

FCC Test Report

Application No.:	DNT241188R1623-4080		
Applicant:	Shenzhen Zhichuang All Technology Co., LTD		
Address of	31st Floor, West Tower of Xinghe Twin Towers, No. 8 Yaxing Rd, Bantian		
Applicant:	St,Longgang Dist, Shenzhen		
EUT Description:	Bluetooth headset		
Model No.:	sanag S2 Pro, sanag S2 Pro Al		
FCC ID:	2A6MS-S2PRO		
Power Supply:	DC 3.7V From Battery		
Charging Voltage:	DC 5V		
Trade Mark:	sanag		
	47 CFR FCC Part 2, Subpart J		
Standards:	47 CFR Part 15, Subpart C		
	ANSI C63.10: 2013		
Date of Receipt:	2024/6/5		
Date of Test:	2024/6/6 to 2024/7/25		
Date of Issue:	2024/7/25		
Test Result:	PASS		

Prepared By: Reviewed By: Approved By:

Wayne . Jon (Testing Engineer) (Project Engineer) (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com

 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

Report No.: DNT241188R1623-4080 Date: July 25, 2024 Page: 2 / 65 Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	1	Jul.25, 2024	Valid	Original Report

Report No.: DNT241188R1623-4080 Date: July 25, 2024 Page: 3 / 65

1 Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)		Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10 (2013)	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.8	PASS
Radiated Spurious emissions	15.247(d); 15.205/15.209	ANSI C63.10 (2013)	Clause 3.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10 (2013)	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10 (2013)	Clause 3.11	N/A

Note:

1. "N/A" denotes test is not applicable in this test report.

Report No.: DNT241188R1623-4080 Date: July 25, 2024 Page: 4 / 65

Contents

1	Test S	ummary	
2	Genera	al Information	
	2.1	Test Location	5
	2.2	General Description of EUT	
	2.3	Channel List	7
	2.4	Test Environment and Mode	8
	2.5	Power Setting of Test Software	9
	2.6	Description of Support Units	9
	2.7	Test Facility	
	2.8	Measurement Uncertainty (95% confidence levels, k=2)	
	2.9	Equipment List	
	2.10	Assistant equipment used for test	
3	Test re	esults and Measurement Data	
	3.1	Antenna Requirement	
	3.2	20dB Emission Bandwidth	
	3.3	Conducted Output Power	
	3.4	Carrier Frequencies Separationy	
	3.5	Dwell Time	
	3.6	Hopping Channel Number	
	3.7	Band-edge for RF Conducted Emissions	
	3.8	RF Conducted Spurious Emissions	
	3.9	Radiated Spurious Emissions	
	3.10	Restricted bands around fundamental frequency	
	3.11	AC Power Line Conducted Emissions	
4	Appen	dix	
	Append	dix A: 20dB Emission Bandwidth	
	Append	dix B: Maximum conducted output power	
	Append	dix C: Carrier frequency separation	
	Append	dix D: Dwell Time	
	Append	dix F: Number of hopping channels	
	Append	dix F: Band edge measurements	
	Append	dix F: Conducted Spurious Emission	

2

Report No.: DNT241188R1623-4080 Date: July 25, 2024

General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ˈ an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Page: 5/65

Dongguan DN Testing Co., Ltd.

hina

Page: 6/65

2.2 General Description of EUT

Manufacturer:	Shenzhen Zhichuang All Technology Co., LTD
Address of Manufacturer:	31st Floor, West Tower of Xinghe Twin Towers, No. 8 Yaxing Rd, Bantian St,Longgang Dist, Shenzhen
Factory:	Dongguan Chiyuan Jizhi Electronic Technology Co., Ltd
Address of Factory:	Room 3228, No. 50 Weimin Road, Dongcheng Street, Dongguan City, Guangdong Province
Test EUT Description:	Bluetooth headset
Model No.:	sanag S2 Pro
Additional Model(s):	sanag S2 Pro Al
Chip Type:	AC7003D8
Serial number:	PR241188R1623
Power Supply:	DC 3.7V From Battery
Charging Voltage:	DC 5V
Trade Mark: sanag	
Hardware Version:	S2 Pro-AC7003D8-OWS-V1
Software Version: G-SN_S20_AC7003D8_89A9-E34B_sanag S2 Pro Al_sanag Pro(S2 Pro Al)_17EC_5.4_SDK138_240401	
Operation Frequency:	2402 MHz to 2480 MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK,π/4-DQPSK,8DPSK
Sample Type:	➢ Portable Device, ☐ Module, ☐ Mobile Device
Antenna Type:	□ External, ⊠ Integrated
Antenna Ports:	🖂 Ant 1, 🗌 Ant 2, 🗌 Ant 3
Antenna Gain*:	Provided by applicant
	2.67dBi
	Provided by applicant
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);

Remark:

*All models are just color differences, motherboard, PCB circuit board, chip, electronic components, appearance is all the same.

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information, DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Page: 7/65

2.3 Channel List

Operation Frequency of each channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18 🧹	2420MHz	238	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Page: 8/65

2.4 5Test Environment and Mode

Operating Environment:				
Temperature:	20~25.0 °C			
Humidity:	45~56 % RH			
Atmospheric Pressure:	essure: 101.0~101.30 KPa			
Test mode:				
Transmitting mode:	mode: Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.			

Report No.: DNT241188R1623-4080 Date: July 25, 2024 Page: 9 / 65

2.5 Power Setting of Test Software

Software Name	FCC_assist_1.0.2.2			
Frequency(MHz)	2402	2441	2480	
GFSK Setting	10	10	10	
π/4-DQPSK Setting	10	10	10	
8DPSK	10	10	10	

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

• FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC#: 31026.

Report No.: DNT241188R1623-4080 Date: July 25, 2024 Page: 10 / 65

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7	Our durted DE Opunious Emission	9KHz-1GHz:±0.746dB
	Conducted RF Spurious Emission	1GHz-26GHz:±1.328dB

No.	Item	Measurement Uncertainty
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)
Δ Δ		± 4.8dB (Below 1GHz)
		± 4.8dB (1GHz to 6GHz)
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)
		± 5.02dB (Above 18GHz)

2.9 Equipment List

	For Conne	ct EUT Anteni	na Terminal ⁻	Test	
Description	Manufacturer	Model	Serial Number	Cal date	Due date
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24

Page: 11/65

Test Equipment for Conducted Emission							
Description Manufacturer Model Serial Number Cal Date Due Da							
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23		
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23		
ISN R&S ENY81-CA6 1309.8590.03 2023-10-24 2024-10-23							

Test Ec	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23

Page: 12/65

Test E	quipment for I	Radiated Emi	ssion(Above	1000MHz	<u>z) (</u>
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

	Code	Equipment	Manufacturer	Model No.	Equipment No.
Y	1	Computer	acer	N22C8	EMC notebook01
	2	Adapter	HUAWEI	HW-100225C00	NA

3 Test results and Measurement Data

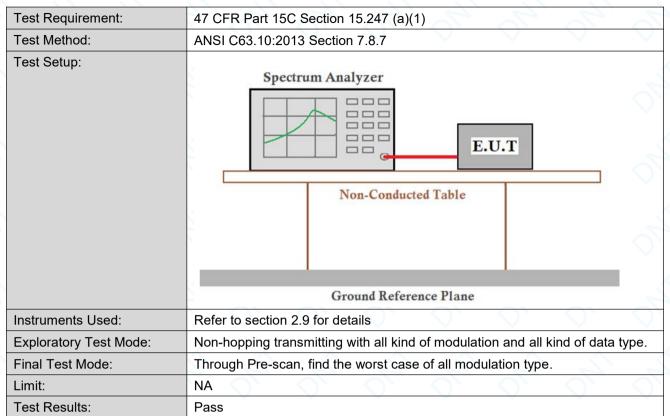
3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:


The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.67dBi.

