

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755-27521059 Fax: +86-755-27521011 http://www.sz-ctc.org.cn

Т	EST REPORT				
Report No. ······:	CTC20230802E02				
FCC ID	2A6MSZ36SPRO				
Applicant:	Shenzhen Zhichuang All Technology Co., Ltd				
Address	D401, Ganghong Complex Building, Building 2, No.7, Xiangye Road, Xialilang Community, Nanwan Street, Longgang District, Shenzhen China				
Manufacturer:	Shenzhen Zhichuang All Technology C	Co., Ltd			
Address	D401, Ganghong Complex Building, B Road, Xialilang Community, Nanwan S Shenzhen China				
Product Name·····:	Bluetooth Earbuds				
Trade Mark·····:	sanag				
Model/Type reference······:	Z36S Pro				
Listed Model(s) ·····:	/				
Standard:	FCC CFR Title 47 Part 15 Subpart C	Section 15.247			
Date of receipt of test sample:	Apr. 10, 2023				
Date of testing	Apr. 10, 2023 to Apr. 23, 2023				
Date of issue	Apr. 24, 2023				
Result:	PASS				
Compiled by:		T: Jinny			
(Printed name+signature)	Jim Jiang	Jim Jiang Zric zhang Jemas			
Supervised by:		This shang			
(Printed name+signature)	Eric Zhang				
Approved by:					
(Printed name+signature)	Totti Zhao	/*			
This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client					

should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1.	TEST	SUMMARY	3
1	1.	Test Standards	3
1	2.	REPORT VERSION	3
1	3.	TEST DESCRIPTION	3
1	4.	TEST FACILITY	4
1	5.	MEASUREMENT UNCERTAINTY	4
1	6.	ENVIRONMENTAL CONDITIONS	5
2.	GEN	ERAL INFORMATION	6
2	2.1.	CLIENT INFORMATION	6
2	2.2.	GENERAL DESCRIPTION OF EUT	6
2	2.3.	Accessory Equipment Information	
2	2.4.	OPERATION STATE	8
2	2.5.	Measurement Instruments List	9
3.	TEST	ITEM AND RESULTS	11
3	8.1.	CONDUCTED EMISSION	11
3	3.2.	RADIATED EMISSION	14
3	8.3.	BAND EDGE EMISSIONS (RADIATED)	
3	8.4.	BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	
3	8.5.	Bandwidth	45
3	8.6.	CHANNEL SEPARATION	50
3	3.7.	NUMBER OF HOPPING CHANNEL	-
3	8.8.	DWELL TIME	
3	8.9.	PEAK OUTPUT POWER	
3	8.10.	DUTY CYCLE	
3	8.11.	ANTENNA REQUIREMENT	62

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

RSS-247 Issue 2: Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Date of issue	Description	
01	Apr. 24, 2023	Original	

1.3. Test Description

FCC Part 15 Subpart C (15.247)/ RSS-247 Issue 2					
Test Item	Standard	Decult	Test Engi-		
rest nem	FCC IC		Result	neer	
Antenna Requirement	15.203	/	Pass	Jim Jiang	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Jim Jiang	
Restricted Bands	15.205	RSS-Gen 8.10 Pas		Jim Jiang	
Hopping Channel Separation	15.247(a)(1)	RSS-247 5.1 (b)	Pass	Jim Jiang	
Dwell Time	15.247(a)(iii)	RSS-247 5.1 (d)	Pass	Jim Jiang	
Peak Output Power	15.247(b)(1)	RSS-247 5.4 (b)	Pass	Jim Jiang	
Number of Hopping Frequency	15.247(a)(iii)	RSS-247 5.1 (d)	Pass	Jim Jiang	
Band Edge Emissions	15.247(d)	RSS-247 5.5	Pass	Jim Jiang	
Radiated Spurious Emission	15.247(d)&15.209 RSS-247 5.5& RSS-Gen 8.9		Pass	Jim Jiang	
20dB Bandwidth	15.247(a)	RSS-247 5.1 (b)	Pass	Jim Jiang	

Note: The measurement uncertainty is not included in the test result.

CTC Laboratories, Inc.

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C~27°C
Relative Humidity:	40%~60%
Atmospheric Pressure:	101kPa

ΕN

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Shenzhen Zhichuang All Technology Co., Ltd
Address:	D401, Ganghong Complex Building, Building 2, No.7, Xiangye Road, Xialilang Community, Nanwan Street, Longgang District, Shenzhen China
Manufacturer:	Shenzhen Zhichuang All Technology Co., Ltd
Address:	D401, Ganghong Complex Building, Building 2, No.7, Xiangye Road, Xialilang Community, Nanwan Street, Longgang District, Shenzhen China

2.2. General Description of EUT

Product Name:	Bluetooth Earbuds		
Trade Mark:	sanag		
Model/Type reference:	Z36S Pro		
Listed Model(s):	/		
Model Difference:	/		
Power supply:	Charging box: DC5V 1A from External adapter DC3.7V 250mAh from Battery Earphone: DC5V 70mA from Charging box DC3.7V 35mAh from Battery		
Hardware version:	/		
Software version:	/		
Bluetooth 5.3/ BR+EDR			
Modulation:	GFSK, π/4-DQPSK		
Operation frequency:	2402MHz~2480MHz		
Channel number:	79		
Channel separation:	1MHz		
Antenna type:	Chip Antenna		
Antenna gain:	1.75dBi		

2.3. Accessory Equipment Information

Equipment Information					
Name	Model	S/N	Manufacturer		
Notebook	ThinkPad T460s	/	Lenovo		
Cable Information					
Name	Shielded Type	Ferrite Core	Length		
USB Cable	Unshielded	NO	100cm		
Test Software Information					
Name	Version	1	/		
FCC_assist	1.0.2.2	1	/		

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT EDR, 79 channels are provided to the EUT. Channels 00/39/78 were selected for testing.

Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2403
:	:
38	2440
39	2441
40	2442
:	÷
77	2479
78	2480

Note: The display in grey were the channel selected for testing.

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.5. Measurement Instruments List

Tonsc	Tonscend JS0806-2 Test system					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	MXA Signal An- alyzer	Keysight	N9020A	MY46471737	Dec. 16, 2023	
2	Spectrum Ana- lyzer	R&S	FSU26	100105	Dec. 16, 2023	
3	Spectrum Ana- lyzer	R&S	FSV40-N	101331	Mar. 14, 2024	
4	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 16, 2023	
5	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 16, 2023	
6	Power Sensor	Keysight	U2021XA	MY55130004	Mar. 14, 2024	
7	Power Sensor	Keysight	U2021XA	MY55130006	Mar. 14, 2024	
8	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 16, 2023	
9	High and low temperature box	ESPEC	MT3035	/	Mar. 24, 2024	
10	JS1120 RF Test system	TONSCEND	v2.6	/	/	

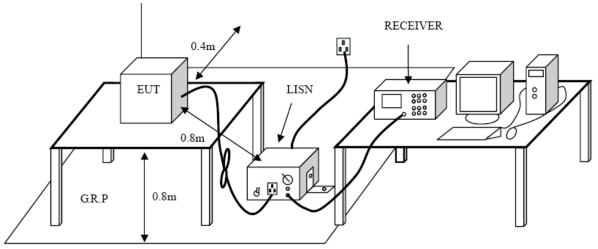
Radia	Radiated emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024	
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 01, 2024	
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 16, 2023	
4	Broadband Premplifier	SCHWARZBECK	BBV9743B	259	Dec. 16, 2023	
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 16, 2023	
6	3m chamber 3	YIHENG	EE106	/	Sep. 09, 2023	

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下a: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

Condu	Conducted Emission											
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until							
1	LISN	R&S	ENV216	101112	Dec. 16, 2023							
2	LISN	R&S	ENV216	101113	Dec. 16, 2023							
3	EMI Test Re- ceiver	R&S	ESCS30	100353	Dec. 16, 2023							
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 16, 2023							
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 16, 2023							

Note: The Cal. Interval was one year.

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8

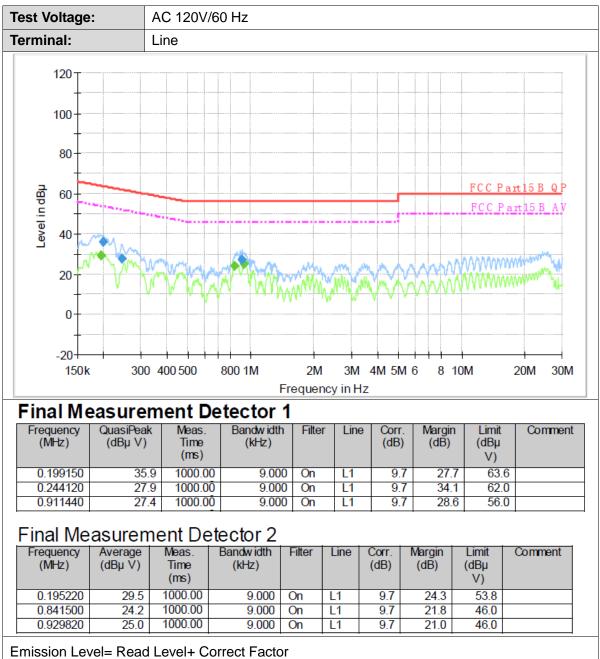
	Limit (d	lBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

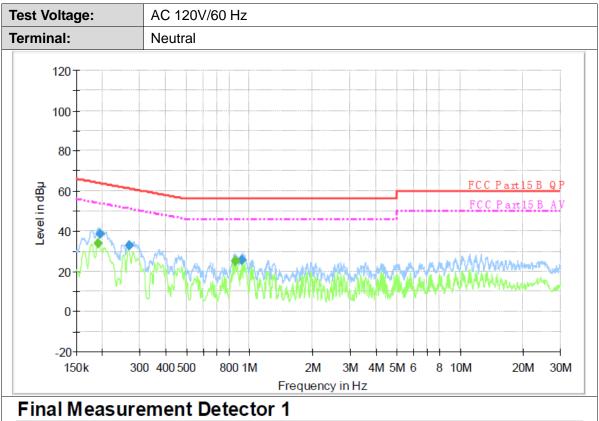
Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.


