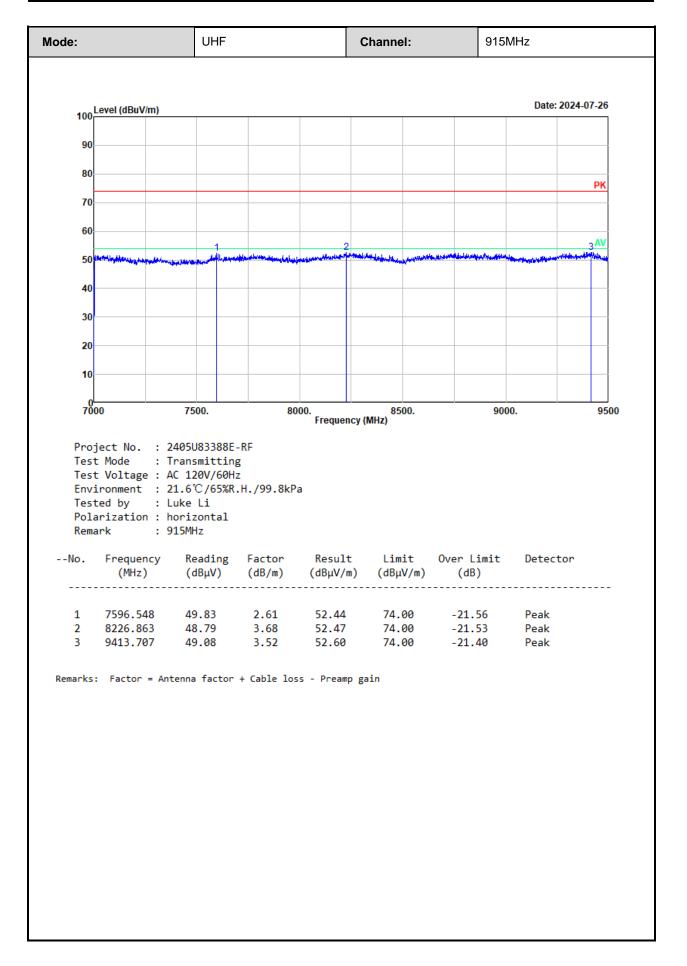
2782.500	54.68	vertical	-1.72	52.96	54.00	-1.04	Average
2782.500	56.69	vertical	-1.72	54.97	74.00	-19.03	Peak
3710.000	54.92	vertical	-1.89	53.03	74.00	-20.97	Peak
4637.500	52.28	vertical	-0.33	51.95	74.00	-22.05	Peak

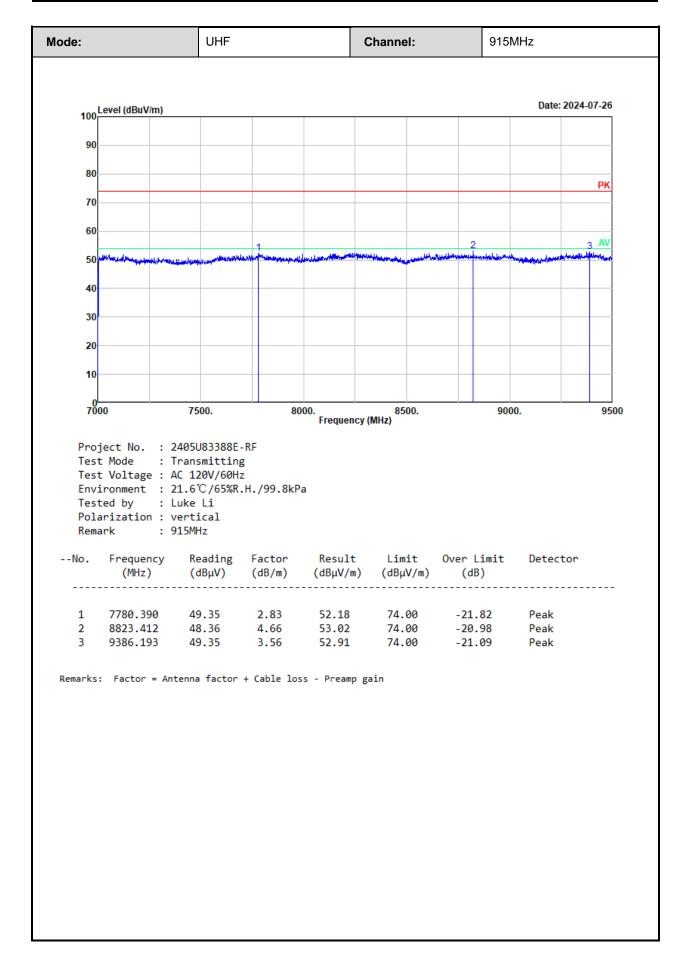
Remark:


Corrected Amplitude= Reading level + corrected Factor Corrected Factor = Antenna factor + Cable loss – Amplifier gain Margin = Corrected Amplitude – Limit

For the test result of Peak below the Peak limit more than 20dB, which can compliance with the average limit, just the Peak level was recorded.


The emission levels of other frequencies that were lower than the limit 20dB, not show in test report.


Test plot for example as below:



3.5 RF Conducted Test Data

Test Date:	2024-08-03	Test By:	Ryan Zhang	
Environment condition:	Temperature: 26.4°C; Relative Humidity:55%; ATM Pressure: 100.6kPa			

3.5.1 20 dB Emission Bandwidth and 99% Occupied Bandwidth

Test Modes	Test Channel	Test Frequency (MHz)	20 dB Bandwidth (kHz)	99% Occupied Bandwidth (kHz)
	Lowest	902.5	7.381	6.295
UHF	Middle	915.0	7.381	6.295
	Highest	927.5	7.453	6.295

3.5.2 Maximum Conducted Peak Output Power

Test Modes	Test Frequency (MHz)	Peak Conducted Output Power (dBm)	Limits (dBm)
	902.5	23.08	30
UHF	915.0	22.87	30
	927.5	22.62	30

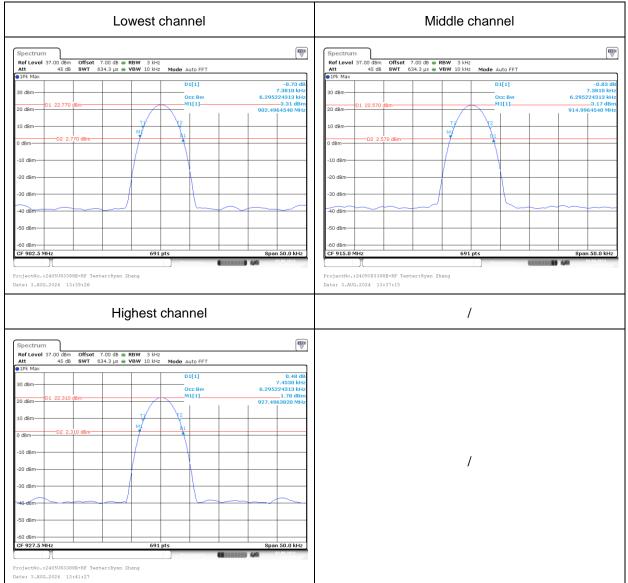
3.5.3 Channel separation

Test Modes	Test Frequency (MHz)	Channel Separation (kHz)	Limits (kHz)
	902.5	100	≥25
UHF	915.0	100	≥25
	927.5	100	≥25

3.5.4 Number of hopping Frequency

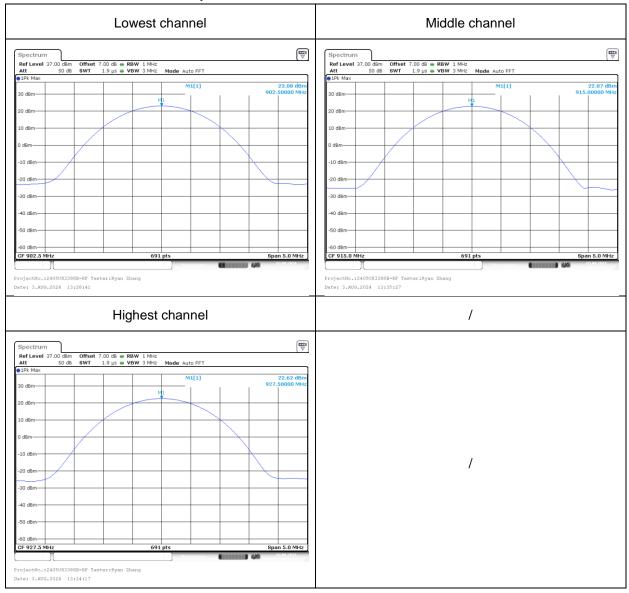
Test Modes	Frequency Range (MHz)	Number of Hopping Channel	Limits
UHF	902-928	251	≥50