Page: 14/65

3.2 20dB Emission Bandwidth

The detailed test data see: Appendix A

Page: 15/65

3.3 Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.5
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
Test Instruments:	Ground Reference Plane Refer to section 2.9 for details
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	(20.97dBm) 125mW
Test Results:	Pass

The detailed test data see: Appendix B

Page: 16/65

3.4 Carrier Frequencies Separationy

a survive readers and			
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	0	
Test Method:	ANSI C63.10:2013 Section 7.8.2		
Test Setup:	Spectrum Analyzer	0,1,1	
	E.U.T		
	Non-Conducted Table	0	
	Ground Reference Plane	0	
Test Instruments:	Refer to section 2.9 for details		
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.		
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.	0	
Limit:	2/3 of the 20dB bandwidth		
	Remark: the transmission power is less than 0.125W.	2	
Test Results:	Pass	~	

The detailed test data see: Appendix C

Report No.: DNT241188R1623-4080 Date: July 25, 2024 Page: 17 / 65

3.5 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.4
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Limit:	0.4 Second
Test Results:	Pass

The detailed test data see: Appendix D

Page: 18/65

3.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.3
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Test Mode:	Hopping transmitting with all kind of modulation
Limit:	At least 15 channels
Test Results:	Pass

The detailed test data see: Appendix E

Page: 19/65

3.7 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 Section 7.8.6
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

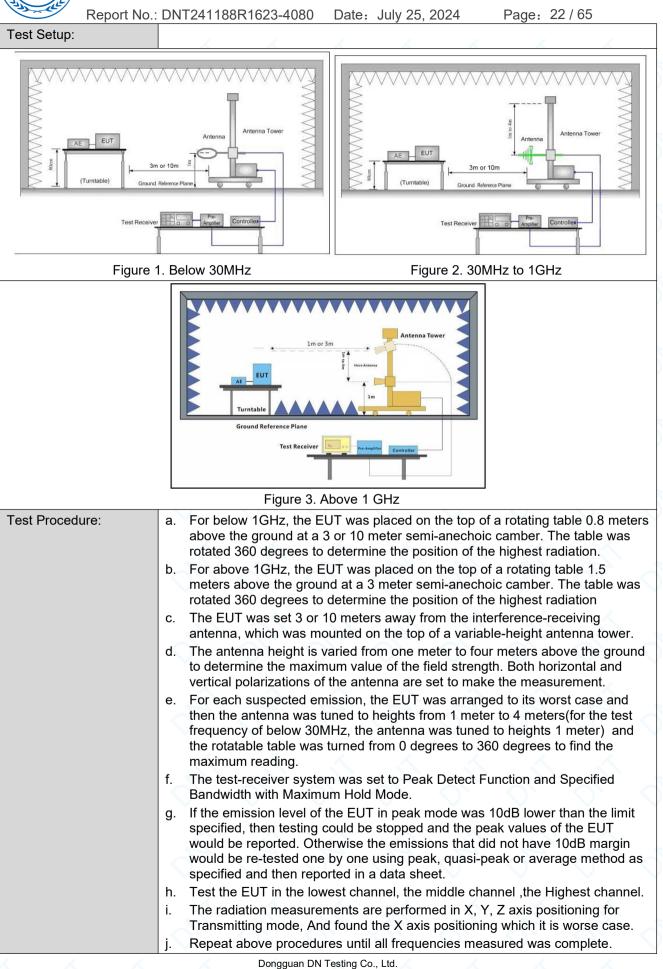
The detailed test data see: Appendix F

Report No.: DNT241188R1623-4080 Date: July 25, 2024 Page: 20 / 65

3.8 RF Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2013 Section 11.11
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

The detailed test data see: Appendix G

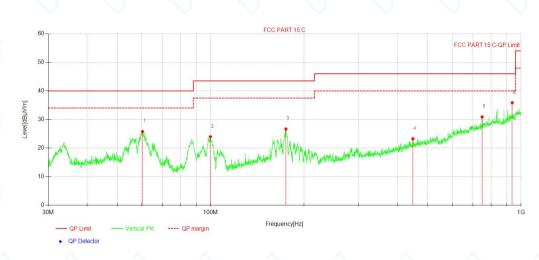


Page: 21/65

3.9 Radiated Spurious Emissions

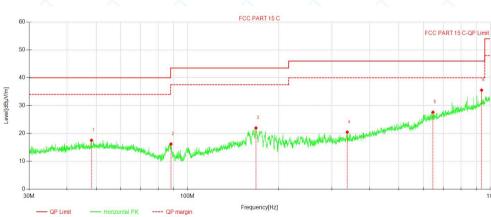
Test Requirement:	47 CFR Part 15C Sectio	n 15.209 and 15.20	05			
Test Method:	ANSI C63.10: 2013 Section 11.12					
Test Site:	Measurement Distance:	3m or 10m (Semi-	Anechoic Ch	amber) 🔨		
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98) ≥1/T (DC<0.98)	Average	
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)	
	0.009MHz-0.490MHz	2400/F(kHz)	~	<u> </u>	300	
	0.490MHz-1.705MHz	24000/F(kHz)	- 🗸	-~	30	
	1.705MHz-30MHz	30		<u> </u>	30	
	30MHz-88MHz	100	40.0	Quasi-peak	3	
	88MHz-216MHz	150	43.5	Quasi-peak	3	
	216MHz-960MHz	200	46.0	Quasi-peak	3	
	960MHz-1GHz	500	54.0	Quasi-peak	3	
	Above 1GHz	500	54.0	Average	3	
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated b	e the maximum per lent under test. This	mitted avera	ge emission lin	nit	

Report No.:	DNT241188R1623-4080 Date: July 25, 202	4 Page: 23 / 65
Test Configuration:	Measurements Below 1000MHz RBW = 120 kHz 	
	• VBW = 300 kHz	
	Detector = Peak	
	 Trace mode = max hold 	
	Peak Measurements Above 1000 MHz	
	• RBW = 1 MHz	$\gamma \circ \gamma \circ \gamma$
	• VBW \geq 3 MHz	
	Detector = Peak	\land \land \land
	• Sweep time = auto	2' 2' 2'
	Trace mode = max hold), O , O , O
	Average Measurements Above 1000MHz RBW = 1 MHz 	
	 VBW = 10 Hz, when duty cycle is no less than 	08 percent
	• VBW \geq 1/T, when duty cycle is less than 98 pc	
	transmission duration over which the transmitter i	
	maximum power control level for the tested mode	
Exploratory Test Mode:	Transmitting with all kind of modulations, data rat	es.
	Charge+Transmitting mode.) O O O
Final Test Mode:	Pretest the EUT at Transmitting mode.	
	Through Pre-scan, find the DH5 of data type is the type.	e worst case of All modulation
Instruments Used:	Refer to section 2.9 for details), \bigcirc , \bigcirc , \bigcirc , \bigcirc
Test Results:	Pass	