Test Mode

Please refer to the clause 2.4.


CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 下or anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

Test Results

	Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
ſ	0.195000	38.5	1000.00	9.000	On	Ν	10.0	25.3	63.8	
	0.267230	33.1	1000.00	9.000	On	Ν	10.0	28.1	61.2	
	0.915540	25.9	1000.00	9.000	On	Ν	10.0	30.1	56.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.190500	34.1	1000.00	9.000	On	Ν	10.0	19.9	54.0	
0.858370	25.4	1000.00	9.000	On	N	10.0	20.6	46.0	
0.858470	25.3	1000.00	9.000	On	Ν	10.0	20.7	46.0	

Emission Level= Read Level+ Correct Factor

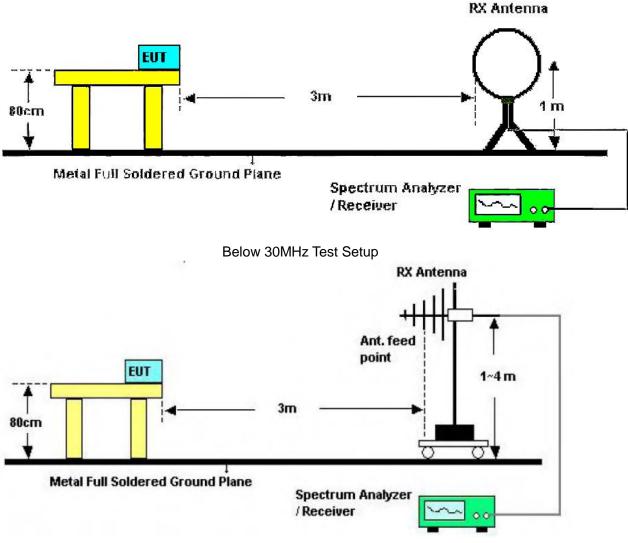
3.2. Radiated Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS - Gen 8.9

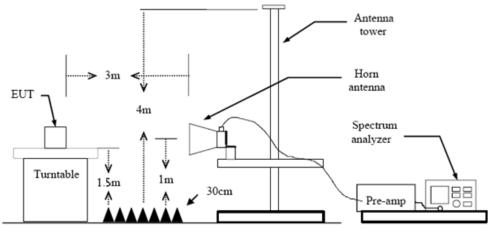
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Frequency (MHz)	dB(uV/m) (at 3 meters)					
Frequency (MHZ)	Peak	Average				
Above 1000	74	54				


Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)=20log Emission Level (uV/m).


Test Configuration

30-1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

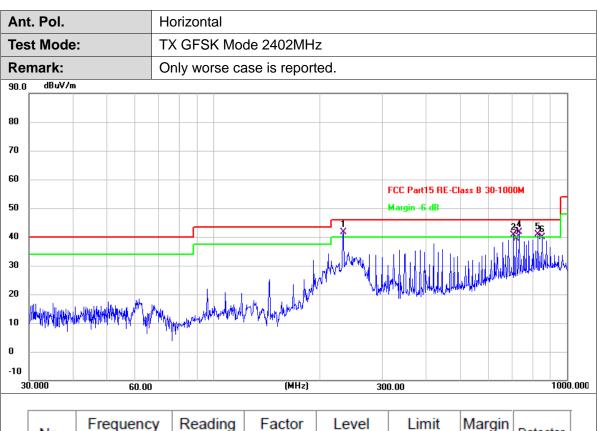
If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10^{th} harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

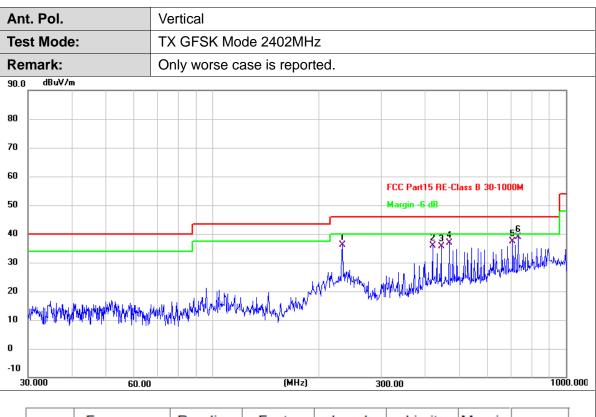
RBW=1MHz, VBW=3MHz RMS detector for Average value.

Test Mode


Please refer to the clause 2.4.

Test Result

9 KHz~30 MHz


From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1!	232.5318	56.66	-15.13	41.53	46.00	-4.47	QP
2 !	706.6997	45.95	-5.44	40.51	46.00	-5.49	QP
3	719.1992	44.69	-5.26	39.43	46.00	-6.57	QP
4 *	731.9202	46.74	-5.08	41.66	46.00	-4.34	QP
5 !	827.4934	44.62	-3.69	40.93	46.00	-5.07	QP
6	851.0353	43.11	-3.33	39.78	46.00	-6.22	QP

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	233.3487	51.21	-15.11	36.10	46.00	-9.90	QP
2	419.1081	46.61	-10.70	35.91	46.00	-10.09	QP
3	443.2941	45.98	-10.25	35.73	46.00	-10.27	QP
4	467.2349	46.63	-9.80	36.83	46.00	-9.17	QP
5	706.6999	42.89	-5.44	37.45	46.00	-8.55	QP
6 *	731.9203	43.91	-5.08	38.83	46.00	-7.17	QP

Ant. Pol.	Horizontal						
Test Mode:	TX GFSK Mode 2402MHz						
Remark:	No report for the emission which more than 20 dB below the pre- scribed limit.						

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1 *	4803.796	29.10	2.16	31.26	54.00	-22.74	AVG
2	4803.810	42.12	2.16	44.28	74.00	-29.72	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

	Ant. Pol.
	Test Mode:
pre-	Remark:
or	Remark:

No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
1 *	4803.880	28.96	2.56	31.52	54.00	-22.48	AVG
2	4803.892	41.28	2.56	43.84	74.00	-30.16	peak

Remarks:

An	t. Pol.	ŀ	Horizontal					
Tes	st Mode	: Т	TX GFSK Mode 2441MHz					
Re	mark:		lo report for t cribed limit.	he emissio	n which mor	e than 20 d	B below t	the pre-
	No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dBu							
	No.						-	Detector

2 *

4882.022

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

2.31

31.19

54.00

-22.81

AVG

28.88

٩n	t. Pol.		Vertical					
ſes	st Mode	:	TX GFSK Mo	de 2441MH	Z			
۲e	mark:		No report for scribed limit.	the emissior	n which mor	e than 20 c	B below	the pre-
		Frequenc	Reading	Factor	Level	Limit	Margin	
	No.	Frequenc (MHz)	y Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
	No.		(dBm)				-	Detector

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.		Horizontal					
Fest Mode	:	TX GFSK Mo	de 2480MH	Z			
Remark:		No report for t scribed limit.	the emissio	n which moi	e than 20 d	B below	the pre-
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.						-	Detector peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant	. Pol.		Vertical					
ſes	t Mode	:	TX GFSK Mo	de 2480MH	Z			
٦en	nark:		No report for t scribed limit.	the emissio	n which moi	re than 20 o	dB below	the pre-
	Frequenc							
	No.	Frequenc (MHz)	/ Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
	No.		(dBm)				· · ·	Detector AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

nt. Pol.	Horizontal						
st Mode):	TX π/4-DQF	SK Mode 2	402MHz			
emark:		No report for scribed limit.	the emissio	n which moi	e than 20 d	B below	the pre-
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.						-	Detector

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	t. Pol.		/ertical					
Tes	st Mode	:	ΓΧ π/4-DQP	SK Mode 24	402MHz			
Rer	mark:		No report for t scribed limit.	he emission	n which moi	re than 20 o	dB below	the pre-
[No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
	No.		· · ·					Detector AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Po	ol.	Н	orizontal					
Test M	lode:	Т	X π/4-DQP	SK Mode 2	441MHz			
Remark: No report for the emission which mession which messi						e than 20 c	B below	the pre-
N	0.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
No.			· · · ·				-	Detector AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t. Pol.	١	/ertical					
Tes	st Mode	: 7	TX π/4-DQP	SK Mode 2	441MHz			
Re	mark:		No report for t scribed limit.	the emission	n which moi	e than 20 c	dB below	the pre-
							Margin (dB) Detector	
	No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	-	Detector
	No.						-	Detector AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant	t. Pol.	н	orizontal					
Tes	st Mode	: Т	X π/4-DQP	SK Mode 24	480MHz			
Rei	mark:		o report for t cribed limit.	he emissior	n which mor	e than 20 c	IB below	the pre-
	No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
	No.		· · · ·				-	Detector peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