3.5.5 Time of occupancy (dwell time)


Test Modes	Test Frequency (MHz)	Pulse time (s)	Total Number of hops	Result (s)	Limit (s)
UHF	915.0	0.397	1	0.397	0.400
Note: a. Dwell time=Pulse time (ms) * (Number of hops in the period specified in the requirements)					
b. period specified in the requirements is 20s					

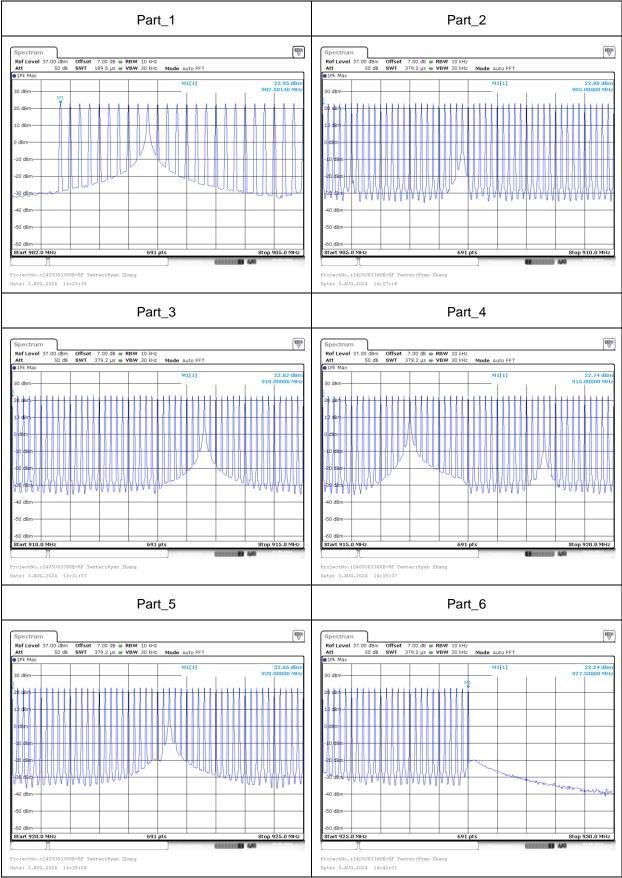
3.5.6 100 kHz Bandwidth of Frequency Band Edge

EUT Operation Mode	Test Modes	Band edge	Result (dB)	Limit (dB)
			Refer test plot	Refer test plot
Non-Hopping	UHF	Upper	Refer test plot	Refer test plot
Hopping	UHF	Lower	Refer test plot	Refer test plot
		Upper	Refer test plot	Refer test plot


Test Plots:

20 dB Emission Bandwidth&99% Occupied Bandwidth:

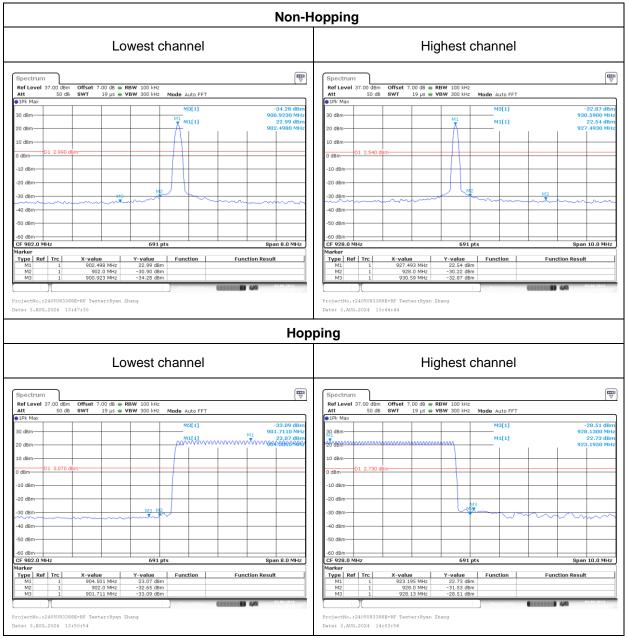
Maximum Conducted Peak Output Power:



Channel separation:

Lowest channel		Middle channel
Spectrum Ref Level 37.00 dBm Offset 7 30 dBm M1 20 dBm M1 40 dBm M1 -30 dBm M1 <t< th=""><th>7.00 86 BBW 30 HH: 52.4 Js 6 VBW 100 HH: Mode Auto FFT 0 01(1) 0.000 HH 0 02.500220 HH 0 02.50020 HH 0 02.500220 HH 0 02.50020 HH 0 02.50</th><th>Rof Level 37.00 dBm Offset 7.00 dB RBW 30 kHz Att 50 dB SWT 62.4 µS VBW 100 kHz Made Auto FFT D1[1] 0.00 dB; 100.000 kHz S0 dB MI D1[1] 0.00 dB; 100.000 kHz 2.7 4 dB; 914.999930 MHz 2.7 4 dB; 914.999930 MHz 20 dB; 914.999930 MHz 2.0 dB; 914.999930 MHz 914.999930 MHz 914.999930 MHz 2.0 dB; 914.999930 MHz 914.999930 MHz 914.999930 MHz 2.0 dB; 914.999930 MHz 914.99930 MHz 914.99914 MZ 914.99930 MHz 914.99914 MZ</th></t<>	7.00 86 BBW 30 HH: 52.4 Js 6 VBW 100 HH: Mode Auto FFT 0 01(1) 0.000 HH 0 02.500220 HH 0 02.50020 HH 0 02.500220 HH 0 02.50020 HH 0 02.50	Rof Level 37.00 dBm Offset 7.00 dB RBW 30 kHz Att 50 dB SWT 62.4 µS VBW 100 kHz Made Auto FFT D1[1] 0.00 dB; 100.000 kHz S0 dB MI D1[1] 0.00 dB; 100.000 kHz 2.7 4 dB; 914.999930 MHz 2.7 4 dB; 914.999930 MHz 20 dB; 914.999930 MHz 2.0 dB; 914.999930 MHz 914.999930 MHz 914.999930 MHz 2.0 dB; 914.999930 MHz 914.999930 MHz 914.999930 MHz 2.0 dB; 914.999930 MHz 914.99930 MHz 914.99914 MZ 914.99930 MHz 914.99914 MZ
Spectrum Ref Level 37.00 dBm Offset 7 Att 30 dBm 10 dBm 0 dBm 10 dBm -20 dBm -30 dBm -40 dBm -50 dB -50 dB -50 dBm	Highest channel	

Number of hopping Frequency



Time of occupancy (dwell time)

Pulse		Numbers of Pulse
Spectrum Ref Level 37,00 dBm Offset 7.00 dB @ RBW 10 kHz Att 50 dB @ SWT 2 s @ VBW 30 kHz ©IPk Max 0 1[1] 30 dBm M1[1]	0.55 dB 397.10 ms -47.62 dBm	Spectrum Image: Constraint of the second secon
20 dBm	1.35362 s	20 dkm
0 dBm		0 dBm
-20 dBm		-20 dem
-40 dem	an a	
-60 dBm CF 915.0 MHz 691 pts	200.0 ms/	60 dBm
ProjectNo.:2405U03308B-RF Tester:Ryan Shang Date: 3.AUG.2024 14152:04		ProjectNo.:2405U833888-FF TesteriRyan Shang Date: 3.AUG.2024 14:49:20

100kHz Bandwidth of Frequency Band Edge:

4 Test Setup Photo

Please refer to the attachment 2405U83388E Test Setup photo.

5 E.U.T Photo

Please refer to the attachment 2405U83388E External photo and 2405U83388E Internal photo.

---End of Report---