Date: July 25, 2024

Page: 24 / 65


Test data For 30-1000MHz

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	60.35	34.57	-8.80	25.77	40.00	14.23	100	346	QP
2	99.87	36.59	-12.66	23.93	43.50	19.57	100	355	QP
3	174.83	35.38	-8.73	26.65	43.50	16.85	100	0	QP
4	448.50	26.12	-2.87	23.25	46.00	22.75	100	129	QP
5	749.23	27.50	3.39	30.89	46.00	15.11	200	31	QP
6	936.64	29.73	6.13	35.86	46.00	10.14	200	173	QP

Horizontal :

QP Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	48.21	25.60	-8.07	17.53	40.00	22.47	200	215	QP
2	88.23	30.05	-13.86	16.19	43.50	27.31	200	0	QP
3	168.41	30.13	-8.18	21.95	43.50	21.55	200	73	QP
4	337.21	26.37	-5.91	20.46	46.00	25.54	100	145	QP
5	647.38	26.18	1.43	27.61	46.00	18.39	200	260	QP
6	936.64	29.42	6.13	35.55	46.00	10.45	100	119	QP

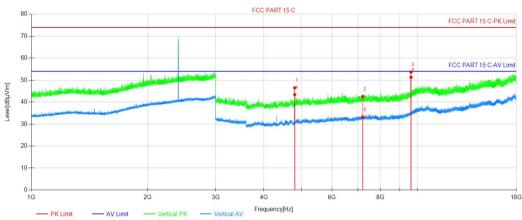
Dongguan DN Testing Co., Ltd.

Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

Web: www.dn-testing.com

Tel:+86-769-88087383

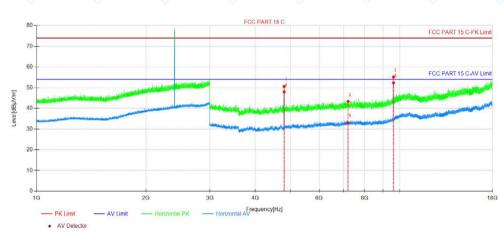
E-mail: service@dn-testing.com



Report No.: DNT241188R1623-4080 Date

For above 1GHz

DH5 2402MHz


Vertical:

AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark
1	4803.84	51.11	-4.61	46.50	74.00	27.50	150	325	Peak
2	7206.21	44.31	-1.76	42.55	74.00	31.45	150	182	Peak
3	9607.83	52.78	0.87	53.65	74.00	20.35	150	199	Peak
4	4804.59	48.00	-4.61	43.39	54.00	10.61	150	244	AV
5	7206.21	34.90	-1.76	33.14	54.00	20.86	150	128	AV
6	9608.58	50.41	0.88	51.29	54.00	2.71	150	199	AV

Horizontal:

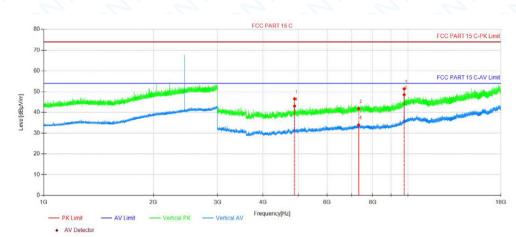
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4803.84	55.16	-4.61	50.55	74.00	23.45	150	127	Peak
2	7206.21	45.08	-1.76	43.32	74.00	30.68	150	257	Peak
3	9607.83	54.23	0.87	55.10	74.00	18.90	150	215	Peak
4	4804.59	52.62	-4.61	48.01	54.00	5.99	150	127	AV
5	7206.21	34.70	-1.76	32.94	54.00	21.06	150	172	AV
6	9608.58	51.46	0.88	52.34	54.00	1.66	150	215	AV

Dongguan DN Testing Co., Ltd.

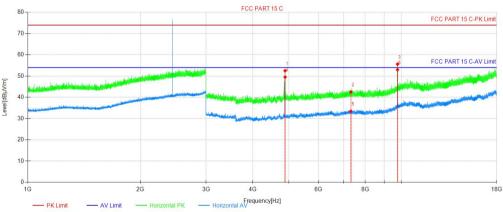
Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

Web: www.dn-testing.com

Tel:+86-769-88087383


E-mail: service@dn-testing.com

Report No.: DNT241188R1623-4080

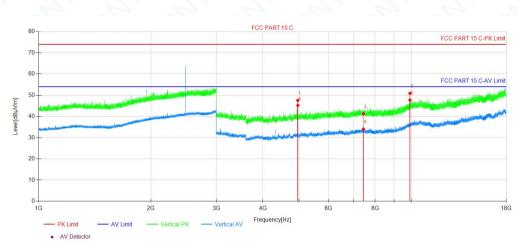

DH5 2441MHz

Vertical:

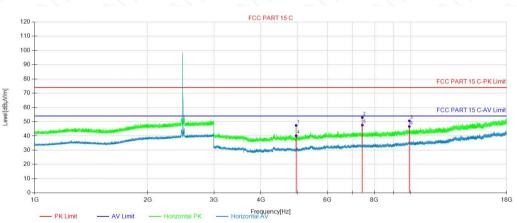
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4883.34	51.27	-4.72	46.55	74.00	27.45	150	332	Peak
2	7323.21	43.32	-1.49	41.83	74.00	32.17	150	71	Peak
3	9763.83	49.70	1.64	51.34	74.00	22.66	150	195	Peak
4	4882.59	47.75	-4.72	43.03	54.00	10.97	150	250	AV
5	7323.21	35.44	-1.49	33.95	54.00	20.05	150	250	AV
6	9764.58	46.91	1.64	48.55	54.00	5.45	150	208	AV

Horizontal:

AV Detector


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4881.84	57.23	-4.72	52.51	74.00	21.49	150	129	Peak
2	7323.21	43.99	-1.49	42.50	74.00	31.50	150	168	Peak
3	9763.83	53.97	1.64	55.61	74.00	18.39	150	196	Peak
4	4882.59	54.24	-4.72	49.52	54.00	4.48	150	129	AV
5	7323.21	34.94	-1.49	33.45	54.00	20.55	150	196	AV
6	9764.58	51.36	1.64	53.00	54.00	1.00	150	182	AV

Report No.: DNT241188R1623-4080


DH5 2480MHz

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4959.84	52.40	-4.86	47.54	74.00	26.46	150	248	Peak
2	7440.22	42.56	-1.34	41.22	74.00	32.78	150	59	Peak
3	9919.84	48.62	2.26	50.88	74.00	23.12	150	346	Peak
4	4960.59	50.04	-4.86	45.18	54.00	8.82	150	248	AV
5	7440.22	35.35	-1.34	34.01	54.00	19.99	150	248	AV
6	9920.59	45.44	2.27	47.71	54.00	6.29	150	346	AV