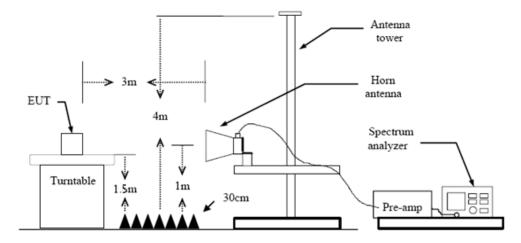
2.Margin value = Level -Limit value

Ant	Ant. Pol.		/ertical						
Tes	t Mode	: Т	X π/4-DQP	SK Mode 24	480MHz				
Rer	mark:		lo report for t cribed limit.	he emissior	n which moi	re than 20 o	dB below	the pre-	
	No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	
	No.							Detector peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3.3. Band Edge Emissions (Radiated)


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

Restricted Frequency Band	(dBuV/n	n)(at 3m)
(MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

Conducted band edge limit: The highest point of the operating frequency waveform down 20dB

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.10 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

(1) Radiation Test

ш. г	ol.		F	Ioriz	ontal										
est N	lode:		C	GFSł	< Mo	de 2	2402MI	Ηz							
20.0	dBu¥/m	1											Ì	1	
10															
00															
											FC	C Part15	C - Above	1G PK	<u>A</u>
															11
											FC	C Part15	C - Above	16 AV	
0													1 X		Ħ
	man	and the second second second second		h.M.g.h.e	manana			-	angaan Madaanada	alp-antitione		-	2	and another	ليا أ
0															
0 -															
0.0 2286.2	200 22	98.20 2	310.20	232	2.20	233	4.20	(MHz)	235	8.20	2370.2	1 23	B2.20 2	2394.20	240
											I		T		
N	lo.	Freque (MH			eadir dBu∖		Fac (dB/		Lev (dBu		Lii (dBu	nit V/m)	Margir (dB)	Dete	ector
	lo. 1		z)	(0		/)		m)	1	V/m)	(dBu			Dett	ector ak

nt. Pol.			cal									
est Mod	ə:	GFS	GFSK Mode 2402MHz									
D.O dBu¥∕i	m						1					
0												
						FCC Part15	C - Above 10	G PK				
								٨				
						FCC Part15	C - Above 10	AV				
							1 X					
							2 2					
		ana tana a	Marrie Marrie Marrie Constant	8								
.0 2286.800 2	2298.80 2310.		22.80 23	34.80 (MHz)	2358.80	2370.80 238	32.80 23	94.80 240				
				,								
No.	Frequen (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector				
No.		(Detector peak				

			zontal					
est Mode:			SK Mode 2	2480 MHz				
) dBuV/n	1			1			1	1
<u> </u>						FCC D-utE	C 41 10	DK
						FLL Part15	C - Above 16	(PK
						FCC Part15	C - Above 16	AV
X								
2			to the design of	A second second second	Martineta - un Marta mara	manan la challen an a star		and when the second
74.000 2	486.00 2498.	00 25	510.00 252	22.00 (MHz)	2546.00	2558.00 257	70.00 258	32.00 259
		00 2.			2346.00	2008.00 207	2.00 2.00	2.00 200
								2.00 200
No.	Frequence (MHz)	cy F	Reading (dBuV)	Factor (dB/m)	Level	Limit (dBuV/m)	Margin	Detector
No.	Frequence	y F			Level	Limit	Margin	
	Frequence (MHz)	cy F	(dBuV)	(dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector

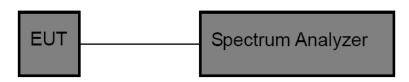
it. Pol.			Ve	ertical								
st	Mode	:	GF	SK Mo	de 2	2480 M⊢	lz					
0	dBu¥/m											
F												
╞												
┝										FCC Part1	5 C - Above 16	i PK
	Α											
										FCC Part1	5 C - Above 10	AV
╞	1 X											
┝	3											
	w w	hand and the state of the state	war der ver	water and the second	limahan i	and an and a second	n	at the production of the	*****	anterio de Antoneo en este	monantestante	an ka ja fan a stan an geraan de saar
	3.400 24	85.40 2497	7.40	2509.40	252	21.40 (M	Hz)	254	5.40	2557.40 2	569.40 258	31.40 259
	No.	Frequer (MHz	- 1	Readi (dBu\		Facto (dB/m		Lev (dBu)		Limit (dBuV/m	Margin) (dB)	Detector
	1	2483.5		15.7	· ·	31.24	· _	46.		74.00	-27.06	peak
	2 *	2483.5		4.19		31.24		35.	43	54.00	-18.57	AVG
						-		-				

nt. Pol.		Horiz	contal										
est Mode	:	π /4-	π /4-DQPSK Mode 2402MHz										
0.0 dBu¥/m					i								
0													
0													
						FCC D-stif	C - Above 1G	DK					
						FLL Partio	L - ADOVE TG						
						FCC Part15	C - Above 1G	AV					
							1 X						
		****				e in an	2	munal los					
1	298.80 2310.	80 232	22.80 233	4.80 (MHz)	2358.80	2370.80 238	2.80 239	14.80 24 0					
.0	298.80 2310.	80 232	22.80 233	4.80 (MHz)	2358.80	2370.80 238	2.80 239	14.80					
	-			- ·									
No.	Frequen (MHz)		eading dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector					
No.		(Detector peak					

nt. Pol.	I		Ve	rtical										
est Mod	de:		π,	/4-DQF	SK I	Mode 24	021	MHz						
20.0 dBuV	/m			Î		1						1		
0														
)														
										FC	C Part15	C - Above	1G PK	
)														0
)										ECI	CPart15	C - Above	16 AV	A -
)												1 X	-	
ı												2		4
)	and the second secon	****	*****	en se	*******		~~~	n Mantanana	ىيەلەسىھەمەر يۈلەللىق.	- Andrewski - Marine - Ma	******			(have
ı														
,														
0.0														
2288.600	2300.60	2312.	.60	2324.60	233	36.60 (M	Hz)	236	0.60	2372.60	238	84.60	2396.6	0 2
No.		quen MHz)	- 1	Read (dBu	-	Facto (dB/m		Le (dBu		Lir (dBu	nit V/m)	Margi (dB)		etecto
1	23	90.00)0	15.1	9	30.84	1	46	.03	74.	.00	-27.9	7	beak
2 *	23	90.00)0	4.64	4	30.84	1	35	.48	54.	.00	-18.5	2	٩VG
2 *	23	90.00)0	4.64	4	30.84	1	35.	.48	54.	.00	-18.5	2	47(

t. Pol.		Horizontal					
st Mod	e:	π /4-DQPSK	Mode 2480	MHz			
) dBu¥∕	m						
					500 D		
					FUC Part15	C - Above 10	РК
					FCC Part15	C - Above 10	AV
	1 X						
	2			and a second		hand and have been a second	
474.000	2486.00 2498.00	2510.00 25	22.00 (MHz)	2546.00	2558.00 257	70.00 250	32.00 259
No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	15.28	31.24	46.52	74.00	-27.48	peak
2 *	2483.500	4.41	31.24	35.65	54.00	-18.35	AVG

		Vertio	cal						
st Mode	2	π /4-	DQPSK	Mode 248	0MHz				
).0 dBuV/m	1								
)									
)									
							FCC Part15	C - Above 1G	i PK
							FCC Part15	C - Above 1G	AV
	l X								
mouth lit	humanananan	ministered	kartere, se karren arde	tragen to the Amountainte	angen aleman angkaska dage	a de la construcción de la constru La construcción de la construcción d	an suite and a second suite of the second	test of the sector of the sect	hardeld-march-marca-1866
D 2473.400 2	485.40 2497.4	40 250)9. 4 0 25:	21.40 (MH;	z) 254	5.40	2557.40 256	69. 4 0 258	31.40 2593
	_								
No.	Frequence (MHz)	-	eading dBuV)	Factor (dB/m)			Limit (dBuV/m)	Margin (dB)	Detector
No.		(V/m)			Detector peak
	(MHz)	0	dBuV)	(dB/m)	(dBu	V/m) 78	(dBuV/m)	(dB)	



3.4. Band edge and Spurious Emissions (Conducted)

Limit

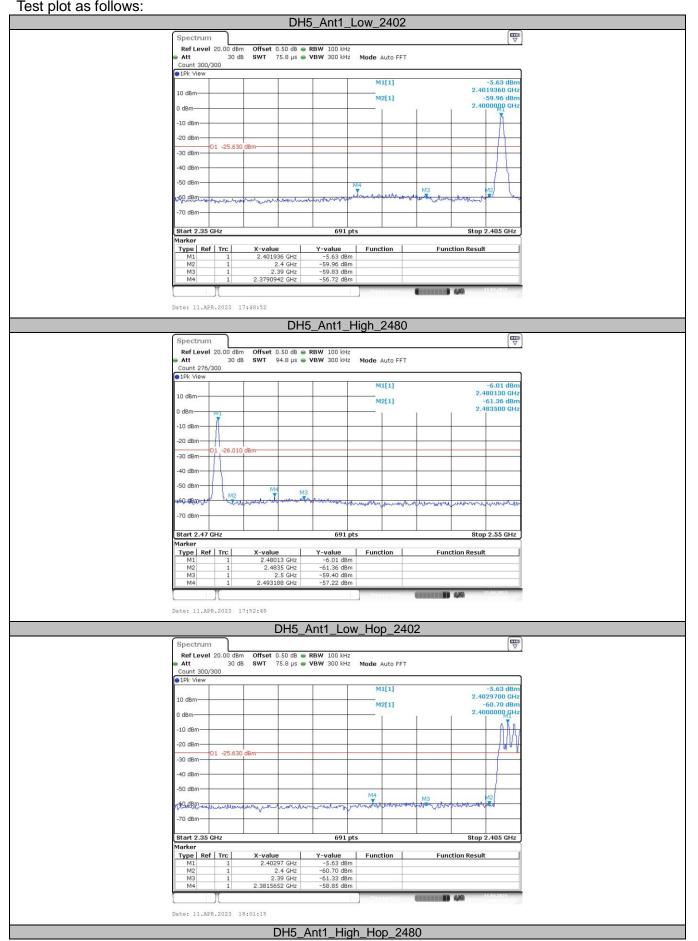
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Test Configuration

Test Procedure

- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss 1. was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: 3.
 - RBW = 100 kHz, VBW \geq RBW, scan up through 10th harmonic.
- Sweep = auto, Detector function = peak, Trace = max hold
- Measure and record the results in the test report. 4.