Horizontal:

AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4960.59	49.17	-1.75	47.42	74.00	26.58	150	222	Peak
2	7440.22	50.23	2.73	52.96	74.00	21.04	150	86	Peak
3	9919.84	44.42	6.20	50.62	74.00	23.38	150	21	Peak
4	4960.59	41.89	-1.75	40.14	54.00	13.86	150	76	AV
5	7440.97	44.90	2.72	47.62	54.00	6.38	150	86	AV
6	9920.59	40.49	6.19	46.68	54.00	7.32	150	86	AV

Note:

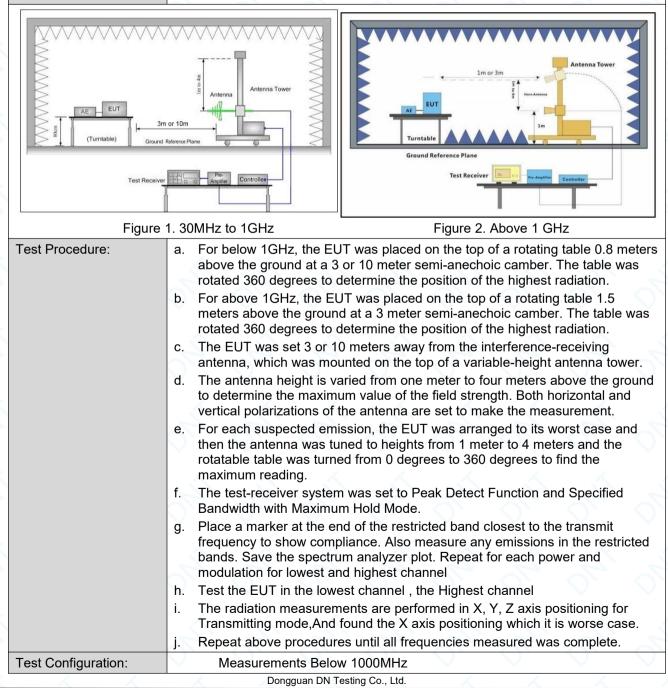
1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.

4. All channels had been pre-test, DH5 is the worst case. only the worst case was reported.



Report No.: DNT241188R1623-4080 Date: July 25, 2024 Page: 29 / 65

3.10 Restricted bands around fundamental frequency

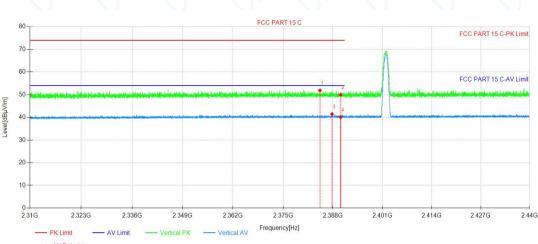
Test Method: Test Site:			
Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205	2' 2' 1
Test Method:	ANSI C63.10: 2013 Section	11.12	O, O, O
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic	Chamber)
Limit:	Frequency	Limit (dBuV/m)	Remark
	30MHz-88MHz	40.0	Quasi-peak
	88MHz-216MHz	43.5	Quasi-peak
	216MHz-960MHz	46.0	Quasi-peak
	960MHz-1GHz	54.0	Quasi-peak
		54.0	Average Value
	Above 1GHz	74.0	Peak Value

Test Setup:

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383

 E-mail: service@dn-testing.com


Report No · F	0NT241188R1623-4080 Date: July 25, 2024 Page: 30 / 65
Report No L	 RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Above 1000 MHz RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Above 1000MHz RBW = 1 MHz VBW ≥ 1 MHz VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Transmitting mode.
Final Test Mode:	Pretest the EUT Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of all modulation type. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass

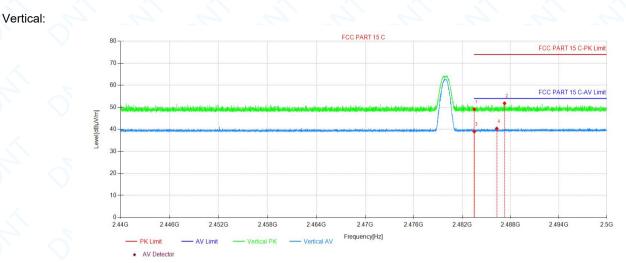
Page: 31/65

Test Date DH5 2402MHz

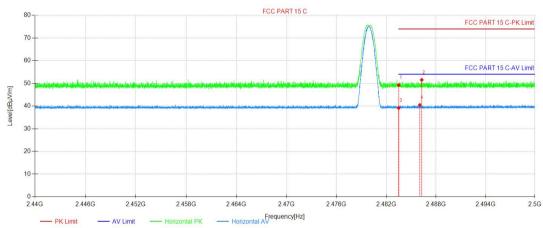
Vertical:

AV Detector

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	2384.60	52.68	-0.82	51.86	74.00	22.14	150	0	Peak
$\left(\right)$	2	2390.01	50.76	-0.80	49.96	74.00	24.04	150	71	Peak
	3	2387.77	42.23	-0.80	41.43	54.00	12.57	150	214	AV
	4	2390.01	40.89	-0.80	40.09	54.00	13.91	150	291	AV


Frog	Reading	Correct	Result
Freq.	Level	Factor	Level
[MHz]	[dBµV]	[dB/m]	[dBµV/m

/	NO.	Freq. [MHz]	Level [dBµV]	Factor [dB/m]	Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	2386.38	52.72	-0.81	51.91	74.00	22.09	150	158	Peak
	2	2390.01	50.37	-0.80	49.57	74.00	24.43	150	330	Peak
	3	2386.33	41.88	-0.81	41.07	54.00	12.93	150	236	AV
	4	2390.01	41.12	-0.80	40.32	54.00	13.68	150	204	AV


Page: 32/65

DH5 2480MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.51	49.37	-0.29	49.08	74.00	24.92	150	213	Peak
2	2487.26	52.07	-0.26	51.81	74.00	22.19	150	152	Peak
3	2483.51	39.26	-0.29	38.97	54.00	15.03	150	302	AV
4	2486.30	40.61	-0.26	40.35	54.00	13.65	150	280	AV

•	AV	Detector	
---	----	----------	--

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.50	49.51	-0.29	49.22	74.00	24.78	150	156	Peak
2	2486.28	51.80	-0.26	51.54	74.00	22.46	150	200	Peak
3	2483.50	39.41	-0.29	39.12	54.00	14.88	150	90	AV
4	2486.05	40.73	-0.27	40.46	54.00	13.54	150	133	AV

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe

including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor ,Cable Factor etc.

2.All channels had been pre-test,DH5 is the worst case. only the worst case was reported.

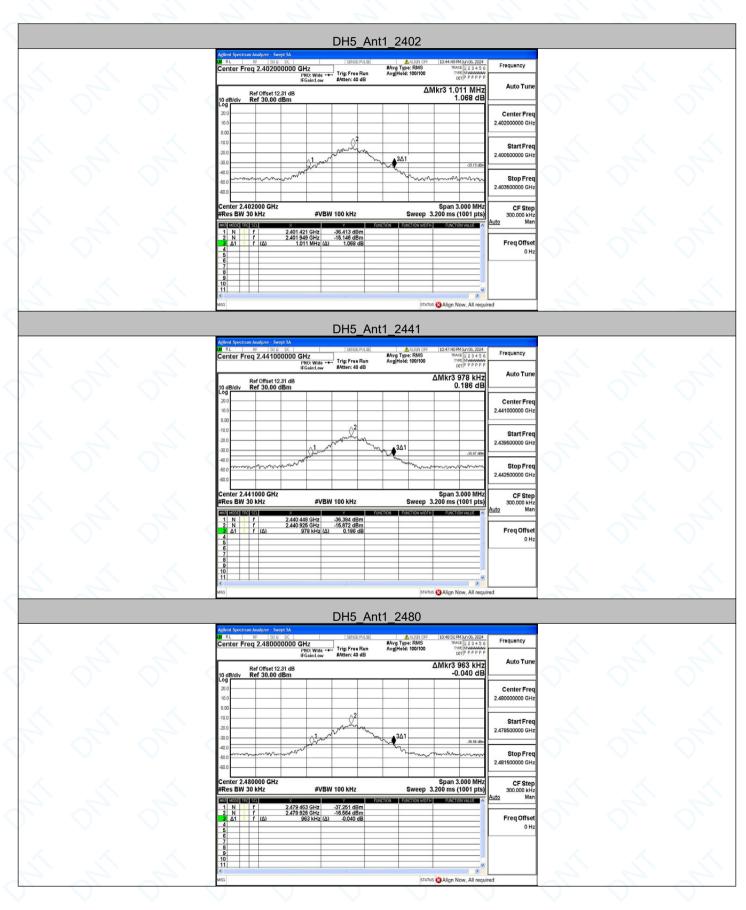
3.11 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section	15.207				
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz					
Limit:		BuV)				
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the loga	rithm of the frequency.	\wedge			
Test Procedure:	 The mains terminal disturbance voltage test was conducted in a shielde room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, The test was performed with a vertical ground reference plane. The reat of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of 					
Test Setup:	Shielding Room					
	Test Receiver					

Report No.: DNT241188R1623-4080 Date: July 25, 2024 Page: 34 / 65

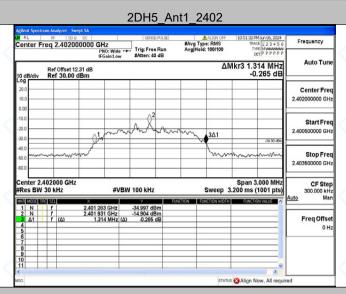
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel. Charge + Transmitting mode.
Final Test Mode:	Through Pre-scan, find the the worst case.
Instruments Used:	Refer to section 2.9 for details
Test Results:	N/A

Note: The wireless function does not work while the prototype is charging.


4 Appendix

Appendix A: 20dB Emission Bandwidth

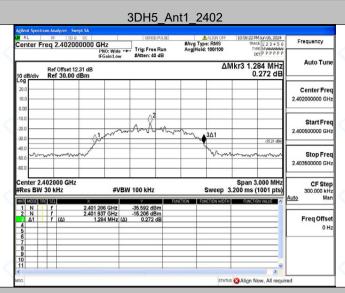
Test Result						$\Delta \Delta$	
Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.011	2401.421	2402.432	<u> </u>	
DH5	Ant1	2441	0.978	2440.448	2441.426		
\sim		2480	0.963	2479.463	2480.426	\	
\rightarrow \sim		2402	1.314	2401.283	2402.597		
2DH5	Ant1	2441	1.308	2440.280	2441.588	<	
		2480	1.287	2479.295	2480.582	<u> </u>	
		2402	1.284	2401.286	2402.570		
3DH5	Ant1	2441	1.344	2440.265	2441.609	\	
\rightarrow \rightarrow		2480	1.305	2479.286	2480.591		


Test Graphs

Report No.: DNT241188R1623-4080 Date: July 25, 2024 Pa

Page: 37 / 65

2DH5_Ant1_2441


2DH5_Ant1_2480

Agilent Spe	ctrum An	alyzer - Swe	ept SA				_					
Center	RF Freq 2	50 g 2.48000	DC 00000	SHz PNO: Wide		SENSE: Trig: Free			ALIGN OFF Type: RMS old: 100/100	TRA	MJun 06, 2024 CE 1 2 3 4 5 6 PE M	Frequency
		Offset 12	.31 dB	IFGain:Lov		#Atten: 40				1kr3 1.2	87 MHz	Auto Tune
10 dB/div 20.0	/ Re	f 30.00 d	1Bm								.240 dB	Center Freq 2.480000000 GHz
-10.0			-	1 m	~	2 h~~	Ann	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3∆1		.38.61 dBn	Start Freq 2.478500000 GHz
-40.0 -50.0	~~~^^^^	-Manno-M	w.						form			Stop Freq 2.481500000 GHz
Center #Res B	W 30 k	Hz		#V	BW 1	100 kHz	5	NCTION	Sweep 3	.200 ms	3.000 MHz (1001 pts)	CF Step 300.000 kHz Auto Man
1 Ν 2 Ν 3 Δ1 4 5 6	1 f	(Δ)	2.479	295 GHZ 769 GHZ 287 MHZ	-	36.961 dB 16.611 dB 0.240 d	m m					Freq Offset 0 Hz
6 7 8 9 10 11												
< MSG									STATU	Align N	low, All requi	red