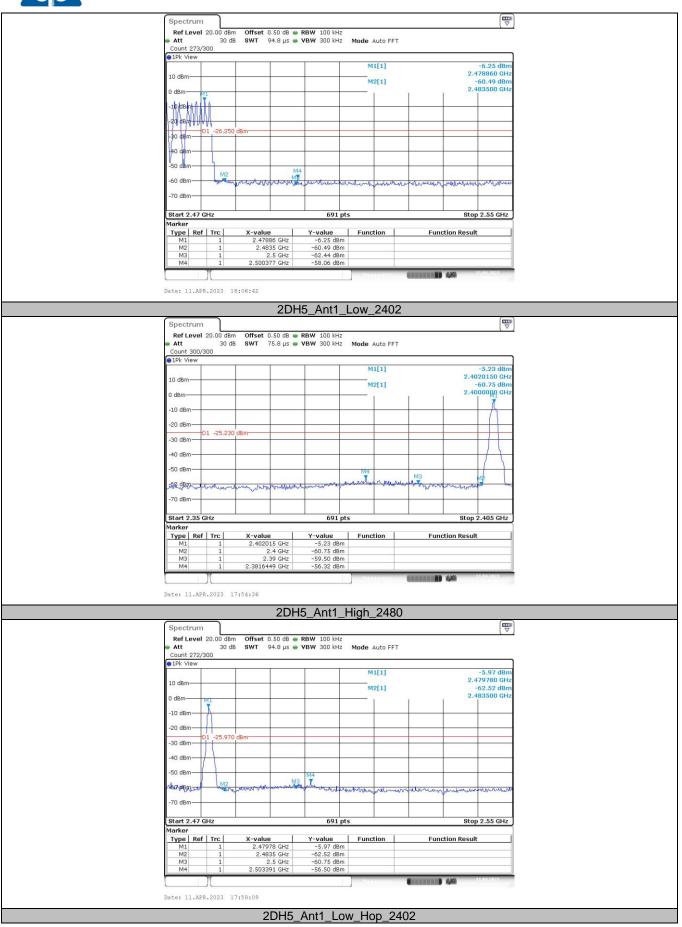
Test Mode


Please refer to the clause 2.4.

Test Results

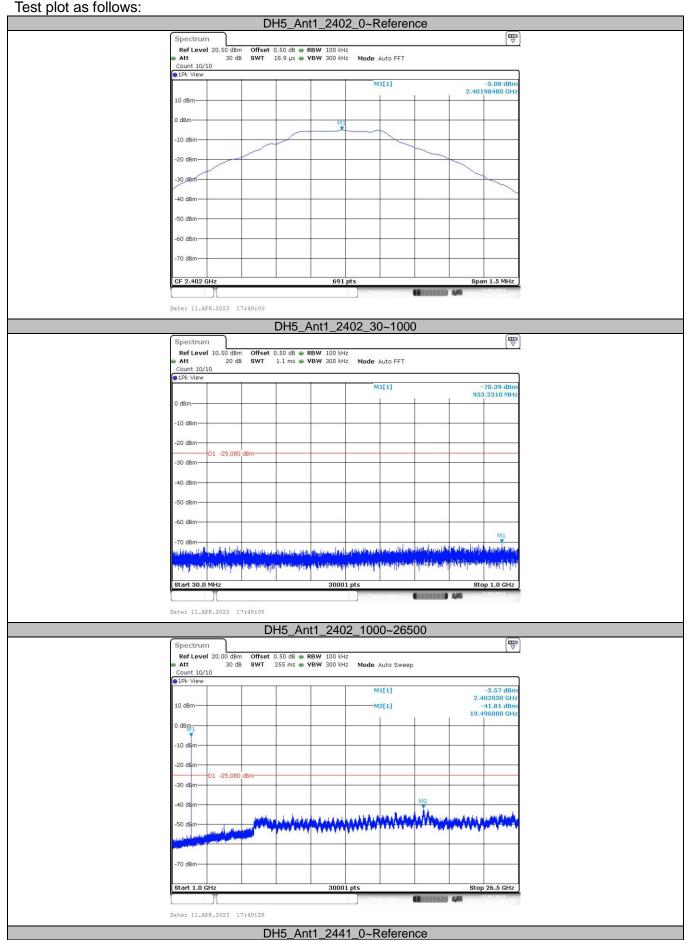
(1) Band edge Conducted Test

Test Mode	Ch Name	Frequency (MHz)	Ref Level [dBm]	Result [dBm]	Limit [dBm]	Verdict
	Low	2402	-5.63	-56.72	≤-25.63	PASS
GFSK	High	2480	-6.01	-57.22	≤-26.01	PASS
GFSK	Low	Hop_2402	-5.63	-58.85	≤-25.63	PASS
	High	Hop_2480	-6.25	-58.06	≤-26.25	PASS
	Low	2402	-5.23	-56.32	≤-25.23	PASS
π/4-DQPSK	High	2480	-5.97	-56.50	≤-25.97	PASS
IV4-DQPSK	Low	Hop_2402	-5.88	-56.54	≤-25.88	PASS
	High	Hop_2480	-7.26	-58.52	≤-27.26	PASS



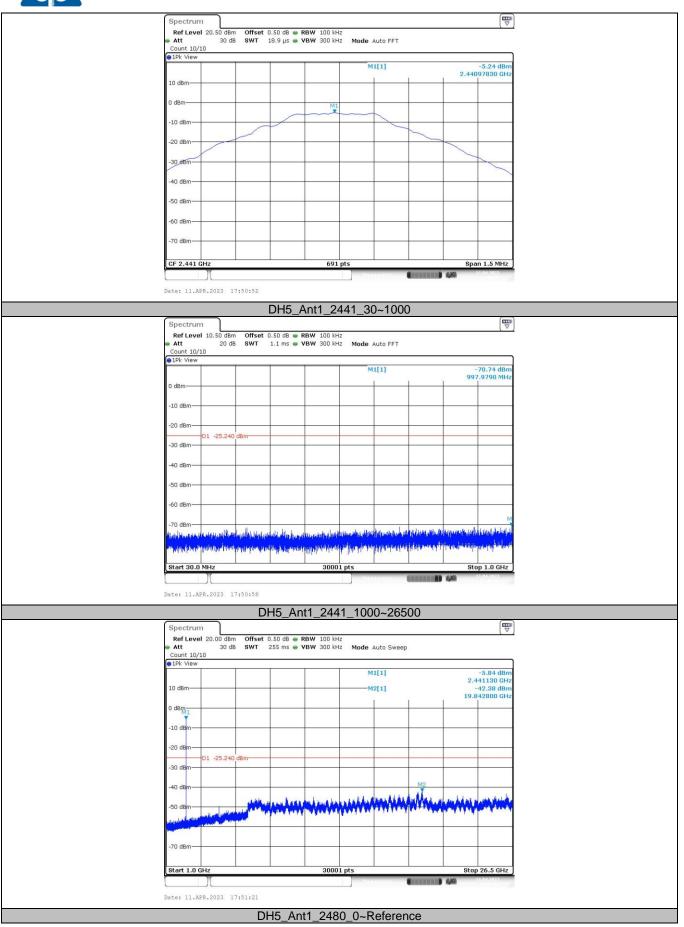
CTC Laboratories, Inc.