Report No.: DNT241188R1623-4080 Date: July 25, 2024 Pa

Page: 38/65

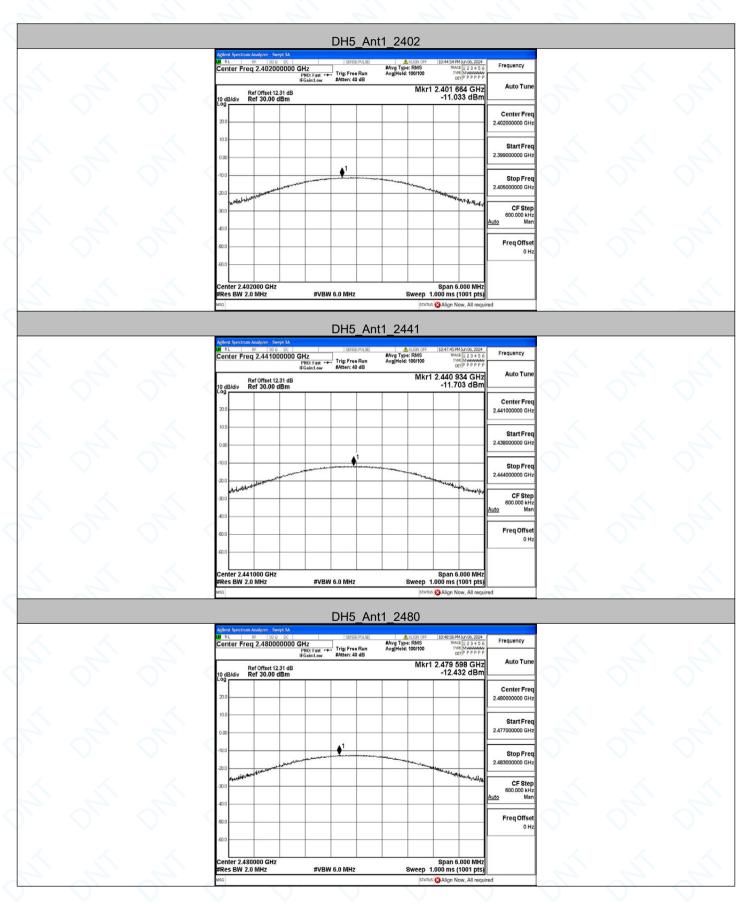
3DH5_Ant1_2441

	SENSE:PULS			RF		RU
Trig: Free Run Avg Hold: 100/100 Type Multimut	Trig: Free Run #Atten: 40 dB	00000 GHz PNO: Wide IFGain:Low	2.44100	req	ter F	en
ΔMkr3 1.344 MHz -0.510 dB			f Offset 12 f 30.00 (3/div	
Center Free 2.44100000 GH						0.0
2 Start Fre 2.439500000 GH 2.439500000 GH		1				1.0
Stop Free 2.442500000 GH		~	mm		~~~	0.0 0.0 0.0
Span 3.000 MHz CF Ster 00 kHz Sweep 3.200 ms (1001 pts) 300.000 kH Auto Ma	W 100 kHz	#V		1 30 k	s BW	Re
5 890 dBm 6 914 dBm - 0.610 dB - 0 H	-36.980 dBm -16.914 dBm) -0.510 dB	2.440 265 GHz 2.441 090 GHz 1.344 MHz	(Δ)	f	Ν Ν Δ1	1
					-	7 8 9 0
PARCHON PARCHONMONY PONCHONVOUS	-16,914 dBm	2.440 265 GHz 2.441 090 GHz		1 1	NN	1 2

3DH5_Ant1_2480

Ref Offset 12.31 dB Δ/WKR3 1.305 WITZ 10g8dd/w -0.307 dB 10g -0.307 dB 00	Agilent Spectru	m Analyzer - Si	iwept SA							
If Control Log Autor T 10 dBidiv Ref 00ffset 12.31 dB AMkr3 1.305 MHz 10 dBidiv Ref 30.00 dBm -0.307 dB 2400000001 -0.307 dB -0.307 dB 300 -0.307 dB -0.307 dB 301 .000 dBm -0.307 dB 302 -0.307 dB -0.307 dB 303 -0.307 dB -0.300 dBm 241500000 dBm -0.300 dBm -0.300 dBm 241500000 dBm -0.300 dBm -0.300 dBm 200 dBm -0.300 dBm -0.300 dBm 201 dBm -0.300 dBm -0.300 dBm 201 d			000000				pe: RMS	TRACE	123456	Frequency
Cág N Cé doute dem 200 2	10 dB/div		12.31 dB					Akr3 1.30	5 MHz	Auto Tune
200 1 1 Start F 247500000 f 24750000 f 24750000 f 400 - - - 400 - - - - 400 - - - - - 400 - - - - - - 400 -	20.0 10.0									Center Freq 2.480000000 GHz
200 300 500 248150000 248150000 600 Center 2.480000 GHz Span 3.000 MHz Span 3.000 MHz Center 2.480000 GHz Span 3.000 MHz Span 3.000 MHz <td< td=""><td>-20.0</td><td></td><td>G</td><td>1,~~~~</td><td>man 2</td><td>www.</td><td>3∆1</td><td></td><td>-36.29 dBm</td><td>Start Freq 2.478500000 GHz</td></td<>	-20.0		G	1,~~~~	man 2	www.	3∆1		-36.29 dBm	Start Freq 2.478500000 GHz
#Res BW 30 kHz #VBW 100 kHz Sweep 3.200 ms (1001 pts) 300.000 1 N f 2.479 286 GHz -16.78 dBm Auto 2 N f 2.479 286 GHz -17.78 dBm Freq 0ff 3 A1 f (Δ10) -13.05 MHz (Δ10) Freq 0ff	-50.0	~~~~~	nm				harm	mm	~~~~	Stop Freq 2.481500000 GHz
1 N f 2.479 286 5Hz -37 128 dBm 2 N i f 2.479 326 5Hz -367 dBm 2 N i f 2.479 326 5Hz -15.378 dBm 4 1 f (Δ) -305 MHz (Δ) -307 dB	#Res BW 3	30 kHz	z	#VBV	V 100 kHz	FUNCTION		.200 ms (1	001 pts)	CF Step 300.000 kHz Auto Man
7	1 N 1 2 N 1 3 Δ1 1 4 5 6	1	2.479	928 GHz	-16.287 dBm					Freq Offset 0 Hz
	8 9 10 11									

Report No.: DNT241188R1623-4080 Date: July 25, 2024


Page: 39/65

Appendix B: Maximum conducted output power

Test Result					
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
1 1		2402	-11.03	≤20.97	PASS
DH5	Ant1	2441	-11.70	≤20.97	PASS
		2480	-12.43	≤20.97	PASS
2DH5	$\langle O \rangle = \langle O \rangle$	2402	-10.63	≤20.97	PASS
	Ant1	2441	-11.36	≤20.97	PASS
		2480	-12.19	≤20.97	PASS
\land		2402	-10.33	≤20.97	PASS
3DH5	Ant1	2441	-10.98	≤20.97	PASS
	\mathbf{V}	2480	-11.69	≤20.97	PASS

Test Graphs

Report No.: DNT241188R1623-4080 Date: July 25, 2024 Pa

Page: 41/65

	2D	H5_Ant	1_2402		
Agilent Spectrum Analyzer - Swept					
Center Freq 2.402000	000 GHz		ALIGN OFF	10:51:40 PMJun 06, 2024 TRACE 1 2 3 4 5 6	Frequency
		g:FreeRun ten:40 dB	Avg Hold: 100/100	DET P P P P P	
Ref Offset 12.3 10 dB/div Ref 30.00 dB			Mkr1	2.401 850 GHz -10.629 dBm	Auto Tun
Log					Center Fre
20.0					2.402000000 GH
10.0					Start Fre
0.00					2.399000000 GH
10.0		∮ ¹			Stop Fre
20.0	and a standard and a		and a second and the second	and the second se	2.405000000 GH
Willinguigetererer				and the second s	CF Ste
40.0					600.000 kit
40.0					FreqOffs
50.0					01
60.0					
Center 2.402000 GHz #Res BW 2.0 MHz	#VBW 6.0	MH7	Sween 1	Span 6.000 MHz .000 ms (1001 pts)	
45G	#15H 0.0			Align Now, All requi	red