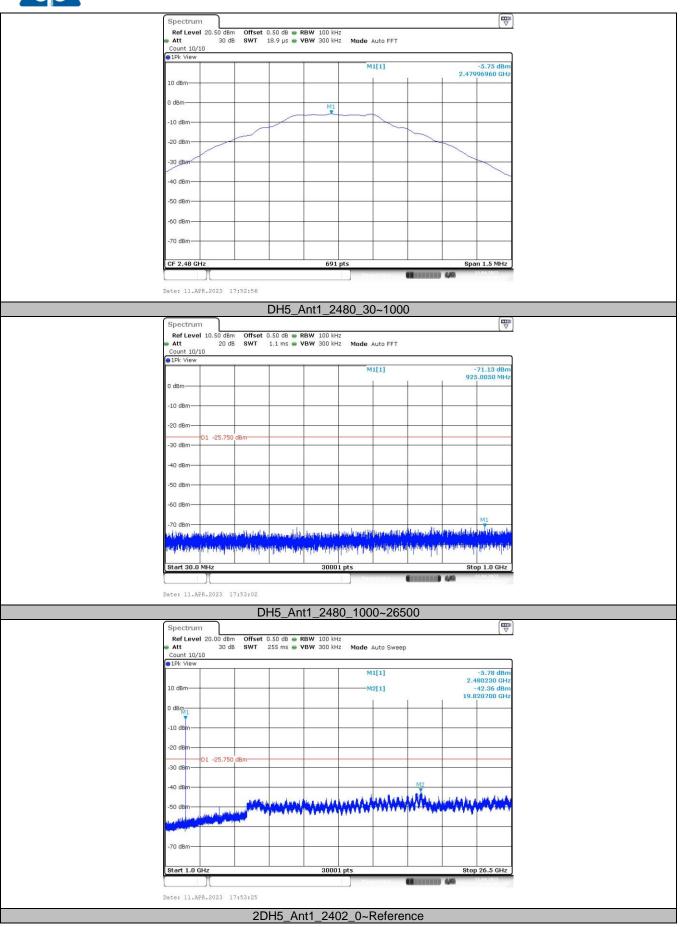
CTC Laboratories, Inc.

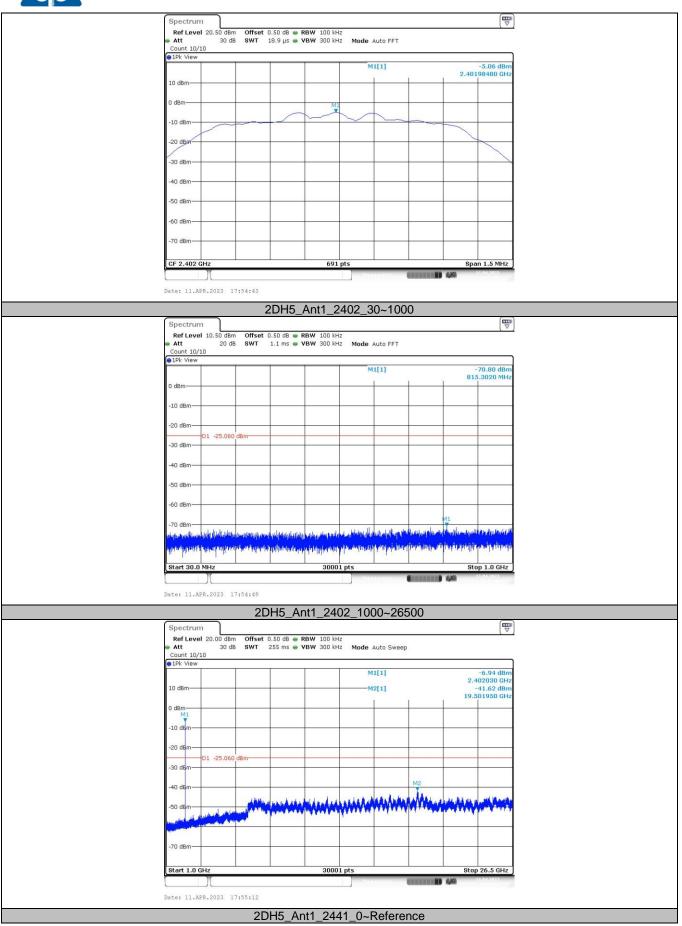


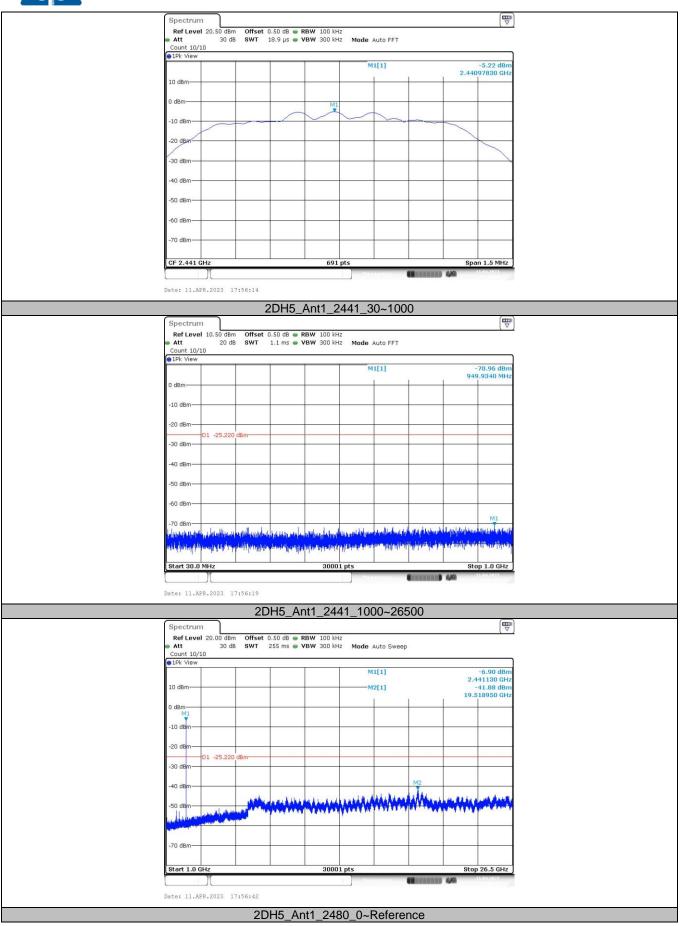
					0	
Spectrum						
	n Offset 0.50 dB 🖷	PBW 100 ku-				
RefLevel 20.00 dBn Att 30 dB		VBW 300 kHz Mo	de Auto FET			
Count 300/300	roio pa		AUTO FET			
• 1Pk View		95 (U)				
			M1[1]	act of the	-5.88 dBm	
10 dBm			-		40050 GHz	
			M2[1]	9.40	58.39 dBm 00000 GHz	
0 dBm-		1	- 1 1	2.40	MI	
-10 dBm					h alt	
					a glas	
-20 dBm			-		. %	
-30 dBm D1 -25.880	l dBm					
-30 UBIII						
-40 dBm						
E0 d0m					- A	
-50 dBm		M4			Ma	
289, ABD through	Allow Dath Margaret - 10	Marin Marine and	Mr. wywwwwww	M3	X	
CONTRACTOR OF THE OWNER	have a second	Jacon where a so	. 00	An . M. analog		
-70 dBm						
Start 2.35 GHz		691 pts	- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	Stop :	2.405 GHz	
Marker				1.00.70 (0000) 2 (1120-00) (0000)		
Type Ref Trc M1 1	X-value	Y-value F	unction	Function Result		
M1 1 M2 1	2.404005 GHz 2.4 GHz	-5.88 dBm -58.39 dBm				
M3 1	2.39 GHz	-60.92 dBm				
M4 1	2.3782971 GHz	-56.54 dBm				
T T				100 B 4/9	2.04.2023	
Date: 12.APR.2023 0	8:44:56					
	2DH5	Ant1_High_	Hop_248	0		
Grantman						
					(<u></u>)	
Spectrum	04	PRIN 100 LUI-				
Ref Level 20.00 dBn						
RefLevel 20.00 dBn Att 30 dE		RBW 100 kHz VBW 300 kHz Mo	de Auto FFT		(IIII)	
Ref Level 20.00 dBn			de Auto FFT			
Ref Level 20.00 dBm Att 30 dE Count 241/300					-7.26 dBm	
Ref Level 20.00 dBn Att 30 dE Count 241/300 1Pk View			M1[1]		-7.26 dBm 70980 GHz	
Ref Level 20.00 dBm Att 30 dE Count 241/300				-	-7.26 dBm 70980 GHz 61.93 dBm	
Ref Level 20.00 dBn Att 30 dE Count 241/300 1Pk View			M1[1]	-	-7.26 dBm 70980 GHz	
Ref Level 20.00 dBn Att 30 dE Count 241/300 Ipk View 10 dBm 0 dBm			M1[1]	-	-7.26 dBm 70980 GHz 61.93 dBm	
Ref Level 20.00 dBn Att 30 dE Count 241/300 Ipk View 10 dBm 0 dBm			M1[1]	-	-7.26 dBm 70980 GHz 61.93 dBm	
Ref Level 20.00 dBn Att 30 dB Count 241/300 ● 1Pk View 10 dBm 0, dBm Ing, dBm			M1[1]	-	-7.26 dBm 70980 GHz 61.93 dBm	
Ref Level 20.00 dBn Att 30 dB Count 241/300 ID dBm 0,dBm Ap dBm Ap dBm Ap dBm Ap dBm Ap dBm	3 SWT 94.8 μs		M1[1]	-	-7.26 dBm 70980 GHz 61.93 dBm	
Ref Level 20.00 dBn Att 30 dB Count 241/300 ● 1Pk View 10 dBm 0, dBm Ing, dBm	3 SWT 94.8 μs		M1[1]	-	-7.26 dBm 70980 GHz 61.93 dBm	
Ref Level 20.00 dBn Att 30 dE Count 241/300 ● IPk View 10 dBm 0 dBm 0 dBm 410 dBm -30 dBm -30 dBm	3 SWT 94.8 μs		M1[1]	-	-7.26 dBm 70980 GHz 61.93 dBm	
Ref Level 20.00 dBn Att 30 dE Count 241/300 ● 1Pk View 10 dBm 0 dBm 0 dBm 10 dBm 410 dBm 10 dBm	3 SWT 94.8 μs		M1[1]	-	-7.26 dBm 70980 GHz 61.93 dBm	
Ref Level 20.00 dBn Att 30 df Count 241/300 ● IPk View 10 dBm 0, dBm 410 dBm -30 dBm -30 dBm -40 dBm	3 SWT 94.8 μs		M1[1]	2.4	-7.26 dBm 70980 GHz 61.93 dBm	
Ref Level 20.00 dBn Att 30 df Count 241/300 ● IPk View 10 dBm 0, dBm 410 dBm -30 dBm -30 dBm -40 dBm -50 dBm	3 SWT 94.8 µs ●	VBW 300 kHz Mo	M1[1] M2[1]	2.4	-7.26 dBm 70980 GHz 51.93 dBm 83500 GHz	
Ref Level 20.00 dBn Att 30 df Count 241/300 IDk View 10 dBm 0, dBm 410 dBm -30 dBm -30 dBm -50 dBm	3 SWT 94.8 µs ●	VBW 300 kHz Mo	M1[1] M2[1]	2.4	-7.26 dBm 70980 GHz 51.93 dBm 83500 GHz	
Ref Level 20.00 dBn Att 30 db Count 241/300 IPk View 10 dBm 0, dBm 40 dBm -30 dBm -50 dBm -60 dBm	3 SWT 94.8 µs ●	VBW 300 kHz Mo	M1[1] M2[1]	2.4	-7.26 dBm 70980 GHz 51.93 dBm 83500 GHz	
Ref Level 20.00 dBn Att 30 df Count 241/300 ● IPk View 10 dBm 0, dBm 410 dBm -30 dBm -30 dBm -40 dBm -50 dBm	3 SWT 94.8 µs ●	VBW 300 kHz Mo	M1[1] M2[1]	2.4	-7.26 dBm 70980 GHz 51.93 dBm 83500 GHz	
Ref Level 20.00 dBn Att 30 df Count 241/300 ID dBm IO dBm Ag dBm	3 SWT 94.8 µs ●		M1[1] M2[1]	2.4	-7.26 dBm 70980 GHz 51.93 dBm 83500 GHz	
Ref Level 20.00 dBn Att 30 dt Count 241/300 IPk View 10 dBm 0, dBm 40 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 2.47 GHz	3 SWT 94.8 µs ●	VBW 300 kHz Mo	M1[1] M2[1]	2.4	-7.26 dBm 70980 GHz 51.93 dBm 83500 GHz	
Ref Level 20.00 dBn Att 30 df Count 241/300 ● IPk View 10 dBm 0 dBm 0 dBm 40 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 2.47 GHz Marker	а SWT 94.8 µs	VBW 300 kHz Mo	M1[1] M2[1]	2.4	-7.26 dBm 70980 GHz 51.93 dBm 83500 GHz 2.55 GHz	
Ref Level 20.00 dBn Att 30 df Count 241/300 IPk View 10 dBm Att 6 dBm Att 70 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm Start 2.47 GHz Marker Type Ref	3 SWT 94.8 µs ●	VBW 300 kHz Mo	M1[1] M2[1]	2.4	-7.26 dBm 70980 GHz 51.93 dBm 83500 GHz 2.55 GHz	
Ref Level 20.00 dBn Att 30 df Count 241/300 ● IPk View 10 dBm 0, dBm 0, dBm 40 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm Start 2.47 GHz Marker Type Ref Trc Mil 1	З SWT 94.8 µS ●	VBW 300 kHz Mo	M1[1] M2[1]	2.4	-7.26 dBm 70980 GHz 51.93 dBm 83500 GHz 2.55 GHz	
Ref Level 20.00 dBn Att 30 df Count 241/300 IPk View 10 dBm Att 6 dBm Att 70 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm Start 2.47 GHz Marker Type Ref	З SWT 94.8 µs • dBm dBm x-value 2.47096 GHz 2.4335 GHz	VBW 300 kHz Mo	M1[1] M2[1]	2.4	-7.26 dBm 70980 GHz 51.93 dBm 83500 GHz 2.55 GHz	
Ref Level 20.00 dBn Att 30 df Count 241/300 ● 1Pk View 10 dBm 0, dBm 0, dBm 410, dBm 40 dBm -30 dBm -30 dBm -30 dBm -50 dBm -70 dBm Start 2.47 GHz Marker Type Ref M1 1	З SWT 94.8 µS ●	VBW 300 kHz Mo	M1[1] M2[1]	2.4	-7.26 dBm 70980 GHz 51.93 dBm 83500 GHz 2.55 GHz	
Ref Level 20.00 dBn Att 30 df Count 241/300 ● IPk View 10 dBm 0, dBm 0, dBm 40 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm Start 2.47 GHz Marker Type Ref M1 1 M3 1	3 SWT 94.8 µs ● dBm	VBW 300 kHz Mo	M1[1] M2[1]	2.4 Miter Stop Function Result	-7.26 dBm 70980 GHz 51.93 dBm 83500 GHz 2.55 GHz	
Ref Level 20.00 dBn Att 30 df Count 241/300 ● IPk View 10 dBm 0, dBm 0, dBm 40 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm Start 2.47 GHz Marker Type Ref M1 1 M3 1	3 SWT 94.8 µs ● dBm	VBW 300 kHz Mo	M1[1] M2[1]	2.4	-7.26 dBm 70980 GHz 51.93 dBm 83500 GHz 2.55 GHz	
Ref Level 20.00 dBn Att 30 df Count 241/300 ● IPk View 10 dBm 0, dBm 0, dBm 40 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm Start 2.47 GHz Marker Type Ref M1 1 M3 1	3 SWT 94.8 µs ● dBm	VBW 300 kHz Mo	M1[1] M2[1]	2.4 Miter Stop Function Result	-7.26 dBm 70980 GHz 51.93 dBm 83500 GHz 2.55 GHz	

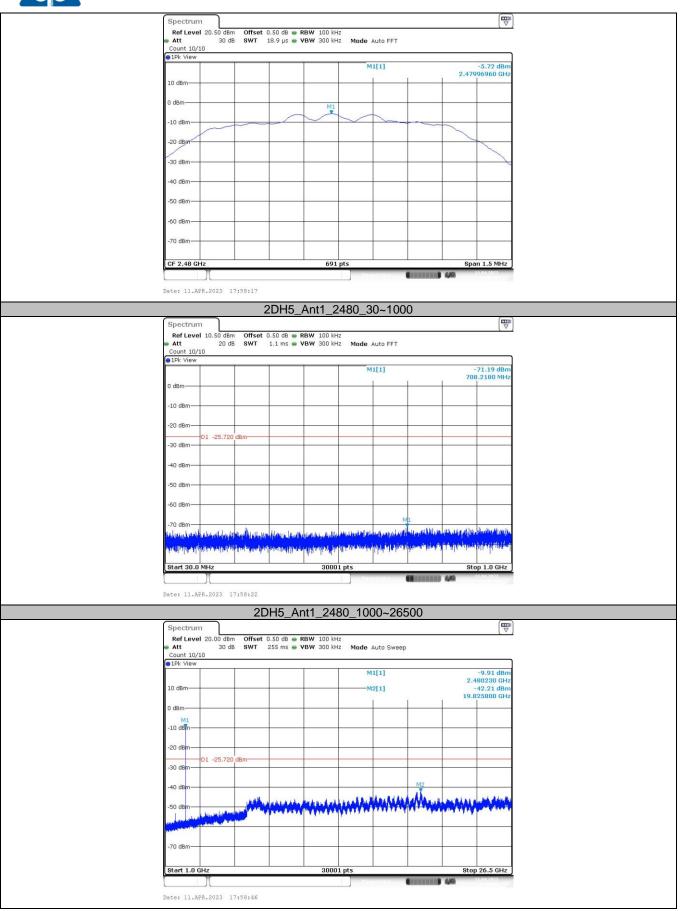
(2) Conducted Spurious Emissions Test

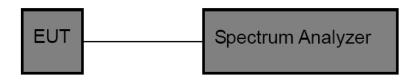

Test Mode	Antenna	Frequency (MHz)	Freq Range [MHz]	Ref Level [dBm]	Result [dBm]	Limit [dBm]	Verdict
			Reference	-5.08	-5.08		PASS
	2402	30~1000	-5.08	-70.39	≤-25.08	PASS	
			1000~26500	-5.08	-41.81	≤-25.08	PASS
			Reference	-5.24	-5.24		PASS
GFSK	Ant1	2441	30~1000	-5.24	-70.74	≤-25.24	PASS
			1000~26500	-5.24	-42.38	≤-25.24	PASS
		2480	Reference	-5.75	-5.75		PASS
			30~1000	-5.75	-71.13	≤-25.75	PASS
			1000~26500	-5.75	-42.36	≤-25.75	PASS
		2402	Reference	-5.06	-5.06		PASS
			30~1000	-5.06	-70.80	≤-25.06	PASS
			1000~26500	-5.06	-41.62	≤-25.06	PASS
			Reference	-5.22	-5.22		PASS
π/4-DQPSK	Ant1	2441	30~1000	-5.22	-70.96	≤-25.22	PASS
			1000~26500	-5.22	-41.88	≤-25.22	PASS
			Reference	-5.72	-5.72		PASS
		2480	30~1000	-5.72	-71.19	≤-25.72	PASS
			1000~26500	-5.72	-42.21	≤-25.72	PASS