2DH5_Ant1_2441

Frequency	10:54:20 PMJun 06, 2024 TRACE 1 2 3 4 5 6	LIGN OFF	#Avg Type	SENSE:PULSE	CH7	RF 50 9 DC	RL enter Er
	DET P P P P P		Avg Hold:	Trig: Free Run #Atten: 40 dB	PNO: Fast IFGain:Low	q 2.44 100000	enter Fr
Auto Tun	2.440 658 GHz -11.363 dBm	Mkr1				tef Offset 12.31 dB tef 30.00 dBm	0 dB/div
Center Fre 2.441000000 GH							20.0
Start Fre 2.438000000 GH							0.0
Stop Fre 2.444000000 GH	anternorman Theoreman and a state of the second	wholeshale	and marked	↓ 1	Laboreranama	afterda atterrages and	0.0
CF Ste 600.000 kH Auto Ma							10.0
Freq Offse 0 H							0.0
	Span 6.000 MHz .000 ms (1001 pts)				#VBW		enter 2.4

2DH5_Ant1_2480

					_					
Agilent Spect	rum Analyzer - Si	wept SA								
RL	RF 50 \$	2 DC		SENSE	PULSE		ALIGN OFF		4.Jun 06, 2024	- Constanting
Center F	req 2.4800				-	#Avg Type		TRAC	123456 EM	Frequency
			NO: Fast	#Atten: 40		Avg Hold:	100/100	D	PPPPPP	
10 dB/div	Ref Offset 12 Ref 30.00						Mkr1		18 GHz 92 dBm	Auto Tune
	Ref 30.00	asm						-14.1	OL GDI	
										Center Freq
20.0										2,480000000 GHz
20.0										2.48000000 GHz
222										
10.0		-								Start Freq
0.00	_									2.477000000 GHz
-10.0					1					
100			and		- water and	unter Manhaut				Stop Freq
-20.0		and the second second	T I				and the second			2.483000000 GHz
-20.0	abore the standard							A Strater Party	minut a state	
UNIVA-									W. H. W. WANK	CF Step
-30.0	_	-						-		600.000 kHz
										Auto Man
-40.0	_									
										1000 - 1000 - 10
-50.0										Freq Offset
										0 Hz
-60.0										
-80.0					-					
Center 2	480000 GHz	,						Snan 6	.000 MHz	
#Res BW			#VBW	6.0 MHz		:	Sweep 1	1.000 ms (
MSG							STATU	s 🕄 Align N	ow, All requi	red

Report No.: DNT241188R1623-4080 Date: July 25, 2024 Pag

Page: 42/65

	3DH5_/	Ant1_2402		
Agilent Spectrum Analyzer - Swept				
RL RF 50 2 Center Freg 2.402000		#Avg Type: RMS	10:58:29 PM Jun 06, 2024 TRACE 1 2 3 4 5 6	Frequency
201101 1109 2.402000	PNO: Fast Trig: Free Run IFGain:Low #Atten: 40 dB	Avg Hold: 100/100	DET P P P P P P	
Ref Offset 12.3 0 dB/div Ref 30.00 dB		Mkr1	2.401 946 GHz -10.328 dBm	Auto Tun
.og				Center Fre
20.0				2.402000000 GH
10.0				Start Fre
0.00				2.399000000 G
10.0	• ¹			Otor Er
20.0	and a second sec	and the state of t	Wen I.	Stop Fre 2.405000000 GF
20.0 Welden walk and the second			underson municipalities	CF Ste
30.0				600.000 ki Auto M
40.0				<u>Auto</u> m
50.0				Freq Offs
60.0				01
Center 2.402000 GHz #Res BW 2.0 MHz	#VBW 6.0 MHz	Sweep 1	Span 6.000 MHz 000 ms (1001 pts)	
ISG	#*D** 0.0 MINZ		Align Now, All requi	red

3DH5_Ant1_2441

Frequency	E123456	11:05:01 PM TRAC	ALIGN OFF		SENSE	GHz	50 g DC 41000000	Freg 2.4	enter
Auto Tun		1 2.440 7	Avg Hold: 100/100 Mkr1		Trig: Free #Atten: 40	PNO: Fast	set 12.31 dB		
Center Fre 2.441000000 GH	76 dBm	-10.9					0.00 dBm	/ Ref 3	20.0
Start Fre 2.438000000 GH									0.0
Stop Fre 2.444000000 GH		-	- Hindow Handson and Mark	An-many of	• ¹	and the second s	and and a second	. Louise	20.0
CF Ste 600.000 kH Auto Ma									10.0
Freq Offso 0 H								-	0.0
	.000 MHz 1001 pts)	Span 6 1.000 ms (Sweep		6.0 MHz	#VBW		2.441000 W 2.0 MH	

3DH5_Ant1_2480

Agilent Spectrum Analyzer - Swept SA							
Center Freq 2.480000000 G	HZ PNO: Fast +++ Trig: F	NSE:PULSE	#Avg Type: Avg Hold: 1		TRACI	1 2 3 4 5 6 M 00000000000000000000000000000000000	Frequency
Ref Offset 12.31 dB 10 dB/div Ref 30.00 dBm	FGain:Low #Atten	: 40 dB		Mkr1	2.480 0		Auto Tune
20.0							Center Freq 2.48000000 GHz
0.00							Start Freq 2.477000000 GHz
-10.0	*****	1		the second and	4		Stop Freq 2.483000000 GH2
-30.0						edity, hegeliller,	CF Step 600.000 kHz Auto Man
-50.0		-				_	Freq Offset 0 Hz
60.0 Center 2.480000 GHz #Res BW 2.0 MHz	#VBW 6.0 M				Span 6. .000 ms (*	000 MHz	

Report No.: DNT241188R1623-4080 Date: July 25, 2024 Page: 43 / 65

Appendix C: Carrier frequency separation

Test Result

Test Mode	Antenna	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	0.942	≥0.674	PASS
2DH5	Ant1	Нор	1.172	≥0.876	PASS
3DH5	Ant1	Нор	0.992	≥0.896	PASS