3.5. Bandwidth

<u>Limit</u>

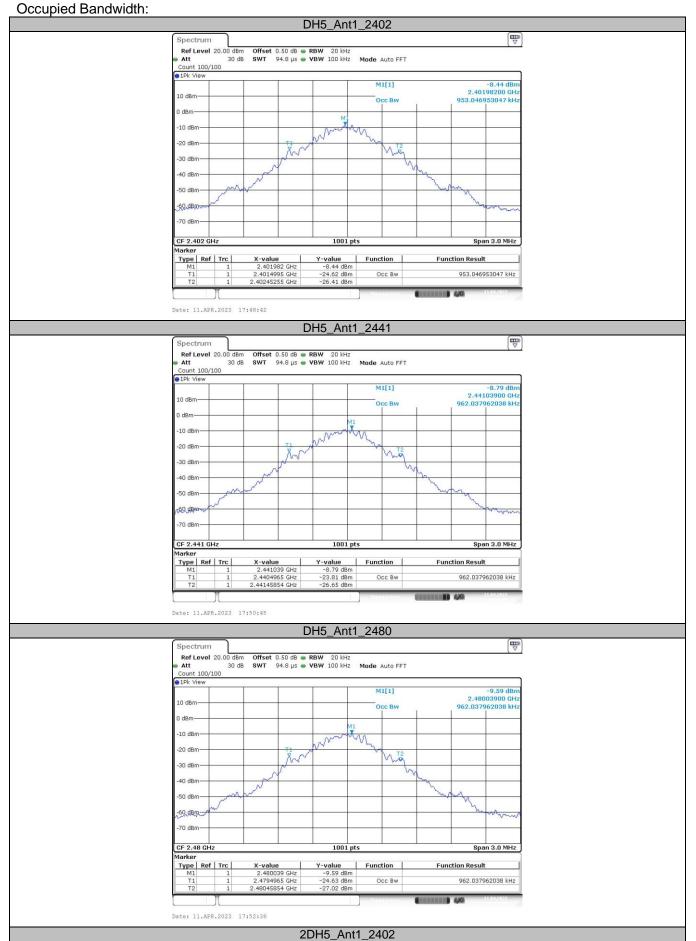
N/A

Test Configuration

Test Procedure

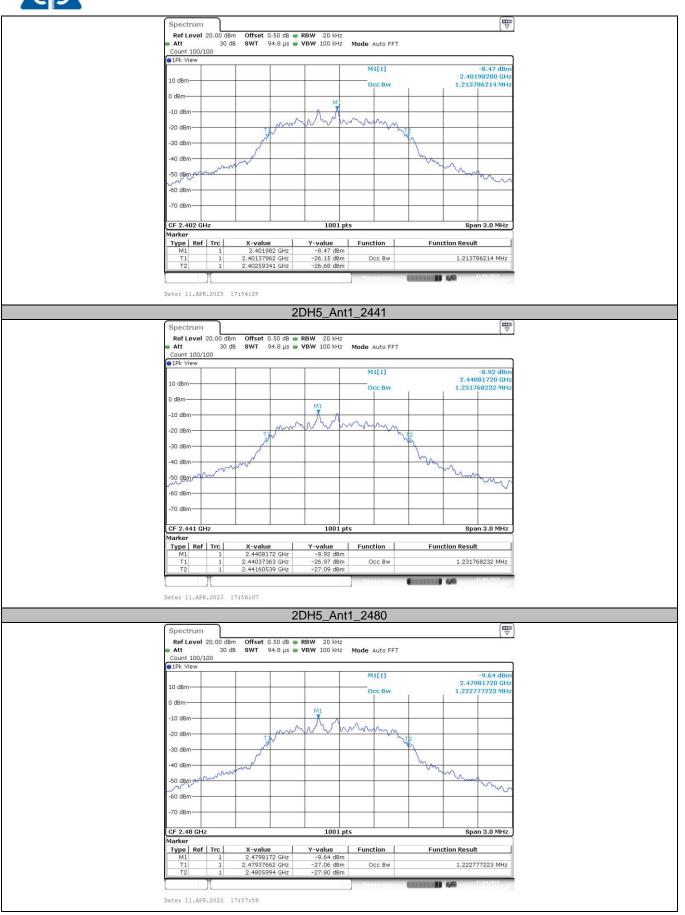
- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. OCB and 20dB Spectrum Setting:
 - (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

Note: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

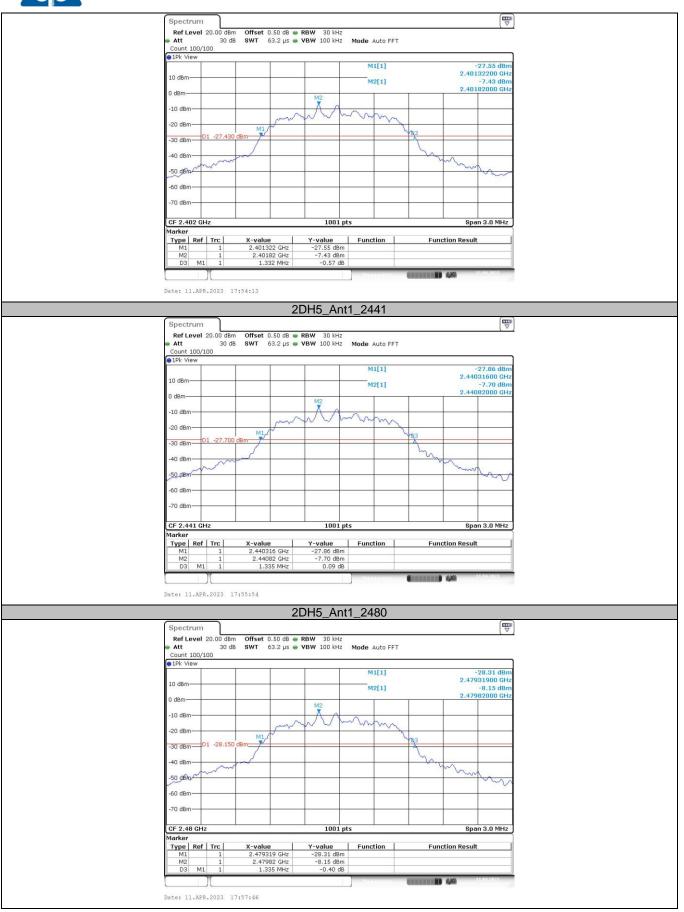

Test Mode

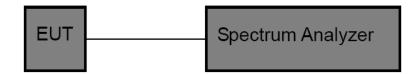
Please refer to the clause 2.4.

Test Results


Modulation type	Channel	99% Bandwidth (MHz)	20dB Bandwidth (MHz)	20dB Bandwidth *2/3 (MHz)
	00	0.953	1.044	0.696
GFSK	39	0.962	1.074	0.716
	78	0.962	1.071	0.714
	00	1.214	1.332	0.888
π/4-DQPSK	39	1.232	1.335	0.890
	78	1.223	1.335	0.890






3.6. Channel Separation

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1)/ RSS-247 5.1 b :

Test Item	Limit	Frequency Range(MHz)
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

- 2. Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) \ge 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

Test Mode

Please refer to the clause 2.4.

Test Results

Modulation type	Channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result
GFSK	39/40	1.003	>0.716	Pass
π/4-DQPSK	39/40	1.000	>0.890	Pass

3.7. Number of Hopping Channel

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(iii)/ RSS-247 5.1 d:

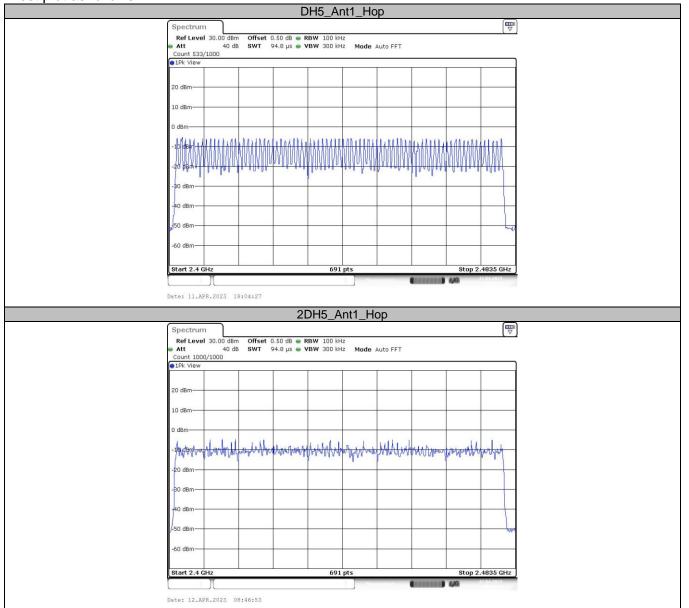
Section	Test Item Limit	
15.247 (a)(iii)/ RSS-247 5.1 d:	Number of Hopping Channel	>15

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

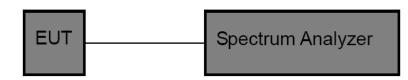
- 2. Spectrum Setting:
 - (1) Peak Detector: RBW=100 kHz, VBW≥RBW, Sweep time= Auto.


Test Mode

Please refer to the clause 2.4.

Test Result

Modulation type	Channel number	Limit	Result	
GFSK	79	≥15.00	Pass	
π/4-DQPSK	79	≤10.00	1 255	



3.8. Dwell Time

<u>Limit</u>

Section	Test Item	Limit
15.247(a)(iii)/ RSS-247 5.1 d	Average Time of Occupancy	0.4 sec

Test Configuration

Test Procedure

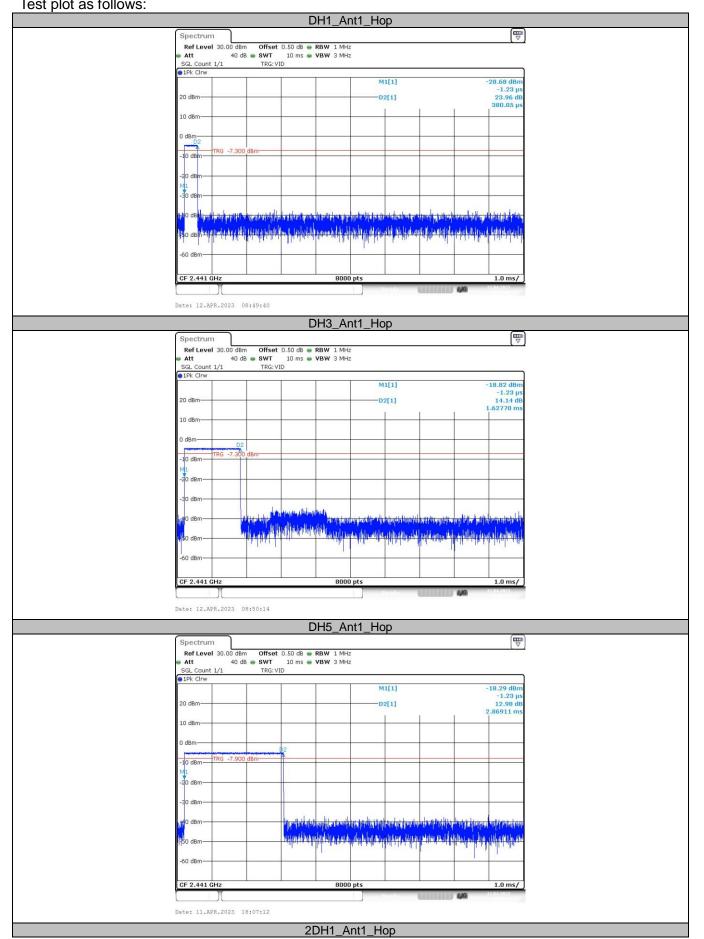
- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Spectrum Setting: RBW=1MHz, VBW≥RBW.
 - (2) Use video trigger with the trigger level set to enable triggering only on full pulses.
 - (3) Sweep Time is more than once pulse time.
 - (4) Set the center frequency on any frequency would be measure and set the frequency span to

zero.

- (5) Measure the maximum time duration of one single pulse.
- (6) Set the EUT for packet transmitting.

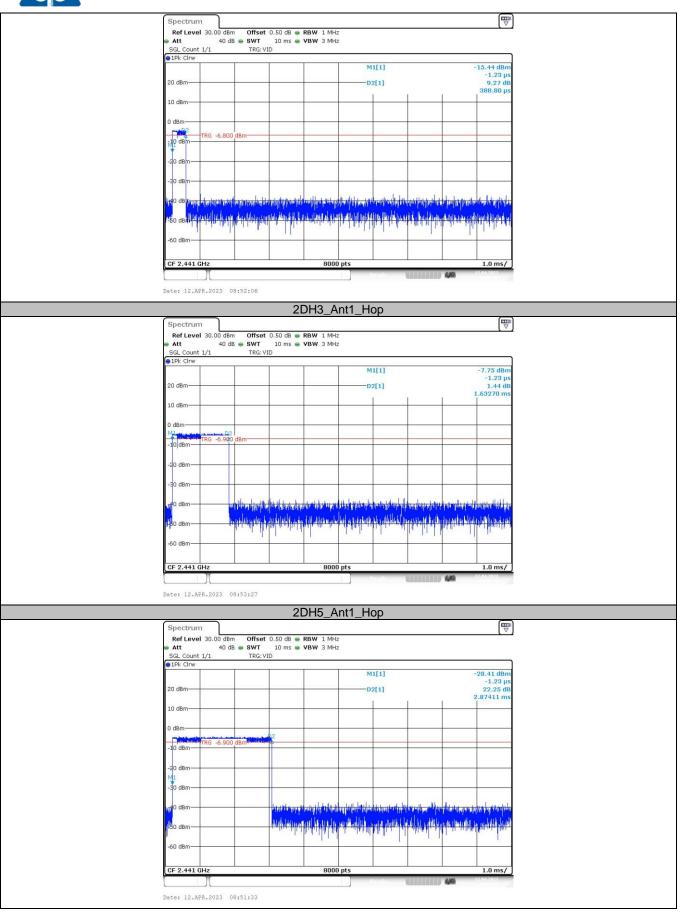
Test Mode

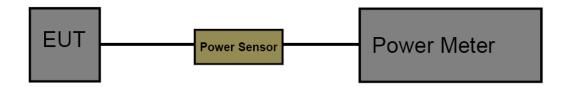
Please refer to the clause 2.4.



Test Result

Modulation type	Channel	Channel (MHz)	Pulse Time (ms)	Total of Dwell (ms)	Period Time (ms)	Limit (Second)	Result
	DH1	2441	0.38	121.60	31.60		
GFSK	DH3	2441	1.63	260.80	31.60	≤ 0.40	Pass
	DH5	2441	2.87	306.13	31.60		
	2DH1	2441	0.39	124.80	31.60		
π/4-DQPSK	2DH3	2441	1.63	260.80	31.60	≤ 0.40	Pass
	2DH5	2441	2.87	306.13	31.60		


Note: 1DH1/2DH1/3DH1 Total of Dwell = Pulse Time*(1600/2)*31.6/79 1DH3/2DH3/3DH3 Total of Dwell = Pulse Time*(1600/4)*31.6/79 1DH5/2DH5/3DH5 Total of Dwell = Pulse Time*(1600/6)*31.6/79


3.9. Peak Output Power

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(1) / RSS-247 5.4 b:

Test Item	Limit	Frequency Range(MHz)	
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125mW(21dBm)	2400~2483.5	

Test Configuration

Test Procedure

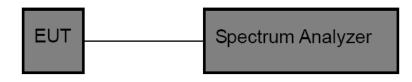
- 1. The maximum conducted output power may be measured using a broadband Peak RF power meter.
- 2. Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor.
- 3. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.
- 4. Record the measurement data.

Test Mode

Please refer to the clause 2.4.

Test Result

Modulation type	Channel	Output power (dBm)	Limit (dBm)	Result	
	00	-4.58	-4.58		
GFSK	39	-4.63	≤ 30	Pass	
	78	-4.96			
	00	-3.89			
π/4-DQPSK	39	-3.91	≤ 30	Pass	
	78	-4.48			



3.10. Duty Cycle

<u>Limit</u>

None, for report purposes only.

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

3. Spectrum Setting:

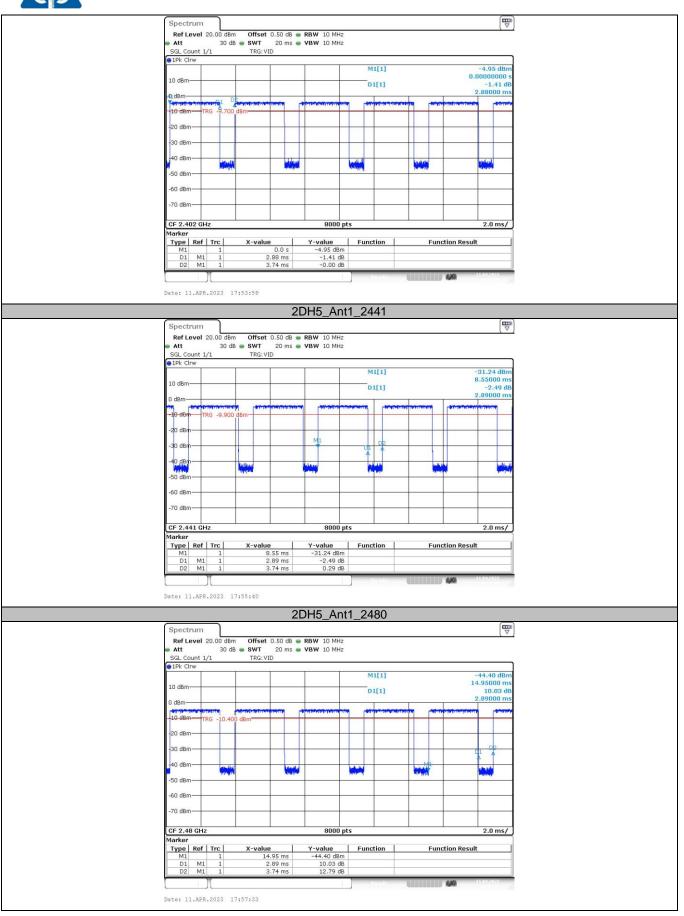
Set analyzer center frequency to test channel center frequency. Set the span to 0Hz Set the RBW to 10MHz Set the VBW to 10MHz Detector: Peak Sweep time: Auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.4.

Test Result


Test Mode	Frequency [MHz]	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
	2402	2.88	3.74	77.01	0.35	1
GFSK	2441	2.88	3.74	77.01	0.35	1
	2480	2.87	3.73	76.94	0.35	1
	2402	2.88	3.74	77.01	0.35	1
π/4-DQPSK	2441	2.89	3.74	77.27	0.35	1
	2480	2.89	3.74	77.27	0.35	1

3.11. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.