Page: 44/65

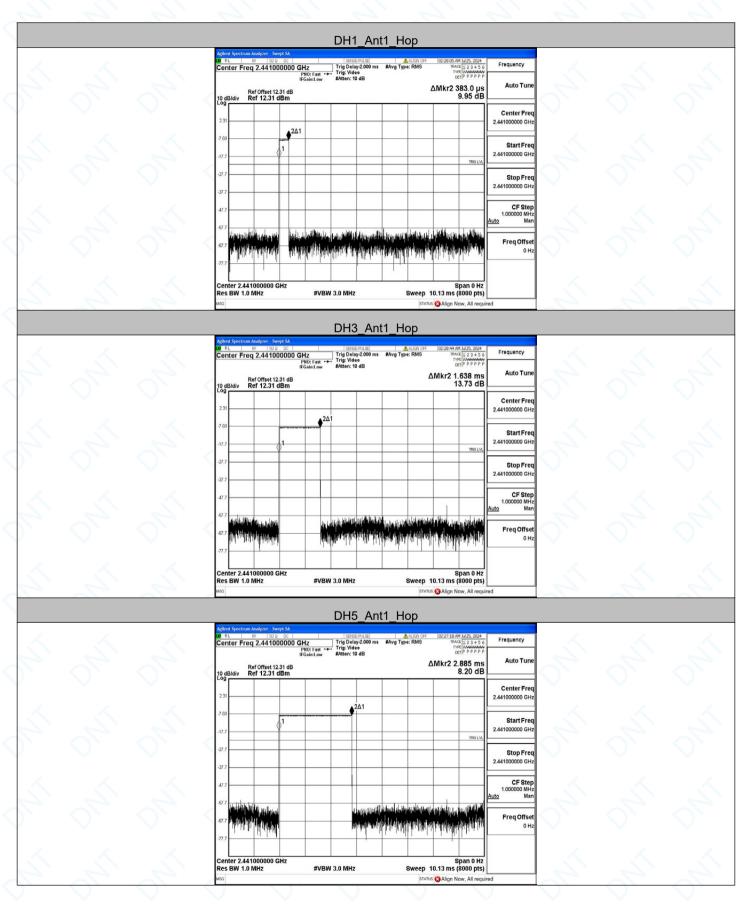
Test Graphs

Report No.: DNT241188R1623-4080 Date: July 25, 2024

Page: 45/65

Appendix D: Dwell Time

Toet	Result
ICJL	Nesun


restresult							
Test Mode	Antenna	Freq(MHz)	BurstWidth TotalHops [ms] [Num]		Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.383	320	0.026	≤0.4	PASS
DH3	Ant1	Кор	1.638	160	0.004	≤0.4	PASS
DH5	Ant1	Нор	2.885	106.67	-0.004	≤0.4	PASS
2DH1	Ant1	Нор	0.390	320	-0.011	≤0.4	PASS
2DH3	Ant1	Нор	1.643	160	0.006	≤0.4	PASS
2DH5	Ant1	Нор	2.892	106.67	0.025	≤0.4	PASS
3DH1	Ant1	Нор	0.390	320	0.045	≤0.4	PASS
3DH3	Ant1	Нор	1.642	160	-0.014	≤0.4	PASS
3DH5	Ant1	Нор	2.893	106.67	-0.008	≤0.4	PASS

Report No.: DNT241188R1623-4080 Date: July 25, 2024

Page: 46/65

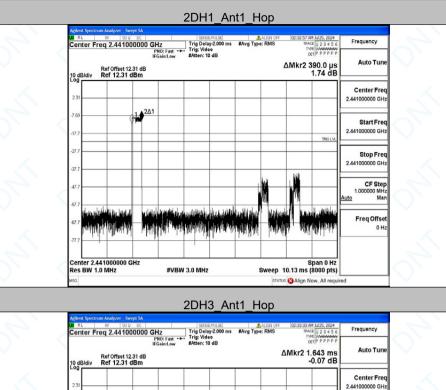
Test Graphs

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

Report No.: DNT241188R1623-4080 Date: July 25, 2024

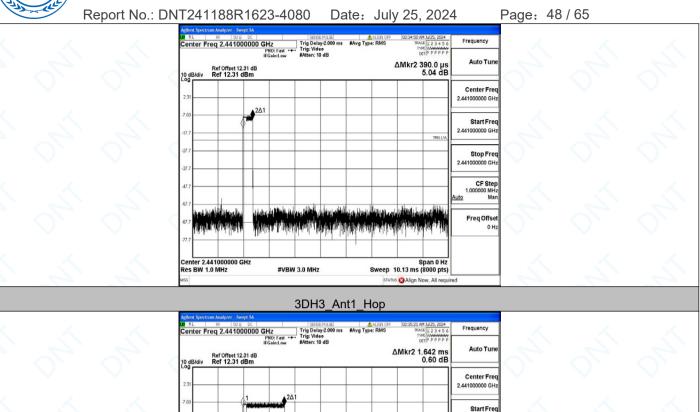

Page: 47 / 65

Start Fre 2.441000000 G

Stop Fre 2.441000000 GH CF Ste 1 0000

> Freq Offs 0 1

rus 🔁 Align Now, All I


Span 0 Hz Sweep 10.13 ms (8000 pts) #VBW 3.0 MHz 2DH5 Ant1 Hor

Center 2.441000000 GHz Res BW 1.0 MHz

	ZDHJ_A	<u>iti_nop</u>		
Igilent Spectrum Analyzer - Swept SA				
Center Freq 2.441000000 G	PNO: Fast Trig: Video	#Avg Type: RMS	02:29:19 AM 3/425, 2024 TRACE 1 2 3 4 5 6 TYPE W	Frequency
Ref Offset 12.31 dB 0 dB/div Ref 12.31 dBm	FGain:Low #Atten: 10 dB	ΔΙ	Mkr2 2.892 ms 16.78 dB	Auto Tur
2.31				Center Fr 2.441000000 G
7.7	4 protected out 201		TRG LVL	Start Fr 2.441000000 G
7.7				Stop Fr 2.441000000 G
77				CF St 1.000000 N Auto N
		idin Kirinini Marini		Freq Offs 0
enter 2.441000000 GHz tes BW 1.0 MHz	#VBW 3.0 MHz	Sweep 10	Span 0 Hz 1.13 ms (8000 pts)	
sG		STATUS	Align Now, All require	red

3DH1_Ant1_Hop

2.441000000 GH Stop Fre 2.441000000 GH CF Ste 1.000000 MH

Freq Offs

3DH5_Ant1_Hop

#VBW 3.0 MHz

Span 0 Hz Sweep 10.13 ms (8000 pts)

TATUS 🔇 Align Now, All re

Center 2.441000000 GHz Res BW 1.0 MHz

Frequency	02:34:21 AM JJ 25, 2024			SENSE:PULSE		Agilent Spectrum Analyzer - Swept SA N RL RF S0 Ω DC		
	TRACE 1 2 3 4 5 6 TYPE WWWWWWWW DET P P P P P P	#Avg Type: RMS TRAC TYD D		Trig Delay-2.000 ms Trig: Video #Atten: 10 dB		Center Freq 2.441000000 GHz		
Auto Tur	Mkr2 2.893 ms 2.78 dB	L				i diniçu	Ref Offset 12.31 dB Ref 12.31 dBm	
Center Fre 2.441000000 GH								2.31
Start Fre				2Δ1		lan dunismeti	(p ha an	.69
2.441000000 GH	TROLVL				_			7.7
Stop Fre 2.441000000 G								7.7
CF Ste 1.000000 Mi Auto M					-			7.7
Freq Offs	dela del constante del del del del del del del del del de	Mileyn Marith	la de la calendaria de la La calendaria de la calenda	llagus ta ^{dhil} t a dhata billta			httelle ond help Alle Maria de Anna	97.7 194 114 104 97.7
	يرين بليته الأمالية بالر	L and A	d la .	lek IN A			. I . Internet	77.7
	Span 0 Hz 10.13 ms (8000 pts)	Sweep 1		z	3.0 MHz	#VBW :	441000000 GHz .0 MHz	enter 2.441 es BW 1.0
ed	s 🔀 Align Now, All requir	STATU						56

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

Report No.: DNT241188R1623-4080 Date: July 25, 2024 Page: 49 / 65

Appendix F: Number of hopping channels

Test Result

Test Mode	Antenna	Freq(MHz)	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
2DH5	Ant1	Нор	79	≥15	PASS
3DH5	Ant1	Нор	79	≥15	PASS